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emezura@computacion.cs.cinvestav.mx
ccoello@cs.cinvestav.mx

Abstract- In this paper, we propose the use of a Simple
Evolution Strategy (SES) (i.e., a

���������
-ES with self-

adaptation that uses three tournament rules based on
feasibility) coupled with a diversity mechanism to solve
constrained optimization problems. The proposed mech-
anism is based on multiobjective optimization concepts
taken from an approach called the Niched-Pareto Ge-
netic Algorithm (NPGA). The main advantages of the pro-
posed approach is that it does not require the definition
of any extra parameters, other than those required by
an evolution strategy. The performance of the proposed
approach is shown to be highly competitive with respect
to other constraint-handling techniques representative of
the state-of-the-art in the area when using a well-known
benchmark.

1 Introduction

Evolutionary Algorithms (EAs) are heuristic methods that
have been successfully applied to a wide set of application do-
mains [10], both, in global (single-objective) and in multiob-
jective optimization. Nevertheless, EAs are an unconstrained
search technique and lack an explicit mechanism to deal with
constrained search spaces. This has motivated the develop-
ment of a considerable number of approaches to incorporate
constraints into the fitness function of an EA [11, 1].

The most common approach adopted to deal with con-
strained search spaces is the use of penalty functions [12].
When using a penalty function, the amount of constraint vi-
olation is used to punish or “penalize” an infeasible solution
so that feasible solutions are favored by the selection process.
Despite the popularity of penalty functions, they have sev-
eral drawbacks from which the main one is that they require a
careful fine tuning of the penalty factors that accurately esti-
mates the degree of penalization to be applied so that we can
approach efficiently the feasible region [15, 1].

Evolution Strategies (ES) have been found not only effi-
cient in solving a wide variety of optimization problems [4],
but also have a strong theoretical background [14]. Motivated
by the fact that some of the most recent (and most competi-
tive) approaches to incorporate constraints into an evolution-
ary algorithm use an ES (see for example [13, 5]), Mezura
& Coello [9] proposed a Simple Evolution Strategy (SES) to
solve constrained problems. This approach is based on a dou-
ble mechanism: (1) the original self-adaptation mechanism of

the ES to sample the search space and (2) a selection mecha-
nism that prefers solutions based on feasibility to choose the
new starting points for the search. However, our SES pre-
sented some drawbacks that are improved in the current work.
Our main improvement consists of a diversity mechanism that
allows the best of the

�
individuals (based on feasibility and

objective function value) in the current generation (and not
only the child formed by all the parents) to replace the cur-
rent solution. We also allow the parent with the best objective
function value to replace the current solution regardless of
its feasibility. This mechamism is controlled by a stochas-
tic parameter called Selection Ration ( 	�
 ). This parameter
indicates the number of times (as a percentage) that normal
selection (i.e., deterministic between the current solution and
the child formed by all the parents) will take place. The re-
maining

�
� 	�
 times, the best parent or the individual with
the best value of the objective function will replace the cur-
rent solution. In the current work, equality constraints are
transformed into inequality constraints using a dynamic pa-
rameterless tolerance.

This paper is organized as follows: in Section 2 a short
survey of constraint-handling techniques similar to our own
is presented. Section 3 provides a detailed description of the
proposed approach. Section 4, describes the test functions
used and presents the results obtained. Section 5 provides a
discussion of results. Finally, Section 6 provides our conclu-
sions and some possible paths for future research.

2 Previous Work

The use of tournament selection based on feasibility rules has
been explored by other authors. Jiménez and Verdegay [7]
proposed an approach similar to a min-max formulation used
in multiobjective optimization combined with tournament se-
lection. The rules used by them are similar to those adopted in
this work. However, Jiménez and Verdegay’s approach lacks
an explicit mechanism to avoid the premature convergence
produced by the random sampling of the feasible region be-
cause their approach is guided by the first feasible solution
found. Deb [3] used the same tournament rules previously
indicated in his approach. However, Deb proposed to use
niching as a diversity mechanism, which introduces some ex-
tra computational time (niches are an � ������� procedure). In
Deb’s approach, feasible solutions are always considered bet-
ter than infeasible ones. This contradicts the idea of allowing



infeasible individuals to remain in the population. Therefore,
this approach will have difficulties in problems in which the
global optimum lies on the boundary between the feasible and
the infeasible regions. Coello & Mezura [2] used tournament
selection based on feasibility rules. They also adopted non-
dominance checkings using a sample of the population (as
the multiobjective optimization approach called NPGA [6]).
They adopted a user-defined parameter 	�
 , to control the di-
versity in the population. This approach provided good re-
sults in some well-known engineering problems and in some
benchmark problems, but presented problems when facing
high dimensionality [2].

The three approaches discussed before are based on a ge-
netic algorithm. However, several of the most competitive
constraint-handling approaches known to date are based on
an evolution strategy (e.g., Stochastic Ranking [13] and the
Adaptive Segregated Constraint Handling Evolutionary Al-
gorithm (ASCHEA) [5]).

3 Description of the Approach

The motivation of this work was twofold:

1. We hypothesized that the use of an evolution strategy
for constrained optimization would be benefitial (with
respect to the use of a genetic algorithm).

2. We were also aware that having a good mechanism
to maintain diversity is one of the keys to produce a
constraint-handling approach that is competitive with
the techniques representative of the state-of-the-art in
the area.

Sr
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Figure 1: Diagram that illustrates the diversity mechanism
implemented for our SES.

In [9], we introduced the so-called Simple Evolution Strat-
egy (SES), which is based on two mechanisms:� The self-adaptation mechanism of an ES, which helps

our approach to sample the search space well enough
as to reach the feasible region reasonably fast.� The use of tournaments based on feasibility, which are
adopted to guide the search in such a way that the
global optimum can be approached efficiently.

The three simple selection criteria used in our tournaments
are the following (binary tournaments are adopted):� Between 2 feasible solutions, the one with the highest

fitness value wins.� If one solution is feasible and the other one is infeasi-
ble, the feasible solution wins.� If both solutions are infeasible, the one with the lowest
sum of constraint violation is preferred.

Our SES uses the
�����

-success rule for self-adapting the� value of our ES. By using just one � value and one fit-
ness function evaluation per generation, the resulting compu-
tational cost (per generation) of our approach is very low.

This first version of our approach provided very competi-
tive results [9]. However, it presented premature convergence
in some problems due to the high selection pressure caused
by the tournaments performed. This motivated the changes
introduced in this paper.

The modifications that we have made to the original algo-
rithm are the following:� The selection process was modified in order to allow

either infeasible solutions with a good value of the ob-
jective function or the best parent (based on the selec-
tion criteria) to replace the current solution (in the last
version only the child generated by all the parents could
replace the current solution).� This modified selection process is controlled by a pa-
rameter (that is not defined by the user) called Selection
Ratio ( 	 
 ). This parameter was introduced in [2] and
it refers to the percentage of selections that will be per-
formed in a deterministic way (as used in the original
version of our SES where the child replaces the cur-
rent solution based on the three selection criteria). In
the remaining

� � 	�
 selections, there are two choices:
(1) either the parent with the best value of the objec-
tive function will replace the current solution (regard-
less of its feasibility) or (2) the best parent (based on
the three selection criteria) will replace the current so-
lution. Both options are given a

���	�
probability each

(see Figure 1).� The 	 
 parameter is adapted online using the fitness
value of the current solution during an interval of time
(number of generations). The “mean deviation” ( 
�� )
of the current solution over a certain number of gener-
ations is calculated in order to know how different has
been the current solution. All the fitnesses are normal-
ized in order to obtain a value between

�
and

�
. The

expression to adapt the 	�
 value is the following:

	�
 ��
 ���
�� � 	 
 ��
 � interval

��� ��� ��� �
if 
���� ��� �

	 
 ��
 � interval
��� ��� ��� �

if 
���� �����
	 
 ��
 � interval

�
if
� � ��! 
"� !#� � �

(1)
where interval is defined as a percentage of the maxi-
mum number of generations. For example if the inter-
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Table 1: Statistical results obtained of the 30 runs performed using the new SES with the 12 test problems adopted.

val is defined as
��� ���

and the number of generations is� ���
, the update process will take place at every

�
gen-

erations. As can be seen, 	�
 will be decreased if the
current solution has not significantly changed during
the given interval (i.e., 
 � � ��� �

) allowing a parent
(which may be infeasible) with a good fitness value to
replace the current solution. This is meant to increase
diversity. On the other hand, 	 
 will increase if the so-
lution has been significantly different (i.e., 
 � � �����

)
during the interval, thus favoring deterministic selec-
tion to impel convergence. 	�
 will keep its current
value if the variation of the current solution in the in-
terval has been moderated (i.e.,

��� ��! 
�� !#�	�
).� In order to always keep the best solution found dur-

ing the process a superelitist mechanism is included.
Its only goal is to keep the best feasible solution
found. This is required because the diversity mecha-
nism adopted makes the current solution to be replaced
by another solution which is not necessarily better and
may be infeasible. Its implementation does not add any
significant extra computational or storage cost to the al-
gorithm.� To deal with equality constraints, a parameterless dy-
namic mechanism similar to that used in ASCHEA [5]
is adopted. The tolerance value � is decreased with re-
spect to the current generation using the following ex-
pression:

��� ��
�� ��� � ��� � 
 � � ��� ��������� � (2)

It is worth emphasizing that allowing the parents to replace
the current solution in a

��� � � �
-ES (used by our SES) en-

hances the search power (global and local) of the ES because
it explores more deeply the regions that surround the current
solution. As the � value is high early in the process, it will
generate solutions (parents) on far regions of the search space
(global search). This will allow to sample better the search
space and to select the most promising point. The same be-
havior will occur later in the process, but in this case the
points close to the current solution will be the more deeply
explored (local search). A graphical explanation of this be-
havior is provided in Figure 2.

Another aspect to note is that in order to maintain the low
cost of our SES, the parents are only evaluated if some of
them are to replace the current solution. In the same way,

Parents

Current Solution

Child

Explored Region

x2

x1

Figure 2: Diagram that illustrates the explored region of the
search space in the new version of our SES. In the old version
only the points in white (child and current solution) could be
selected.

the child will be evaluated only if it is to compete against the
current solution. The pseudo-code of this approach is shown
in Figure 3.

4 Experiments and Result

To evaluate the performance of the new approach we used 12
of the test functions described in [13]. The test functions cho-
sen contain characteristics that are representative of what can
be considered “difficult” global optimization problems for an
evolutionary algorithm. Their expressions are provided next.� TF1:

Minimize: � ���� � � ����� "!$# �  � ����� "!$# � � �%� #�& "!(' �  
subject to:

) # ���� � � � � # ��� � � � � #
* � � #�# � � � ! �
) � ���� � � � � # ��� � & � � #
* � � # � � � � ! �
) & ���� � � � � � ��� � & � � #�# � � # � � � � ! �

) � ���� � � �,+ � # � � #
* ! �
) ' ���� � � �,+ � � � � #�# ! �
).- ���� � � �,+ � & � � # � ! �

)./ ���� � � � � � � � � ' � � #
* ! �
).0 ���� � � � � �1- � �1/ � � #�# ! �
).2 ���� � � � � �10 � �12 � � # � ! �



where the bounds are
� ! �  ! �

( � � ��� � � �����
),
� !

�  ! � ���
( � � � ��� � ��� � �

) and
� ! � #�& ! �

. The global
optimum is at �	� � � ��� ��� ��� ��� ��� ��� ��� ��� ����
���
���
�� ���
where � � �	� � � � � �

. Constraints ) # , ) � , ) & , ) � , ) '
and ) - are active.� TF2:

Maximize: � ���� � ��




������ ������� ��������� � ��! ���� �"����� ���������# � ���� �  � �� 



 sub-

ject to:

) # � �� � � ���%$�� �'&( ! # �  !#�
) � � �� � � &)  "!$# �  �*$ ���,+ !#�

(3)

where
+#� ���

and
� ! �  !�� ��� � � ��� � � ����+��

. The
global maximum is unknown; the best reported solu-
tion is [13] � � � � ��� ��� +���
�- ���

. Constraint ) # is close
to being active ( ) # � � � � � 0

).� TF3:
Maximize: � ���� � � � # +�� &/. & ! # �  

subject to:

0 ���� � � � & ! # � � � � � �
where

+ � � �
and

� ! �  ! � � � � ��� � � �1�2+��
.

The global maximum is at �3� � ��� # +�� � � ��� � � ���2+��
where � � �	� � � �

.� TF4:
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��4$ +	�,56$ � �& �#��� +�
���-.+�� � � # � ' �
6$ ���"��
	�"
�� � # �75	�4$"��� � �15 �
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�
"5�5	�4$ � ��� ���	�"-.+	� + � � � ' �� � ������-	�"-	� � # � � � � � ������������
 � & � ' �8��� !��
) � � �� � � �,+�� � 
�
�5�5	�4$ � � � ������-.+��.+ � � � ' �� � ������-	�"-	� � # � � �"� � ������������
 � & � ' !#�
) & � �� � � +�� � � � �"5�� � ��� ���6$ �9
 �:$ � � � ' �� � �����"������� � # � � �"� � ����� ��+ ��
 � �& � � � � ! �
) � � �� � � �,+�� � � � �,54� � � � ���4$ �9
 �,$ � � � ' �� � �����"������� � # � � � � � ����� ��+ ��
 � �& �;��� !#�
) ' � �� � � ��� 
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where:

$ + ! � # ! � ���
,

�
 ! � � !=5	�

,
�4$ ! �  !=5	�

� � � 
��25>��� �
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� $ +���
�
����"� � ���������"-������"-.+����25�����
"- �?$"$�� + � �"���	��$ + + �
where � � �	� � � �/
���-�-���� ��
��

. Constraints ) # y ).- are
active.� TF5
Minimize: � ���� � � � � # � � � � & � � � � � ��� � &
subject to:

) # � �� � � � � � # � � ��� � � � � � � � � � � ��� !#�
) � � �� � � � � # �8- � � � � � � � � � � � +	� � + � !#�
where

�9
 ! � # ! � ���
and

� ! � � ! � ���
. The

optimum solution is � � � � �15 � ���	�<����� +"5	����- �
where� � �@� � � �/-���- ��� + �9
 +.+
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* ! �
where

� � � ! �  ! � � � � � ��� � � ��� � � �
. The global op-

timum is �	� � � � � �:$ �9����-�� � � 
�-�
�-.+�
<��+ �?$�$,
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subject to:) # � �� � � � � # � � � � � ! �
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� ! � # ! � �
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� ! � � ! � �
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���5 ���,5 �"
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"
 �
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������4$,

.

Two constraints are active ( ) # and ) � ).� TF9
Minimize: � ���� � � � # � � � � � &
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�
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�
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where � � �	� � � $���5�� � 
�
��4$

. ) # , ) � and ) & are active.� TF10
Minimize: � ���� � � � � # � � � � � ��� �
subject to:0 ���� � � � � � � � # � �
where:

� � ! � # ! �
,
� � ! � � ! �

. The
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where� � �@� � � � �?$��
.� TF11
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. The feasible region of the
search space consists of

� &
disjointed spheres. A
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such the above inequality (4) holds. The global
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where � � �	� � � �

.� TF12
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��"54�.+
.

To get a measure of the difficulty of solving each of
these problems, a � metric (as suggested by Koziel and
Michalewicz [8]) was computed using the following expres-
sion:

� ��
 ��
 ��
 	 
 (4)

where

 ��


is the number of feasible solutions and

 	 
 is the

total number of solutions randomly generated. In this work,
	 � ����������� �����

random solutions.
The different values of � for each of the functions chosen are
shown in Table 3, where

+
is the number of decision vari-

ables, LI is the number of linear inequalities, NI the number
of nonlinear inequalities, LE is the number of linear equalities

Problem n Type of function � LI NI LE NE

TF1 13 quadratic
��� ���������

9 0 0 0
TF2 20 nonlinear

����� ���������
2 0 0 0

TF3 10 nonlinear
��� ���������

0 0 0 1
TF4 5 quadratic

����� ���������
4 2 0 0

TF5 2 nonlinear
��� ���������

0 2 0 0
TF6 10 quadratic

��� ���������
3 5 0 0

TF7 2 nonlinear
��� 
���

���

0 2 0 0
TF8 7 nonlinear

��� �
�������
0 4 0 0

TF9 8 linear
��� ���������

6 0 0 0
TF10 2 quadratic

��� ���������
0 0 0 1

TF11 3 quadratic
��� ���������

0
� �

0 0
TF12 5 nonlinear

��� ���������
0 0 1 2

Table 3: Values of � for the 12 test functions chosen.

and NE is the number of nonlinear equalities.
The parameters used in the experiments are the following

(30 runs were performed for each problem): the total number
of fitness function evaluations was set to 330,000. Equality
constraints were transformed into inequalities using an initial
tolerance value of

��� ��� �
. The initial values for the

� ��� � �
-ES

parameters were: � � 5 � �
, � � � � ���

,
� � 


, and maximum
number of generations =

��$��<� �����
. The interval of the 	�
 up-

dates was almost negligible (
� � �

). This means that the update
will take place until generation

�"56$<�������
. We anticipated that

our approach would not be too sensitive to the 	�
 parameter
and our experiments confirmed this hypothesis. The statisti-
cal results are presented in Table 1.

5 Discussion of Results

In Tables 2, 4, 5 and 6, we compare the new SES against the
last (old) SES, the homomorphous maps [8], stochastic rank-
ing [13] and ASCHEA [5], respectively. Such approaches
were selected for comparison because they are representative
of the state-of-the-art in the area. There are several issues
derived from this comparison that deserve some discussion:� The new SES was able to converge to the global op-

timum in 7 of the test 12 functions used (TF1, TF3,
TF4, TF5, TF7, TF10 and TF11), and it was able to
converge very close to the optimum in TF2, TF6, TF8,
TF9 and TF12.� With respect to the last version of the SES (Table 2),
this New SES improved the robustness of the results in
problems TF1, TF2, TF4, TF6 and TF10. Also, the
quality of the results was improved in problems TF9
and TF12.� With respect to the homomorphous maps (see Table 4),
we can see that our SES converged to a better “best”
solution in 9 problems (TF1, TF2, TF3, TF4, TF5,
TF6, TF8, TF9 and TF11). Also, it found a better av-
erage and a better “worst” solution in 8 problems (TF1,
TF3, TF4, TF5, TF6, TF7, TF8, and TF11). Thus, it
should be clear that our SES had a highly competitive
performance, even improving the results of the homo-
morphous maps in several test functions. No compari-
son was made with problem TF12 because such results
were not available.� With respect to stochastic ranking (see Table 5), the
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Table 2: Comparison of results between the new SES and the old SES proposed in [9]. “-” means no feasible solutions were
found.

Best Result Mean Result Worst Result
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Table 4: Comparison of results between our approach (SES) and the Homomorphous Maps (HM) [8] NA = Not Available.

new SES was able to converge to similar “best” solu-
tions in 10 problems (TF1, TF3, TF4, TF5, TF6,TF7,
TF8, TF10, TF11 and TF12). SES found a slightly
better result in problem TF2. Moreover, SES found
a similar average solution in 8 problems (TF1, TF3,
TF4, TF6, TF7,TF8, TF10, and TF11). SES found
a better average solution in problem TF5. Finally,
SES found similar “worst” solutions in 5 problems
(TF1, TF3, TF4, TF6 and TF11) and reached a bet-
ter “worst” individual in problem TF5. Though the
Stochastic Ranking performed with a little more con-
sistency, SES performed almost at a similar level than
this highly competitive approach.� Finally, with respect to ASCHEA (see Table 6), the
new SES converged to similar “best” results in 7 prob-
lems (TF1, TF3, TF4, TF5, TF7,TF8 and TF10) and
it found better “best”results in 3 problems (TF2, TF6
and TF9). A better average result was found by the
SES in 4 problems (TF1, TF2, TF3 and TF6), and
a similar average solution was reached in 4 problems
(TF4, TF5, TF8 and TF10). Note that we didn’t
present any results for ASCHEA in problems TF11 and
TF12 because such results were not available.

From the previous comparison, we can see that the new SES
produced very competitive results with respect to three tech-
niques representative of the state-of-the-art in constrained op-
timization. The new SES can deal with highly constrained
problems, problems with low (TF5 and TF7) and high (TF1,
TF2, TF3, TF6) dimensionality, with different types of com-
bined constraints (linear, nonlinear, equality and inequality)
and with very large (TF2) or very small (TF12) or even dis-
joint (TF11) feasible regions. However, our approach pre-
sented some robustness problems in TF9. This function has a

very large search space (because of the intervals of the deci-
sion variables). Therefore, our SES required to explore sev-
eral regions of the search space in order to find promising
areas consistently. This can be obtained more easily by using
a population-based ES (e.g., a

����� � �
-ES).

Besides still being a very simple approach, it is worth re-
minding that SES does not require any extra parameters (be-
sides those used with an evolution strategy) because the 	 
 is
adapted online. In contrast, the homomorphous maps require
an additional parameter (called � ) which has to be found em-
pirically [8]. Stochastic ranking requires the definition of a
parameter called ��� , whose value has an important impact on
the performance of the approach [13]. ASCHEA also requires
the definition of several extra parameters, and in its latest ver-
sion, it uses niching, which is a process that also has at least
one additional parameter [5].

Measuring the computational cost, the number of fit-
ness function evaluations (FFE) performed by our approach
is lower than the other techniques with respect to which
it was compared. Our approach performed 330,000 FFE.
Stochastic ranking performed 350,000 FFE, the homomor-
phous maps performed 1,400,000 FFE, and ASCHEA per-
formed 1,500,000 FFE.

It is interesting to note that with a very small population
size (only



individuals), the search power is improved when

we allow to the parents to replace (in a deterministic way) the
current solution regardless of their feasibility.

6 Conclusions and Future Work

We have introduced the addition of a diversity maintenance
mechanism to a simple evolution strategy previously pro-
posed to solve constrained optimization problems [9]. Such a



Begin
t=0, ��� =0.9, interval=0.9
Create a random initial solution ��� and store it as the superelitist solution ���
Evaluate �	�
� ���
For t=1 to MAX GENERATIONS Do

Produce 
 mutations of ����������� using:��� ����� ��������! #" $&%�')( � �+*-,). ��/�02143 , 56�7.8,�9-,):;:<:<,�

Generate one child �>= by the combination of the 
 mutations using

m=randint ��.8,;
 ��?=�@�A�>B� , /�021C3
If (flip( ��� ) Then

Evaluate f( � = )
Apply comparison criteria to select the best individual � � between � ��������� and �?=

else
Evaluate all the 
 mutations obtained
If (flip( *-: D ) Then� � � parent with best objective function value regardless of feasibility
else�>��� best parent based on the comparison criteria
endif

endif
If ( �>� better than � � � (using selection criteria) EGFIH-J� � �K�>�
endif$2�A$��L.
If ( $KMONQP 3 �A* � ERFIH-J

 2" $&%��
ST U  2" $�V 3 %
WYX 0 �[Z>\^]A.)WYD 2" $�V 3 %?'<X 0 �[Z>\^_A.)WYD 2" $�V 3 % 0 �[Z \ �`.)WYD

End If
If ( $KMONQP interval �L* � ERFIHaJ

Calculate the mean deviation ( bdc ) of the current solutions in the interval
If ( becO_�*-:f. ) Then���Q�
$ � �g�#�Q�
$�V interval � WQ.8: *8*-.
else

If ( becO]h*-: 9 ) Then� � �
$ � �A� � �
$#V interval � WQ.8: *8*-.
End If

End If
End Ifi � �+$ � � i � �+$�Vh. � W 1.000001 (only for each i equality constraint)

End For
End

Figure 3: Our algorithm of SES (
+

is the number of decision variables of the problem, �kj�� � � � � is a function that returns TRUE
with probability � ).

mechanism was found to improve the quality and robustness
of our approach.

We also introduced the use of an online adaptive mecha-
nism that automatically updates the value of the 	�
 param-
eter (responsible for controlling diversity in the population).
As its predecessor, the new SES does not require a penalty
function or any extra parameters (other than the original pa-
rameters of an evolution strategy) to bias the search towards
the feasible region of a problem. Additionally, this improved
approach has a low computational cost and it is easy to im-
plement.

Our main path for future research is to explore in more
detail the impact of the 	�
 parameter on the performance of
the approach. We also intend to use our SES to solve some
engineering (real-world) optimization problems.

Acknowledgments

The first author acknowledges support from the mexican Con-
sejo Nacional de Ciencia y Tecnologı́a (CONACyT) through
a scholarship to pursue graduate studies at CINVESTAV-
IPN’s Electrical Engineering Department. The second author
acknowledges support from CONACyT through project num-
ber 32999-A.

Bibliography

[1] C. A. Coello Coello. Theoretical and Numerical Constraint
Handling Techniques used with Evolutionary Algorithms: A
Survey of the State of the Art. Computer Methods in Applied
Mechanics and Engineering, 191(11-12):1245–1287, January
2002.



Best Result Mean Result Worst Result
Problem Optimal SES SR SES SR SES SR

TF1 � ����� ����������� � �	��� ����������� � �	��� ����� � �	��� ����������� � �	��� ����� � �	��� ����������� � ����� �����
TF2

��� 
������
��� ��� 
���������� ��� 
������
�	� ��� ���������	� ��� ��

�����	� ��� �	��������� ��� ��������
�

TF3

��� ����������� ��� ���	������� ��� ����� ��� ����������� �
� ����� �
� ����������� �
� �����
TF4 � ����������� ����������� � ����������� ����������� � ����������� ����� � ����������� ����������� � ����������� ����� � ����������� ����������� � ����������� �����
TF5 � �����
��� 

��������� � �����
��� 

��������� � �������
� 
���� � �������
� 
��	������� � ��
��	��� �	��� � �������
� 
��	������� � ��������� �����
TF6

����� ����������� �	��� ���	������� �	��� ����� �	��� �
�	
�
���� �	��� ���	� ����� ����������� ����� �����
TF7

��� ������
���� ��� ������
���� ��� ������
���� ��� �������	
�� ��� ������
���� ��� ����������� ��� ������
����
TF8

��
���� ����������� ��
���� �������	
�� ��
���� ����� ��
���� 
�����
���� ��
���� ����� ��

��� �	��������� ��
���� �����
TF9

��������� ����������� ��������� ���������	� ��������� �
�	� �	��������� ������
���� ��������� �	��� �	�����	��� ����������� 
�
������ �����
TF10

��� ����������� ��� ���������	
 ��� �	��� ��� �����
�	��� ��� �	��� ��� �	�������
� ��� �����
TF11

��� ����������� �
� ����������� �
� ����������� �
� ����������� ��� ����������� �
� ����������� ��� �����������
TF12

��� ����������� ��� ����������� ��� ����������� ��� ����������� ��� ����������� ��� �	��������� ��� �
�������	�
Table 5: Comparison of results between our approach (SES) and Stochastic Ranking (SR) [13].
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Table 6: Comparison of results between our approach (SES) and ASCHEA [5]. NA = Not Available.
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Z. Michalewicz, editors, Handbook of Evolutionary Computa-
tion, chapter C 5.2. Oxford University Press and Institute of
Physics Publishing, 1997.


