
Hypervolume by Slicing Objective Algorithm: An
Improved Version

Sumit Mishra1, Srinibas Swain1, Sangita Sarmah1 and Carlos A. Coello Coello2

1Department of Computer Science & Engineering, IIIT Guwahati, Assam – 781015, India
2Departamento de Computación, CINVESTAV-IPN, Mexico City, D.F. 07360, Mexico

Email: sumit@iiitg.ac.in, srinibas@iiitg.ac.in, sangitasarmah77@gmail.com and ccoello@cs.cinvestav.mx

Abstract—The hypervolume remains a popular performance
indicator in evolutionary multi-objective, mainly because of its
nice mathematical properties (i.e., it’s the only performance
indicator known to be Pareto-compliant). However, its high
computational cost (which grows polynomially on the population
size but exponentially on the number of objectives) has severely
limited its use in many-objective optimization. This has motivated
a variety of proposals that attempt to overcome this limitation.
One of the most popular proposals currently available is the
so-called Hypervolume by Slicing Objectives (HSO) algorithm.
Here, we show that the worst-case time complexity of the HSO
algorithm, as obtained by its authors, is incorrect. Then, we
provide an efficient implementation of the HSO algorithm, which
guarantees that unique slices are generated to compute the
hypervolume.

Index Terms—Evolutionary computation, Hypervolume, Non-
dominated points, Time complexity.

I. INTRODUCTION

In recent years, the solution of multi-objective optimiza-

tion problems has received an increasing attention from re-

searchers, particularly regarding problems with more than

three objectives (the so-called many-objective optimization

problems) [1]. This has motivated the development of a wide

variety of Multi-objective Evolutionary Algorithms (MOEAs)

[2]–[4]. As more MOEAs are proposed, performance as-

sessment becomes crucial, which raises the importance for

challenging test problems [5] and reliable performance indica-

tors [6], [7]. Some of the most commonly adopted performance

measures to assess convergence include the Hypervolume [8]–

[10], R2 [11], the Inverted Generational Distance (IGD) [12],

the Inverted Generational Distance plus (IGD+) [13], the ǫ

indicator [14], and ∆p [15]. The high computational cost of

the hypervolume (which is also called the S metric [8] and

the Lebesgue measure [16]) in high dimensional spaces, has

triggered a significant amount of research during the last few

years (see for example [17]–[19].

Let P = {p1, p2, . . . pN} be a set of N points in R
M

whose hypervolume needs to be calculated. The ith point of

P; pi is denoted as P[i]. A point p in an M -dimensional

space is a vector of size M represented as 〈p1, p2, . . . , pM 〉. A

reference point R ∈ R
M is represented as 〈R1, R2, . . . , RM 〉.

In general, N >> M . We consider only maximization prob-

lem and with this assumption, a point p = 〈p1, p2, . . . , pM 〉
dominates point q = 〈q1, q2, . . . , qM 〉 denoted as p ≺ q, if

∀m ∈ {1, 2, . . . ,M} pm ≥ qm and ∃m ∈ {1, 2, . . . ,M}
pm > qm. Two points p and q are said to be non-dominated

if neither p dominates q nor q dominates p. The hypervolume

is defined as follows.

Definition 1 (Hypervolume). The hypervolume of a set of

“non-dominated points” measures the size of the portion of ob-

jective space that is dominated collectively by these points [9],

[20]. The hypervolume of a set is measured relative to a

reference point. This reference point is usually an anti-optimal

point or the “worst possible” point in objective space [10].

There have been numerous proposals to improve the com-

putation of the exact hypervolume values [9], [10], [16]–

[31]. The Lebesgue Measure Algorithm (LebMeasure) [16]

has a time complexity O(NM) [21]. The worst-case time

complexity of the Hypervolume by Slicing Objectives (HSO)

algorithm [20] is O(NM−1) [26], [31]. The time complex-

ity of the FPL (Fonseca, Paquete and López-Ibáñez’s) al-

gorithm [23] is O(NM−2 logN). The HOY (Hypervolume

Overmars and Yap) algorithm [24] has an O(N
M

2 logN) time

complexity. The Walking Fish Group (WFG) algorithm [10]

has a time complexity O(2N+1) [10], but Lacour et al. [30]

recently tightened this upper bound to O(NM−1). Chan’s

algorithm [28] has an O(N
M

3 polylogN) time complexity.

The time complexity of Quick Hypervolume (QHV) [29] was

initially proved to be O(N(M + logN−2 logN)2NM) but it

was later tightened to O(2M(N−1)) [18]. A modified version

of QHV, called QHV-II has a time complexity O(MN−1) [18].

The time complexity of the Hypervolume Box Decomposition

Algorithm (HBDA) [30] is O(N⌊
M−1

2
⌋+1). Table I summa-

rizes the time complexity of various algorithms to compute

the hypervolume. The time complexity of some of these

algorithms [10], [29] for computing the hypervolume has been

analyzed and modified [18], [30]. In this paper, we focus our

analysis on one of these algorithms, namely, the Hypervolume

by Slicing Objectives (HSO) algorithm, proposed by While et

al. [20].
To compute the hypervolume in an M -dimensional objec-

tive space, HSO computes (M−1)-dimensional hypervolumes,

recursively. [9], [22] have done some improvements to the978-1-7281-8393-0/21/$31.00 ©2021 IEEE

TABLE I: Algorithms for the hypervolume problem with their

time complexity.

Algorithm Time Complexity

LebMeasure [16] O(NM)

HSO [20] O(NM−1)

FPL [23] O(NM−2 logN)

HOY [24] O(N
M

2 logN)

WFG [10] O(2N+1)

Chan’s algorithm [28] O(N
M

3 polylogN)

QHV [29] O(N(M + logN−2 logN)2NM)

QHV-II [18] O(MN−1)

HBDA [30] O(N⌊M−1

2
⌋+1)

HSO algorithm. In [22], two heuristics to improve the HSO

algorithm have been proposed. The first one maximizes the

number of dominated points in a slice. The second one

calculates the number of non-dominated partial points in each

slice explicitly for each objective and estimates the amount

of work required to process each slice. However, the issue in

the complexity analysis of HSO has not been addressed so far.

In [9], it has been shown that the ordering of the objectives has

a crucial role in the performance of the HSO algorithm. It has

also been shown that the same set of points can be the worst-

case scenario and the best-case scenario. These two scenarios

are derived based on the order in which the objectives are

chosen.

In this paper, we thoroughly analyze the HSO algorithm and

show that the known worst-case time complexity of the HSO

algorithm [9], [20], [22] is not accurate. We obtain a bound

on the worst-case time complexity of the HSO algorithm.

In our approach, we have obtained the maximum number of

slices with a given number of points and objectives in HSO.

Based on our analysis, we present an efficient implementation

of the HSO algorithm using memoization [32]. We obtain a

polynomial time complexity using the efficient implementation

of HSO on the worst-case scenario of HSO (which takes

exponential time). However, it is worth noting that the worst-

case time complexity of the efficient implementation of HSO

is indeed exponential.

The remainder of this paper is organized as follows. Sec-

tion II describes the HSO algorithm and provides an analysis

of its time complexity. In this section, we also derive the

maximum number of slices for a given number of points and

objectives in HSO. Section III provides an improved version of

the HSO algorithm’s implementation using memoization. Our

empirical comparison of performance between HSO with its

improved version is shown in Section IV. Finally, Section V

provides our conclusions and some possible paths for future

research.

II. HSO ALGORITHM

The HSO algorithm is based on the idea of processing one

objective of the points at a time [20], “slicing” with respect

to that particular objective. To compute the hypervolume of

N points in an M -objective space, HSO initially sorts the

points in descending order based on the first objective value.

Algorithm 1 HSO(P,lb,ub,R)
Input: P: Set of points, lb: First objective, ub: Last objective, R: Reference point.
〈lb, lb+1, . . . , ub〉 objectives are considered while calculating the hypervolume

Output: m-objective hypervolume of the non-dominated points in P where m =
ub-lb+1

1: P
′ ← ND-POINTS(P, lb, ub) ⊲ Set of non-dominated points among the points of

P considering the objectives from lb to ub

2: Sort the points in P
′ in descending order based on lb

th objective
3: if lb = ub then ⊲ Base Case: Only one objective remaining
4: return P

′
[1]lb ⊲ 1-objective hypervolume which is the value of the first

point after sorting based on the lbth objective

5: vol← 0
6: for i← 1 to |P′| do

7: Slicei ←
{

P
′
[1] ∪ P

′
[2] ∪ . . . ∪ P

′
[i]

}

⊲ i
th slice contains initial i

points
8: volslicei ← HSO(Slicei, lb+1, ub,R) ⊲ Recursive call

9: if i = |P′| then ⊲ Last slice
10: depth← P

′
[i]lb −Rlb ⊲ Depth is the difference between the value of

the lbth objective for ith point and reference point
11: else

12: depth← P
′
[i]lb − P

′
[i+1]lb ⊲ Depth is the difference between the

value of the lbth objective for ith and i+1
th point

13: vol← vol+ volslicei × depth

14: return vol

These sorted values are then used to create the cross-sectional

“slices”, with respect to the first objective. As the points

are sorted based on the first objective value, the first slice

contains only the highest value point in the first objective.

The second slice contains only the points with the two highest

values and so on. The last slice contains all the points. This

process creates N slices, and each slice has M −1 objectives.

The M − 1 objective hypervolume of each of these N slices

are calculated recursively, and the hypervolume of each slice

is multiplied by its depth1. After this, these M -objective

values are added in order to obtain the complete hypervolume.

The process to compute the hypervolume is summarized in

Algorithm 1.

A slice can contain many points. However, not all points

“contained” in a slice will contribute to the hypervolume of

that slice. Some points may be dominated in the remaining

objectives, and they will not contribute to the hypervolume.

Now, we analyze the time complexity of the HSO algo-

rithm. The time to obtain the set of non-dominated points is

O(N logN) for M = 2, 3 [33] and for M ≥ 4 the time

complexity is O(N logM−2 N) [33]. The worst-case of the

HSO algorithm occurs when all the points in each slice are

non-dominated. This maximizes the number of points in each

processed slice [22]. The only exception to the aforementioned

scenario is when the slices are created for a single objective.

We use Example 1 to demonstrate this worst-case scenario.

Example 1. Consider 4 non-dominated points in a 3-

dimensional space as shown in Fig. 1. The recursion tree to

compute the hypervolume of these points is shown in Fig. 2.

1The “depth” of slice i with respect to objective j is defined as the
difference between the jth objective value of the (i + 1)th and the ith

points. The depth of the last slice with respect to the jth objective is the
difference between the jth objective value of the reference point and the last
point.

point Obj-1 Obj-2 Obj-3

p1 4 4 1
p2 3 3 2
p3 2 2 3
p4 1 1 4

Fig. 1: Scenario for the worst

case of HSO, with 4 points in

3-dimension (Example repro-

duced from [22]).

fp1g ; 1 fp1g ; 1 fp1; p2g ; 1 fp1g ; 1 fp1; p2g ; 1 fp1; p2; p3g ; 1 fp1g ; 1 fp1; p2g ; 1 fp1; p2; p3g ; 1 fp1; p2; p3; p4g ; 1

fp2g ; 1 fp3g ; 1 fp4g ; 1

fp1; p2g ; 2 fp1; p2; p3g ; 2 fp1; p2; p3; p4g ; 2fp1g ; 2

fp1; p2; p3; p4g ; 3

Fig. 2: Recursion tree in the worst case of HSO, to compute the hypervolume of 4
non-dominated points in 3-dimensional objective space.

The worst-case time complexity of the HSO algorithm is

given by the recurrence relation in Eq. (1), which is different

from the recurrence relation defined in [9], [20], where the

time to obtain all the non-dominated points has not been

considered. Also, the authors have not considered the time

to sort the points with respect to the objectives in every slice.

T (N,M) = O(N logM−2 N) +N logN +

N∑

K=1

T (K,M−1)

= O(N logM−2 N) +

N∑

K=1

T (K,M−1) (1)

In Eq. (1), T (N,M) gives the time to compute the hyper-

volume of N points in an M -dimensional objective space. We

provide next a discussion on the recurrence relation:

• The term O(N logM−2 N) corresponds to the time re-

quired to obtain all the non-dominated points.

• The term N logN corresponds to the time to sort the N

points based on the first objective.

• The summation corresponds to the hypervolume con-

tributed by N slices in dimension M − 1.

• T (K,M−1) corresponds to the time required to compute

the hypervolume of K points in M − 1 objectives.

Eq. (2) provides the base case for the recurrence used in

Eq. (1). In this case, finding the non-dominated point require

O(N) time.

T (N, 1) = N (2)

To illustrate the recursive nature of the HSO algorithm, we

use Fig. 2, which shows the recursion tree for Example 1. The

overall worst-case time complexity of the HSO algorithm is

the sum of the time spent on each node of the recursion tree.

Let Γn,m denote the number of slices (or nodes in the

recursion tree) having n points with m objectives. Let the

number of nodes with m objectives be denoted by Γ∗,m and

the number of nodes having n points be denoted as Γn,∗.

Therefore,
∑N

n=1

∑M

m=1 Γn,m =
∑N

n=1 Γn,∗ =
∑M

m=1 Γ∗,m.

The number of nodes having n(1 ≤ n ≤ N) points with

m(1 ≤ m ≤ M) objectives is shown in Table II. Now,

we obtain the total number of nodes in the recursion tree as

follows:

The number of nodes with M objectives is obtained using

Eq. (3) and this node will be the root of the recursion tree.

Γ∗,M = 1 (3)

The number of nodes with M −1 objectives is obtained using

Eq. (4) and all these nodes will be at level-1 of the recursion

tree.

Γ∗,M−1 = 1 + 1 + 1 + · · ·+ 1 + 1 = N (4)

The number of nodes with M −2 objectives is obtained using

Eq. (5) and all these nodes will be at level-2 of the recursion

tree.

Γ∗,M−2 = N + (N−1) + (N−2) + · · ·+ 1 = O(N2) (5)

The number of nodes with M −3 objectives is obtained using

Eq. (6) and all these nodes will be at level-3 of the recursion

tree.

Γ∗,M−3 =
∑N

i1=1
i1 +

∑N−1

i1=1
i1 +

∑N−2

i1=1
i1 + · · ·+

∑2

i1=1
i1 + 1 = O(N3) (6)

The number of nodes with M −4 objectives is obtained using

Eq. (7) and all these nodes will be at level-4 of the recursion

tree.

Γ∗,M−4 =

N∑

i1=1

i1∑

i2=1

i2 +

N−1∑

i1=1

i1∑

i2=1

i2 + · · ·+

2∑

i1=1

i1∑

i2=1

i2 + 1

= O(N4) (7)

The number of nodes with 1 objective is obtained using Eq. (8)

and all these nodes will be at the last level (i.e., level-M − 1)

of the recursion tree.

Γ∗,1 =

N∑

i1=1

i1∑

i2=1

i2∑

i3=1

· · ·

iM−4∑

iM−3=1

iM−3+

N−1∑

i1=1

i1∑

i2=1

i2∑

i3=1

· · ·

iM−4∑

iM−3=1

iM−3 + · · ·+

2∑

i1=1

i1∑

i2=1

i2∑

i3=1

· · ·

iM−4∑

iM−3=1

iM−3 + 1

= O(NM−1) (8)

In [9], [20], [22], the authors have computed the exact

number of nodes with a single objective, i.e., Γ∗,1 and this

TABLE II: Number of nodes with different numbers of points and objectives.

Number of points

1 2 3 · · · N−1 N
N

u
m

b
er

o
f

O
b

je
ct

iv
es

M 0 0 0 · · · 0 1

M−1 1 1 1 · · · 1 1

M−2 N N − 1 N − 2 · · · 2 1

M−3

N∑

i1=1

i1
N−1∑

i1=1

i1
N−2∑

i1=1

i1 · · ·
2∑

i1=1

i1 1

M−4

N∑

i1=1

i1∑

i2=1

i2
N−1∑

i1=1

i1∑

i2=1

i2
N−2∑

i1=1

i1∑

i2=1

i2 · · ·
2∑

i1=1

i1∑

i2=1

i2 1

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

1

N∑

i1=1

i1∑

i2=1

i2∑

i3=1

· · ·
iM−4∑

iM−3=1

iM−3

N−1∑

i1=1

i1∑

i2=1

i2∑

i3=1

· · ·
iM−4∑

iM−3=1

iM−3

N−2∑

i1=1

i1∑

i2=1

i2∑

i3=1

· · ·
iM−4∑

iM−3=1

iM−3 · · ·
2∑

i1=1

i1∑

i2=1

i2∑

i3=1

· · ·
iM−4∑

iM−3=1

iM−3 1

value is
(
N+M−2
M−1

)
. The total number of nodes in the recursion

tree is obtained using Eq. (9).

node =
1∑

m=M

Γ∗,m = 1 +N +O(N2) + · · ·+O(NM−1)

= O(NM) (9)

We have computed the maximum number of nodes in the

recursion tree for N(5 ≤ N ≤ 100) points with M(5 ≤
M ≤ 10) objectives with the help of Table II, which is shown

in Fig. 3. The time complexity of the HSO algorithm in the

worst case is obtained using Eq. (10).

T (N,M) =
∑N

n=1
O(n logM−2 n)Γn,M+

∑N

n=1
O(n logM−3 n)Γn,M−1+

∑N

n=1
O(n logM−4 n)Γn,M−2 + · · ·+

∑N

n=1
O(n log n)Γn,2 +

N∑

n=1

O(n)Γn,1

= O(N logM−2 N)ΓM +O(N logM−3 N)ΓM−1+

O(N logM−4 N)ΓM−2 + · · ·+O(N logN)Γ2+

O(N)Γ1

= O(N logM−2 N) [ΓM + ΓM−1 + · · ·+ Γ2] +

O(N)Γ1

= O(N logM−2 N)
[
O(NM)−O(NM−1)

]
+

O(N)O(NM−1)

= O(NM+1 logM−2 N) (10)

Thus, the worst-case time complexity of the HSO algorithm

is O(NM+1 logM−2 N).

III. IMPROVEMENT IN HSO

Consider the set of four points shown in Fig. 1. The

recursion tree for these points is shown in Fig. 2. It is

evident from Fig. 2, that in some cases we are computing the

hypervolume of the same set of points for the same number

0 10 20 30 40 50 60 70 80 90 100

Number of points

102

104

106

108

1010

1012

1014

N
u

m
b

er
 o

f
n

o
d

es
 i

n
 r

ec
u

rs
io

n
 t

re
e

M=10

M=9

M=8

M=7

M=6

M=5

Fig. 3: Number of nodes in recursion tree for N(5 ≤ N ≤
100) points with M(5 ≤ M ≤ 10) objectives.

of objectives, multiple times. For example, the hypervolume

of the point p1 in 1-dimension is computed four times. The

hypervolume of points p1, p2 in 1-dimension is computed three

times and the hypervolume of points p1, p2, p3 in 1-dimension

is computed twice. The redundant computations are shown in

gray. There is no need to compute the hypervolume of the same

set of points for the same number of objectives, multiple times.

Thus, to make the HSO algorithm faster, whenever we get a

slice, we first check whether the same slice has already been

generated or not. If the slice has already been generated, then

we use that hypervolume. Otherwise, we recursively compute

the hypervolume of the slice and store it. This improved

HSO algorithm is summarized in Algorithm 2. The changes

introduced with respect to Algorithm 1 is marked in boldface.

A. Procedure to Check a Slice

A simple approach to check whether a slice has been

generated or not is to check all the previously generated slices

with the same number of points and objectives. However, this

approach is inefficient. To make it efficient, we have used the

Trie data structure [34], [35], where a node corresponds to the

point of the slice. For this purpose, we create a 2D matrix

(say HTrie) of size M ×N where a particular cell (mth row

and nth column) corresponds to a trie data structure which

stores the slices having n points with m objectives. Whenever

we get a slice having n points with m objectives, we search

Algorithm 2 IMPROVED-HSO(P,lb,ub,R)
Input: P: Set of points, lb: First objective, ub: Last objective, R: Reference point.
〈lb, lb+1, . . . , ub〉 objectives are considered while calculating the hypervolume

Output: m-objective hypervolume of the non-dominated points in P where m =
ub-lb+1

1: n← |P| ⊲ Number of points in P

2: m← ub-lb+1 ⊲ Number of objectives

3: if HTrie[m][n] contains P then

4: vol← m-objective hypervolume of the non-dominated points in P stored

in leaf node of the trie
5: return vol

6: P
′ ← ND-POINTS(P, lb, ub) ⊲ Set of non-dominated points among the points of

P considering the objectives from lb to ub

7: Sort the points in P
′ in descending order based on lb

th objective
8: if lb = ub then ⊲ Base Case: Only one objective remaining
9: return P

′
[1]lb ⊲ 1-objective hypervolume which is the value of the first

point after sorting based on the lbth objective

10: vol← 0
11: for i← 1 to |P′| do

12: Slicei ←
{

P
′
[1] ∪ P

′
[2] ∪ . . . ∪ P

′
[i]

}

⊲ i
th slice contains initial i

points
13: volslicei ← IMPROVED-HSO(Slicei, lb+1, ub,R) ⊲ Recursive call

14: if i = |P′| then ⊲ Last slice
15: depth← P

′
[i]lb −Rlb ⊲ Depth is the difference between the value of

the lbth objective for ith point and reference point
16: else

17: depth← P
′
[i]lb − P

′
[i+1]lb ⊲ Depth is the difference between the

value of the lbth objective for ith and i+1
th point

18: vol← vol+ volslicei × depth

19: Insert P and the vol in HTrie[m][n]

20: return vol

that slice in the trie, which is at mth row and nth column. As

there are n points in a slice, so the trie’s depth is n, and the

time required to search/insert a particular slice in the trie is

O(n).

When we create a trie, a node in the trie can have at most n

children. To reduce the number of children at each node, we

sort the points of the slice in ascending order using counting

sort [34]2 before insertion/search and this takes O(N) time.

Thus, the overall time complexity to check whether a slice

has already been generated or not is O(N). Also, the time to

insert a slice in the trie is O(N). After sorting the points, the

number of children of a node (which stores point pi) at depth

d is given as follows.

No. of children = N − i− n+ d+ 1 (11)

Example 2. Let there be five points {p1, . . . , p5} and 4
objectives. So, the size of the 2D matrix is 4×5. Let’s assume

that we have different slices of 3 points with 2 objectives. So,

we check for the 2nd row and the 3rd column in the 2D matrix.

Ten different slices having three points are shown in Fig. 4.

B. Time Complexity

The worst-case time complexity of the improved HSO

algorithm proposed here is given by the recurrence relation

2Let a slice have 3 points {p2, p5, p4}. Then, after sorting, we will get
{p2, p4, p5}. This sorting can be performed using counting sort, which will
take O(N) time.

p3 p4 p5

p2

p4 p5

p3

p5

p4

p4 p5

p3

p5

p4

p5

p4

p3p2p1

−

M
N

1

2

3

4

1 2 3 4 5

HTrie

Depth-3

Depth-2

Depth-1

Depth-0

Volume of slices

Fig. 4: M ×N Trie to check whether a slice has already been

generated. The circles store the hypervolume of the particular

slice.

in Eq. (12).

T (N,M) = N +O(N logM−2 N) +N logN+
∑N

K=1
T (K,M−1)

= O(N logM−2 N) +
∑N

K=1
T (K,M−1) (12)

In the recurrence relation (12), the first term N corresponds

to the time required to find whether a slice has already been

generated or not. The base case for Eq. (12) is the same

as that from Eq. (2) when there is only one objective left.

Note that the recurrence relation for our improved HSO is

the same as the recurrence relation for HSO. Therefore, the

worst-case time complexity of our improved HSO is also

O(NM+1 logM−2 N).
In the worst case, HSO explores

∑N

n=1

∑M

m=1 Γn,m

nodes/slices. However, our improved HSO does not explore

these many nodes, even in its worst-case. Our improved HSO

always explores unique slices. There are
(
N

n

)
ways to select n

points from N points. So, the number of unique slices having

n points with m objectives is given by
(
N

n

)
. However, all

(
N

n

)
slices may not be generated during the improved HSO

algorithm’s execution. The maximum number of explored

slices in our improved HSO having n points with m objectives

is given by Eq. (13). The overall maximum number of explored

slices in our improved HSO is given by Eq. (14).

#Slicesn,m = min

((
N

n

)

,Γn,m

)

(13)

#Slices =
N∑

n=1

M∑

m=1

min

((
N

n

)

,Γn,m

)

(14)

We obtain the time complexity of our improved HSO in the

worst-case scenario for HSO, which is given by Eq. (15).

T (N,M) = N +O(N logM−2 N) +N logN+
∑N

K=1
T ′ (K,M−1)

= O(N logM−2 N) +

N∑

K=1

T ′ (K,M−1) (15)

This recurrence is different from the recurrence in Eq. (1). In

this recurrence relation, T ′(K,M−1) is the time to compute

the hypervolume of K points considering M − 1 objectives.

Now, we discuss how to solve T ′ (K,M−1).
Initially, when we have a slice of K points with M − 1

objectives, we first check whether the slice has already been

obtained, which requires O(N) time. Then, we need to find the

non-dominated points out of K points with M − 1 objectives.

In the worst-case scenario, all these K points remain non-

dominated. Therefore, the time required to obtain all the non-

dominated points is O(K logM−3 K). We then sort these K

points, which takes O(K logK). After sorting these points,

we have K slices (ranging from 1 to K points) with M − 2
objectives. The slices with points ranging from 1 to K−1 with

M − 2 objectives have already been processed, and checking

this requires O(N) time for each slice. Now, we obtain the

hypervolume of K points with M − 2 objectives and so on.

T ′(K,M−1) = N +O(K logM−3 K) +K logK+

{N +N + . . .+N}
︸ ︷︷ ︸

K−1 times

+T ′ (K,M−2)

= N +O(K logM−3 K) +K logK +N(K−1)+

T ′ (K,M−2)

=
[

O(K logM−3 K) +O(NK)
]

+ T ′ (K,M−2)

=
[

O(K logM−3 K) +O(NK)
]

+
[

O(K logM−4 K) +O(NK)
]

+ T ′ (K,M−3)

=
[

O(K logM−3 K) +O(NK)
]

+
[

O(K logM−4 K) +O(NK)
]

+ . . .+

[K logK +O(NK)] + T ′ (K, 1)

=
[

O(K logM−3 K) +O(NK)
]

+
[

O(K logM−4 K) +O(NK)
]

+ . . .+

[O(K logK) +O(NK)] + [O(K)]

= O(MK logM−3 K +MNK) (16)

Thus, the solution to the recurrence in Eq. (15) is obtained

using Eq. (17).

T (N,M) = N logM−2 N +
∑N

K=1
T ′ (K,M−1)

= N logM−2 N +

N∑

K=1

(

MK logM−3 K +MNK

)

= N logM−2 N +O(MN2 logM−3 N)+

MN
1

2
N(N + 1)

= O(MN2 logM−3 N +MN3) (17)

Thus, the time complexity of our improved HSO in the

worst-case scenario of HSO is O(MN2 logM−3 N +MN3).

However, in the same scenario, the original HSO takes

O(NM+1 logM−2 N) time.

IV. EXPERIMENTAL ANALYSIS

In this section, we experimentally evaluate the effectiveness

of our improved HSO with respect to the original HSO. For

our experimental setup, we adopted the following hardware

configuration: an x86 64 processor with 24 cores running at

1,200 MHz.

We have computed the maximum number of slices (or

nodes in a recursion tree) explored by the original HSO and

our improved HSO while computing the hypervolume for

N(5 ≤ N ≤ 100) points with M(5 ≤ M ≤ 10) objectives.

The maximum number of nodes explored by the original

HSO has been calculated from the elements of Table II. The

maximum number of nodes explored by our improved HSO is

calculated using Eq. (14). Fig. 5 shows the maximum number

of nodes in the recursion tree when both the original HSO

and our improved HSO are used to obtain the hypervolume

of N(5 ≤ N ≤ 100) points in M(5 ≤ M ≤ 10)-dimensional

objective space. From this figure, it is evident that with an

increase in the number of objectives, the difference between

the nodes explored by the original HSO and our improved

HSO, increases.

To evaluate the performance of our improved HSO over

the original HSO algorithm, we have randomly generated

N(5 ≤ N ≤ 30) points in 10, 15 and 20 dimensions. The

reference point is considered to be the origin. We cannot

compute the hypervolume for a large number of points and

the objective because of hardware restrictions. The number

of explored nodes in the recursion tree to compute the

hypervolume of these N points for different objectives is

shown in Fig. 6. We have also computed the running time

to compute the hypervolume, which is shown in Fig. 7. From

these two figures, it is evident that with an increase in the

number of points and the objectives, the improved HSO seems

to have better performance than that of the original HSO.

The source code of our proposed algorithm is available at

https://github.com/sumitiitp/HSO.

V. CONCLUSIONS AND FUTURE WORK

This paper has analyzed one of the hypervolume computa-

tion algorithms currently available: the Hypervolume by Slic-

ing Objectives (HSO) algorithm [20]. This analysis identified

an error in the worst-case time complexity analysis of the

HSO algorithm and paved the way for the development of an

improved implementation of this algorithm by restricting the

repeated hypervolume computations using memoization. The

time complexity of this improved version of HSO in the worst-

case scenario of the HSO algorithm has also been obtained,

which is O(M2N3). The maximum number of slices with

a given number of points and objectives is also obtained for

both the original HSO and for our improved version of the

algorithm.

As part of our future work, we are interested in analyzing

other hypervolume computation algorithms with the aim of

0 20 40 60 80 100

No. of points

0

1

2

3

4

5
N

o
.
o

f
ex

p
lo

re
d

 n
o

d
es

in
 r

ec
u

rs
io

n
 t

re
e

10
6

HSO

Improved HSO

(a) M = 5

0 20 40 60 80 100

No. of points

0

2

4

6

8

10

N
o

.
o

f
ex

p
lo

re
d

 n
o

d
es

in
 r

ec
u

rs
io

n
 t

re
e

10
7

HSO

Improved HSO

(b) M = 6

0 20 40 60 80 100

No. of points

0

0.5

1

1.5

2

N
o

.
o

f
ex

p
lo

re
d

 n
o

d
es

in
 r

ec
u

rs
io

n
 t

re
e

10
9

HSO

Improved HSO

(c) M = 7

0 20 40 60 80 100

No. of points

0

0.5

1

1.5

2

2.5

3

N
o

.
o

f
ex

p
lo

re
d

 n
o

d
es

in
 r

ec
u

rs
io

n
 t

re
e

10
10

HSO

Improved HSO

(d) M = 8

0 20 40 60 80 100

No. of points

0

1

2

3

4

N
o

.
o

f
ex

p
lo

re
d

 n
o

d
es

in
 r

ec
u

rs
io

n
 t

re
e

10
11

HSO

Improved HSO

(e) M = 9

0 20 40 60 80 100

No. of points

0

1

2

3

4

5

N
o

.
o

f
ex

p
lo

re
d

 n
o

d
es

in
 r

ec
u

rs
io

n
 t

re
e

10
12

HSO

Improved HSO

(f) M = 10

Fig. 5: The maximum number of nodes explored by the original HSO and our improved HSO for N(5 ≤ N ≤ 100) points

with M(5 ≤ M ≤ 10) objectives.

5 10 15 20 25 30

Number of points

10
2

10
3

10
4

10
5

10
6

10
7

10
8

N
u

m
b

er
 o

f
ex

p
lo

re
d

 n
o
d

es
 i

n
 r

ec
u

rs
io

n
 t

re
e

HSO

Improved HSO

(a) M = 10

5 10 15 20 25 30

Number of points

10
2

10
4

10
6

10
8

10
10

10
12

N
u

m
b

er
 o

f
ex

p
lo

re
d

 n
o
d

es
 i

n
 r

ec
u

rs
io

n
 t

re
e

HSO

Improved HSO

(b) M = 15

5 10 15 20 25 30

Number of points

10
2

10
4

10
6

10
8

10
10

10
12

10
14

N
u

m
b

er
 o

f
ex

p
lo

re
d

 n
o
d

es
 i

n
 r

ec
u

rs
io

n
 t

re
e

HSO

Improved HSO

(c) M = 20

Fig. 6: The number of nodes explored by the original HSO and our improved HSO for N(5 ≤ N ≤ 20) random points for

10, 15, 20 objectives.

identifying elements in their analysis that could lead to a more

efficient implementation of them.

ACKNOWLEDGEMENTS

The last author acknowledges support from CONACyT

grant no. 1920 and from SEP-Cinvestav grant (application

no. 4).

REFERENCES

[1] C. A. Coello Coello, S. González Brambila, J. Figueroa Gamboa, M. G.
Castillo Tapia, and R. Hernández Gómez, “Evolutionary Multiobjec-
tive Optimization: Open Research Areas and Some Challenges Lying
Ahead,” Complex & Intelligent Systems, vol. 6, pp. 221–236, July 2020.

[2] K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Al-
gorithm Using Reference-Point-Based Nondominated Sorting Approach,
Part I: Solving Problems With Box Constraints,” IEEE Transactions on

Evolutionary Computation, vol. 18, no. 4, pp. 577–601, August 2014.

[3] B. Li, J. Li, K. Tang, and X. Yao, “Many-Objective Evolutionary Algo-
rithms: A Survey,” ACM Computing Surveys, vol. 48, no. 1, September
2015.

[4] S. Mishra, S. Saha, and S. Mondal, “A Multiobjective Optimization
Based Entity Matching Technique for Bibliographic Databases,” Expert

Systems with Applications, vol. 65, pp. 100–115, December 15 2016.

[5] S. Zapotecas-Martı́nez, C. A. Coello Coello, H. E. Aguirre, and
K. Kiyoshi, “A Review of Features and Limitations of Existing Scal-
able Multi-Objective Test Suites,” IEEE Transactions on Evolutionary

Computation, vol. 23, no. 1, pp. 130–142, February 2019.

[6] M. Ravber, M. Mernik, and M. Crepinkek, “The Impact of Quality

5 10 15 20 25 30

Number of points

10
5

10
6

10
7

10
8

10
9

10
10

E
x
ec

u
ti

o
n

 t
im

e
(i

n
 n

a
n

o
se

co
n

d
s)

HSO

Improved HSO

(a) M = 10

5 10 15 20 25 30

Number of points

10
4

10
6

10
8

10
10

10
12

10
14

E
x
ec

u
ti

o
n

 t
im

e
(i

n
 n

a
n

o
se

co
n

d
s)

HSO

Improved HSO

(b) M = 15

5 10 15 20 25 30

Number of points

10
5

10
10

10
15

E
x
ec

u
ti

o
n

 t
im

e
(i

n
 n

a
n

o
se

co
n

d
s)

HSO

Improved HSO

(c) M = 20

Fig. 7: Running time of the original HSO and our improved HSO for N(5 ≤ N ≤ 20) random points for 10, 15, 20 objectives.

Indicators on the Rating of Multi-Objective Evolutionary Algorithms,”
Applied Soft Computing, vol. 55, pp. 265–275, June 2017.

[7] M. Li and X. Yao, “Quality Evaluation of Solution Sets in Multiobjective
Optimisation: A Survey,” ACM Computing Surveys, vol. 52, no. 2, May
2019, article number: 26.

[8] E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications,” Ph.D. dissertation, Swiss Federal Institute
of Technology (ETH), Zurich, Switzerland, November 1999.

[9] L. Bradstreet, L. While, and L. Barone, “A Fast Incremental Hyper-
volume Algorithm,” IEEE Transactions on Evolutionary Computation,
vol. 12, no. 6, pp. 714–723, December 2008.

[10] L. While, L. Bradstreet, and L. Barone, “A Fast Way of Calculating
Exact Hypervolumes,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 1, pp. 86–95, February 2012.

[11] D. Brockhoff, T. Wagner, and H. Trautmann, “On the Properties of
the R2 Indicator,” in 2012 Genetic and Evolutionary Computation

Conference (GECCO’2012). Philadelphia, USA: ACM Press, July
2012, pp. 465–472, ISBN: 978-1-4503-1177-9.

[12] C. A. Coello Coello and N. Cruz Cortés, “Solving Multiobjective
Optimization Problems using an Artificial Immune System,” Genetic

Programming and Evolvable Machines, vol. 6, no. 2, pp. 163–190, June
2005.

[13] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, “Modified
Distance Calculation in Generational Distance and Inverted Generational
Distance,” in Evolutionary Multi-Criterion Optimization, 8th Interna-

tional Conference, EMO 2015, A. Gaspar-Cunha, C. H. Antunes, and
C. Coello Coello, Eds. Guimarães, Portugal: Springer. Lecture Notes
in Computer Science Vol. 9019, March 29 - April 1 2015, pp. 110–125.

[14] E. Zitzler and S. Künzli, “Indicator-based Selection in Multiobjective
Search,” in Parallel Problem Solving from Nature - PPSN VIII, X. Y.
et al., Ed. Birmingham, UK: Springer-Verlag. Lecture Notes in
Computer Science Vol. 3242, September 2004, pp. 832–842.

[15] O. Schütze, X. Esquivel, A. Lara, and C. A. Coello Coello, “Using the
Averaged Hausdorff Distance as a Performance Measure in Evolution-
ary Multiobjective Optimization,” IEEE Transactions on Evolutionary

Computation, vol. 16, no. 4, pp. 504–522, August 2012.
[16] M. Fleischer, “The Measure of Pareto Optima. Applications to Multi-

objective Metaheuristics,” in Evolutionary Multi-Criterion Optimization.

Second International Conference, EMO 2003, C. M. Fonseca, P. J.
Fleming, E. Zitzler, K. Deb, and L. Thiele, Eds. Faro, Portugal:
Springer. Lecture Notes in Computer Science. Volume 2632, April 2003,
pp. 519–533.

[17] J. Deng and Q. Zhang, “Approximating Hypervolume and Hypervolume
Contributions Using Polar Coordinate,” IEEE Transactions on Evolution-

ary Computation, vol. 23, no. 5, pp. 913–318, October 2019.
[18] A. Jaszkiewicz, “Improved quick hypervolume algorithm,” Computers

& Operations Research, vol. 90, pp. 72–83, February 2018.
[19] L. M. S. Russo and A. P. Francisco, “Extending Quick Hypervolume,”

Journal of Heuristics, vol. 22, no. 3, pp. 245–271, June 2016.
[20] L. While, P. Hingston, L. Barone, and S. Huband, “A Faster Algorithm

for Calculating Hypervolume,” IEEE Transactions on Evolutionary

Computation, vol. 10, no. 1, pp. 29–38, February 2006.
[21] L. While, “A New Analysis of the LebMeasure Algorithm for Calculat-

ing Hypervolume,” in Evolutionary Multi-Criterion Optimization. Third

International Conference, EMO 2005, C. A. C. Coello, A. H. Aguirre,
and E. Zitzler, Eds. Guanajuato, México: Springer. Lecture Notes in
Computer Science Vol. 3410, March 2005, pp. 326–340.

[22] L. While, L. Bradstreet, L. Barone, and P. Hingston, “Heuristics for
Optimising the Calculation of Hypervolume for Multi-Objective Opti-
mization Problems,” in 2005 IEEE Congress on Evolutionary Compu-

tation (CEC’2005), vol. 3. Edinburgh, Scotland: IEEE Service Center,
September 2005, pp. 2225–2232.

[23] C. M. Fonseca, L. Paquete, and M. L.-I. nez, “An Improved Dimension-
Sweep Algorithm for the Hypervolume Indicator,” in 2006 IEEE

Congress on Evolutionary Computation (CEC’2006). Vancouver, BC,
Canada: IEEE, July 2006, pp. 3973–3979.

[24] N. Beume, “S-Metric Calculation by Considering Dominated Hypervol-
ume as Klee’s Measure Problem,” Evolutionary Computation, vol. 17,
no. 4, pp. 477–492, Winter 2009.

[25] L. Bradstreet, “The Hypervolume Indicator for Multi-objective Op-
timisation: Calculation and Use,” Ph.D. dissertation, Department of
Computer Science & Software Engineering, The University of Western
Australia, Australia, April 2011.

[26] L. While and L. Bradstreet, “Applying the WFG algorithm to calculate
incremental hypervolumes,” in 2012 IEEE Congress on Evolutionary

Computation (CEC’2012). Brisbane, Australia: IEEE Press, June 10-
15 2012, pp. 489–496.

[27] A. P. Guerreiro, C. M. Fonseca, and M. T. Emmerich, “A Fast
Dimension-Sweep Algorithm for the Hypervolume Indicator in Four
Dimensions,” in 24th Canadian Conference on Computational Geom-

etry (CCCG’2012), Charlottetown, Prince Edward Island, Canada, 8-10
August 2012, pp. 77–82.

[28] T. M. Chan, “Klee’s Measure Problem Made Easy,” in 2013 IEEE 54th

Annual Symposium on Foundations of Computer Science (FOCS’2013).
Berkeley, California, USA: IEEE, 26-29 October 2013, pp. 410–419,
ISBN 0272-5428.

[29] L. M. S. Russo and A. P. Francisco, “Quick Hypervolume,” IEEE

Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 481–502,
August 2014.

[30] R. Lacour, K. Klamroth, and C. M. Fonseca, “A Box Decomposition
Algorithm to Compute the Hypervolume Indicator,” Computers & Op-

erations Research, vol. 79, pp. 347–360, March 2017.
[31] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “The Hypervolume

Indicator: Problems and Algorithms,” arXiv preprint arXiv:2005.00515,
2020.

[32] J. M. Robson, “Algorithms for Maximum Independent Sets,” Journal of

Algorithms, vol. 7, no. 3, pp. 425–440, 1986.
[33] H.-T. Kung, F. Luccio, and F. P. Preparata, “On Finding the Maxima

of a Set of Vectors,” Journal of the ACM, vol. 22, no. 4, pp. 469–476,
1975.

[34] D. E. Knuth, The Art of Computer Programming. Pearson Education,
1997, vol. 3.

[35] D. E. Willard, “New Trie Data Structures which Support Very Fast
Search Operations,” Journal of Computer and System Sciences, vol. 28,
no. 3, pp. 379–394, 1984.

