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Abstract. Currently, there exist several offline calibration techniques
that can be used to fine-tune the parameters of a metaheuristic. Such
techniques require, however, to perform a considerable number of in-
dependent runs of the metaheuristic in order to obtain meaningful in-
formation. Here, we are interested on the use of this information for
assisting the algorithm designer to discard components of a metaheuris-
tic (e.g., an evolutionary operator) that do not contribute to improving
its performance (we call them “ineffective components”). In our study,
we experimentally analyze the information obtained from three offline
calibration techniques: F-Race, ParamILS and Revac. Our preliminary
results indicate that these three calibration techniques provide different
types of information, which makes it necessary to conduct a more in-
depth analysis of the data obtained, in order to detect the ineffective
components that are of our interest.

Keywords: fine-tuning methods, algorithm design process, ineffective
operators.

1 Introduction

We are currently involved in a project whose goal is to propose strategies to
assist the decision-making process of designers of metaheuristic algorithms. As
designers decide to add new components (e.g., a new evolutionary operator) to a
certain metaheuristic, the fine-tuning process gets more complex. This is due to
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the highly nonlinear interactions that normally occur among the different param-
eters of a metaheuristic. Here, we are precisely interested in devising strategies
that can help us to detect the components of a metaheuristic that are really
crucial for its performance, so that the fine-tuning process can get reduced to a
minimum. It is worth noting that other decisions related to the parameters of
a metaheuristic algorithm are made during the design process. These decisions
are not only concerned with finding the best possible parameter values, but also
with deciding which parameters must be empirically tuned, and which ones can
take either a fixed value or a value that can be varied or adapted online dur-
ing the search process [8, 6, 4, 7]. Over the years, there have been several efforts
to develop automated fine-tuning methods (see for example [12, 3, 1, 5]). Such
methods require thousands of runs (and therefore, large amounts of time) in
order to obtain good quality parameter configurations for a metaheuristic. The
information that is extracted from this exhaustive process could be, however,
very useful for improving the design of the metaheuristic itself. Since that is
one of the main goals of this work, we conduct here an in-depth analysis of the
information obtained with three well-known fine-tuning methods (ParamILS,
F-Race and Revac), aiming to detect ineffective components in the algorithms
being fine-tuned. In order to evaluate the output information obtained from the
fine-tuning methods being analyzed, we adopted Ant Solver4 [11], which is a
well-known ant colony optimization algorithm that has been a popular choice
for solving constraint satisfaction problems. It is important to emphasize that
our goal here is not to find the best possible solutions to the problems being
analyzed, but to detect ineffective components of the algorithm being analyzed,
based on the information obtained from its systematic fine-tuning process. For
this sake, we include a dummy operator in the code of the Ant Solver. Evidently,
such a dummy operator is meant to be ineffective, because it doesn’t perform any
meaningful task within the algorithm. Its only purpose is to validate our method-
ology to detect ineffective components of a metaheuristic. The remainder of this
paper is organized as follows. The next section provides a short description of
the fine-tuning methods adopted for our analysis. Section 3 describes the Ant
Solver algorithm adopted for our case study. Section 3.1 discusses the incorpo-
ration of a dummy operator into the Ant Solver algorithm. The instances used
for our analysis are briefly explained in Section 4. In Section 5, we describe the
experiments performed and the results obtained. Finally, Section 6 provides our
main conclusions and some possible paths for future research.

2 Fine-Tuning Techniques

The fine-tuning techniques described next are strategies designed to automati-
cally search for the best configuration of parameter values for a stochastic based
method. Given a heuristic algorithm with k parameters, a fine-tuning technique
searches for the parameter configuration θ∗ = {p1, . . . , pk} that provides the best
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performance of the algorithm. When talking about parameters, we refer to two
main sets of elements:

– Categorical parameters: These are processes or functions that are re-
quired in an algorithm but that can be implemented in different ways. For
example, the selection mechanism of an evolutionary algorithm.

– Numerical parameters: These are parameters expressed with real num-
bers or integers. For example the population size for an evolutionary algo-
rithm.

The main difference between categorical and numerical parameters is that the
latter are searchable (i.e., it is possible to define a distance measure between
two different values of the parameter). In contrast, in categorical parameters it
is not possible to define the distance between two “values”.

2.1 F-Race

The F-Race method was proposed by Birattari et al. [2]. F-Race is a specific
racing method specially adapted to fine-tune stochastic search methods. It uses
Friedman two-ways analysis of variance by ranks to compare sets of candidate
parameter configurations. This is a non-parametric test based on ranking, thus
it does not require the formulation of a hypothesis on the distribution of the ob-
servations. Moreover, ranking based tests are very useful in fine-tuning problems
because they implement a block design, which considers the different problem
instances and the random seeds as sources of variation. The performance differ-
ence between configurations is analyzed using a hypothesis test. F-Race stops
either when there is only one parameter configuration remaining, or when some
predefined number of runs has been completed. The F-Race method defines three
parameters: the initial number of runs without elimination of calibrations, the
confidence level for the tests and the maximum budget. It also requires the range
levels for each parameter. The number of levels of all parameters determines the
size of the initial set of candidate parameter configurations.

2.2 Revac

The Relevance Estimation and Value Calibration (Revac) of evolutionary algo-
rithms method was proposed by Eiben & Nannen [9]. Revac can be seen as an
estimation of distribution algorithm [10]. It works with a set of parameter config-
urations as its population. For each parameter, it starts the search process with
a uniform distribution of values within a given range. As the process advances,
Revac performs transformation operations (crossover and mutation) with the
aim of reducing each parameter distribution to a range of values that provide
the best performance. Revac stops after performing 1000 runs of the fine-tuned
algorithm. This approach defines 4 parameters: population size, step size of the
crossover operator, step size of the mutation operator and the maximum number
of iterations.

2.3 ParamILS

The Parameter Iterated Local Search (ParamILS) strategy was proposed in [5].
It works as an iterated local search algorithm which starts with a default pa-
rameter configuration and iteratively improves the configuration performance



searching in the neighborhood of the configuration at hand. At each iteration, it
performs random perturbations to the configuration at hand, and then applies
the local search process and compares the outcome to the performance of the best
parameter configuration that has been found so far. There are two well known
versions of this approach: BasicILS and FocusedILS. These versions differ in
the comparison procedure of parameter configurations they use. The ParamILS
method defines four parameters: the amount of random solutions of the first
phase, the amount of random solutions of each iteration, a restart probability
and the maximum budget.

2.4 Comparison of Fine-Tuning Methods

All the techniques considered here need the definition of an interval of values for
each parameter to be fine-tuned. Furthermore, F-Race and ParamILS require
the definition of a set of countable values for each parameter (Si). The number
of configurations evaluated by F-Race grows exponentially on the size of each Si.
F-Race evaluates all of these configurations at least r times, whereas ParamILS
reduces the number of evaluated configurations by exploring the most promising
parameter configurations. Revac and ParamILS are stochastic search methods,
then they are sensitive to the random seed adopted for the search process. F-
Race is not a stochastic method but it defines a set of random seeds to execute
the algorithm to be fine-tuned and these seeds could have an impact on the
fine-tuning process. ParamILS provides as its output the best performing con-
figuration, while Revac determines, for each parameter, an interval of values, and
F-Race reports the set of the best performing configurations obtained. Revac is
not able to search for categorical parameters, because its transformation process
is performed on a continuous search space. However, both ParamILS and F-Race
are able to tackle both categorical and continuous spaces. Table 1 summarizes
the main features of tuning techniques.

Table 1. Features of the fine-tuning methods adopted

Method F-Race Revac ParamILS

Type Experimental Design Search Based Search Based

Initial input Set of values Interval/precision Set of values

Expected Set of best An interval of values
Best configuration

output configurations for each parameter

# parameters 3 4 4

Scope Categorical/Numerical Numerical Categorical/Numerical

Stop criterion
Max runs or one

Max iterations Max runs/time
configuration left

3 Ant Solver

For our experiments we used an Ant Colony Optimization (ACO) based ap-
proach called Ant Solver [11]. This algorithm was proposed to solve constraint
satisfaction problems (CSP). Ant Solver searches for a solution that minimizes



the number of violated constraints. At each step of Ant Solver, each ant con-
structs a complete assignment for the CSP, and the pheromone trails are updated
at the end of each cycle as usually done in ACO algorithms. The pheromone is
laid on a binary graph whose vertices (Xi, v) represent the assignment of value
v to variable Xi and the edges between two vertices represent those simultane-
ous assignment of values. Ant solver includes pre- and post- processing features
that use a min-conflicts based local search procedure. The pre-processing phase
performs local search repeatedly to collect information that is used to initialize
pheromone trails and the post-processing phase performs local search after each
ant has constructed a complete assignment. In our experiments, the pre- and
post-processing procedures were disabled in order to analyze the behavior of the
ACO algorithm alone. Ant Solver has four parameters: α, β, ρ and nAnts. α
and β determine, respectively, the weight of the pheromone and the weight of
heuristics in the computation of transition probabilities, ρ represents the level of
pheromone evaporation and nAnts corresponds to the number of ants used. We
added an operator (which is described next) and, consequently, a new parameter
for testing the fine-tuning techniques previously indicated.

3.1 Dummy Operator

Since our hypothesis was that a fine-tuning technique can provide information
about ineffective components of an algorithm, we decided to add a dummy op-
erator to the Ant Solver in order to validate it. This dummy operator takes an
assignment and returns it without making any further changes. Its execution is
controlled by a parameter δ that indicates its execution probability. In a real
scenario, the operators that do not help in the search process use resources and
spend time. Therefore, in order to simulate this behavior, the dummy operator
is set to consume 1% of the constraint checks allowed in the execution in order
to represent these costs.

4 Instances

The CSP instances used in this paper correspond to 3-coloring problems. Such
instances were generated using a simple heuristic that generates instances that
have at least one solution. The construction heuristic works as follows: first, the
problem variables are separated in three disjoint sets, and then the variables are
iteratively connected exclusively with variables in different sets, forbidding the
intra set connections. This process continues until a given average connection
level is met and the problem instance is obtained. The instances generated for
these experiments have 400 and 500 variables and a connection average of 3.

5 Experiments

For our experiments we used a public domain implementation of ParamILS
available at: www.cs.ubc.ca/labs/beta/Projects/ParamILS. We also adopted
the authors’ implementation of F-Race and our own implementation of Re-
vac. The source code of F-Race, Revac and the Ant Solver are available at:
www.inf.utfsm.cl/~emontero. For all our experiments we tuned the probabil-
ity of application of the dummy operator. Each tuning process was executed 5



times in order to obtain representative results. The rest of the parameter were
set as follows: nAnts = 15, α = 2.00, β = 10.00, and ρ = 0.01 according to
recommendations of author in [11].

The hardware platform adopted for the experiments was a PC with an Intel
Corei7-920, having 4GB of RAM, and using the Linux Mandriva 2010 operating
system. Two sets of experiments were conducted:

– An analysis of the information obtained by the three fine-tuners when solving
problems with 400 variables from the Test Suite 1.

– An analysis of the information obtained by the three fine-tuners when solving
problems with 500 variables from the Test Suite 2.

Table 2. Performance measure for instances from the Test Suite 1

p dummy 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fitness 0 0 11.3 18.9 21.8 25.6 26.6 27.7 32.4 32.7 32.7

conflict checks E+008 0.34 3.17 5.40 5.76 5.78 5.78 5.79 5.80 5.80 5.82 5.78

Fine-tuning methods use the number of violated constraints of the best solu-
tion found as the evaluation criteria to assess the performance of the Ant Solver.

5.1 Ineffective Operator

The objective of this experiment is to assess if the fine-tuning techniques adopted
are able to provide information that allows us to infer that the algorithm de-
sign includes an ineffective operator. The expected result is that the probability
assigned to the operator is zero. As indicated before, we included a dummy op-
erator for this experiment. This operator receives a candidate solution and does
not perform any change to it.

5.2 Performance Analysis

Here, we present a set of experiments which aim to understand the noticeable
effect that can have an ineffective operator in the algorithm. For this purpose,
we measure the quality of the solutions found and the number of conflict checks
performed for different values of the dummy operator rate. Table 2 shows these
values for instances of 400 variables and Table 3 shows them for instances of
500 variables. We can observe in Table 2 that the average performance of Ant
Solver increases as the dummy rate decreases. It is important to note that the
performance for rates 0.0 and 0.1 is the same. This is because in both cases, Ant
Solver has a sufficient budget of evaluations to search until the best solution is
found. However, the number of conflict checks performed by the second case is
almost 10 times the number of checks performed by the first one. The higher the
values of the dummy probability, the larger becomes the number of resources
consumed by the dummy operator and, consequently, the problem instances can
no longer be solved. As the value of the dummy operator gets larger, the worse is
the performance of the Ant Solver. In Table 3, we can observe the performance



of the Ant Solver when dealing with instances of 500 variables. In this case,
the algorithm clearly shows that using the dummy operator strongly increases
the number of constraints checks. The higher the dummy probability, the worse
becomes the performance of the Ant Solver.

Table 3. Performance measure for instances in Test Suite 2

p dummy 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fitness 0 2.5 31.9 46.1 49.5 50.6 52.2 55.2 58.8 61.4 62.6

conflict checks E+008 0.59 6.53 8.98 9.04 9.03 9.04 9.05 9.06 9.07 9.07 9.14

5.3 Test Suite 1

Here, we detail the results obtained using the Test Suite 1 composed by 10
instances of 400 variables as described in Section 4.

Analysis of Results for F-Race The F-Race algorithm started the fine-tuning
process with a set of 11 parameter configurations S = {0.0, 0.1, ..., 1.0}. After
finishing the first phase of 5 runs without elimination of configurations, F-Race
discarded 9 configurations and kept only two of them S′ = {0.0, 0.1}. Then,
it ended with the set S′ containing both configurations. This means that both
parameter configurations are equivalent (i.e., the incorporation of the dummy
operator at very low rates (lower or equal than 0.1) does not affect the perfor-
mance of Ant Solver). F-Race required 550 Ant Solver runs in order to detect
the ineffective operator.

Analysis of Results for Revac Revac started the fine-tuning process with an
initial interval of values in the range [0.0, 1.0]. The convergence process performed
by Revac to fine-tune the dummy parameter is shown in Figure 1(a). This plot
shows the median, the minimum and the maximum values of the ranges of values
for the parameter at each iteration. Here, we can see that at the first iteration,
the range of parameter values has already been reduced to [0.1, 0.4], but it is
still required to perform more iterations to refine this range of values. As shown
in Figure 1(a), Revac required 35 iterations (around 1350 runs of Ant Solver) to
converge to the range of values that performs the best for the dummy probability
[0.0, 0.1].

Analysis of Results for ParamILS For ParamILS, we also considered 11
parameter configurations S = {0.0, 0.1, ..., 1.0} and the initial configuration was
set to 0.5. After 100 runs of Ant Solver, ParamILS was able to change the value
from 0.5 to 0.1. ParamILS ended with a value of 0.1, because the performance
of Ant Solver with a probability of 0.1 for the dummy operator is equivalent to
the performance obtained with a probability of 0.0.

Discussion It is important to remark that the three fine-tuning methods adopted
here were able to minimize the effect of an ineffective operator included in the
algorithm. ParamILS was clearly the most efficient, because both Revac and
F-Race require the execution of an initialization phase. In this particular set
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Fig. 1. Convergence of Revac for Test Suite 1 and 2

of instances, we observed in Section 5.2 that the performance of Ant Solver is
equivalent when using a probability of either 0.0 or 0.1 for the dummy operator.
This is because the algorithm is able to solve the problem even with a dummy
probability of 0.1. Considering this specific problem, we suggest that when the
algorithm designer doubts about the effectiveness of a component, he can use
ParamILS giving zero as the first value for the parameter that controls such a
component. ParamILS will then be able to change this value to another one if it
can obtain a significantly better result. In our tests, we began by assigning 0.5
to this parameter value, and then, when ParamILS decreases this value and it
finds out that using 0.1 produces good results, it stops searching.

5.4 Test Suite 2

Here, we summarize the results obtained during the fine-tuning processes of
the instances from the Test Suite 2. This test suite is composed by 10 problem
instances of 3-coloring problem of 500 variables each.

Analysis of Results for F-Race F-Race started the fine-tuning process with
a set of 11 parameter configurations S = {0.0, 0.1, ..., 1.0}. After finishing the
first phase of 5 runs without elimination of configurations, F-Race discarded 9
configurations and kept only two of them S′ = {0.0, 0.1}. At the next race, these
two configurations were compared and the dummy value 0.0 showed a better
performance than the configuration 0.1. In this case, the process ended after 570
Ant Solver runs.

Analysis of Results for Revac Revac started the fine-tuning process with an
interval of values in the range [0.0, 1.0]. The convergence process of Revac for
fine-tuning the dummy parameter for the instances in Test Suite 2 is shown in
Figure 1(b). Here, we can see that at the first iteration the range of parameter
values has been reduced to the same range as that for Test Suite 1. The entire
convergence process is very similar to the process corresponding to the Test Suite
1. This is because both processes were performed considering the same random
seed. There are, however, some small differences. For example, in this case, the
final range reduction took place at iteration 37. This means that Revac required
around 1370 runs of Ant Solver to converge to the range of values [0.0, 0.1].



Analysis of Results for ParamILS In this case, we also considered 11 pos-
sible parameter configurations S = {0.0, 0.1, ..., 1.0} and the initial value for the
dummy rate was set to 0.5. The parameter changed to the value 0.1 after 100
Ant Solver runs, and it changed to 0.0 after 590 Ant Solver runs. The parameter
value did not change during the rest of the fine-tuning process.

Discussion In this case, the three fine-tuning methods were able to detect
the ineffective operator included in the algorithm. ParamILS and F-Race were
both the most efficient. The initialization phase of Revac was again detrimental
in its competitiveness, but not for F-Race. This set of instances constitutes a
more typical example of the scenarios that fine-tuning methods could face when
searching for ineffective operators. In this case, the performance of the algorithm
can be considered as the only indicator of the quality of the search that the
algorithm is performing.

5.5 Final Remarks

Considering the two fine-tuning scenarios analyzed here, it is important to notice
that the first one is more complex, since in that case the performance of the
algorithm is not enough to categorically determine the elimination of the dummy
operator. For the first scenario, a multistage procedure could be performed in
order to analyze different quality measures of the search process in order to
debug the design of the algorithm. Some good practices could also be considered
for the application of fine-tuning methods to identify ineffective operators. For
example, let’s consider as our initial solution a configuration that could discard
an operator (operator rate set to 0.0) in ParamILS. Only if such operator shows
to be useful for the algorithm, either isolated or combined with other operators,
ParamILS will incorporate it. For Revac and F-Race, their initial phases could
be oriented to better analyze configurations discarding the use of the operator
analyzed. Only when the fine-tuning method decided that these operators are
useful for the algorithm, their operator rates would be fine-tuned.

6 Conclusions and Future Work

In this paper we have proposed the use of the information obtained by fine-tuning
techniques for assisting the design process of metaheuristics. We have shown the
way in which this information can be used to identify ineffective components (an
operator, in this case).
Our experiments indicated that ParamILS was the best technique at identifying
this situation in a more efficient way. Revac and F-race required more resources
because of their expensive initialization phases. In our experiments the three
fine-tuners were allowed to execute a fixed maximum of executions of the Ant
Solver. The three fine-tuners studied here can be stopped at any time before
reaching the maximum number of evaluations. However, in our experiments we
waited until completing all the executions, so that a fair comparison of the tuning
approaches could be done.
As part of our future work, we would like to study more recent fine-tuners



such as sequential parameter optimization and the irace methods. Moreover,
we aim to develop mechanisms that allow the collaboration of different fine-
tuning techniques as a way of assisting the design of heuristic algorithms. In
this case, however, the aim would be to detect effective components, instead of
ineffective ones. We would also like to study other interesting aspects related
to the algorithm design process, such as the identification of more than one
ineffective operator, and the identification of opposite behavior of operators in
the presence of noise and also considering continuous fitness landscapes.
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