
Finding Optimal Addition Chains Using a
Genetic Algorithm Approach

Nareli Cruz-Cortés, Francisco Rodŕıguez-Henŕıquez,
Raúl Juárez-Morales and Carlos A. Coello Coello

Computer Science Section, Electrical Engineering Department
Centro de Investigación y de Estudios Avanzados del IPN
Av. Instituto Politécnico Nacional No. 2508, México D.F.

nareli@computacion.cs.cinvestav.mx, {francisco, coello}@cs.cinvestav.mx

Abstract. Since most public key cryptosystem primitives require the computa-
tion of modular exponentiation as their main building block, the problem of perform-
ing modular exponentiation efficiently has received considerable attention over the
years. It is known that optimal (shortest) addition chains are the key mathematical
concept for accomplishing modular exponentiations optimally. However, finding an
optimal addition chain of length r is an NP-hard problem whose search space size is
comparable to r!. In this contribution we explore the usage of a Genetic Algorithm
(GA) approach for the problem of finding optimal (shortest) addition chains. We
explain our GA strategy in detail reporting several promising experimental results
that suggest that evolutionary algorithms may be a viable alternative to solve this
illustrious problem in a quasi optimal fashion.

1 Introduction

Arguably, the field or modular exponentiation is the most important single arith-
metic operation in public key cryptosystems. The search for efficient algorithm
solutions for this problem has a long history whose roots can be traced as far
back as the ancient works of Hindu mathematicians in 200 B.C [6]. In addition to
its historical and theoretical relevance, field exponentiation has many important
practical applications in the areas of error-correcting codes and cryptography.
Modular exponentiation is used in several major public-key cryptosystems such
as RSA, Diffie-Hellman and DSA [7]. For instance, the RSA crypto-scheme is
based on the computation of Me mod n, where e is a fixed number, M is an
arbitrarily chosen numeric message and n is the product of two large primes,
namely, n = pq. Typical bit-lengths for n used in commercial applications range
from 1024 up to 4096 bits. In addition, modular exponentiation is also a ma-
jor building block for several number theory problems including integer prime
testing, integer factorization, field multiplicative inverse computation, etc.

Let α be an arbitrary integer in the range [1, n−1], and e and arbitrary pos-
itive integer. Then, we define modular exponentiation as the problem of finding
the unique integer β ∈ [1, n− 1] that satisfies the equation

β = αe mod n (1)

In order to improve legibility, in the rest of this paper we will drop the modular
operator whenever it results unambiguous.



The problem of determining the correct sequence of multiplications required
for performing a modular exponentiation can be elegantly formulated by using
the concept of addition chains. Formally, An addition chain for e of length l is
a sequence U of positive integers, u0 = 1, u1 . . . , ul = e such that for each i > 1,
ui = uj + uk for some j and k with 0 ≤ j ≤ k < i. Therefore, if U is an addition
chain that computes e as mentioned above, then for any α ∈ [1, n − 1] we can
find β = αe mod n by successively computing: α, αu1 , . . . , αul−1 , αe.

Let l(e) be the shortest length of any valid addition chain for a given positive
integer e. Then the theoretical minimum number of field multiplications required
for computing the modular exponentiation of (1) is precisely l(e). Unfortunately,
the problem of determining an addition chain for e with the shortest length l(e)
is an NP-hard problem [7].

Across the centuries, a vast amount of algorithms for computing modular
exponentiation have been reported. Reported strategies include: binary, m-ary,
adaptive m-ary, power tree, the factor method, etc. [5–7]. On the other hand,
relatively few probabilistic heuristics have been reported so far for finding near
optimal addition chains [3, 2]. In this paper, we present a Genetic Algorithm
(GA) suited to optimize addition chains. The results obtained suggest that this
approach is a very competitive alternative to the solution of the problem.

2 Problem Statement

The problem addressed in this work consists of finding the shortest addition
chain for an exponent e. Formally, an addition chain can be defined as follows,
Definition An addition chain U for a positive integer e of length l is a sequence
of positive integers U = {u0, u1, · · · , ul}, and an associated sequence of r pairs
V = {v1, v2 · · · , vl} with vi = (i1, i2), 0 ≤ i2 ≤ i1 < i, such that:

u0 = 1 and ul = e; for each ui, 1 ≤ i ≤ l, ui = ui1 + ui2 .
The search space for computing optimal addition chains increments its size at

a factorial rate as there exist r! different and valid addition chains with length
r. Clearly, the problem of finding the shortest ones becomes more and more
complicated as r grows larger.

3 Deterministic Heuristics for Modular Exponentiation

In this section, we briefly review some deterministic heuristics proposed in the
literature for computing field exponentiation. For a complete description of these
and other methods, interested readers are referred to [6, 1].

Let e be an arbitrary m-bit positive integer e, with a binary expansion rep-
resentation given as, e = (1em−2 . . . e1e0)2 = 2m−1 +

∑m−2
i=0 2iei. Then,

y = xe = x
Pm−1

i=0 2iei =
m−1∏

i=0

x2iei =
∏

ei 6=0

x2i

(2)



Binary strategies evaluate equation (2) by scanning the bits of the exponent e
one by one, either from left to right (MSB-first binary algorithm) or from right to
left (LSB-first binary algorithm) applying Horner’s rule. Both strategies require
a total of m− 1 iterations. At each iteration a squaring operation is performed,
and if the value of the scanned bit is one, a subsequent field multiplication is
performed. Therefore, the binary strategy requires a total of m−1 squarings and
H(e)− 1 field multiplications, where H(e) is the Hamming weight of the binary
representation of e. The binary method can be generalized by scanning more than
one bit at a time. Hence, the window method (first described in [6]) scans k bits
at a time. The window method is based on a k-ary expansion of the exponent,
where the bits of the exponent e are divided into k-bit words or digits. The
resulting words of e are then scanned performing k consecutive squarings and
a subsequent multiplication as needed. For k = 1, 2, 3, 4 the window method is
called, respectively, binary, quaternary octary and hexa MSB-first exponentiation
method.

4 The Proposed Genetic Algorithm

In this work, we present a Genetic Algorithm (GA) approach suited for finding
optimal addition chains. In the rest of this Section we describe how the design
decisions were taken.

4.1 Representation

In this work, we adopt an integer encoding, using variable-length chromosomes.
Each element from the addition chain is directly mapped on each gene in the
chromosome. Then, in this case, the genotype and the phenotype are both the
same.

For example, if we are minimizing the addition chain for the exponent e =
6271, one candidate solution could be 1− 2− 4− 8− 10− 20− 30− 60− 90−
180− 360− 720− 1440− 2880− 5760− 5970− 6150− 6240− 6270− 6271.

This integer sequence represents a chromosome or individual I, where each
gene Ik corresponds to one step on the addition chain, for 0 ≤ k ≤ l with length
l = 19, and Il = 6271.

4.2 Fitness Function

Since we are looking for the minimal addition chain’s length, then the indi-
vidual’s fitness is precisely the addition chain’s length, or in other words, the
chromosome’s length. The shorter the chromosome’s length is, the better its
fitness value, and vice versa.

If we consider the previous addition chain, the associated fitness of this chain
is 19.



4.3 Crossover Operator

The crossover operator creates two children from two parents. In our GA, we
adopt one point crossover. Some extra considerations must be taken, however,
mainly because of two reasons: first, it is necessary to assure that the resulting
children are valid addition chains (i.e., feasible ones) and second, the chromo-
somes are of variable length. The way this operator produces offspring is il-
lustrated in Figure 1. The genes before the crossover point are copied to the
children as values (the alleles are copied); meanwhile from the genes after the
crossover point only the rules are copied (rules indicate the positions from the
chains which are selected to be added). It is defined in the following pseudo code,
Begin Function Crossover
For a pair of parents (P1 and P2) do:

1. Select a randomly selected crossover point p such that (2 ≤ p ≤ l − 2) where l is
the chromosome length.

2. Create child (C1), copy the P1’s values to the C1 starting from 0 until p is reached,
hence,
For (k = 0) to (k = p) C1k ← P1k

From the point p until e is reached, complete the child C1 following the rules by
which P2 was created, in the following way,
For (k = p + 1) to (k = length)
– Look for a and b values such that, P2k = P2a + P2b

– Set C1k ← C1a + C1b

EndFor
3. Create child (C2):

For (k = 0) to (k = p)
– C2k ← P2k

EndFor
For (k = p + 1) to (k = length)
– Look for a and b values such that, P1k = P1a + P1b

– Set C2k ← C2a + C2b

EndFor

End Function Crossover

Fig. 1. Crossover Operator.

We point out that the crossover operator is applied in the way described above
only when that data manipulation does not produce values exceeding the exponent e.
In case the value indicated by the crossover operator exceeds e then the value assigned
would be the maximum allowable.



4.4 Mutation Operator

It is noted that our definition of this operator allows us to introduce random changes
into the chromosome, while preserving addition chains’ validity.
BEGIN Function Mutation
For each child (C) do:
1. Randomly select a mutation point i and a random number j such that 2 ≤ j < i <
(l − 2), where l is the chromosome length.
2. The new value of the child at the mutation point Ci+1 will be Ci+1 = Ci + Cj

3. Repair the upper part of the chromosome {Ck>i+1}, using the following criterion:
For k = i + 2 to l, with Cl = e do
If (Flip(Z)) then use the doubling rule whenever is possible, i.e, Ck = 2Ck−1

Else if (flip(0.5)) set Ck = Ck−1 + Ck−2

Else set Ck = Cm + Cn, where m and n are two randomly selected
integers such that 0 ≤ m, n < l.

END Function Mutation

Flip(Z) is a function that receives an input parameter Z such that 0 ≤ Z ≤ 1. It
returns true with probability Z, or false in other case.

General GA
Having defined the main Genetic Algorithm primitives, we proceed to put them

together into the skeleton structure of the GA strategy outlined below,
BEGIN-General-GA
1.Randomly create an initial population size N .
2.Repeat:

2.a. Compute individuals’ fitness.
2.b Select the N parents to be reproduced.
2.c With probability Pc, apply crossover operator to the N parents.
2.d Apply the mutation operator to the children with a probability Pm.
2.e. Children will form the next generation population.

3. Go to step 2.a. until a predetermined number of Generations is reached.
4. Report the fittest individual.
END-General-GA.

5 Experiments and Results

In order to validate the GA approach described in the previous Section, we conducted a
series of experiments, with the aim of comparing our GA’s experimental results against
the ones obtained by using several traditional deterministic methods.

The first set of experiments consisted on finding the accumulated addition chain
lengths for all exponents e in a given interval as it was done in [1]. Then, as a second test,
we applied our genetic algorithm to a special class of exponents whose optimal addition
chains are particularly hard to find. All our experiments were performed by applying
the following GA’s parameters: Population size N = 100, Number of Generations =
300, Crossover Rate Pc = 0.6, Mutation Rate Pm = 0.5, Probability Z = 0.7 (used
in the mutation operator), Selection = Binary Tournament. All the statistical results
shown here were produced from 30 independent runs of the algorithm with different
and independent random seeds (adopting a uniform distribution).



Using our genetic algorithm approach, we computed the accumulated addition chain
lengths for all the first 1000 exponents, i.e. e ∈ [1, 1000]. The accumulated value so ob-
tained was then compared against the accumulated values reported in [1] by applying
the following deterministic methods: Dyadic, Total, Fermat, Dichotomic, Factor, Qua-
ternary and Binary [6, 1]. All results found are shown in Table 1. It can be seen that
in the best case, our GA approach obtained better results than all the other six meth-
ods. In average, the GA approach was ranked in second place, only behind the Total
method. It is noted that none of the features strategies was able to find the optimal
value that was found by performing an exhaustive search. Furthermore, we computed

Table 1. Accumulated addition chain lengths for exponents e ∈ [1, 1000]

Optimal value=10808

Strategy Total length Strategy Total length

Dyadic [1] 10837 Quaternary 11479
Total [1] 10821 Genetic Algorithm Best: 10818

Fermat [1] 10927 Average: 10824.07
Dichotomic [1] 11064 Median: 10824

Factor [1] 11088 Worst: 10830
Binary 11925 Std.Dev.: 2.59

the accumulated addition chain lengths for all the exponents in the ranges e ∈ [1, 512],
e ∈ [1, 2000] and e ∈ [1, 4096]. The methods used were the GA strategy, the binary
method and the quaternary method. Once again and for comparison purposes, we com-
puted the corresponding optimal values (obtained by enumeration). Those results are
shown in Table 2.

Clearly, the results obtained by the GA strategy outperformed both, the binary
and the quaternary method, even in the worst case. We can observe that for the three
cases considered (i.e., 512, 2000 and 4096), the GA obtained a reasonably good ap-
proximation of the optimal value.

Table 2. Accumulated addition chain lengths for 512, 2000 and 4096

for all e ∈ [1, 512] for all e ∈ [1, 2000] for all e ∈ [1, 4096]
Optimal: 4924 Optimal: 24063 Optimal: 54425
Binary: 5388 Binary: 26834 Binary: 61455

Quaternary: 5226 Quaternary: 25923 Quaternary: 58678
Genetic Algorithm Genetic Algorithm Genetic Algorithm

Best: 4925 Best: 24124 Best: 54648
Average: 4927.7 Average: 24135.17 Average: 54684.13
Median: 4927 Median: 24136 Median: 54685
Worst: 4952 Worst: 24144 Worst: 54709

Std.Dev.: 4.74 Std.Dev: 5.65 Std.Dev.: 13.55

A special class of exponents hard to optimize

Let e = c(r) be the smallest exponent that can be reached using an addition chain of
length r. Solutions for that class of exponents are known up to r = 30 and a compilation
of them can be found in [4]. Interesting enough, the computational difficulty of finding
shortest addition chains for those exponents seems to be among the hardest if not the
hardest one from the studied exponent families [6]. We show the solutions found by



the GA for the class of exponents shown in Table 3. It is noted that in 24 out of 30
exponents, the GA approach was able to find the shortest addition chain. However,
for the 6 remaining exponents (namely, 357887, 1176431, 2211837,4169527, 7624319
and 14143037), our GA strategy found addition chains that where one unit above the
optimal.

6 Conclusions and Future Work

In this paper we described how a genetic algorithm strategy can be applied to the
problem of finding shortest addition chains for optimal field exponentiation computa-
tions. The GA heuristic presented in this work was capable of finding almost all the
optimal addition chains for any given fixed exponent e with e < 4096. Taking into
account the optimal value (which was found by enumeration) the percentage error of
our GA strategy was within 0.4% from the optimal for all cases considered. In other
words, for any given fixed exponent e with e < 4096, our strategy was able to find the
requested shortest addition chain in at least 99.6% of the cases. In a second experiment
for assessing the actual power of the GA strategy as a search engine, we tested it for
generating the shortest addition chains of a class of exponents particularly hard to
optimize, whose optimal lengths happen to be known for the first 30 members of the
family. In most cases considered, the GA strategy was able to find the optimal values.

Acknowledgments

The first and second authors acknowledge support from CONACyT through the CONA-
CyT project number 45306. The third and fourth authors acknowledge support from
CONACyT through the NSF-CONACyT project number 42435-Y.

References

1. F. Bergeron, J. Berstel, and S. Brlek. Efficient computation of addition chains.
Journal de thorie des nombres de Bordeaux, 6:21–38, 1994.

2. J. Bos and M. Coster. Addition chain heuristics. In G. Brassard, (editor) Advances
in Cryptology —CRYPTO 89 Lecture Notes in Computer Science, 435:400–407,
1989.

3. N. Cruz-Cortes, F.. Rodriguez-Henriquez, and C. Coello Coello. On the optimal
computation of finite field exponentiation. In C Lematre, C. Reyes, J. Gonzlez,
(editors) Advances in Artificial Intelligence - IBERAMIA 2004: 9th Ibero-American
Conference on AI Lecture Notes in Computer Science, 3315:747–756, November
2004.

4. D. Bleinchenbacher and A. Flammenkamp. An Efficient Algorithm for Computing
Shortest Addition Chains, 1997.

5. D. M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27(1):129–146, April 1998.

6. Donald Ervin Knuth. The Art of Computer Programming 3rd. ed. Addison-Wesley,
Reading, Massachusetts, 1997.

7. A. J. Menezes, Paul C. van Oorschot, and Scott A.Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, Florida, 1996.



Table 3. Shortest addition chains for a special class of exponents

exponent e = c(r) Addition Chain Length r
1 1 0
2 1 − 2 1
3 1 − 2 − 3 2
5 1 − 2 − 3 − 5 3
7 1 − 2 − 3 − 5 − 7 4
11 1 − 2 − 3 − 5 − 8 − 11 5
19 1 − 2 − 3 − 5 − 7 − 12 − 19 6
29 1 − 2 − 3 − 4 − 7 − 11 − 18 − 29 7
47 1 − 2 − 3 − 5 − 10 − 20 − 40 − 45 − 47 8
71 1 − 2 − 3 − 5 − 7 − 12 − 17 − 34 − 68 − 71 9
127 1 − 2 − 4 − 6 − 12 − 24 − 48 − 72 − 120 − 126 − 127 10
191 1 − 2 − 3 − 5 − 10 − 20 − 21 − 42 − 63 − 126 − 189 − 191 11
379 1 − 2 − 4 − 5 − 10 − 15 − 25 − 50 − 75 − 150 − 300 − 375 − 379 12
607 1 − 2 − 4 − 6 − 12 − 24 − 48 − 96 − 192 − 384 − 576 − 600 − 606 − 607 13
1087 1 − 2 − 3 − 6 − 12 − 18 − 36 − 74 − 144 − 216 − 432 − 864 − 865 − 1081 − 1087 14
1903 1 − 2 − 3 − 5 − 10 − 13 − 26 − 52 − 104 − 105 − 210 − 420 − 840 − 1680 − 1890 15

1903
3583 1 − 2 − 3 − 6 − 12 − 18 − 36 − 72 − 108 − 216 − 432 − 864 − 1728 − 3456 16

−3564 − 3582 − 3583
6271 1 − 2 − 3 − 6 − 12 − 24 − 48 − 96 − 192 − 384 − 768 − 1536 − 3072 − 6144 17

−6240 − 6264 − 6270 − 6271
11231 1 − 2 − 3 − 6 − 12 − 24 − 25 − 50 − 100 − 200 − 400 − 800 − 1600 − 3200 18

−6400 − 9600 − 11200 − 11225 − 11231
18287 1 − 2 − 3 − 6 − 9 − 15 − 30 − 45 − 47 − 94 − 188 − 190 − 380 − 760 − 1520 19

−3040 − 6080 − 12160 − 18240 − 18287
34303 1 − 2 − 3 − 6 − 12 − 14 − 28 − 56 − 112 − 224 − 448 − 504 − 1008 − 2016 20

−4032 − 8064 − 16128 − 32256 − 34272 − 34300 − 34303
65131 1 − 2 − 3 − 6 − 12 − 24 − 48 − 72 − 144 − 288 − 576 − 1152 − 2304 − 4608 21

−4611 − 9222 − 18444 − 27666 − 55332 − 55908 − 65130 − 65131
110591 −1 − 2 − 4 − 5 − 10 − 20 − 40 − 80 − 160 − 320 − 640 − 1280 − 2560 − 2570 22

5140 − 7710 − 12850 − 25700 − 51400 − 102800 − 110510 − 110590 − 110591
196591 1 − 2 − 3 − 6 − 12 − 15 − 30 − 60 − 120 − 240 − 480 − 720 − 1440 − 2880 − 5760 23

11520 − 23040 − 46080 − 92160 − 184320 − 19584 − 196560 − 196590 − 196591
357887 1 − 2 − 3 − 4 − 8 − 16 − 32 − 64 − 128 − 256 − 257 − 514 − 771 − 11542 24

−3084 − 6168 − 12336 − 24672 − 49344 − 49347 − 98691 − 148038 − 296076
−345423 − 357759 − 357887

685951 1 − 2 − 4 − 6 − 7 − 14 − 21 − 42 − 84 − 168 − 336 − 504 − 840 − 1680 25
−3360 − 6720 − 13440 − 26880 − 53760 − 57120 − 114240 − 228480

−342720 − 685440 − 685944 − 685951
1176431 1 − 2 − 4 − 5 − 10 − 15 − 19 − 38 − 76 − 152 − 304 − 608 − 612 27

−1224 − 2448 − 4896 − 9792 − 19584 − 29376 − 58752 − 117504 − 235008
−352512 − 587520 − 1175040 − 1176264 − 1176416 − 1176431

2211837 1 − 2 − 3 − 6 − 9 − 15 − 30 − 60 − 120 − 126 − 252 − 504 − 1008 28
−2016 − 4032 − 8062 − 16128 − 16143 − 32286 − 64572 − 129144 − 258288
−516576 − 1033152 − 2066304 − 2195448 − 2211591 − 2211717 − 2211837

4169527 1 − 2 − 3 − 6 − 12 − 24 − 48 − 96 − 192 − 384 − 768 − 1536 − 2304 29
−4608 − 9216 − 18432 − 36864 − 73728 − 147456 − 294912 − 589824 − 589825

−1179650 − 1769475 − 3538950 − 4128775 − 4165639
−414167943 − 4169479 − 4169527

7624319 1 − 2 − 3 − 6 − 12 − 18 − 36 − 72 − 144 − 288 − 576 − 1152 − 1224 30
−2448 − 4896 − 9792 − 19584 − 39168 − 78336 − 156672 − 313344
−626688 − 1253376 − 1254600 − 1274184 − 1274185 − 2548370

−5096740 − 6370925 − 7624301 − 7624319
14143037 1 − 2 − 3 − 6 − 12 − 18 − 30 − 60 − 120 − 240 − 480 − 960 − 961 31

−1922 − 3844 − 7688 − 11532 − 23064 − 46128 − 92256 − 184512 − 369024
−461280 − 830304 − 1660608 − 3321216 − 6642432

−13284864 − 14115168 − 14138232 − 14142076 − 14143037


