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Abstract

In this paper, we propose an evolutionary multiobjective
optimization approach to design combinational logic cir-
cuits. The idea is to use a population-based technique that
considers outputs of a circuit as equality constraints that
we aim to satisfy. A small sub-population is assigned to
each objective. After one of these objectives is satisfied, its
corresponding sub-population is merged with the rest of the
individulas in what becomes a joint effort to minimize the
total amount of mismatches produced (between the encoded
circuit and the truth table). Once a feasible individual is
found, all individuals cooperate to minimize its number of
gates. The approach seems to reduce the amount of com-
puter resources required to design combinational logic cir-
cuits, when compared to our previous research in this area.

1. Introduction

The problem of interest to us consists of designing
a combinational circuit that performs a desired function
(specified by a truth table), given a certain specified set of
available logic gates. Such a combinational logic circuit
contains no memory elements and no feedback paths.

In the past, we have approached this problem using a ge-
netic algorithm (GA) with a matrix encoding scheme, and
an � -cardinality alphabet (after a series of experiments, we
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found this � -cardinality representation scheme more robust
than the traditional binary representation used with GAs)
[3, 4]. Our approach presents great (coincidental) resem-
blance with the one proposed by Miller [17] and further de-
veloped by Miller and his colleagues [16, 13]. The 2 main
differences between the two approaches are the encoding
scheme and the fitness function. Regarding the encoding,
Miller et al. [17] use a more compact representation that in-
stead of considering the inputs and gates as completely sep-
arate elements in the chromosomic string (as in our case),
uses a single gene to encode a complete Boolean expres-
sion.

Regarding the fitness function, in our case, it works in
two stages [10]. At the beginning of the search, only va-
lidity of the circuit outputs is taken into account, and the
GA is basically exploring the search space. Once a feasi-
ble solution appears, then the fitness function is modified
such that any valid designs produced are rewarded for each
WIRE1 gate that they include, so that the GA tries to find
the circuit with the minimum number of gates that performs
the function required. It is at this stage that the GA is actu-
ally exploiting the search space, trying to optimize the so-
lutions found (in terms of their number of gates) as much
as possible. Miller’s initial work emphasized generation of
functional circuits, rather than optimization. It was not un-
til recently, that Kalganova & Miller experimented with a
two-stage (or multiobjective, as they call it) fitness func-
tion as the one used by us [12]. However, the use of truly
multiobjective optimization techniques (e.g., based on the
concept of Pareto optimality [5]) remained as an open area

1WIRE basically indicates a null operation, or in other words, the ab-
sence of gate, and it is used just to keep regularity in the representation
used by the GA that otherwise would have to use variable-length strings.



of research in combinational circuit design, as suggested by
Kalganova & Miller [12].

In this paper, we propose the use of an evolutionary mul-
tiobjective optimization technique (rather than just a multi-
objective fitness function) to design combinational circuits.
There is some (relatively scarce) previous work on using
multiobjective techniques to handle constraints. This work,
however, has concentrated on numerical optimization only.
Our approach, originally introduced in a recent paper [6],
was probably the first attempt to use this kind of tech-
nique in the design of circuits (we presented one example
of the design of a circuit in [6]). Our proposal is to han-
dle each of the matches between a solution generated by a
GA and the values specified by the truth table as equality
constraints. This, however, introduces some dimensional-
ity problems for conventional multiobjective optimization
techniques (this is because checking for dominance is an���

����� process), and therefore the idea of using a (more
efficient) population-based approach similar to the Vector
Evaluated Genetic Algorithm (VEGA) [22].

The remainder of this paper is organized as follows:
first, we describe some of the previous related work on us-
ing multiobjective optimization techniques to handle con-
straints. Then, we describe our approach and give some
examples of its performance. Results are compared against
those produced by our previous approach (a GA with an � -
cardinality alphabet and a two-stage fitness function that we
will simply denote as NGA) and against designs produced
by humans (using Karnaugh Maps [14] and the Quine-
McCluskey Procedure [20, 15]). Then, we present our con-
clusions and some of the possible paths of future research.

2. Related Work

The idea of using multiobjective optimization techniques
to handle constraints is not new. Some researchers have pro-
posed to redefine the single-objective optimization of � as a
multiobjective optimization problem in which we will have�
	�� objectives, where � is the number of constraints.
Then, we can apply any multiobjective optimization tech-
nique [9, 5] to the new vector ��� � ��������������������� � , where
����������������� are the original constraints of the problem. An
ideal solution � would thus have ��� � � � =0 for �! #"$ %�
and � � � �& � �(' � for all feasible

'
(assuming minimiza-

tion).
Surry et al. [24, 23] proposed the use of Pareto ranking

[8] and VEGA [22] to handle constraints using this tech-
nique. In their approach, called COMOGA, the popula-
tion was ranked based on constraint violations (counting the
number of individuals dominated by each solution). Then,
one portion of the population was selected based on con-
straint ranking, and the rest based on real cost (fitness) of
the individuals.

Parmee and Purchase [18] implemented a version of
VEGA [22] that handled the constraints of a gas turbine
problem as objectives to allow a genetic algorithm to lo-
cate a feasible region within the highly constrained search
space of this application. However, VEGA was not used to
further explore the feasible region, and instead Parmee and
Purchase [18] opted to use specialized operators that would
create a variable-size hypercube around each feasible point
to help the genetic algorithm to remain within the feasible
region at all times.

Camponogara & Talukdar [1] proposed the use of a pro-
cedure based on an evolutionary multiobjective optimiza-
tion technique. Their proposal was to restate a single objec-
tive optimization problem in such a way that two objectives
would be considered: the first would be to optimize the orig-
inal objective function and the second would be to minimize
the total amount of constraint violation of an individual.

Once the problem is redefined, non-dominated solu-
tions with respect to the two new objectives were gener-
ated. The solutions found defined a search direction ) ��(* �,+ *.- �0/21 * �3+ *�4 1 , where

* �6587�� , *9- 587 - , and 7:� and
7 - are Pareto sets. The direction search ) is intended to si-
multaneously minimize all the objectives [1]. Line search is
performed in this direction so that a solution

*
can be found

such that
*

dominates
* � and

* -
(i.e.,

*
is a better compro-

mise than the two previous solutions found). Line search
takes the place of crossover in this approach, and mutation
is essentially the same, where the direction ) is projected
onto the axis of one variable

4
in the solution space [1]. Ad-

ditionally, a process of eliminating half of the population is
applied at regular intervals (only the less fitted solutions are
replaced by randomly generated points).

Jim énez and Verdegay [11] proposed the use of a min-
max approach [2] to handle constraints. The main idea of
this approach is to apply a set of simple rules based on con-
straint violation to decide the selection process (individu-
als with the lowest amount of constraint violation would be
preferred in a binary tournament).

In the context of combinational logic circuits design, we
are not aware of any work in which the direct use of a multi-
objective optimization technique had been proposed, except
for the single circuit solved in [6]. The idea was, however,
suggested by Kalganova and Miller [12].

3. Description of the approach

The main idea behind our proposed approach is to use
a population-based multiobjective optimization technique
such as VEGA [22] to handle each of the outputs of a cir-
cuit as an objective. In other words, we would have an op-
timization problem with � equality constraints, where � is
the number of values (i.e., outputs) of the truth table that we
aim to match. So, for example, a circuit with 3 inputs and a
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Figure 1. Graphical representation of the approach introduced in this paper.

single output, would have � � ��� ��� values to match.
The technique may be better illustrated by Figure 1. At

each generation, the population is split into � 	 � sub-
populations, where � is defined as indicated before (we
have to add one to consider also the objective function).
Each sub-population optimizes a separate constraint (in this
case, an output of the circuit). Therefore, the main mission
of each sub-population is to match its corresponding output
with the value indicated by the user in the truth table. Al-
though the size of each sub-population may be variable, it
was decided to allocate the same size to each of them in the
experiments reported in this paper, but the use of different
sizes remains as an open issue that requires further research.

The objective function in our case is defined as in previ-
ous work [3, 4]: it is the total number of matches (between
the outputs produced by an encoded circuit and the intented
values defined in the truth table defined by the user). For
each match, we increase the value of the objective function
by one. If the encoded circuit is feasible (i.e., it matches
the truth table completely), then we add one (the so-called
“bonus”) for each WIRE present in the solution.

Using the proposed scheme, a fraction of the population
will be selected using the objective function as its fitness
(i.e., will try to maximize the total number of matches); an-
other fraction will use the match of the first output as its
fitness and so on (since they are all binary values, we only
check if it matches or not, without computing any extra val-
ues as required in numerical optimization). The main is-
sue here is how to handle the different situations that could
arise. Our proposal is the following:

if � - � � �����	 - then fitness( � ) = 

else if ���� 
 then fitness = + �
else fitness = � � � �

where � - � � � refers to the value of output
4

for the en-
coded circuit � ; 	 - is the value specified for output

4
in

the truth table; and � is the number of outputs that are not

matched by the circuit � (  � ). Finally, � � � � is the fitness
function described before:

� � � � �� � � � 	�� 
 if � � � � is infeasible� � � � otherwise
(1)

In this equation, � � � � refers to the number of matches
between the circuit � and the values defined in the truth
table, and � � � � is the number of WIREs in the circuit � .

There are a few interesting things that can be observed
from this procedure. First, each sub-population associated
with an output of the circuit will try to match it with the
value defined in the truth table. Once this is achieved,
then the fitness function will try to maximize the number of
matches of the rest of the outputs. In other words, this sub-
population will cooperate with the others that are having
difficulties to match their outputs. If the circuit is feasible,
then all the sub-populations will join efforts to maximize
the number of WIREs in the circuit.

It is important to clarify that the current approach does
not use dominance to impose an order on the constraints
based on their violation (like in the case of COMOGA [24])
which is a more expensive process (in terms of CPU time)
that also requires additional parameters. In fact, the cur-
rent approach does not rank individuals, but it uses instead
different fitness functions for each of the sub-population al-
located (whose number depends on the number of outputs
in a circuit) depending on the feasibility of the individuals
contained within each of them. This is easier to implement,
does not require special operators to preserve feasiblity (like
in the case of Parmee and Purchase’s approach [18]), makes
unnecessary the use of a sharing function to preserve di-
versity [7] (like with traditional multiobjective optimization
techniques [9]), and does not require extra parameters to
control the mixture of feasible and infeasible individuals
(like in the case of COMOGA [24]).

Although VEGA is known to have difficulties in multi-
objective optimization problems due to the fact that it tries
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Figure 2. Matrix used to represent a circuit.
Each gate gets its inputs from either of the
gates in the previous column.

to find individuals that excel only in one dimension re-
gardless of the others (the so-called “middling” problem
[22, 9, 5]), that drawback turns out to be an advantage in
this context, because what we want to find are precisely so-
lutions that are completely feasible, instead of good com-
promises that may not satisfy one of the constraints (which
are the kinds of solutions that a Pareto ranking strategy
would normally produce). Also, the use of sub-populations
is much more efficient than using Pareto dominance, be-
cause of the potentially high number of objectives involved
(this will be illustrated in the examples shown in this paper).

4. The Genetic Algorithm Used

As in previous work [4, 3], we used a matrix to represent
a circuit as shown in Fig. 2. This matrix is encoded as a
fixed-length string of integers from 
 to � + � , where �
refers to the number of rows allowed in the matrix (that is
why we call it “ � -cardinality alphabet).

More formally, we can say that any circuit can be rep-
resented as a bidimensional array of gates 7 ��� - , where

4
in-

dicates the level of a gate, so that those gates closer to the
inputs have lower values of

4
. (Level values are incremented

from left to right in Fig. 2). For a fixed
4
, the index " varies

with respect to the gates that are “next” to each other in the
circuit, but without being necessarily connected. Each ma-
trix element is a gate (there are 5 types of gates: AND, NOT,
OR, XOR and WIRE) that receives its 2 inputs from any
gate at the previous column as shown in Fig. 2. Although
our GA implementation allows gates with more inputs and
these inputs might come from any previous level of the cir-
cuit, we limited ourselves to 2-input gates and restricted the
inputs to come only from the previous level.

A chromosomic string encodes the matrix shown in
Fig. 2 by using triplets in which the 2 first elements refer
to each of the inputs used, and the third is the correspond-
ing gate as shown in Fig. 3.

Input 1 Input 2 Gate Type

Figure 3. Encoding used for each of the matrix
elements that represent a circuit.

Table 1. Truth table for the circuit of the first
example.

X Y Z F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Our goal was then to produce a fully functional design
(i.e., one that produces all the expected outputs for any com-
bination of inputs according to the truth table given for the
problem) which maximizes the number of WIREs.

5. Examples

We have used several circuits of different degrees of
complexity to test our approach. For the purposes of this
paper, 4 examples were chosen to illustrate our approach
(called multiobjective genetic algorith, or MGA for short),
and the results produced were compared with those gen-
erated by human designers and by our previous GA-based
implementation (called NGA) [3, 4].

5.1. Example 1

Our first example has 3 inputs and one output, as shown
in Table 1. In this case, the matrix used was of size ����� ,
and the length of each string representing a circuit was ��� .
Results are compared on Tables 2, 3 and 4. Human Designer
1 used Karnaugh Maps plus Boolean algebra identities to
simplify the circuit, whereas Human Designer 2 used the
Quine-McCluskey Procedure. In both cases, they produced
solutions with more gates than the GA.

In previous work [4] we had been able to find a solution
with 4 gates (fitness value of 29) for this circuit. To choose
the size of each sub-population in the MGA, we started with
10, and performed ten runs. To make a fair comparison, we



NGA MGA� � ��� 	�� � � ��� ��� � � �0�
	 � � ��� 	�� � � � ��� � �
5 gates 4 gates

1 AND, 1 OR, 2 XORs, 1 NOT 2 ANDs, 1 OR, 1 XOR

Table 2. Comparison of the best solutions
found by the � -cardinality GA (NGA) and a
our multiobjective genetic algorithm (MGA)
for the circuit of the first example. In both
cases, a population size of 90 was used.

Human Designer 1� � � ��� ��� ��	� ��� � � �
5 gates

2 ANDs, 1 OR, 2 XORs

Table 3. Results produced by the first human
designer for the circuit of the first example

used the same parameters for both GAs used. If a feasible
solution was not found, then we would increase the size by
10 and would perform ten more runs. This process was re-
peated until a suitable sub-population size was found (i.e.,
such that at least one third of the results produced from the
ten runs were feasible).

In this case, due to the small size of the circuit, a sub-
population size of 10 was enough. Since the circuit has 8
outputs, there were 9 objectives. Therefore, the total popu-
lation size was set to 90. We arbitrarily set the maximum
number of generations to 300. The same representation
scheme and the same genetic operators (uniform crossover
with a probability of 0.5, and uniform mutation with a prob-
ability of 0.5/ � , where � is the length of the chromosome)
were used for both the MGA and the NGA (see [4] for more
details). These genetic operators and their parameters (ex-
cept for the population size) were also used in the other ex-
amples).

The MGA consistently found a solution with fitness
value of 29 (6 out of 10 times; the 4 remaining solutions
had a fitness of 28). The graphical representation of this
solution is depicted in Fig. 4. In all runs of the MGA, the
circuits produced were feasible.

On the other hand, the best solution that the NGA could
find using the same population size had a fitness of 28 (i.e.,
a feasible circuit with 5 gates). This solution appeared only
4 times in the 10 runs performed, and in one case, the best
solution found was infeasible. To find a solution with a fit-
ness of 29 with the NGA, a population size of at least 700
individuals was required.

Human Designer 2� � � 	�� � 	 �8� ��� � �
6 gates

3 ANDs, 1 OR, 1 XOR, 1 NOT

Table 4. Results produced by a second human
designer for the circuit of the first example

Z W X Y F
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Table 5. Truth table for the circuit of the sec-
ond example.

5.2. Example 2

Our second example has 4 inputs and one output, as
shown in Table 5. A matrix of the same size as before was
used (i.e., � � � ).

The comparison of the results produced by the MGA, the
NGA, a human designer using Karnaugh Maps, and Sasao’s
approach [21] are shown in Tables 6 and 7. Sasao has used
this circuit to illustrate his circuit simplification technique
based on the use of ANDs & XORs. His solution uses,
however, more gates than the circuit produced by the NGA
or the MGA.

In previous work [4] we had been able to find a solution
with 10 gates (fitness value of 31) for this circuit. Since
this example has 16 outputs, there are 17 objectives for the
MGA. After performing 10 runs using a sub-population size
of 10 (i.e., total population size of 170) neither the MGA nor
the NGA found a feasible solution. With a sub-population
size of 20 (i.e., total population size of 340), the MGA was
able to find 7 feasible solutions. Interestingly, one of these
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Figure 4. Graphical representation of the optimum circuit for the first example.
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Figure 5. Circuit produced by our MGA for the second example.

MGA NGA� � � �0��� � � � � � �0��� 	 � 	�� � � � � � 	 � � ��� � � 	 � �0��� 	�� � � � � ��� 	�� 	 � �0� � 	
8 gates 10 gates

1 AND, 3 ORs, 3 XORs, 1 NOT 2 ANDs, 3 ORs, 3 XORs, 2 NOTs

Table 6. Best circuit found by the MGA (using a population size of 340) and the NGA (using a
population size of 900) for the second example.

Human Designer 1 Human Designer 2� � � � � 	 � � � � � 	 � 	 � � 	 � ��� 	�� � � � � � 	 �0� � � � 	 ��� 	 � 	 � � � 	 � 	 � � 	 � 	 �

11 gates 12 gates
4 ANDs, 1 OR, 2 XORs, 4 NOTs 3 XORs, 5 ANDs, 4 NOTs

Table 7. Results produced by one human designer (using Karnaugh Maps) and Sasao for the second
example.



A B C D F
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

Table 8. Truth table for the circuit of the third
example.

solutions had a fitness of 33 (i.e., a circuit with only 8 gates).
The maximum number of generations in this case (for both
the MGA and the NGA) was arbitrarily set to 400.

On the other hand, the best solution that the NGA could
find using the same population size of 340 had a fitness of
15 (i.e., it was an infeasible circuit). This solution consis-
tently appeared in the 10 runs performed (except for one
in which the maximum fitness was 14). To find feasible
circuits, the NGA required population sizes of at least 500
individuals. To find a solution with a fitness of 31 (i.e., with
10 gates) the NGA required a population size of at least 900
individuals.

5.3. Example 3

Our third example has 4 inputs and one output, as shown
in Table 8. A matrix of the same size as before was used
(i.e., � � � ).

The comparison of the results produced by the MGA, the
NGA and two human designers (the first, using Karnaugh
Maps and the second using the Quine-McCluskey Proce-
dure) are shown in Tables 9 and 10. In previous work [4]
we had been able to find a solution with 7 gates (fitness
value of 34) for this circuit.

Since this example has 16 outputs, there are 17 objec-
tives for the MGA. Using a sub-population size of 10 (to-
tal population size of 170), the MGA found 8 feasible so-
lutions. One of them had a fitness of 34 (i.e., it had 7
gates). The graphical representation of this circuit is shown

A � A � B � B � X � X � X �

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0

Table 11. Truth table for the circuit of the
fourth example.

in Fig. 6. The maximum number of generations in this case
(for both the MGA and the NGA) was arbitrarily set to 400.

On the other hand, the best solution that the NGA could
find using the same population size of 170 had a fitness of
15 (i.e., it was an infeasible circuit). This solution consis-
tently appeared in the 10 runs performed (except for two
cases in which there were solutions with a fitness of 13 and
14, respectively). To find feasible circuits, the NGA re-
quired population sizes of at least 400 individuals. To find
a solution with a fitness of 34 (i.e., with 7 gates) the NGA
required a population size of at least 800 individuals.

5.4. Example 4

Our fourth example has 4 inputs and 3 outputs, as shown
in Table 11. A matrix of the same size as before was used
(i.e., � � � ).

The comparison of the results produced by the MGA, the
NGA, and one human designer (one using Karnaugh Maps)
are shown in Tables 12 and 13.

Since this example has 48 outputs, there are 49 objec-
tives for the MGA. With a sub-population size of 10 (i.e.,
total population size of 490), the MGA was able to find 5
feasible solutions, from which one of them had a fitness of
66 (i.e., a circuit with 7 gates). The graphical representation
of this circuit is shown in Fig. 7. The maximum number of
generations in this case (for both the MGA and the NGA)
was arbitrarily set to 400.

The best solution that the NGA could find using the same
population size of 490 had a fitness of 45 (i.e., it was an in-
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Figure 6. Circuit produced by our MGA for the third example.

MGA NGA� � � ��� ��� � � ��� �,	 ��� 	 ��� � � �0� 	 � � �0� ��� � � � ��� � 	 ��� 	 ��� � � � � 	
7 gates 7 gates

1 AND, 2 ORs, 3 XORs, 1 NOT 1 AND, 2 ORs, 3 XORs, 1 NOT

Table 9. Best circuit produced by our MGA (using a population size of 170) and by the NGA (using a
population size of 800) for the third example.

Human Designer 1 Human Designer 2� � � ��� �	� � � �0���
� � � �#	 � � � � 	 �0��� 	 � � 	 � � 	 � � � 	 � 	 � � � 	 � 	 	 � 	 � �
9 gates 10 gates

2 ANDs, 4 ORs, 2 XORs, 1 NOT 4 ANDs, 2 ORs, 4 NOTs

Table 10. Results produced by two human designers for the third example.

Ao

Bo
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B1

Xo

X1
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Figure 7. Circuit produced by our MGA for the fourth example.



MGA NGA�
�
� �

�
���

�
�

�
� �

�
���

�� � � �
�
�

�
� ��� � ��� � � � � � �

�
�

�
� ��� � �	� � �� � � � � � � 	 �

�
�

�
��� � ��� � � � � � ���

�
�

�
� ��� � ��� � � 	 ��� � � � �

7 gates 7 gates
3 ANDs, 2 ORs, 2 XORs 3 ANDs, 1 OR, 3 XORs

Table 12. Best solution found by the MGA (using a population size of 490) and the NGA (using a
population size of 1000) for the fourth example.

Human Designer 1�
�
� �

�
���

�� � � ��� � �	� � � � 	� 	 �0��� � �	� � � � �
�
� �

�� � � � � � � 	 �
�
�

�
��� � 	�� � �

12 gates
5 ANDs, 3 ORs, 3 XORs, 1 NOT

Table 13. Results produced by a human designer (using Karnaugh Maps) for the fourth example.

feasible circuit). This solution consistently appeared in the
10 runs performed (except for two in which the maximum
fitness was 44). To find feasible circuits, the NGA required
population sizes of at least 600 individuals. To find a solu-
tion with a fitness of 66 (i.e., with 7 gates) the NGA required
a population size of at least 1000 individuals.

6. Conclusions and Future Work

We have proposed a multiobjective optimization tech-
nique to design combinational logic circuits. The proposed
approach uses a population-based technique to split the
search task among several (small) sub-populations. The ap-
proach compared well with respect to a previous GA de-
veloped by us which uses and � -cardinality alphabet and a
two-stage fitness function. Our approach, called MGA, was
able to find the same or even better solutions than the pre-
vious one (called NGA), using a lower number of fitness
function evaluations.

We believe that the good performance obtained with this
algorithm is mainly due to an emergent behavior obtained
from the cooperation of the different sub-populations aim-
ing to satisfy a simple goal. This line of thought is con-
sistent with the recent work by Potter & DeJong [19], ac-
cording to which the resolution of complex problems with
evolutionary algorithms requires a cooperative effort. Addi-
tionally, the current technique can also be considered a vari-
ation of a divide-and-conquer approach to evolvable hard-
ware suggested by Torresen [25]. In this approach, a system
is evolved through its smaller components. Only that in our
case, these smaller components happen to be individual out-

puts of a circuit. Torresen [25] also showed that a scheme of
this sort could substantially reduce the computational power
required to evolve a system.

We want to study this approach in more detail, solving
more complex circuits, and analyzing the interactions be-
tween the parameters of the GA (including the sizes of each
sub-population) and its performance. Finally, we also in-
tend to develop a parallel version of the algorithm.
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