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Abstract. In this paper, we address multi-objective space mission de-
sign problems. We argue that it makes sense from the practical point of
view to consider in addition to the ‘optimal’ trajectories (in the Pareto
sense) also approximate or nearly optimal solutions since this can lead
to a significant larger variety for the decision maker. For this, we suggest
a novel MOEA which is a modification of the well-known NSGA-II algo-
rithm equipped with a recently proposed archiving strategy which aims
for the storage of the set of approximate solution of a given MOP. Using
this algorithm we will examine several space missions and demonstrate
the benefit of the novel approach.

1 Introduction

In a variety of applications in industry and finance a problem arises that several
objective functions have to be optimized concurrently leading to multi-objective
optimization problems (MOPs). For instance, in space mission design, which
we address here, there are two crucial aims for the realization of a transfer:
minimization of flight time and fuel consumption of the spacecraft ([2], [13],
[11], [10]). The scope of this paper is (a) to show that it makes sense to consider
in addition to the ‘optimal’ trajectories also approximate solutions since by this
the decision maker (DM) is offered a much larger variety of possibilities, and (b)
to present one way to compute this enlarged set of interest with reasonable effort.
As a motivating example for (a) we consider the MOP in Section 4.2 which is a
model for the transfer from Earth to Mercury, and the following two points xi

with images F (xi), i = 1, 2:

x1 = (782, 1288, 1788) , F (x1) = (0.462, 1001.7)
x2 = (1222, 1642, 2224), F (x2) = (0.463, 1005,3)

The two objectives are the propellant mass fraction—i.e., the portion of the ve-
hicle’s mass which does not reach the destination—and the flight time (in days).
In the domain, the first parameter is of particular interest: it determines the
departure time from the Earth (in days after 01.01.2000). F (x1) is less than
F (x2) in both components, and thus, x1 can be considered to be ‘better’ than
x2. However, note that the difference in image space is small: the mass fraction
of the two solutions differs by 0.001 which makes 0.1% of the total mass, and
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the flight time differs by four days for a transfer which takes almost three years.
In case the DM is willing to accept this deterioration, it will offer him/her a
second choice in addition to x1 for the realization of the transfer: while the two
solutions offer ‘similar’ characteristics in image space this is not the case in the
design space since the starting times for the two transfers differ by 440 days.
The identification of the two solutions would be a fundamental requirement dur-
ing the preliminary design of a space mission. In fact, in order to increase the
reliability of the design, the mission analysts would need to identify one or more
back-up solutions, possibly with identical cost, for each baseline solution. Fur-
thermore, for each mission opportunity (i.e. each launch date) rather than an
optimal solution, it is generally required to identify a set of nearly optimal ones,
possibly all with similar cost. Such a set would represent a so called launch win-
dow, since for each solution in the set a launch would be possible. Designing for
the suboptimal points further increases the reliability of the mission since it gives
the freedom to deviate from the chosen design point with little or no penalty.
This holds true also for Pareto optimal solutions. It is therefore desirable to have
a whole range of nearly Pareto optimal solutions for each Pareto point.
The field of evolutionary multi-objective optimization is well-studied and MOEAs
have been successfully applied in a number of domains, most notably engineering
applications ([1]). Approximate solutions in multi-objective optimization have
been studied by many researchers so far (e.g., [7], [14], [6]). A first attempt to
investigate the benefit of considering approximate solutions in space mission de-
sign has been done in ([12]), albeit for the single-objective case.
The additional consideration of (all) approximate solutions in multi-objective
space mission design problems is new and will be addressed in this paper. Cru-
cial for this approach is the efficient computation of the enlarged set of ‘optimal’
points since in many cases the ‘classical’ multi-objective approach is a challenge
itself. For this, we will propose an algorithm which is based on the well-known
NSGA-II ([3]) but equipped with an archiving strategy which was designed for
the current purpose. Note that ‘classical’ archiving/selection strategies—e.g., the
ones in [4], [9], [6], [5], or the one NSGA-II uses—store sets of mutually non-
dominating points (which means that e.g. the points x1 and x2 in the above
example will never be stored jointly). That is, these selection mechanisms—
though they accomplish an excellent job in approximating the efficient set—can
not be taken for our purpose.
The remainder of this paper is organized as follows: in Section 2, we give the
required background which includes the statement of the space mission design
problem under consideration. In Section 3, we propose a new genetic algorithm
for the computation of the set of approximate solutions and present further on
in Section 4 some numerical results. Finally, we conclude in Section 5.
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2 Background

2.1 Multi-Objective Optimization

In the following we consider continuous multi-objective optimization problems

min
x∈Q

{F (x)}, (MOP)

where Q ⊂ Rn is compact and F is defined as the vector of the objective
functions F : Q → Rk, F (x) = (f1(x), . . . , fk(x)), with fi : Q → R.

Definition 1. Let v, w ∈ Q. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously. y ∈ Q is
dominated by a point x ∈ Q (x ≺ y) with respect to (MOP) if F (x) ≤p F (y) and
F (x) 6= F (y). x ∈ Q is called a Pareto optimal point or Pareto point if there is
no y ∈ Q which dominates x.

The set of all Pareto optimal solutions is called the Pareto set (denoted by PQ).
The image of the Pareto set is called the Pareto front. We now define another
notion of dominance which we use to define approximate solutions and the set
of interest:

Definition 2. Let ǫ = (ǫ1, . . . , ǫk) ∈ Rk
+ and x, y ∈ Q. x is said to ǫ-dominate

y (x ≺ǫ y) with respect to (MOP) if F (x) − ǫ ≤p F (y) and F (x) − ǫ 6= F (y). x
is said to −ǫ-dominate y (x ≺−ǫ y) with respect to (MOP) if F (x) + ǫ ≤p F (y)
and F (x) + ǫ 6= F (y).

Definition 3. Denote by PQ,ǫ the set of points in Q ⊂ Rn which are not −ǫ-
dominated by any other point in Q, i.e., PQ,ǫ := {x ∈ Q| 6 ∃y ∈ Q : y ≺−ǫ x}.

The set PQ,ǫ contains all ǫ-efficient solutions, i.e., solutions which are optimal
up to a given (small) value of ǫ. Fig. 1 gives two examples.

Fig. 1. Two different examples for sets PQ,ǫ. Left for k = 1 and in parameter space
with PQ,ǫ = [a, b] ∪ [c, d]. Right an example for k = 2 in image space.

Alg. 1 gives an archiving strategy which aims for the approximation of PQ,ǫ,
where A0 is a given archive, p a candidate solution, ∆ ∈ Rk

+ the discretization
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parameter, and B(y, ∆) := {x ∈ Rk : |xi − yi| ≤ ∆i, i = 1, .., k}. See [10] for
the related discussion.

Algorithm 1 A := ArchiveUpdatePQ,ǫ (p, A0, ∆)

Require: population P , archive A0, ∆ ∈ R+, ∆∗ ∈ (0, ∆)
Ensure: updated archive A
1: A := A0

2: if 6 ∃a1 ∈ A : a2 ≺−ǫ p and 6 ∃a2 ∈ A : F (p) ∈ B(F (a2), ∆
∗) then

3: A := A ∪ {p}
4: for all a ∈ A do

5: if p ≺−(ǫ+∆) a then

6: A := A\{a}
7: end if

8: end for

9: end if

2.2 The Design Problem

The examples we analyze are taken from two classes of typical problems in space
trajectory design: a bi-impulsive transfer from the Earth to the asteroid Apophis,
and a low-thrust multi-gravity assist transfer.

Bi-impulse Problem For the bi-impulsive case, the propellant consumption is a
function of the velocity change, or ∆v, required to depart from the Earth and to
rendezvous with a given celestial body. Both the Earth and the target celestial
body are point masses with the only source of gravity attraction being the Sun.
Therefore, the spacecraft is assumed to be initially at the Earth, flying along its
orbit. The first velocity change, or ∆v1, is used to leave the orbit of the Earth
and put the spacecraft into a transfer orbit to the target. The second change in
velocity, or ∆v2, is then used to inject the spacecraft into target’s orbit. The two
∆v’s are a function of the positions of the Earth and the target celestial body
at the time of departure t0 and at the time of arrival tf = t0 +T , where T is the
time of flight. Thus, the MOP under consideration has two objective functions
f1(x) = ∆v1 + ∆v2 and f2(x) = T , with the solution vector x = [t0, T ]T .

MLTGA Problem It is here proposed to use a particular model for multiple
gravity assist low-thrust trajectories (MLTGA). Low-thrust arcs are modeled
through a shaping approach based on the exponential sinusoid proposed in [8].
The spacecraft is assumed to be moving in a plane subject to the gravity at-
traction of the Sun and to the control acceleration of a low-thrust propulsion
engine[13]. Gravity manoeuvres are modeled through a powered swing-bys ap-
proximation[13]: a pair of low-thrust arcs are linked through a ∆v manoeuvre
when the gravity of the swing-by planet is not strong enough to gain the required
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change in velocity. As for the bi-impulsive case, we are interested in the mini-
mization of two objectives: the propellant mass fraction and the flight time. The

first objective is f1(x) = 1 − e
−(

∆VGA+∆V0
g0Isp1

+
∆VLT
g0Isp2

)
with the solution vector[11]

x = [t0, T1, k2,1, n1, ..., Ti, k2,i, ni, ..., TN , k2,N , nN ]T . Where ∆VGA is the sum of
all the ∆V s (variation in velocity) required to correct every gravity assist ma-
noeuvre, ∆V0 is the departure manoeuvre, while ∆VLT is the sum of the total
∆V of each low-thrust leg. Then, k2,i is the i − th shaping parameter for the
exponential sinusoid and ni the number of revolutions around the Sun, t0 is the
departure time and Ti the transfer time from planet i to planet i + 1. The two
specific impulses Isp1 and Isp2 are respectively for a chemical engine and for a
low-thrust engine and g0 is the gravity acceleration on the surface of the Earth.
For the tests in this paper, we used Isp1 = 315s and Isp2 = 2500s. The second
objective function is f2(x) = tN − t0 with tN the time of arrival at destination.

3 A Genetic Algorithm for the Computation of PQ,ǫ

In this section we propose a MOEA which aims for the computation of the set
of approximate solutions, PQ,ǫ-NSGA-II, which is a hybrid of NSGA-II ([3]) and
the archiver ArchiveUpdatePQ,ǫ. Further, in order to be able to compare the
obtained solutions with another strategy, we introduce a performance metric.

The Algorithm The algorithm we propose in the following is based on NSGA-II.
We have decided to take this one as our baseline algorithm for two reasons. First,
this algorithm is well-known and has been found to be very efficient. Second, we
think that the elements which constitute NSGA-II fit nicely to our context: a
(finite) archive A containing points which are mutually non-(−ǫ)-dominating can
be viewed as a set of Pareto fronts with different ranks, and also in the current
setting the first front (i.e., the non-dominated front) should be given the priority
since (i) improvement of the current set is clearly an objective and—in case the
solutions are already near to PQ—a local search around PQ (e.g., mutation) is a
search within PQ,ǫ. Thus, we have decided to adopt the ranking from NSGA-II,
as well as the crowding distance in order to maintain diversity, and the genetic
operators since they are proven to be well-suited for continuous problems.
The algorithm PQ,ǫ-NSGA-II reads as follows: the initial offspring O ⊂ Q is cho-
sen at random, and the first archiver is set to A0 := ArchiveUpdatePQ,ǫ(∅,O0, ∆).
Alg. 2 describes how to obtain the subsequent archives Al+1 from Al. Hereby
the function Select() picks np/2 elements from A at random, if |A| ≤ np/2
then C := A is chosen (np denotes the population size). The next three oper-
ators are as in NSGA-II: DominationSort() assigns rank and crowding dis-
tance to C, TournamentSelection() performs the tournament selection, and
GeneticOperator() performs simulated binary crossover and polynomial mu-
tation on P . Finally, the archive Al is updated by O using ArchiveUpdatePQ,ǫ

leading to the new archive Al+1.
The new algorithm is in fact very close to NSGA-II, merely the selection strategy
to keep the ‘promising’ points of the search has changed (by adding an archive to
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NSGA-II). Recall that the motivation for the storage of approximate solutions is
to obtain in addition to the ‘optimal’ points also points which are close to these
points in image space but which differ significantly in parameter space. Thus, it
is desired to maintain a certain diversity in parameter space, and that is why
the chromosomes C are chosen randomly from the current archive by Select().

Algorithm 2 Iteration step of PQ,ǫ-NSGA-II

Require: archive Al, ∆ ∈ R+, population size np

Ensure: updated archive Al+1

1: C := Select(Al, np/2)
2: C′ := DominationSort(C)
3: P := TournamentSelection(C′)
4: O := GeneticOperator(P)
5: Al+1 := ArchiveUpdatePQ,ǫ(Al,O, ∆)

Performance Metric In order to be able to compare the results of different
algorithms, or just two sets A and B, we propose to use the following metric:

C−ǫ(A, B) := |{b ∈ B : ∃a ∈ A : a ≺−ǫ b}|/|B|, (1)

which is a straightforward extension of the set coverage metric suggested in [15].
Analogue to the original metric, C−ǫ(A, B) is an unsymmetric operator which
aims to get an idea of the relative coverage of the two solution sets.

4 Numerical Results

Here we present some numerical results coming from two different settings. For
the internal parameters (e.g., mutation probability) of NSGA-II we have followed
the suggestions made in [3], and have taken the same values for PQ,ǫ-NSGA-II.

4.1 Two Impulse Transfer to Asteroid Apophis

For the bi-impulse problem we analyze an apparently simple case: the direct
transfer from the Earth to the asteroid Apophis. The contour lines of the sum of
the two ∆v’s is represented in Fig.2 (a) for the parameters t0 ∈ [3675, 10500]T

MJD2000 and T ∈ [50, 900] days. The intervals for t0 and T were chosen in such
a way that a wide range of launch opportunities are included. The solution space
presents a large number of local minima. Many of them are nested, very close
to each other and with similar values. For each local minimum, there can be a
different front of locally Pareto optimal solutions. The best known approximation
of the global Pareto front is represented in Fig. 2 (b) and was obtained with
an extension to MOPs of the algorithm described in [12]. It is a disjoint front
corresponding to two basins of attraction of two minima, see Fig. 2 (a).
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Fig. 2. a) Earth-Apophis search space, b) Pareto front

The two basins of attraction present similar values of the first objective func-
tion. Converging to the upper front is therefore quite a challenge since the lower
front has a significantly lower value of the second objective function. It is only
when the optimizer converges to the a vicinity of the local minimum of the upper
front that the latter becomes not dominated by the lower front. The upper front
contains the global minimum with a total ∆v = 4.3786 k/s while the lower front
contains only a local minimum. It should be noted that, though the front in Fig.
2b) is the global one, it represents only two launch opportunities. Furthermore
for each launch opportunity we would need to characterize the space around
each of the Pareto optimal point.
Figure 3 shows a result from NSGA-II, where the lower front has been found.
When using PQ,ǫ-NSGA-II using the same parameter values as for NSGA-II and
ǫ = (5, 5), which seems to be acceptable for this mission, a much broader va-
riety of solutions is offered regardless of the upper front, as shown in Figure
4 (note the difference of the scales). For instance, for the obtained solution c0

with F (c0) = y0 = (5, 50) there are three clusters of solutions which offer a
similar cost and which are located around the points c1 = (t0 = 4700, T = 50),
c2 = (7700, 50), and c3 = (10700, 50). That is, the starting times of the transfer
differ by a total of 6000 days. In contrast, the maximal difference according to
t0 of all the solution displayed in Figure 3 is given by 35 days.
Note that, compared to the accurate solution of the global Pareto front, the
extended solution set offers, as required, not only more launch opportunities but
also the whole neighboring solutions for each one of them.

4.2 Sequence EVMe

For the MLTGA problem we consider a relatively simple but significant case: the
sequence Earth – Venus – Mercury (EVMe). For such a mission we have chosen
to allow a deterioration of 5% of the mass fraction and of 20 days transfer time
compared to an optimal trajectory which leads to ǫ = (0.05, 20). Figure 5 shows
a numerical result of PQ,ǫ-NSGA-II for 100 generations with population size 100
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Fig. 3. Numerical result for Example 2 using NSGA-II, t1 := t0 + T .

(i.e., the size of P in Alg. 2) and ∆ = ǫ/3, which took several minutes on a
standard PC. To compare the result and since so far no such algorithm exists
we have taken a random search procedure coupled with ArchiveUpdatePQ,ǫ.
For NR = 10, 000 randomly chosen points we obtain (averaged of 20 test runs)
C−ǫ(AN , AR) = 0.4739 and C−ǫ(AR, AN ) = 0, where AN denotes the result from
PQ,ǫ-NSGA-II and AR the result coming from the random search procedure. For
NR = 100, 000 the result of the random search procedure can still not compete
with the same MOEA result: C−ǫ(AN , AR) = 0.4261, C−ǫ(AR, AN ) = 0.
Interesting for every non-dominated point x0 with F (x0) = y0 of an archive
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Fig. 4. Numerical result for Example 2 using PQ,ǫ-NSGA-II.

A is the set N(y0, ǫ, A) := {a ∈ A : F (a) ∈ B(y0, ǫ)}, where B(y, ǫ) := {x ∈Rk : |xi − yi| ≤ ǫi, i = 1, .., k}, i.e., the set of solutions in A those images are
‘close’ to y0. Since in this design problem the starting date t0 of the transfer is
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of particular interest one can e.g. distinguish the entries in N(y0, ǫ, A) by the
value of t0. For instance, the final archive displayed in Figure 5 (a) consists of
3650 solutions whereof 106 are non-dominated. The maximal difference of the
value of t0 for a point y0 inside N(y0, ǫ, A) is 449 days, and for 23 solutions this
maximal difference is larger than one year (including also values ∆t0 of several
days or months which can be also highly interesting for the decision making
process). Hence, the number of options for the DM is enlarged significantly in
this example.
The consideration above leads to a natural way of presenting the large amount of
data to the DM: it is sufficient to present non-dominated front as in the ‘classical’
multi-objective case. When the DM selects one solution y0 the set N(y0, ǫ, A)
can be displayed, ordered by the value of t0 (see Figure 5 (b)).
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Fig. 5. Numerical result for sequence EVMe. Left the final archive and right the set of
non-dominated solutions.

5 Conclusion

We have considered two multi-objective space mission design problems and
shown, that it is desirable to identify not only the Pareto set, but also a num-
ber of approximate solutions. In particular, it was shown that each part of the
Pareto set belongs to a different launch window. In order to increase the relia-
bility of the mission design, it is required to have a wide launch window (i.e.,
a large number of solutions with similar cost) and one or more back-up launch
windows. In order to address this problem, we have proposed a new variant of
an existing MOEA which aims for the computation of PQ,ǫ. As an example of
its effectiveness, we have considered two design problems. The results indicate
that the novel approach accomplishes its task within reasonable time and that
the idea to include approximate solutions is indeed beneficial since in all cases
the enlarged set of solutions offered a much larger variety to the DM. Despite
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these promising numerical results, however, more work is required for the design
of a more efficient MOEA for the approximation of PQ,ǫ which will be part of
future work.
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