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Abstract. In this paper we address the problem of approximating the
’knee’ of a bi-objective optimization problem with stochastic search al-
gorithms. Knees or entire knee-regions are of particular interest since
such solutions are often preferred by the decision makers in many ap-
plications. Here we propose and investigate two update strategies which
can be used in combination with stochastic multi-objective search al-
gorithm (e.g., evolutionary algorithms) and aim for the computation of
the knee and the knee-region, respectively. Finally, we demonstrate the
applicability of the approach on two examples.

1 Introduction

In many real world problems several objective functions have to be optimized
simultaneously. One typical goal for such multi-objective optimization problems
(MOPs) is to identify the entire set of optimal solutions (the Pareto set) and its
image in objective space, the Pareto front. However, since the Pareto set typically
forms a (k-1)-dimensional object, where k denotes the number of objectives, this
task may become too hard, in particular for more objectives. Instead, one can
e.g. integrate the decision maker (DM) into the search process (e.g., with inter-
active methods [11]) or can compute selected points out of the Pareto set, which
we address here. One such particular solution is the ’knee’3 or the ’maximal
bulge’ of the Pareto front which is often preferred by many DMs since it repre-
sents for them the ’optimal compromise’ in multi-objective optimization. In this
paper we propose and investigate two archiving strategies for stochastic search
algorithms which aim for the computation of such a knee and entire knee-regions
(i.e., solutions where the bulge is maximal or nearly maximal) respectively. We
consider here the bi-objective case (i.e., k = 2), but the results may be extended
for larger number of objectives.
Knees or other related user preference areas in multi-objective optimization have
been addressed in many works so far ([3, 11, 2, 4, 9, 1, 6, 13, 12, 7, 10, 5]). For in-
stance, in [1] a multi-objective evolutionary algorithm is presented which focuses

3 There exist different characterizations of the knee in literature which, however, lead
to the same or to similar solutions in many cases.
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on the knee-regions of an MOP (using a different characterization of the knee).
The approach which we propose here can be viewed as a possible alternative to
this work. One advantage of our strategies is that they can easily be integrated
into any given archiving strategy for a stochastic search procedure. In that case,
the (additional) approximation of the knee comes for ’free’ in the sense that no
additional function call has to be spent.

2 Background

In the following we consider continuous multi-objective optimization problems

min
x∈Q

{F (x)}, (MOP)

where Q ⊂ Rn is compact and F is defined as the vector of the objective
functions F : Q → Rk, F (x) = (f1(x), . . . , fk(x)), and where each fi : Q → R
is continuous.

Definition 1. Let v, w ∈ Q. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously. y ∈ Q is
dominated by a point x ∈ Q (x ≺ y) with respect to (MOP) if F (x) ≤p F (y) and
F (x) 6= F (y). x ∈ Q is called a Pareto optimal point or Pareto point if there is
no y ∈ Q which dominates x.

The set of all Pareto optimal solutions is called the Pareto set (denoted by PQ).
The image of the Pareto set F (PQ) is called the Pareto front. Further, we need
the following distances between different sets.

Definition 2. Let u ∈ Rn and A, B ⊂ Rn. The semi-distance dist(·, ·) and
the Hausdorff distance dH(·, ·) are defined as follows: dist(u, A) := inf

v∈A
‖u − v‖,

dist(B, A) := sup
u∈B

dist(u, A), and dH(A, B) := max {dist(A, B), dist(B, A)}

Finally, we need to define some straight lines in R2. For y1, y2 ∈ R2, y1 6= y2,
we define by L(y1, y2) := y1 +R(y2 − y1) the line which goes through y1 and y2.

3 Characterization of the Knee

In this section we state one possible way to define the knee and modify it such
that we can use it for our purpose.
According to [3], a knee of a Pareto curve is found by solving the following
nonlinear programming problem (NLP):

max
p∈PQ

dist(F (p),L(F (p∗1), F (p∗2))), (1)

where p∗i ∈ arg min
x∈PQ

fi(x), i = 1, 2 (see also Figure 1). The knee as characterized

by (1) can be interpreted as the maximal bulge of the curve with respect to the
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line L(F (p∗1), F (p∗2)) which contains the two extreme points of the curve. We
have chosen for this characterization since it requires no gradient information
and is invariant to scalarization of the objectives.
Since we are interested in ’convex bulges’ and not in ’concave bulges’ which do
intuitively not fit to the idea of minimization (see Figure 1, or [3]), we define the
distance of the image F (p) of a candidate solution to L(F (p∗1), F (p∗2)) as follows:

D(p, p∗1, p
∗

2) :=

{

dist(F (p),L(F (p∗1), F (p∗2))) if f2(p) ≤ g(f1(p))

- dist(F (p),L(F (p∗1), F (p∗2))) else
, (2)

where g(x) = L(F (p∗1), F (p∗2)). Using this function and the fact that we are
interested in convex bulges, we can modify NLP (1) by

max
x∈Q

D(x, p∗1, p
∗

2), (3)

which will be our ’knee’ in the sequel.
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Fig. 1. Two ’knees’ K1, K2 for different Pareto fronts as characterized by the maximal
bulge of the Pareto curve with respect to L∗ := L(y∗

1 , y∗

2).

4 The Algorithms

Here we propose two different update strategies for the approximation of a single
knee as well as entire knee-regions and investigate the limit behavior of these
algorithms.
First we are interested in obtaining one maximal bulge. Since in most cases (e.g.,
for all convex problems) ’the’ knee is indeed unique is it sufficient to store one
approximation — in addition to the approximations of the extreme points of
the Pareto curve, since they are also not known a priori. Algorithm 1 shows one
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possible way to do this. The input parameters are the approximations m0
1, m0

2 of
the extreme points, the current approximation K0 of the knee as well as the new
candidate solution p ∈ Q. Outputs are the new approximations of the extreme
points (m1, m2) and of the knee (K). Theorem 1 shows that the maximal bulge
(measured in objective space) is reached in the limit under certain assumptions
and in the probabilistic sense.

Algorithm 1 {m1, m2, K} := ArchiveUpdateMaxBulge1 (p, K0, m0
1, m

0
2)

1: if f1(p) < f1(m
0

1) then

2: m1 := p

3: else

4: m1 := m0

1

5: end if

6: if f2(p) < f1(m
0

2) then

7: m2 := p

8: else

9: m2 := m0

2

10: end if

11: if D(p, m1, m2) > D(K0, m1, m2) then

12: K := p

13: else

14: K := K0

15: end if

Theorem 1. Let (MOP) be given and Q ⊂ Rn be compact, let there be no weak

Pareto points in Q\PQ, and K0, m
(0)
1 , m

(0)
2 ∈ Q. Further, let p∗i , i = 1, 2, as

defined above with F (p∗1) 6= F (p∗2), and

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : pl ∈ Bδ(x) ∩ Q) = 1, (4)

where Bδ(x) := {y ∈ Rn : ‖y − x‖ < δ} and P (A) denotes the probability for

event A. Then, if Algorithm 1 is used to update the sequences Kl, m
(l)
1 , m

(l)
2 , l ∈N, it holds with probability one

(a)

m
(l)
1 → p∗1 ∈ arg min

x∈PQ

f1(x) for l → ∞

m(l)
sl

→ p∗2 ∈ arg min
x∈PQ

f2(x) for l → ∞

(b)

D(Kl) → max
x∈Q

D(x, p∗1, p
∗

2) for l → ∞.
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Proof. (a) We prove the convergence of the sequence (m
(l)
1 )l∈N, the other state-

ment is analogue. The claim follows, roughly speaking, by assumption (4)
on the process to generate new candidate solutions and by the fact that
the point with the smallest value according to f1 which is found during the
search is kept in the archive. To be more precise, let x∗

1 ∈ arg min
x∈PQ

f1(x).

By (4) it follows that there exists for every i ∈ N with probability one a
number ji and a point pji

∈ B1/i(x
∗

1) ∩ Q. By construction of Alg. 1 it is

f1(m
(ji)
1 ) ≤ f1(pji

). Thus, the claim follows since pji
→ x∗

1 for i → ∞.

(b) The straight lines Ll(F (a
(l)
m1

), F (a
(l)
m2

))) can be written as gl(x) = mlx + bl.
Let a := f1(p

∗

1) and b := f1(p
∗

2). Denote by Sp = (xp, yp) ∈ Ll the vector with
minimal distance to the candidate solution pl. It is easy to verify that xp ∈
[a, b] (see e.g. the Appendix). Thus, it is sufficient to consider the functions
gl on the interval [a, b]. Since F (p∗1) 6= F (p∗2) and by part (a) of this theorem
it follows that the gl’s are converging uniformly to g = L(F (p∗1), F (p∗2)) on
[a, b], and thus we have with probability one

max
x∈Q

D(x, m
(l)
1 , m

(l)
2 ) → max

x∈Q
D(x, p∗1, p

∗

2), for l → ∞. (5)

Let p∗ ∈ arg max
x∈PQ

D(x, p∗1, p
∗

2). By (4) it follows that there exists with prob-

ability one a subsequence of pji
of the candidate solutions such that pji

∈

B1/i(p
∗) ∩ Q. By construction of Alg. 1 it follows that D(Kji

, a
(ji)
m1

, a
(ji)
m2

) ≥

D(pji
, a

(ji)
m1

, a
(ji)
m2

). Using this and (5) we obtain with probability one

D(Kl, a
(l)
m1

, a(l)
m2

) → max
x∈Q

D(x, p∗1, p
∗

2), l → ∞ (6)

and the proof is complete.

Next, we are interested to approximate beyond one knee solution the subset of
the Pareto front where the bulge is ’large’ since this entire set could be interesting
for the decision maker ([1]). That is, for M := maxx∈Q D(x, p∗1, p

∗

2) and given a
threshold ∆ ∈ R+ we are interested in the following set:

K∆ := {x ∈ PQ|D(x, p∗1, p
∗

2) ≥ M − ∆} (7)

Note that in case the knee is not unique all these points are included in K∆ for
every value of ∆, which is another motivation to approximate this set.
In Algorithm 2 we propose one possible archiving strategy which aims for the
approximation of K∆. The notation is as in Alg. 1 with the difference that K is
a set of points. In the following we investigate the limit behavior of the strategy
under the same assumptions as above (Thm. 2). Before we can do this we need
the following result.

Lemma 1. Let m1, m2, z, d ∈ Q with f1(m1) < f1(x) < f1(m2), and g(f1(x)) ≤
f2(x), where g(·) = Ll(F (m1), F (m2)), and d ≺ z, and let m1 and m2 be mutu-
ally nondominating. Then D(d, m1, m2) > D(z, m1, m2).
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Algorithm 2 {m1, m2, K} := ArchiveUpdateMaxBulge2 (p, K0, m0
1, m

0
2, ∆)

1: if f1(p) < f1(m
0

1) then

2: m1 := p

3: else

4: m1 := m0

1

5: end if

6: if f2(p) < f1(m
0

2) then

7: m2 := p

8: else

9: m2 := m0

2

10: end if

11: K̃ := K0 ∪ {p}
12: M̃ := max

k∈K̃
D(k, m1, m2)

13: K := nondom({k ∈ K̃ : D(k, m1, m2) ≥ M̃ − ∆})

Proof. Assume that D(d, m1, m2) ≤ D(z, m1, m2). Let g(x1) = ax1 + b. Since
m1 and m2 are mutually nondominating it follows that a is negative. Define
by g2 the straight line which is parallel to g and which goes through z, i.e.,
g2(x1) = ax1 + b2. Since by assumption D(d, m1, m2) ≤ D(z, m1, m2) it follows
that f2(d) ≥ g2(f1(d)). Since the slope a of g2 is negative it follows that either
f1(d) ≥ f1(z) or f2(d) ≥ f2(z) which is a contradiction to d ≺ z, and thus, it
must the that D(d, m1, m2) > D(z, m1, m2).

Theorem 2. Using the definitions above, let M > 0, ∆ ∈ R+ with M −∆ > 0,
and let

lim
i→∞

K∆i
→ K∆ (8)

for every sequence (∆i)i∈N with ∆i < ∆ and ∆i → ∆ for i → ∞. Then, if

Algorithm 2 is used to update the sequences Kl, m
(l)
1 , m

(l)
2 , l ∈ N, and under the

assumptions made in Thm. 1 it holds with probability one

(a)

m
(l)
1 → p∗1 ∈ arg min

x∈PQ

f1(x) for l → ∞

(b)
dH(F (K∆), F (Kl)) → 0 for l → ∞

Proof. (a) Analogue to proof of Thm 1 (a).
(b) First we show that dist(F (K∆), F (Kl)) → 0 for l → ∞ with probability one.

Since Kl, l ∈ N, is finite and K∆ is compact it follows that

dist(F (K∆), F (Kl)) = max
p∈K∆

min
k∈Kl

‖F (p) − F (k)‖. (9)

By (8) it is sufficient to consider points p ∈ PQ with D(p, p∗1, p
∗

2) > M − ∆.

Let p be such a point. By Thm. 1 it follows that M̃l (see line 12 of Alg. 2)
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converges to M with probability one. Further, since D and F are continuous
it follows that there exist with probability one a neigborhood U of p and an
integer l0 such that

D(u, m
(l)
1 , m

(l)
2 ) > M̃l − ∆, ∀u ∈ U, ∀l ≥ l0. (10)

By (4) it follows that there exists with probability one for every j ∈ N a point
plj ∈ U ∩ B1/j(p) ∩ Q. By construction of Alg. 2 the point plj will either be
added to the archive (in that case denote dj := plj), or there already exists
a point dj ∈ Klj which dominates plj . Due to (10) the point dj will only be
discarded from the archive if in turn a dominated solution is found. By this
and since pj → p and thus F (dj) → F (p) for j → ∞ it follows that

dist(F (p), F (Kl)) = min
k∈Kl

‖F (p) − F (k)‖ → 0 with probability one, (11)

and the claim follows. It remains to show that also

dist(F (Kl), F (K∆)) = max
k∈Kl

min
p∈K∆

‖F (k) − F (p)‖ (12)

vanishes for l → ∞ and in the probabilistic sense. For this we have to show
that every point x ∈ Q\K∆ will be discarded (if added before) from the
archive after finitely many steps, and that this point will never be added
further on, both with probability one. Let x ∈ Q\K∆, that is, we have
either (a) D(x, p∗1, p

∗

2) < M − ∆ or (b) x 6∈ PQ. First we consider case (a).

Since the sequence M̃l → M (see above) and by continuity of D there exists
with probability one an integer l0 with

D(x, m
(l)
1 , m

(l)
2 ) < M̃l − ∆, ∀l ≥ l0, (13)

and by this, that x is not a member of Kl for l ≥ l0.
Next, let x 6∈ PQ. By case (a) we can assume that D(x, p∗1, p

∗

2) ≥ M −∆ > 0.
Since x is not a weak Pareto point there exists a point p ∈ PQ with F (p) <p

F (x). By continuity of D and F , by part (a) of this theorem, and by Lemma
1 it follows that there exists a neighborhood U of p and an integer l0 such
that:

F (u) <p F (x), ∀u ∈ U, and

D(u, m
(l)
1 , m

(l)
2 ) > D(x, m

(l)
1 , m

(l)
2 ), ∀u ∈ U, ∀l ≥ l0

D(u, m
(l)
1 , m

(l)
2 ) > M̃ − ∆, ∀u ∈ U, ∀l ≥ l0.

(14)

By (4) it follows that there exists with probability one an integer j0 > l0
such that that the candidate solution pj0 is in U ∩Q. Further, by (14) and by
construction of Alg. 2 it follows that pj0 will be either added to the archive or
that there already exists a point d which dominates pj0 . In further iterations
of the algorithm, this point is only discarded if a dominated solution is found
(using (14) and Lemma 1). Since ≺ is transitive all these points dominate
x, and hence is not a member of Kl for all integers l ≥ j0 with probability
one, and the proof is complete.
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Since the archiver in Alg. 2 accepts all points in K∆ and does not discard
them further on it follows that in the course of the computation |Kl| → ∞ for
l → ∞. In order to prevent this, one could select a subset of Kl in each step,
e.g., by the techniques proposed in [8] or other pruning techniques.

5 Numerical Results

Here we present some numerical results on two MOPs: a convex problem and an
MOP ([14]) which has two optimal points with maximal bulge:

F1 : [−2, 2]2 → R2

F1(x) =
(

(x1 − 1)2 + (x2 − 1)2, (x1 + 1)2 + (x2 + 1)2
) (15)

and

F2 = (f1, f2) : [−1.5, 1.5]2 → R2

f1(x, y) =
1

2
(
√

1 + (x + y)2 +
√

1 + (x − y)2 + x − y) + λ · e−(x−y)2

f2(x, y) =
1

2
(
√

1 + (x + y)2 +
√

1 + (x − y)2 − x + y) + λ · e−(x−y)2

(16)

For the generation of the sequence (pl)l∈N of candidate solutions we have taken
a random search operator. Figures 2 and 3 show two numerical results—i.e., one
result for every archiving strategy—for each of the models. MOP (16) contains
two maximal bulges, and hence, the archiver ArchiveUpdateMaxBulge1 can
only reach one of them (Fig. 3 (a)). However, this does not occur when using
the second archiver (Fig. 3 (b)).
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Fig. 2. Numerical results for MOP (15) with N = 10, 000 randomly chosen points
within Q = [−2, 2]2 for Alg. 1 (left) and for Alg. 2 for ∆ = 0.2. The circles represent
the final extreme points, and the square(s) the approximation of the knee (region).
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Fig. 3. Two numerical results for MOP (16) with N = 10, 000 randomly chosen points
within Q = [−1.5, 1.5]2 for Alg. 1 (left) and for Alg. 2 (right) for ∆ = 0.1. The circles
represent the final extreme points, and the square(s) the approximation of the knee
(region).

6 Conclusions and Future Work

In this paper we have proposed and investigated two update strategies for the
approximation of knees respectively knee-regions of multi-objective optimiza-
tion problems with stochastic search algorithms. The advantage of these meth-
ods is that they can be used either as standalone-algorithms together with any
stochastic search procedure or integrated into any other archiving strategy (e.g.,
distance based ones) without causing additional function calls. We have demon-
strated on two examples where we have used a random search operator that the
novel strategies are capable of approximating the desired regions with reasonable
effort.
For future research, there are mainly two points which have to be addressed.
First, a generalization of the obtained results for k > 2 would be desirable.
Further, the integration of the archivers into stochastic search procedures is of
particular interest: since the archivers focus on a real subset of the Pareto front,
a natural demand on the resulting algorithm is that it should be more efficient
in terms of function calls than algorithms which aim for the approximation of
the entire Pareto front. This is, however, ad hoc not straightforward since it is
well-known that the approximation of the nadir points can be a challenging task
itself.
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7 Appendix

Given points p, a1, aN ∈ Q, the distance of F (p) to the straight line
L(F (a1), F (aN )) can be computed as follows: since L(F (a1), F (aN )) ⊂ R2, it
can be written as a function g1 : R→ R, g1(x) = m1x+b1 with m1 = −(f2(a1)−
f2(aN ))/(f1(aN )− f1(a1)), and b1 = f2(a1)−m1f1(a1), where the interpolation
conditions g1(f1(aj)) = f2(aj), j ∈ {1, N}, are used. To compute the distance of
F (p) and g1 we define the auxiliary function g2(x) = m2x + b2 with g2(f1(p)) =
f2(p) and which is orthogonal to g1. Doing so, this leads to the coefficients
m2 = −1/m1 and b2 = f2(p) − m2f1(p). The intersection of g1 and g2 is given
by the point Sp = (xs, ys) with xs = (b2 − b1)/(m1 − m2), ys = m2xs + b2, and
thus, we have

dist(F (p),L(F (a1), F (aN ))) = ‖F (p) − Sp‖ (17)


