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Abstract—Dynamic Constrained Optimization Problems
(DCOP) are a unique class of optimization problems where
the objective function as well as the constraint functions
change with respect to time. Conventional DCO algorithms
involve Genetic Algorithms (GAs) accompanied by a separate
constraint-handling technique e.g., a repair method, or a
penalty function. However, ordinary repair methods with elitism
significantly decrease the diversity of the population during
the exploitation stage and penalty functions cannot properly
deal with disconnected feasible regions. In this paper, we
propose a new approach based on the Gravitational Search
Algorithm as well as a modified version of a repair method that
produces improved results. The proposed approach incorporates
knowledge-reusing and knowledge-restarting in order to produce
a quick recovery and faster convergence.

I. INTRODUCTION

In constrained optimization problems [1], the basic goal is
minimize the objective function subject to one or several con-
straint functions. These constraints increase the challenge of
the problem by reducing the feasible search space. Evolution-
ary Algorithms (EAs) are efficient to perform unconstrained
search. But in constrained environments, the search process
becomes complicated due to the restriction in feasible search
space. Therefore, to solve constrained optimization problems
these EAs must be accompanied by some constraint handling
(CH) methods.

Dynamic Optimization problems (DOPs) are a large subset
of the real world optimization problems where the objective
function is dynamic in nature i.e., the objective function
varies with time. These problems are different from dynamic
problems (also known as dynamic environments) only when
“the underlying fitness landscape changes during the operation
of the EA” [2]. These problems are to be solved online by
an optimization algorithm as time goes on. DCOP, such as
those proposed in [3] are a bit tougher, since the objective
function as well as the constraint functions can be dynamic in
this case. Therefore, the constraint environment itself changes
causing modifications in the structure and the percentage of
the feasible region. To solve these problems, the optimization
algorithm must be able to track changes in the environment
and adaptively modify the search strategy when a change is
detected.

Recent works on DCOP has involved the triggered Hyper-
Mutation Genetic Algorithm. In hyper-mutation, introduced
in [4], the mutation rates are triggered to a very large value
whenever a change in detected. In this way, this algorithm
copes with the dynamics of the environment by introducing
diversity in the population and then the algorithm adapts to
new environments. However, this algorithm cannot detect a
change when new global optima are exposed without changing
the objective value of the previous optima. Also, determining
the correct mutation rate is very difficult since it is a function
of the degree of change in the environment.

Swarm based optimization algorithms has also been applied
[5], [6] to solve DCOPs. Hu and Eberhart [7] applied Particle
Swarm Optimization where part of the swarm is diversified
by randomized relocation of the particles after a change in
the environment is detected. Following a more sophisticated
approach [8], the swarm can be divided into a hierarchy of sub-
swarms in order to introduce diversity. But, determining the
number of sub-swarms is a tough challenge and this algorithm
fails to converge to an optimum when there is a large change
in the objective landscape, as well.

This paper introduces an algorithm to solve dynamic con-
strained optimization problems efficiently using the GSA
with an offspring repair technique. The proposed algorithm
tracks changes in the environment separately and relocates
the population all over the modified feasible region whenever
environment is restructured. Thus, it can search the whole
feasible space and explore new global optima irrespective of
the presence of small or large changes in the fitness space. The
worst particle in every generation is randomly replaced by a
new particle from the feasible space which introduces diversity
in the algorithm. Also, the gravitational constant is replaced
by a high value whenever the population is relocated and
henceforth, maintains diversity for the first few generations.

There are several CH methods available (e.g., penalty
function, stochastic ranking, etc.). However, according to the
No Free Lunch Theorem, no single CH method is efficient
for solving all the available types of constrained optimiza-
tion problems. Discarding any offspring on the basis of its
constraint violation is not an efficient method, since the new
particle may contain valuable information which might get lost
with that particle. The penalty function, which is the most



popular CH method in current use, also fails when there are
several disconnected feasible regions in the constraint space.
The CH technique used here is the repair method. In this
technique, if any offspring enters the infeasible region, it
is replaced by a random particle between it and its closest
feasible solution in the population. Therefore, the information
in the infeasible particle is partially preserved.

A short introduction to the Dynamic Constrained Optimiza-
tion Problem is provided in Section II. This section also
discusses some real-life applications of DCOPs. Section III
introduces GSA [9]. The shortcomings of conventional CH
techniques and the benefits of using a repair method are
discussed in Section IV. Section V describes the detection of
change in an environment and Section VI shows a comparative
analysis of several DCO algorithms. This section also gives a
thorough discussion explaining the better performance of our
algorithm. Finally, Section VII provides our conclusions and
suggests some possible paths for future research.

II. DYNAMIC CONSTRAINED OPTIMIZATION

DCOPs are a combination of a single objective function
and one or several constraint functions such that at least one
of them is dynamic in nature. Without loss of generality, a
Dynamic Constrained Optimization Problem can be stated as
follows:

min
x∈Dt⊆[L,U ]

f(x, t) (1)

Gi(x, t) ≤ 0,∀i ∈ {1, 2, ....m}, (2)

where t ∈ N+ is called time (environment) variance, [L,U ] =
{x = (x1, x2, ...xn) | Li ≤ xi ≤ Ui, i = 1 ∼ n} is called
search space and x={x | x ∈ [L,U ], Gi(x, t) ≤ 0, i = 1 ∼ m}
is called feasible space.

For ∀x ∈ Dt, if there exists a point x∗ ∈ Dt such that
f(x∗, t) ≤ f(x, t) (or f(x∗, t) ≥ f(x, t) for maxima) then x∗

is called the optimal point and f(x∗, t) is called the optimal
value for the environment t.

DCOP can be classified into two categories, combinatorial
and continuous. There are miscellaneous real life applications
for continuous DCOP from which optimal control of Hybrid
systems [10], [11] and Dynamic systems [12] constitute more
than 70%. Other than that, source identification, parameter
estimation, pattern recognition and classification are other
popular known fields of application for DCOP [1]. Based on
the dynamic characteristics of the objective function and the
constraint functions, DCOP can be of three types. The first
type, where the objective function is dynamic while the con-
straints are static, has applications in evolvable hardware de-
sign [13], and dynamic optimization of fed-batch fermentation
processes [14], among others. Next is the combination of static
objective and dynamic constraint function like in hydrothermal
scheduling problems [15], cargo movement problems [16],
etc. The third type is one, where both of them are dynamic,
and includes applications such as aerodynamic and structural
design problems [17] and optimal control problems [18]–[20],
among others.

III. GRAVITATIONAL SEARCH ALGORITHM

Let’s consider a system of particles in free space; grav-
ity minimizes the total gravitational potential energy of the
system. Thus, the gravitational force field by itself, works as
an optimizer. This idea is adopted in GSA. Each particle in
GSA has two characteristics, viz. position and mass, where the
former refers to a solution of the given problem and the latter
is determined using the fitness value at that position. All the
particles are attracted towards the heavier ones and the swarm
ultimately converges to the optima.

From Newton’s theory of gravity, the gravitational force
acting between two particles is proportional to their individual
mass Mi and inversely proportional to the square of the
distance R between them. Hence, the force is defined as [9]:

F = G
M1M2

R2
, (3)

where G is the constant of proportionality, designated as Grav-
itational constant. Therefore, a fair way to develop the Grav-
itational Search Algorithm is to randomly distribute particles
over the entire search space and examine their gravitational
interaction. The gravitational attraction force acting on each
particle creates an acceleration a which is, given by the laws
of motion:

a =
F

m
. (4)

This acceleration changes the position and velocity of the
particles. Consequently, these particles tend to come closer to
each other eventually. In GSA, the parameters are defined in
such a way that the particle with the best fitness value among
the population attracts the whole swarm towards itself. In that
course, some of the moving particles come closer to the optima
and snatch the crown of the best particle.

Now, as the particles are virtual they don’t have any real
mass. They can be ranked only with respect to their fitness.
Therefore, the mass assigned to the particles must be a
function of their fitness value. As referred in [9], the mass
assigned to each particle is defined as:

mi(τ) =
fiti(τ)− worst(τ)
best(τ)− worst(τ)

, (5)

where fiti(τ) represents the fitness value of ith particle at
time τ and,

best(τ) = min
jε1,..,N

fitj(τ), (6)

worst(τ) = max
jε1,..,N

fitj(τ). (7)

The mass of the particles can be distributed over a wide
range which affects their mutual gravitational interaction. It
has been observed that assigning the mass after normalizing
them provides a better simulation of the force acting between
the particles. The normalized mass of the particles are ex-
pressed as:



Mi(τ) =
mi(τ)∑N
j=1mj(τ)

. (8)

For a system with N particles, the position of the ith particle
is given by Xi = (x1i , , x

d
i , , x

n
i ) for i = 1, 2, . . . , N where

xdi is the position of the ith particle at the dth dimension.
Therefore, the distance between two particles is the Euclidian
distance defined as:

Rij(τ) =‖ Xi(τ), Xj(τ) ‖2 . (9)

The Gravitational Constant in the real world is constant
w.r.t. time. However, in order to enhance the convergence and
exploration of the approach, in GSA the Gravitational Constant
is a function of time.

G(τ) = G(τ0)×
(τ0
τ

)β
, β < 1, (10)

where t0 is the number of maximum iterations, t is the number
of the current iteration and G(t0) is the final value of G. Since
the value of β is less than 1, the initial value of G is very
high. This helps the exploration technique and guarantees a
faster convergence. In DCO, it is very important to explore
the entire search space for modified or newly arrived optima
after a change in the environment. At the last stages of the
search, when exploitation is preferred over exploration, for
better convergence, G asymptotically tends to G(t0). The
parameter β is used to manipulate the value of G. Even for the
same G(t0), a lower value of β ensures a higher value of the
initial G. In this way the convergence of GSA is controlled.

At a specific time t we define the force acting on mass i
from mass j as follows:

F dij = G(τ)
Mi(τ)×Mj(τ)

Rij(τ) + ε
(xdj (τ)− xdi (τ)). (11)

It has been observed that use of Ri instead of R2
i leads to

better convergence.
To perform a good trade-off between exploration and ex-

ploitation, one strategy is to reduce the number of particles
and increase the number of generations. This way, only a
set of heavier particles exert force on the others. To avoid
convergence towards a local optimum, exploration must be
preferred at the beginning. Exploitation is introduced after
some generations and gradually dominates exploration. To
implement this scheme, only Kbest particles are allowed to
attract other particles where:

Kbest = N + ceil

[
1−N
gmax − 1

]
(g − 1), (12)

where, g=number of generation, gmax=maximum number of
generation.

Therefore, the total force exerted on a single particle is given
by:

F di (τ) =

N∑
j∈Kbest,j 6=i

randjF
d
ij(τ). (13)

IV. HANDLING CONSTRAINTS

Conventional CH techniques such as penalty functions are
inefficient for solving DCOPs since they are unable to track
the optima when the feasible region is disconnected and the
optimum switches between these regions. On the contrary, a
repair method, such as the one adopted here, allows infeasible
individuals to be transformed into feasible solutions using
a reference population for that matter. Thus, the particles
are attracted towards the feasible region, while preserving
diversity and tracking the re-structuring of the constraint space.

Repair methods were introduced by Michalewicz and
Nazhiyath [21]. The main advantage of a repair method
over conventional CH techniques is their representativeness.
It represents a broad class of CH techniques that do not
use constraint violation compensation as penalty methods do.
Instead, repair methods are based on the feedback from the
search process and use such information to balance feasibility
in an adaptive way. On the other hand, it has been observed
that repair methods are, in a way, very robust, and therefore,
they fulfil the most significant requirements for dynamic
constraint handling. However, the method adopted here is
problem independent and designed especially for continuous
search spaces.

Although the repair method was originally proposed for
GA-based algorithms, we used it with GSA. In spite of
being a swarm-based algorithm, the repair method provided
satisfactory results in our experiments.

In a repair method, we generate first a reference population
which explicitly belongs to the feasible region. Now, if S is an
infeasible individual, then a random point is generated on the
straight line joining S and any member R from the reference
population. If the point belongs to the feasible region, then it
replaces S in the main population. The reference population
is updated as well if the new solution has a better fitness value
than the member from the reference population.

This conventional repair method has been modified in our
proposed algorithm (see Figure IV). Here, the initial popula-
tion is generated entirely in the feasible region–i.e., the size of
the reference population is the same as the size of the overall
population. Therefore, the main population here is a null set.

Now, if the standard deviation of the population is low,
then the repair method significantly decreases the diversity of
the population. Therefore, the exploration process is affected.
To get rid of this phenomenon, we have used a modified
version of the repair method. Instead of selecting R randomly
selected individuals from the reference population, we choose
R individuals such that the distance between R and S is
minimum. In this way, the information contained in the
infeasible particle is not lost and a feasible solution is also
produced. The random selection of the generated particle also
gives the mechanism a heuristic touch.

1: function DISTBASEDREPAIR(indivS, populationP )
2: Calculate the distance between S and all the individ-

uals in population P



3: Take the individual R with shortest distance from S
4: a← U [0, 1]
5: X ← a×R+ (1− a)× S . Generate random

individual X in the segment between S and R
6: if X is infeasible then
7: goto step 4
8: end if
9: return X . X is the repaired feasible individual

10: end function
There are some basic advantages of this repair method with

respect to a penalty method or with respect to any other
conventional CH method. It has been observed that the rate
of preservation of infeasible solutions is much higher (40%-
50%) for repair based algorithms with respect to penalty
based algorithms (10%-15%). Although for algorithms without
elitism, the rate of preservation is higher, it still gives the
algorithm very slow convergence which is something to be
avoided.

V. DETECTION OF CHANGES IN ENVIRONMENT

DCO differs from its static counterpart by the fact that
either the objective function or the constraints (or both) keep
changing with time. In the benchmark problems in this area
[3], the time dependence has been modelled by setting a
number of function evaluations (1000 objective function eval-
uations) upto which the environment is static. Henceforth, our
problem can be viewed as a series of distinct static constrained
optimisation problems. However, in practical situations, the
environment can change with any random frequency. Con-
sidering the worst case scenario to be when the environment
changes very rapidly, the optimization algorithm must be able
to work very fast. To achieve that, the best alternative is to
use the knowledge from the previous search and that is why
this algorithm uses knowledge-reuse as well as knowledge-
regeneration. Now, if there is a change in the environment
and it remains undetected, then the algorithm is said to fail to
cope with the dynamic nature of the problem. So, the detection
of change in the environment is very important and must be
very fast.

The detection of changes is realized with one or a fixed set
of detectors and their present and past objective values and
constraint violations are compared. If they are different, then,
indeed, the environment has changed. Average best fitness or
some members from the population or a point (which could
be random or fixed) can be used as detectors. However, if
the algorithm is assisted with elitism, then the diversity of
the population decreases eventually with generations. So, the
population is trapped in a fixed part of the fitness landscape
and if the change is not in that part, then there is a possibility
that the change will be left undetected. So, this algorithm uses
an entirely isolated set of detectors and compromises some
objective function evaluations to achieve a quick and sensitive
change detection system.

There are two types of changes that can affect the search
process. One, is a change in the objective function, and the
other is a change in the constaint functions. Both types of

changes can be efficiently detected by establishing a set of
fixed points (i.e. pivots) and then evaluating the fitness value
and the amount of constraint violation after each iteration.
Changes in the constraint functions not only change the
boundary of the feasible region but also add (or remove)
disjoint feasible regions or can change the amount of violation
of any individual, while keeping the boundary of the feasible
region fixed. To detect changes in the constraint landscape, we
do not require any extra evaluations and, therefore, there is no
limitation in this case. Hence, an arbitrary number of pivots
can be assigned for detection. Now, for the former case, each
time a change is detected, some evaluations are required to set
the reference values for the pivots. Added to that, there will
be some more evaluations required to compare the past and
present values of the detectors. But, it has been observed that
the number of fitness function evaluations needed for change
detection is substantially small when compared to that used
for optimization purposes. However, for much complicated
situations, we will require a more intelligent algorithm for
such change detection. Such an algorithm should consume
less evaluations while still being able to detect changes fairly
quickly.

VI. RESULTS AND DISCUSSIONS

Real-life applications of DCOPs are numerous, e.g. dynamic
aircraft scheduling [22], dynamic vehicle routing [23], video
based motion capture [24], modelling of oscillatory behavior
of bacterial cultures [25], modelling and control of open
plate reactors [26], etc. In real-world DCO problems, the
objective function and constraint functions can be combined
in three different types. The first type of combination is the
case where both the objective function and the constraints
are dynamic, as in scheduling/resource allocation problems
[17], aerodynamic/structural design problems [27], or in many
optimal control problems [18] [19] [20]. In the second type
of combination, the objective function is dynamic while the
constraints are static, for example, in the document stream
modelling problem [28], the evolvable hardware design prob-
lem [13] or the optimal control problem of fermentation
processes [14]. In the third type of combination, the objective
function is static and the constraints are dynamic, as can be
seen in the hydrothermal scheduling problem [15], the cargo
movement problem [16] and the ship scheduling problem [29].

In these three types of combinations, the alignment of
infeasible regions can affect the optimization process, since
multiple infeasible regions can be completely disconnected or
the global optimum can be in a narrow feasible region within
the infeasible region.

The test environment used here contains all these three types
of real world DCOPs and makes the optimization process
very challenging by narrowing the feasible space sometimes
e.g., in G24 5 and G24 7, the percentage of feasible region
reduces linearly from 44.61% to 7.29%. Another challenge for
the algorithms is the presence of disconnected feasible region
e.g., G24 3 and G24 3b, represents the first and the third
type of DCOPs respectively and contains 2-3 disconnected



feasible regions in average. The performance analysis of the
DCO algorithms are subject to the test problems adopted in
this paper.

Fig. 1. G243 Fixed Objective Dynamic Constrained problem (N = 25)

Fig. 2. G246a Dynamic Objective Fixed Constraint problem (N=25)

The main goal of optimization is producing the best possible
solution which is reflected in this case by the mean error. Al-
though the problems here are dynamic in nature, a better way
to calculate the error as indicated in [1] is the offline error i.e.,
the mean of the error in all the generations. In GSA, the Kbest

eventually decreases, which ensures a better exploitation and
aims to reduce the number of function evaluations performed
at each generation. A ranking based on the offline errors are
given in Table I.

The dynamics of the real-life DCOPs can vary in a wide
range i.e., the environment can change pretty slowly or very

fast. In the test simulations, the benchmark changes the
environment after every 1000 objective function evaluations
but in real-life situations there is no restriction. For example, in
ship scheduling problems [15] the change in the environment
does not occur too often, but in training a neural network
to approximate the dynamic model of unmanned aerial ve-
hicles (UAV) [33], the change in the environment is very
fast. Considering the worst case scenario, therefore, the DCO
algorithm must provide quick recovery after changes in the
environment. Techniques such as the triggered hyper mutation
genetic algorithm enhance the mutation rate to a very high
level every time a change is detected in the environment. A
few extra generations are still needed to amplify the diversity
to a reasonable level. In our algorithm, each time that a change
is detected, a part of the old population dies out and the same
number of particles are regenerated. Combined with the faster
convergence of GSA, this technique provides a faster recovery.

Fig. 3. G247 Fixed Objective Dynamic Constrained problem (N = 25)

The domain range can vary for real-life DCOPs with
changes in the environment. Consequently, after a change in
the environment, the explored global optima can be left out of
the domain range and new global optima can be introduced
when extending the domain range. Thus, the problem infor-
mation available to the algorithm becomes outdated. Moreover
the HyperM [31] contains a parameter that controls the
introduction of increased diversity after a change.

Although there can be requirements of higher or lower
mutation rates depending on the severity of the change. So
the tuning of hyper-mutation parameter is problem specific.
Under these circumstances, the HyperM method may fail
to produce proper results due to the shortcoming of keeping
the newly introduced domain unexplored. Again, most of
the standard diversity-introducting strategies do not work as
effectively when integrated with CH techniques as they do in
the unconstrained case.



TABLE I
OFFLINE ERRORS OF THE TESTED ALGORITHMS IN THE MEDIUM SETTINGS (POP SIZE=25; CHANGE FREQUENCY=1000 EVALUATIONS; OBJECTIVE

FUNCTIONS CHANGE SEVERITY k = 0.5; CONSTRAINT FUNCTIONS CHANGE SEVERITY S = 20).

problems→ G24-u(dF, noC) G24-1(dF, fC) G24-f(fF, fC)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.298 0.051 7 0.609 0.064 8 0.676 0.085 8
RIGA-noElit 0.221 0.025 6 0.493 0.045 7 0.546 0.072 7
HyperM-noElit 0.206 0.035 5 0.361 0.065 4 0.226 0.056 6
GA-elit 0.106 0.035 2 0.459 0.057 6 0.154 0.083 4
RIGA-elit 0.149 0.025 4 0.346 0.046 3 0.178 0.051 5
HyperM-elit 0.111 0.026 3 0.384 0.065 5 0.151 0.053 3
GA+Repair 0.468 0.059 8 0.226 0.024 2 0.041 0.011 2
GSA+Repair 0.049 0.004 1 0.132 0.015 1 0.029 0.012 1

problems→ G24-uf(fF, noC) G24-2(dF, fC) G24-2u(dF,noC)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.464 0.064 8 0.356 0.049 8 0.159 0.041 6
RIGA-noElit 0.342 0.032 7 0.264 0.035 5 0.107 0.019 4
HyperM-noElit 0.124 0.041 5 0.257 0.045 4 0.130 0.022 5
GA-elit 0.063 0.022 2.5 0.288 0.050 7 0.073 0.017 2
RIGA-elit 0.069 0.020 4 0.246 0.037 2 0.091 0.024 3
HyperM-elit 0.063 0.012 2.5 0.253 0.043 3 0.068 0.016 1
GA+Repair 0.218 0.018 6 0.281 0.036 6 0.294 0.029 8
GSA+Repair 0.047 0.009 1 0.182 0.019 1 0.196 0.012 7

problems→ G24-3(fF,dC) G24-3b(dF,dC) G24-3f(fF, fC)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.760 0.099 8 0.657 0.097 8 0.886 0.179 8
RIGA-noElit 0.538 0.047 7 0.500 0.038 7 0.651 0.055 7
HyperM-noElit 0.411 0.052 6 0.459 0.069 6 0.256 0.057 6
GA-elit 0.289 0.049 4 0.457 0.084 5 0.158 0.058 5
RIGA-elit 0.308 0.048 5 0.386 0.051 3 0.167 0.048 3.5
HyperM-elit 0.283 0.050 3 0.394 0.088 4 0.158 0.051 3.5
GA+Repair 0.156 0.008 2 0.171 0.019 2 0.025 0.008 2
GSA+Repair 0.028 0.004 1 0.076 0.009 1 0.009 0.007 1

problems→ G24-4(dF, dC) G24-5(dF,dC) G24-6a(dF,2DR,hard))

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.621 0.101 8 0.379 0.067 8 0.529 0.108 7
RIGA-noElit 0.490 0.053 7 0.293 0.046 7 0.366 0.030 3
HyperM-noElit 0.469 0.057 6 0.275 0.034 6 0.383 0.051 4
GA-elit 0.453 0.075 5 0.266 0.029 5 0.674 0.157 8
RIGA-elit 0.421 0.047 3 0.240 0.035 3 0.333 0.050 2
HyperM-elit 0.426 0.075 4 0.248 0.039 4 0.491 0.071 6
GA+Repair 0.211 0.015 2 0.236 0.024 2 0.431 0.074 5
GSA+Repair 0.073 0.012 1 0.153 0.013 1 0.033 0.003 1

problems→ G24-6b(dF,fC,1R) G24-6c(dF,2DR,easy) G24-6d(dF,2DR,hard)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.448 0.054 8 0.446 0.041 8 0.543 0.127 8
RIGA-noElit 0.331 0.035 3 0.329 0.039 4 0.366 0.040 4
HyperM-noElit 0.340 0.046 4 0.323 0.037 2 0.370 0.046 5
GA-elit 0.408 0.057 6 0.441 0.052 7 0.510 0.075 7
RIGA-elit 0.309 0.039 2 0.325 0.029 3 0.342 0.057 2
HyperM-elit 0.390 0.039 5 0.394 0.051 6 0.456 0.041 5
GA+Repair 0.427 0.048 7 0.390 0.038 5 0.354 0.038 3
GSA+Repair 0.047 0.003 1 0.045 0.004 1 0.037 0.007 1

problems→ G24-7(fF, dC) G24-8a(dFnC,ONISB) G24-8b(dFfC,OICB)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.721 0.088 8 0.426 0.050 8 0.835 0.068 8
RIGA-noElit 0.543 0.059 7 0.346 0.031 6 0.719 0.071 7
HyperM-noElit 0.495 0.053 6 0.374 0.043 7 0.681 0.072 6
GA-elit 0.316 0.053 4 0.266 0.028 2 0.662 0.056 5
RIGA-elit 0.416 0.068 5 0.304 0.028 5 0.598 0.064 3
HyperM-elit 0.315 0.062 3 0.279 0.028 3 0.608 0.071 4
GA+Repair 0.181 0.017 2 0.300 0.033 4 0.251 0.051 2
GSA+Repair 0.018 0.002 1 0.202 0.041 1 0.192 0.034 1



(Here dF=dynamic Function, fF=fixed Function, noC=no
Constraint, fC=fixed Constraint, nDR=n Disconnected feasible
Regions, OICB=Optima located at the Constraint Boundary,
ONISB=Optima not in search boundary.)

But, as most of the particles are regenerated in this algo-
rithm, after each change in the environment, it can deal with
such dynamics if the knowledge of the newly shaped domain
is supplied.

Fig. 4. G244 Dynamic Objective Dynamic Constrained problem (N = 25)

The change detection technique used in conventional
DCOPs is based on one or on a fixed set of detectors. Hence,
most of the known algorithms usually track the change based
on the average best fitness [30] or on some members of the
population or on a point (single detector, could be random or
fixed). Although, in order to get better solution, the diversity
of the population should be allowed to eventually decrease
and the population can be centered in a part of the objective
space. If the change occurs in some other zone, then it cannot
be detected using the members of the same population. To get
rid of that, this algorithm is assisted with an entirely isolated
detection system. The use of a single detector is risky for
obvious reasons. So, we used a detector-grid made of a fixed
set of equally spaced points as reference and compared for
a random member from that grid. To make the method more
sensitive, the number of detectors and the comparators can be
increased at the expense of function evaluations.

On the other hand, some members from the previous pop-
ulation remain intact at every regeneration of the population.
So, if the change does not affect the global optima, then the
algorithm can easily deal with that, too. The best solution in
this case would be not to regenerate the population, although
this algorithm cannot indulge in that. But this does not
change the statistics in a significant way. Thus, this algorithm
combines knowledge-reusing, that produces faster solution and
helps to learn the nature of the dynamics while knowledge-
restarting produces better solutions.

VII. CONCLUSIONS AND FUTURE WORK

DCOPs are meant to be solved online. In this paper,
we proposed an algorithm that combines GSA and a repair
technique to produce better objective function values. This
algorithm divides the whole problem into some discrete cases
and solves them separately while they are linked together with
a change detection technique to cope up with the dynamic
nature of the problem.

GSA, being a swarm based algorithm, provides better con-
trol over exploration and exploitation techniques and works
very well with a repair-based CH method. Therefore, this
algorithm guarantees faster convergence, which is an important
performance metric in DCOP. In real world applications,
the change frequency can vary abruptly, and under these
circumstances, it is an advantage to be prepared for the worst
case scenario.

The modified repair method we proposed preserves diver-
sity. It does not get trapped by disconnected feasible regions
like the penalty function and performs better in handling
constraints.

The change detection technique used in this algorithm is
basic but very effective. Although it can be made more efficient
by selecting more pivot points simultaneously, while com-
promising some objective function evaluations. Nevertheless
this sort of scheme would have some problems when the
change-frequency is very high. In the proposed algorithm, we
have made a trade-off between these two issues. However, in
our future work, we aim to design a different approach that
consumes less function evaluations to detect a change in the
environment.
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