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Abstract—In this paper, we propose a new memetic algorithm by the LS engine and a mechanism that allows us to maintain

(MA) for solving constrained optimization problems over ca-  diversity with the aim of avoiding premature convergence.
tinuous search spaces. Our MA is composed by a global search The remainder of this paper is organized as follows. In

mechanism based on differential evolution (DE), a constrait- Section || t the basi i ired f d
handling technique called stochastic ranking (SR) and a | ection 1i, we present the basic concepts required for unaer

search (LS) procedure which adopts a simplex crossover (SBX standing the rest of this paper. In Section I, we provide a
operator. We show that the performance of our algorithm is short review of the most relevant previous related work. In
improved by the influence of its LS mechanism. In order to Sections IV and V, we briefly describe the simplex crossover
avoid premature convergence, we adopt a diversity mechams e 4161 and the stochastic ranking mechanism for handling

and a replacement strategy. Our proposal is validated using set . . . .
of standard test problems taken from the specialized literture. constraints, since they are both incorporated into our gseg

The results are compared with respect to those produced by tee approach. In Section VI, we describe our proposed algotithm

representative algorithms of the state-of-the-art in the zea. and its validation is presented in Section VII. Finally, our
conclusions and some paths for future research are présente
|. INTRODUCTION in Section VIII.
Memetic algorithms (MAs) are optimization techniques Il. BAsIC CONCEPTS

based on a strategic combination between global and localve are interested in the general nonlinear programming
search (LS) mechanisms [1]. While a global mechanism egroblem:

plores all of the search space, the local mechanism exploitsTo find # = [z, z2, ..., 2,,]T which minimizesf () subject
certain regions within it, aiming to refine the solutions -preto:

viously obtained. Both schemes work in a cooperative way

for achieving a trade-off between the exploration and the gi(%) <0, i=1,...,m (1)
exploitation of the search space [2]. . _

Several optimization problems are modeled using decision hij(@) =0, j=1,....p @)
variables over a continuous domain. Such problems haygere 7 is the vector of solutions’ = [z1, 2o, ..., 2,]T, m

been solved (with different degrees of success) by differeg the number of inequality constraints apds the number of
types of evolutionary algorithms (EAs), including pamicl ¢quality constraints (in both cases, constraints couldrigsat
swarm optimization (PSO) [3], differential evolution (DB,  or non-linear). If we denote witlF to the feasible region and
real-coded genetic algorithms (RCGA) [5], [6] and evolatioyith s to the whole search space, then it should be clear that
strategies (ES) [7]. F C S. For an inequality constraint that satisfiggz) = 0,

The design of a LS mechanism for continuous search spaggsn we will say that is active at.
is associated with the use of neighborhood structures.i$n th
regard, there exist proposals based on direct search ngethod Il. PREVIOUS RELATED WORK
[8], [9], [10], gradient search methods [11], approachesedla The DE algorithm has been found to be a very robust
on heuristics [12], [13], and neighborhood-based gengtic cand effective search engine for single-objective optinira
erators [14], [15], [16]. problems. This has motivated the development of a number

The design of LS mechanisms over continuous searohDE variants, including hybrid approaches that combine DE
spaces is not trivial, since it depends on the type of proliemwith some other optimization technique. Here, we will only
be solved (each type of search space requires a specific typéoous on memetic algorithms (MAs) that are based on DE. In
movements generator that allows making small and accurft8] a MA called DEahcSPX was introduced. This algorithm
steps). In summary, the good design of an LS engine requicgsnbines DE with a hill-climbing technique and a SPX
of: a mechanism to build a neighborhood structure, definirggperator, for solving single-objective optimization pieris.
a policy regarding the frequency of use of the LS engine,EahcSPX implements an iterative process that invokes the
mechanism to select the solutions on which the LS engih& engine, in order to refine the best solution from the curren
will work, a replacement strategy for the solutions gerestat population until no further improvement is possible. After



that, the global search mechanism is adopted to generatenber of parents and is a control parameter that defines
new offspring. Such a global search engine relies on DE tihe rate of expansion.

its rand/1/bin version [4]. This approach could succegsful

handle problems with high dimensionality. V. STOCHASTIC RANKING

Liu et al. [19] proposed a memetic co-evolutionary differ- Stochastic Ranking (SR) [25] is a constraint-handling
ential evolution (MCODE) approach for constrained optiaiz method which has been very popular in the specialized litera
tion. This MA uses a method called cooperative co-evolutiagre because of its simplicity and effectiveness. SR miista
[20], which is based on the cooperative relationship of E2eCa balance between the influence of the objective function
in nature. This algorithm uses two cooperative populationgnd the degree of violation of the constraints when assignin
which are created by DE in its best/1/bin version; these tWRe fitness value to an individual. SR does not require the
populations evolve independently. The first populationsaingefinition of penalty factors. This mechanism sortgotential
to minimize the objective function without considering theolutions, using a procedure similar to the bubble sort otkth
constraints, while the second is responsible for mininyzire |nstead of attempting to determine the optimum values for
penalty functions, regardless of the objective functiolu®s. the penalty factors, SR defines a rafg to determine the
These two populations interact using a migration operdttis  palance between the objective function value and the cainstr
proposal uses a Gaussian mutation operator as its LS engifglation value. This means that comparisons are made in
LS is applied if the best solution does not change after sévepairs. The search engine of SR is a multi-member evolution
iterations. Addltlona”y, MCODE adOptS an adaptive SChen&rategy (ES) which carries out mutations generated by a
for transforming infeasible solutions into feasible ones. normal distribution of probabilities. It also uses a coédiit

Ali and Kajee-Bagdadi [21] proposed an approach calleg adjust the step size for each decision variable in each
local exploration-based differential evolution (LEDE)hi$ individual.

is an algorithm that combines a DE variant with a periodic
local exploration technique, which consists of a modifmati VI. OUR PROPOSEDAPPROACH

to the pattern search (PS) method [24] called LPS. The LSq . proposed approach is called SPX-MACO, and it in-

engine is invoked at the end of tiké" iteration of the global cludes a modified DE algorithm, SPX and a replacement

search engine which explores the vicinity of the best paint L aieqy which aims to maintain diversity in the population
the current population. Two strategies are adopted t0 Bangh, o, of these mechanisms is described next in more detail.
constraints in LEDE, the superiority of feasible points][22

and the penalty-free parameter approach [23] . This alyorit A. Global Search Mechanism

modifies the mutation operator of DE as follows: DE is one of the best currently available global optimizers.

Besides being very effective, it usually converges venckiyi

to the optimum of a problem and, generally, with great
where ;. is the best point in the population, white; . consistency. Additionally, it requires few control pardaers

andz,, ; are points uniformly selected from the populatiép. for its operation and its implementation is very simple.

is a scaling parameter which depends on the current iteratio The rand/1/bin model of DE has been found to have a

of the algorithm, and takes values uniformly in the intervajood performance with a small number of fitness function

[0.4,1]. evaluations. Therefore, SPX-MACO uses this version of DE

as its global search mechanism. The selection process of DE
IV. SIMPLEX CROSSOVEROPERATOR is, however, modified in our approach, considering a binary

The simplex crossover operator (SPX) [15] is an interestifigurnament selection with the following rules:

technique, which is adopted here as a LS engine. SPX creates) |f the two solutions compared are infeasible, we prefer

ik = To + Fr(xsk — Tak) (3)

y. offspring uniformly distributed around the centroid of ithe the solution that violates less the constraints.
parents, from an area defined bykesimplex. SPX seleck  2) |f the two solutions are infeasible and have the same
different points , for constructing a simplex. This simplex constraint violation, we prefer the solution with better
expanded in each directiogx{’ — O) with (e > 0), whereO objective function value.
is the center of mass of thee parents, calculated as: 3) If the two solutions are feasible, we prefer the one with
. the best (i.e., lowest) objective function value.
0= 1 Zx(i) (4) DE is shown in Algorithm 1, and consists of the following
ko~ stages:
and Initialization. A population P, o of N, D—dimensional pa-

rameter vectorzy ;o,...,p,i0, ¢ = 1,...,IN, iS randomly
. enerated within the lower and upper bound of variables
yi=0+e(xf —0),G=1,..,k 5 9
! ( ¢ ) ( ) ( ) by, = [bl,La ----,bD,L] andbU = bl,Ua ----,bD,U-
A variant of SPX given in [15] is called P X -n-m-¢, where Trial vector generation. At the ¢ generation, a trial pop-
n is the number of directions in the search spaeeis the ulation P, , consisting of N,, D—dimensional trial vectors



Uig — [U14g,...D,ig] IS gENerated via mutation and recombiC. Assortative Mating and Replacement Strategy for the LS
nation operations applied to the current populatigy,. Engine

Differential Mutation. With respect to each vectar; , in An important issue is how to define the selection of parents
the current population, a mutant vecter, is generated by ¢ applying LS. In our case, we obtained good results using
adding and scaling _from three randomly vectors selectad fr(bositive assortative mating [6]. In this selection procedu

the current population. the individuals which are more similar among themselves are
selected for building a neighborhood. We took advantage of
Algorithm 1: DE algorithm, which is theglobal search  our sorted population (this is done by SR), for selecting the

mechanismadopted by our proposed approach first and last elements from the population, and then we apply
Data: Cr (crossover rate)F' (mutation rate),Sp (size LS to them. This means that our LS engine explores the
of population),n (number of variables) neighborhood of both the best and the worst individuals in
Result New population the population. Regardless of the outcome from applying LS,
1 begin we add to the population the two individuals obtained from
2 for i — {1,...,Sp} do this exploration. This does not increase the total popatati
3 Select randomly-, r5, r3 in current population, size, since upon applying the selection mechanism of DE, we
wherery £ rq # 13 £ ; return to the maximum population size defined by the user.
for j — {1,...,n} do )
if rand,[0,1] < Cr then D. Local Search Mechanism
| wij — xp3j+ Ferj — o) ; In [18], the authors show that the SPX crossover operator
else has features that allow it to improve the performance of DE
Luij — i when solving unconstrained (single-objective) optiniaat
" f problems. Based on this, we decided to extend this operator
9 Apply selection rules and replace;

for dealing with constrained optimization problems. ThexSP
crossover operator performs the following steps:
Step 1.Selectn,, parent vectors of the populatiaff’, where
i=1,...,n,. The selected vectors define the search neighbor-
) ) ) hood by ak-simplex. In SPX-MACO, we establish, equal
B. Constraint Handling Mechanism to 3 parents, for am-dimensional space.

We adopted SR as our constraint-handling mechanisBtep 2.Compute the centroid defined Iy of the k-simplex.
because it is simple and quite effective. SR is shown If n, is equal to 3, the centroid for the 2-simplex is defined

10 return a new population;

Algorithm 2. by:
- 1 ~C
Algorithm 2: Stochastic Ranking. Constraint-handling 0= 3 le ©)
mechanism. . _ Zfl _ _
Data: Pf (rate of comparison between objective functionWhereZ; is a solution vector in the population at generation
value and penalty function valueyp (size of G.
population), Step 3.Apply expansion parameter Our SPX-MACO adopts
Result Sorted population an expansion factor = 1.3
1 begin Step 4.Generate; random numbers using:
2 for i — {1,...,Sp} do o1
5 for j — {1,..,A—1} do = Ut =1 mpa), (7)
4 it (7)) == ¢(@j11) == 0| U(0,1) <Pf  whereu € [0,1] is a random number in the range from 0 to
then 1. For the 2-simplex, these factors afe= uz andry = us.
5 if f(2;) > f(Zj+1) then Step 5. Compute the values foy; and C; according to
6 | swap (&, j+1) ; equations (8) and (9).
else ) yi =0 +e(xf -0),(i=1,...,3) (8)
if () > ¥(Zj41) then
B L swap (Ija Ij+1) ; éz _ (17 . B . (2 = 1) (9)

- Tim1(Gi—1 — ¥ + Cimn), (i =2,3)
10 if no swap donehen
11 L break; Step 6.Generate a descenddrifrom equation (10) and return

_t ted lation: a new solution.

12 | return sorted population; G =iy + Ch (10)

Algorithm 3 shows our complete LS procedure.



Algorithm 3: SPX crossover operatdgcal search mech- Algorithm 4: SPX-MACO

anism Data: Pop (initial population),G (number of
Data: n, (number of solutions adopted for generating the generations)p,, (number of parents selected for
simplex),e (expansion rate for SPXharentp, SPX crossover operator)
(parent solution for generating the simplex) Result Best solution
Result New solution 1 begin
1 begin 2 | Generate an initial population with uniform
2 Compute centroid) = % Yo distribution;
3 | Generate random numbers 3 | while termination criteria is metlo
Ty = ui%, (i=1,...,n—=1) 4 Apply global search mechanism
4 Computey; = O +e(x; — 0),(i =1,...,n) 5 Sort population usingtochastic ranking
. C.— 0, (1=1) 6 Select the first,, solutions from the sorted list
¢ Tifl(yifl —Y; + Cl',l), (Z = 2, . ,TL) (bestsol[np] ),
Generate an offspring' = y,, + C, 7 Select the last, solutions from the sorted list
return offspring; (worstsor[np]);
_ for bestsoi[n,] andworstgq[n,) do
Apply local search mechanism(SPX);
10 The new solution is added to the current
E. SPX-MACO \; popu|a‘[i0n;
Our proposed SPX-MACO randomly creates an initial popur G—G+1;
lation using a umform dlstrlbut.mn. DE is applied as ourlzdd L return the best solution:
search mechanism for exploring all the search space. Our ‘ap--

proach adopts the selection mechanism previously desiribe
in order to incorporate the constraints of the problem into

the search process. The new solutions generated by DE @fg.re.c is the allowable tolerance for the equality constraints.
sorted by the SR method. After that, the simplex crossovgf ine experiments reported here, we used 0.0001.
operator is applied to the best and to the worst solutiors fro

the ranking in order to produce new individuals, which arB. Experimental Methodology
added to the population. This process is repeated sev@@dti  The parameters adopted by our SPX-MACO were the

until fulfilling the stopping criterion. following (these values were obtained after numerous éxper
Algorithm 4 shows the full pseudo-code of our proposeghents):
SPX-MACO. « For SPX:e =1.3,n, =3
VIl. EXPERIMENTAL RESULTS « Penalty function= 37", max{0, g;(x)}*

o For SR (our constraint-handling mechanismi)f = 0.45
A. Test Problems o « For SPX-MACO:G = 2500

The test suite used for validating our proposed approach, pg.related parameter§p = 70, for problems g01, g05,
consists of 10 test problems taken from the set designed g07, g10, g14, g17, g19% = 0.9 and Cr = 0.9 and

for a special session organized at @06 IEEE Congress problems g02, 03,913 = 0.8 and Cr = 0.6
on Evolutionary Computatiorj26]. This set is composed
by different types of objective functions: quadratic, rinnl
ear, polynomial and cubic. The problems also have differ
types of constraints (linear, nonlinear, equality and uradityy).

Among the features that make these problems difficult,
have: high dimensionality, multi-modality, and disjoiegfible

For validating our proposed approach, we performed 100
independent runs for of the test problems considered, and we
eE'(Smpared results with respect to the following approaches:

stochastic ranking (SR), memetic co-evolutionary diffeia
Y&olution (MCODE) and local exploration-based differanti
evolution (LEDE). In order to allow a fair comparison, aleth

regions. : L X .
All the test problems were transformed to the followi %gfﬂészsp:rgoégrﬁiiﬁgé?joﬁ c')%sg |\|/e function evaturi
format The parameter values used for other algorithms are estab-
Minimize f(z), % = [o1, T2, ..., 2] (11) lished by the authors in the original propgsals. |
o MCODE adopted a penalty function of the form:
subject to: > |lg;(z)|, and LEDE adopted a penalty function of
9i(7) <0,i=1,...q (12) the formizznzl maxz{0, g;(x)}.

o The mutation and crossover rates of MCODE were:
F = 0.8, and Cr = 0.8, respectively. For LEDE, the
mutation rate was adaptive, and the crossover rate was
|hj(Z)] —e<0, withj=¢+1,...,m (13) set as:.Cr = 0.9.

Equality constraints were transformed into inequality con
straints of the form:



C. Effect of Local Search [11] D. P. Bertsekas, Constrained Optimization and Lagrange multiplier
. . . . methods, Massachusetts Institute of Technology, Athena Scientific,
Knowing that DE is a very powerful search engine by itself, gejmont . Massachusetts, Inc. 1982.
it was important for us to determine if the use of local seargie] S. Kirkpatrick, C. D. Gelatt and M. P. Vecct@ptimization by Simulated

was actually beneficial in our proposed approach. Thus, we Annealing, Science. New Series 220 (4598), pp. 671-680, 1983.
y . . P p. . PP ] F. Glover, Tabu Search,ORSA Journal on Computing, vol. 1, no. 3,
performed an additional experiment in which we compared the™,, 190.206, 1989.

results obtained by our approach without LS (this versios w@4] L. J. Eshelman, K. E. Mathias and J. D. Schaff€rossover Operator

called I\/IACO) with respect to those obtained by our memetic Biases: Exploiting the Population Distribution, Proceedings of the
. . Seventh International Conference on Genetic Algorithngs, 354-361,
approach (SPX-MACO). The results of this experiment are 1997,

summarized in Table Il. These results clearly indicate thg] S. Tsutsui, M. Yamamura and T. Higuchiulti-parent recombination
there was an improvement when using LS in practically all With s_lmplex crossover in real coded genetic algorithmsGenetic

P 9 P y Evolutionary Computation Conference (GECC099), pp. 66%;6.999.

cases. [16] N. K. Bambha, S. S. Bhattacharyya, J. Teich and E. ZitZystematic
integration of parameterized local searcéyolutionary algorithms, IEEE

VIIl. CONCLUSIONS ANDFUTURE WORK Transactions on Evolutionary Computation, vol. 8, no. 2, pp7-155,

. . 2004.

We have proposeq here a n(_aw mem_etl_c a_lgo”thm Ca”f"lq] S. Das and P. N. Suganthafroblem definitions and evaluation criteria

SPX-MACO, for solving constrained optimization problems. “for CEC 2011 competition on testing evolutionary algorithon real-

The proposed approach is based on the use of DE (|n its world optimization problemsin Technical Report, 2010.

. . . . ] N. Noman and H. Iba,Accelerating Differential Evolution Using an
rand/1/bin versmn) as a gIObaI search engine, and it al[‘}g Adaptive Local SearchlEEE Trans. Evolutionary Computation, vol. 12,

incorporates a variation of stochastic ranking and a siriple no. 1, pp. 107-125, 2008.
crossover operator. Local search, in our case, is applied [ B. Liu, H. Ma, X. Zhang and Y. ZhouA memetic co-evolutionary differ-

. . . ential evolution algorithm for constrained optimizatiom Evolutionary
the neighborhood of the best and the worst solutions in the Computation, CEC 2007. IEEE Congress on Issue, pp. 2998;ZD7.

population. [20] Y. Shi, H. Teng and Z. Li, Cooperative Co-evolutionary Differential
The comparison of results of our SPX-MACO with respect Evolution for Function Optimization, ICNC (2), Lecture Notes in

Computer Science, vol. 3611, pp. 1080-1088, 2005.
to those generated by three other state-of-the-art appeea<:[21] M. M. Ali and Z. Kajee-BagdadiA local exploration-based differential

indicated that our proposal is competitive, while requgria evolution algorithm for constrained global optimizatioApplied Math-
low number of objective function evaluations. ematics and Computation, pp. 31-48, 2009.

. ; . [22] D. Powell and M. M. SkolnickUsing genetic algorithms in engineering
As part of our future work, we are interested in applylng design optimization with non-linear constraintdn Stephanie Forrest,

our approach to some real-world problems and in extending it editor, Proceedings of the Fifth International Conferemce Genetic
to the solution of multi-objective optimization problems. Algorithms, pp. 424-431, 1993. _ _
[23] K. Deb, An Efficient Constraint Handling Method for Genetic Algo-
rithms, Computer Methods in Applied Mechanics and Engineering, vol
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Problem g01 g02 g03 g05 g07 gl0 913 gl4 gl7 g19
Optimum -15.0 -0.803619| -1.0005 | 5126.4967 | 24.306209| 7049.248020| 0.0539415| -47.764888| 8853.5338| 32.655592
Stochastic Ranking (SR)
best -15.0 -0.766997| -0.999707| 5126.4967| 24.307578| 7049.999279] 0.053943 | -47.747134| 8875.9217] 33.041103
median -15.0 -0.712116| -0.997721| 5126.4967| 24.307578| 7050.863179| 0.438802 | -47.747134| 9034.0876| 33.077049
mean -15.0 -0.711341| -0.997962 | 5126.6555| 24.313864 | 7059.034467| 0.331740 | -47.742502| 9031.3350| 33.173030
st. dev 0.0 6.12E-03 | 6.27E-04 1.15 0.017E-02 47.45 1.62E-01 | 3.32E-02 22.38 4.07E-01
worst -15.0 -0.706099 | -0.997721| 5137.9397| 24.462913| 7525.392220| 0.586825 | -47.463530| 9054.6249| 37.153993

Memetic Co-evolutionary Differential Evolution (MCODE)
best -15.0 -0.803616| -1.000498| 5126.4967| 24.306209| 7049.248030| 0.053941 | -47.764879| 8853.5338| 32.655726
median -15.0 -0.743683| -0.380902 | 5126.4967| 24.306311| 7049.253333| 0.438802 | -47.650215| 8874.3750| 32.665956
mean -14.9413 | -0.733690| -0.374674| 5127.3070| 24.311192| 7050.045833| 0.271123 | -47.486428| 8900.0818| 32.720659
st. dev | 2.55E-01| 5.51E-02 | 2.15E-01 8.04 4.41E-02 5.1321 1.99E-01 | 4.05E-01 48.62 1.28E-01
worst -13.8281 | -0.472336| -0.023192| 5207.3343| 24.750375| 7091.226026| 0.836580 | -45.962903| 9161.5502| 33.409777
Local Exploration-based Differential Evolution (LEDE)
best -15.0 -0.803618| -1.000500| 5126.4967| 24.306209| 7049.248020| 0.135701 | -47.764888| 8853.5338| 32.657763
median -15.0 -0.606640| -1.000500| 5126.4967| 24.306209| 7049.248022| 0.438802 | -47.742600| 8929.3877| 32.844874
mean -14.3885 | -0.606603 | -0.996920| 5210.4303| 24.306209| 7049.248131| 0.365329 | -47.629776| 8956.8311| 32.929617
st. dev | 9.98E-01| 1.05E-01 | 2.86E-02 146.89 2.21E-06 4.36E-04 1.9E-01 2.75E-01 102.36 3.26E-01
worst -10.6562 | 0.331449 | -0.722965| 5706.7416| 24.306231| 7049.251059| 0.999999 | -45.890546| 9232.4541| 35.146084
SPX-MACO
best -15.0 -0.803619| -1.000500| 5126.4967| 24.306209| 7049.248020] 0.053941 | -47.764888| 8853.5338]| 32.655706
median -15.0 -0.770397| -1.000492 | 5126.4967| 24.306221| 7049.248063| 0.053944 | -47.763423| 8913.7372| 32.743630
mean -15.0 -0.761270| -0.999010| 5126.9478| 24.306293| 7049.248279| 0.053966 | -47.632592| 8912.5736| 32.809258
st. dev 0.0 3.3E-02 | 7.04E-03 4.65 1.79E-04 6.15E-04 9.81E-05 3.55E-01 36.99 1.55E-01
worst -15.0 -0.671374| -0.961216| 5141.9895| 24.306933| 7049.250759| 0.054833 | -46.005550| 8951.2457| 33.206513
TABLE |

COMPARISON OF THE RESULTS OBTAINED BY OURSPX-MACOAND THREE STATE-OF-THE-ART ALGORITHMS: SR, MCODEAND LEDE. THE BEST
RESULTS FOUND IN EACH CASE ARE SHOWN INboldface.

[ Problem [ Algorithm | best | median | mean | st.dev. | worst |
g01 MACO -14.999946 -14.999805 -14.999823 9.91E-05 -14.999427
-15.0 SPX-MACO -15.0 -15.0 -15.0 0.0 -15.0
g02 MACO -0.716864 -0.630202 -0.623580 3.37E-02 -0.545416

-0.803619 SPX-MACO -0.803618 -0.770397 -0.761270 3.30E-02 -0.671374
g03 MACO -0.835070 -0.273257 -0.256595 0.122793 -0.083632
-1.0005 SPX-MACO -1.0005001 -1.000492 -0.999010 7.04E-03 -0.961216
g05 MACO 5126.496714| 5153.272313 | 5131.352670| 47.776368| 5312.815637
5126.4967 SPX-MACO | 5126.496714| 5126.496714 | 5126.947831| 4.658087 | 5141.989532
g07 MACO 24.336617 24.364586 24.362005 1.44E-02 24.413607
24.306209 SPX-MACO 24.306209 24.306221 24.306293 1.79E-04 24.306922
gl0 MACO 7050.313660| 7052.712113| 7052.632264| 1.187864 | 7056.516780
7049.248020| SPX-MACO | 7049.248021| 7049.248063 | 7049.248279| 6.15E-04 | 7049.250759
gl3 MACO 0.346487 0.851239 0.912186 0.153820 0.999510
0.0539415 SPX-MACO 0.053941 0.438802 0.331740 0.162748 0.5868255
gl4 MACO -47.757573 -47.632699 -47.666634 0.112765 -47.074625
-47.764888 | SPX-MACO -47.764888 -47.764845 -47.736939 0.128721 -46.719956
gl7 MACO 8854.615355| 8949.925175| 8950.020171| 58.898262| 9176.291456
8853.5396 | SPX-MACO | 8853.533874| 8913.737242 | 8899.960982| 36.999861| 8951.24573
g19 MACO 35.864368 38.325524 38.312506 1.045887 41.130285
32.655592 SPX-MACO 32.655706 32.743630 32.809258 0.155246 33.206513
TABLE I

STATISTICAL RESULTS SHOWING THE INFLUENCE OF THE LOCAL SEARB IN THE PERFORMANCE OF OUR APPROACHHERE, M AC'O REFERS TO THE
ALGORITHM WITHOUT LOCAL SEARCH AND SPX — M ACO REFERS TO THE VERSION THAT USES LOCAL SEARCHIHE EXACT SAME INITIAL
POPULATION WAS USED FOR BOTH APPROACHES IN ORDER TO AVOID ANSTATISTICAL BIAS IN THE RESULTS



