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Abstract—In this paper, we propose a new memetic algorithm
(MA) for solving constrained optimization problems over con-
tinuous search spaces. Our MA is composed by a global search
mechanism based on differential evolution (DE), a constraint-
handling technique called stochastic ranking (SR) and a local
search (LS) procedure which adopts a simplex crossover (SPX)
operator. We show that the performance of our algorithm is
improved by the influence of its LS mechanism. In order to
avoid premature convergence, we adopt a diversity mechanism
and a replacement strategy. Our proposal is validated usinga set
of standard test problems taken from the specialized literature.
The results are compared with respect to those produced by three
representative algorithms of the state-of-the-art in the area.

I. I NTRODUCTION

Memetic algorithms (MAs) are optimization techniques
based on a strategic combination between global and local
search (LS) mechanisms [1]. While a global mechanism ex-
plores all of the search space, the local mechanism exploits
certain regions within it, aiming to refine the solutions pre-
viously obtained. Both schemes work in a cooperative way
for achieving a trade-off between the exploration and the
exploitation of the search space [2].

Several optimization problems are modeled using decision
variables over a continuous domain. Such problems have
been solved (with different degrees of success) by different
types of evolutionary algorithms (EAs), including particle
swarm optimization (PSO) [3], differential evolution (DE)[4],
real-coded genetic algorithms (RCGA) [5], [6] and evolution
strategies (ES) [7].

The design of a LS mechanism for continuous search spaces
is associated with the use of neighborhood structures. In this
regard, there exist proposals based on direct search methods
[8], [9], [10], gradient search methods [11], approaches based
on heuristics [12], [13], and neighborhood-based genetic op-
erators [14], [15], [16].

The design of LS mechanisms over continuous search
spaces is not trivial, since it depends on the type of problemto
be solved (each type of search space requires a specific type of
movements generator that allows making small and accurate
steps). In summary, the good design of an LS engine requires
of: a mechanism to build a neighborhood structure, defining
a policy regarding the frequency of use of the LS engine, a
mechanism to select the solutions on which the LS engine
will work, a replacement strategy for the solutions generated

by the LS engine and a mechanism that allows us to maintain
diversity with the aim of avoiding premature convergence.

The remainder of this paper is organized as follows. In
Section II, we present the basic concepts required for under-
standing the rest of this paper. In Section III, we provide a
short review of the most relevant previous related work. In
Sections IV and V, we briefly describe the simplex crossover
operator and the stochastic ranking mechanism for handling
constraints, since they are both incorporated into our proposed
approach. In Section VI, we describe our proposed algorithm,
and its validation is presented in Section VII. Finally, our
conclusions and some paths for future research are presented
in Section VIII.

II. BASIC CONCEPTS

We are interested in the general nonlinear programming
problem:

To find ~x = [x1, x2, ..., xn]T which minimizesf(~x) subject
to:

gi(~x) ≤ 0, i = 1, . . . ,m (1)

hj(~x) = 0, j = 1, . . . , p (2)

where~x is the vector of solutions~x = [x1, x2, . . . , xn]T , m
is the number of inequality constraints andp is the number of
equality constraints (in both cases, constraints could be linear
or non-linear). If we denote withF to the feasible region and
with S to the whole search space, then it should be clear that
F ⊆ S. For an inequality constraint that satisfiesgi(~x) = 0,
then we will say that is active at~x.

III. PREVIOUS RELATED WORK

The DE algorithm has been found to be a very robust
and effective search engine for single-objective optimization
problems. This has motivated the development of a number
of DE variants, including hybrid approaches that combine DE
with some other optimization technique. Here, we will only
focus on memetic algorithms (MAs) that are based on DE. In
[18] a MA called DEahcSPX was introduced. This algorithm
combines DE with a hill-climbing technique and a SPX
operator, for solving single-objective optimization problems.
DEahcSPX implements an iterative process that invokes the
LS engine, in order to refine the best solution from the current
population until no further improvement is possible. After



that, the global search mechanism is adopted to generate
new offspring. Such a global search engine relies on DE in
its rand/1/bin version [4]. This approach could successfully
handle problems with high dimensionality.

Liu et al. [19] proposed a memetic co-evolutionary differ-
ential evolution (MCODE) approach for constrained optimiza-
tion. This MA uses a method called cooperative co-evolution
[20], which is based on the cooperative relationship of species
in nature. This algorithm uses two cooperative populations,
which are created by DE in its best/1/bin version; these two
populations evolve independently. The first population aims
to minimize the objective function without considering the
constraints, while the second is responsible for minimizing the
penalty functions, regardless of the objective function values.
These two populations interact using a migration operator.This
proposal uses a Gaussian mutation operator as its LS engine.
LS is applied if the best solution does not change after several
iterations. Additionally, MCODE adopts an adaptive scheme
for transforming infeasible solutions into feasible ones.

Ali and Kajee-Bagdadi [21] proposed an approach called
local exploration-based differential evolution (LEDE). This
is an algorithm that combines a DE variant with a periodic
local exploration technique, which consists of a modification
to the pattern search (PS) method [24] called LPS. The LS
engine is invoked at the end of thekth iteration of the global
search engine which explores the vicinity of the best point in
the current population. Two strategies are adopted to handle
constraints in LEDE, the superiority of feasible points [22]
and the penalty-free parameter approach [23] . This algorithm
modifies the mutation operator of DE as follows:

x̂i,k = xb,k + Fk(xβ,k − xα,k) (3)

wherexb,k is the best point in the population, whilexβ,k

andxα,k are points uniformly selected from the population.Fk

is a scaling parameter which depends on the current iteration
of the algorithm, and takes values uniformly in the interval
[0.4, 1].

IV. SIMPLEX CROSSOVEROPERATOR

The simplex crossover operator (SPX) [15] is an interesting
technique, which is adopted here as a LS engine. SPX creates
yk offspring uniformly distributed around the centroid of their
parents, from an area defined by ak-simplex. SPX selectk
different points , for constructing a simplex. This simplexis
expanded in each direction(xG

i − O) with (ǫ ≥ 0), whereO
is the center of mass of thek parents, calculated as:

O =
1

k

k
∑

i=1

x(i) (4)

and

yi = O + ǫ(xG
i −O), (i = 1, ..., k) (5)

A variant of SPX given in [15] is calledSPX-n-m-ε, where
n is the number of directions in the search space,m is the

number of parents andε is a control parameter that defines
the rate of expansion.

V. STOCHASTIC RANKING

Stochastic Ranking (SR) [25] is a constraint-handling
method which has been very popular in the specialized litera-
ture because of its simplicity and effectiveness. SR maintains
a balance between the influence of the objective function
and the degree of violation of the constraints when assigning
the fitness value to an individual. SR does not require the
definition of penalty factors. This mechanism sortsλ potential
solutions, using a procedure similar to the bubble sort method.
Instead of attempting to determine the optimum values for
the penalty factors, SR defines a ratePf to determine the
balance between the objective function value and the constraint
violation value. This means that comparisons are made in
pairs. The search engine of SR is a multi-member evolution
strategy (ES) which carries out mutations generated by a
normal distribution of probabilities. It also uses a coefficient
to adjust the step size for each decision variable in each
individual.

VI. OUR PROPOSEDAPPROACH

Our proposed approach is called SPX-MACO, and it in-
cludes a modified DE algorithm, SPX and a replacement
strategy which aims to maintain diversity in the population.
Each of these mechanisms is described next in more detail.

A. Global Search Mechanism

DE is one of the best currently available global optimizers.
Besides being very effective, it usually converges very quickly
to the optimum of a problem and, generally, with great
consistency. Additionally, it requires few control parameters
for its operation and its implementation is very simple.

The rand/1/bin model of DE has been found to have a
good performance with a small number of fitness function
evaluations. Therefore, SPX-MACO uses this version of DE
as its global search mechanism. The selection process of DE
is, however, modified in our approach, considering a binary
tournament selection with the following rules:

1) If the two solutions compared are infeasible, we prefer
the solution that violates less the constraints.

2) If the two solutions are infeasible and have the same
constraint violation, we prefer the solution with better
objective function value.

3) If the two solutions are feasible, we prefer the one with
the best (i.e., lowest) objective function value.

DE is shown in Algorithm 1, and consists of the following
stages:
Initialization. A populationPx,0 of Np D−dimensional pa-
rameter vectorx1,i,0, ..., xD,i,0, i = 1, ..., Np is randomly
generated within the lower and upper bound of variables
bL = [b1,L, ...., bD,L] andbU = b1,U , ...., bD,U .
Trial vector generation. At the gth generation, a trial pop-
ulation Pu,g consisting ofNp D−dimensional trial vectors



ui,g − [u1,i,g,...,D,i,g] is generated via mutation and recombi-
nation operations applied to the current populationPx,g.
Differential Mutation. With respect to each vectorxi,g in
the current population, a mutant vectorui,g is generated by
adding and scaling from three randomly vectors selected from
the current population.

Algorithm 1: DE algorithm, which is theglobal search
mechanismadopted by our proposed approach
Data: Cr (crossover rate),F (mutation rate),Sp (size

of population),n (number of variables)
Result: New population

1 begin
2 for i← {1, ..., Sp} do
3 Select randomlyr1, r2, r3 in current population,

wherer1 6= r2 6= r3 6= i ;
4 for j ← {1, ..., n} do
5 if randj [0, 1] < Cr then
6 ui,j ← xr3,j + F (xr1,j − xr2,j) ;

7 else
8 ui,j ← xi,j ;

9 Apply selection rules and replace;

10 return a new population;

B. Constraint Handling Mechanism

We adopted SR as our constraint-handling mechanism,
because it is simple and quite effective. SR is shown in
Algorithm 2.

Algorithm 2: Stochastic Ranking. Constraint-handling
mechanism.
Data: Pf (rate of comparison between objective function

value and penalty function value),Sp (size of
population),

Result: Sorted population
1 begin
2 for i← {1, ..., Sp} do
3 for j ← {1, ..., λ− 1} do
4 if ψ(~xj) == ψ(~xj+1) == 0 || U(0, 1) < Pf

then
5 if f(~xj) > f(~xj+1) then
6 swap(~xj , ~xj+1) ;

7 else
8 if ψ(~xj) > ψ(~xj+1) then
9 swap(~xj , ~xj+1) ;

10 if no swap donethen
11 break;

12 return sorted population;

C. Assortative Mating and Replacement Strategy for the LS
Engine

An important issue is how to define the selection of parents
for applying LS. In our case, we obtained good results using
positive assortative mating [6]. In this selection procedure,
the individuals which are more similar among themselves are
selected for building a neighborhood. We took advantage of
our sorted population (this is done by SR), for selecting the
first and last elements from the population, and then we apply
LS to them. This means that our LS engine explores the
neighborhood of both the best and the worst individuals in
the population. Regardless of the outcome from applying LS,
we add to the population the two individuals obtained from
this exploration. This does not increase the total population
size, since upon applying the selection mechanism of DE, we
return to the maximum population size defined by the user.

D. Local Search Mechanism

In [18], the authors show that the SPX crossover operator
has features that allow it to improve the performance of DE
when solving unconstrained (single-objective) optimization
problems. Based on this, we decided to extend this operator
for dealing with constrained optimization problems. The SPX
crossover operator performs the following steps:
Step 1.Selectnp parent vectors of the population~xG

i , where
i = 1, . . . , np. The selected vectors define the search neighbor-
hood by ak-simplex. In SPX-MACO, we establishnp equal
to 3 parents, for ann-dimensional space.
Step 2.Compute the centroid defined by~O of the k-simplex.
If np is equal to 3, the centroid for the 2-simplex is defined
by:

~O =
1

3

3
∑

i=1

~xi
G (6)

where~xi is a solution vector in the population at generation
G.
Step 3.Apply expansion parameterǫ. Our SPX-MACO adopts
an expansion factorǫ = 1.3
Step 4.Generateri random numbers using:

ri = u
1

i+1 , (i = 1, . . . , np−1), (7)

whereu ∈ [0, 1] is a random number in the range from 0 to
1. For the 2-simplex, these factors arer1 = u

1
2 andr2 = u

1
3 .

Step 5. Compute the values foryi and Ci according to
equations (8) and (9).

yi = O + ǫ(xG
i −O), (i = 1, ..., 3) (8)

~Ci =

{

0, (i = 1)

~ri−1(~yi−1 − ~yi + ~Ci−1), (i = 2, 3)
(9)

Step 6.Generate a descendant~C from equation (10) and return
a new solution.

~C = ~y3 + ~C3 (10)

Algorithm 3 shows our complete LS procedure.



Algorithm 3: SPX crossover operator,local search mech-
anism
Data: np (number of solutions adopted for generating the

simplex),ε (expansion rate for SPX),parentspx

(parent solution for generating the simplex)
Result: New solution

1 begin
2 Compute centroidO = 1

n

∑n

i=1 xi

3 Generate random numbers
ri = u

1
i+1 , (i = 1, . . . , n− 1)

4 Computeyi = O + ε(xi −O), (i = 1, . . . , n)

5 Ci =

{

0, (i = 1)
ri−1(yi−1 − yi + Ci−1), (i = 2, . . . , n)

6 Generate an offspringC = yn + Cn

7 return offspring;

E. SPX-MACO

Our proposed SPX-MACO randomly creates an initial popu-
lation using a uniform distribution. DE is applied as our global
search mechanism for exploring all the search space. Our ap-
proach adopts the selection mechanism previously described,
in order to incorporate the constraints of the problem into
the search process. The new solutions generated by DE are
sorted by the SR method. After that, the simplex crossover
operator is applied to the best and to the worst solutions from
the ranking in order to produce new individuals, which are
added to the population. This process is repeated several times,
until fulfilling the stopping criterion.

Algorithm 4 shows the full pseudo-code of our proposed
SPX-MACO.

VII. E XPERIMENTAL RESULTS

A. Test Problems

The test suite used for validating our proposed approach
consists of 10 test problems taken from the set designed
for a special session organized at the2006 IEEE Congress
on Evolutionary Computation[26]. This set is composed
by different types of objective functions: quadratic, nonlin-
ear, polynomial and cubic. The problems also have different
types of constraints (linear, nonlinear, equality and inequality).
Among the features that make these problems difficult, we
have: high dimensionality, multi-modality, and disjoint feasible
regions.

All the test problems were transformed to the following
format:

Minimize f(~x), ~x = [x1, x2, ..., xn] (11)

subject to:
gi(~x) ≤ 0, i = 1, ..., q (12)

Equality constraints were transformed into inequality con-
straints of the form:

|hj(~x)| − ǫ ≤ 0, with j = q + 1, ...,m (13)

Algorithm 4: SPX-MACO
Data: Pop (initial population),G (number of

generations),np (number of parents selected for
SPX crossover operator)

Result: Best solution
1 begin
2 Generate an initial population with uniform

distribution;
3 while termination criteria is metdo
4 Apply global search mechanism;
5 Sort population usingstochastic ranking;
6 Select the firstnp solutions from the sorted list

(bestsol[np] );
7 Select the lastnp solutions from the sorted list

(worstsol[np]);
8 for bestsol[np] andworstsol[np] do
9 Apply local search mechanism(SPX);

10 The new solution is added to the current
population;

11 G← G+ 1;

12 return the best solution;

where:ǫ is the allowable tolerance for the equality constraints.
In the experiments reported here, we usedǫ = 0.0001.

B. Experimental Methodology

The parameters adopted by our SPX-MACO were the
following (these values were obtained after numerous experi-
ments):

• For SPX:ǫ = 1.3, np = 3
• Penalty function=

∑m

j=1max{0, gj(x)}
2

• For SR (our constraint-handling mechanism):Pf = 0.45
• For SPX-MACO:G = 2500
• DE-related parametersSp = 70, for problems g01, g05,

g07, g10, g14, g17, g19:F = 0.9 andCr = 0.9 and
problems g02, g03,g13:F = 0.8 andCr = 0.6

For validating our proposed approach, we performed 100
independent runs for of the test problems considered, and we
compared results with respect to the following approaches:
stochastic ranking (SR), memetic co-evolutionary differential
evolution (MCODE) and local exploration-based differential
evolution (LEDE). In order to allow a fair comparison, all the
algorithms performed 180,000 objective function evaluations.
Our results are summarized in Table I.

The parameter values used for other algorithms are estab-
lished by the authors in the original proposals.

• MCODE adopted a penalty function of the form:
∑m

j=1 |gj(x)|, and LEDE adopted a penalty function of
the form:

∑m

j=1max{0, gj(x)}.
• The mutation and crossover rates of MCODE were:
F = 0.8, andCr = 0.8, respectively. For LEDE, the
mutation rate was adaptive, and the crossover rate was
set as:Cr = 0.9.



C. Effect of Local Search

Knowing that DE is a very powerful search engine by itself,
it was important for us to determine if the use of local search
was actually beneficial in our proposed approach. Thus, we
performed an additional experiment in which we compared the
results obtained by our approach without LS (this version was
called MACO) with respect to those obtained by our memetic
approach (SPX-MACO). The results of this experiment are
summarized in Table II. These results clearly indicate that
there was an improvement when using LS in practically all
cases.

VIII. C ONCLUSIONS ANDFUTURE WORK

We have proposed here a new memetic algorithm called
SPX-MACO, for solving constrained optimization problems.
The proposed approach is based on the use of DE (in its
rand/1/bin version) as a global search engine, and it also
incorporates a variation of stochastic ranking and a simplex
crossover operator. Local search, in our case, is applied on
the neighborhood of the best and the worst solutions in the
population.

The comparison of results of our SPX-MACO with respect
to those generated by three other state-of-the-art approaches
indicated that our proposal is competitive, while requiring a
low number of objective function evaluations.

As part of our future work, we are interested in applying
our approach to some real-world problems and in extending it
to the solution of multi-objective optimization problems.
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Problem g01 g02 g03 g05 g07 g10 g13 g14 g17 g19
Optimum -15.0 -0.803619 -1.0005 5126.4967 24.306209 7049.248020 0.0539415 -47.764888 8853.5338 32.655592

Stochastic Ranking (SR)
best -15.0 -0.766997 -0.999707 5126.4967 24.307578 7049.999279 0.053943 -47.747134 8875.9217 33.041103

median -15.0 -0.712116 -0.997721 5126.4967 24.307578 7050.863179 0.438802 -47.747134 9034.0876 33.077049
mean -15.0 -0.711341 -0.997962 5126.6555 24.313864 7059.034467 0.331740 -47.742502 9031.3350 33.173030
st. dev 0.0 6.12E-03 6.27E-04 1.15 0.017E-02 47.45 1.62E-01 3.32E-02 22.38 4.07E-01
worst -15.0 -0.706099 -0.997721 5137.9397 24.462913 7525.392220 0.586825 -47.463530 9054.6249 37.153993

Memetic Co-evolutionary Differential Evolution (MCODE)
best -15.0 -0.803616 -1.000498 5126.4967 24.306209 7049.248030 0.053941 -47.764879 8853.5338 32.655726

median -15.0 -0.743683 -0.380902 5126.4967 24.306311 7049.253333 0.438802 -47.650215 8874.3750 32.665956
mean -14.9413 -0.733690 -0.374674 5127.3070 24.311192 7050.045833 0.271123 -47.486428 8900.0818 32.720659
st. dev 2.55E-01 5.51E-02 2.15E-01 8.04 4.41E-02 5.1321 1.99E-01 4.05E-01 48.62 1.28E-01
worst -13.8281 -0.472336 -0.023192 5207.3343 24.750375 7091.226026 0.836580 -45.962903 9161.5502 33.409777

Local Exploration-based Differential Evolution (LEDE)
best -15.0 -0.803618 -1.000500 5126.4967 24.306209 7049.248020 0.135701 -47.764888 8853.5338 32.657763

median -15.0 -0.606640 -1.000500 5126.4967 24.306209 7049.248022 0.438802 -47.742600 8929.3877 32.844874
mean -14.3885 -0.606603 -0.996920 5210.4303 24.306209 7049.248131 0.365329 -47.629776 8956.8311 32.929617
st. dev 9.98E-01 1.05E-01 2.86E-02 146.89 2.21E-06 4.36E-04 1.9E-01 2.75E-01 102.36 3.26E-01
worst -10.6562 0.331449 -0.722965 5706.7416 24.306231 7049.251059 0.999999 -45.890546 9232.4541 35.146084

SPX-MACO
best -15.0 -0.803619 -1.000500 5126.4967 24.306209 7049.248020 0.053941 -47.764888 8853.5338 32.655706

median -15.0 -0.770397 -1.000492 5126.4967 24.306221 7049.248063 0.053944 -47.763423 8913.7372 32.743630
mean -15.0 -0.761270 -0.999010 5126.9478 24.306293 7049.248279 0.053966 -47.632592 8912.5736 32.809258
st. dev 0.0 3.3E-02 7.04E-03 4.65 1.79E-04 6.15E-04 9.81E-05 3.55E-01 36.99 1.55E-01
worst -15.0 -0.671374 -0.961216 5141.9895 24.306933 7049.250759 0.054833 -46.005550 8951.2457 33.206513

TABLE I
COMPARISON OF THE RESULTS OBTAINED BY OURSPX-MACOAND THREE STATE-OF-THE-ART ALGORITHMS: SR, MCODEAND LEDE. THE BEST

RESULTS FOUND IN EACH CASE ARE SHOWN INboldface.

Problem Algorithm best median mean st. dev. worst

g01 MACO -14.999946 -14.999805 -14.999823 9.91E-05 -14.999427
-15.0 SPX-MACO -15.0 -15.0 -15.0 0.0 -15.0
g02 MACO -0.716864 -0.630202 -0.623580 3.37E-02 -0.545416

-0.803619 SPX-MACO -0.803618 -0.770397 -0.761270 3.30E-02 -0.671374
g03 MACO -0.835070 -0.273257 -0.256595 0.122793 -0.083632

-1.0005 SPX-MACO -1.0005001 -1.000492 -0.999010 7.04E-03 -0.961216
g05 MACO 5126.496714 5153.272313 5131.352670 47.776368 5312.815637

5126.4967 SPX-MACO 5126.496714 5126.496714 5126.947831 4.658087 5141.989532
g07 MACO 24.336617 24.364586 24.362005 1.44E-02 24.413607

24.306209 SPX-MACO 24.306209 24.306221 24.306293 1.79E-04 24.306922
g10 MACO 7050.313660 7052.712113 7052.632264 1.187864 7056.516780

7049.248020 SPX-MACO 7049.248021 7049.248063 7049.248279 6.15E-04 7049.250759
g13 MACO 0.346487 0.851239 0.912186 0.153820 0.999510

0.0539415 SPX-MACO 0.053941 0.438802 0.331740 0.162748 0.5868255
g14 MACO -47.757573 -47.632699 -47.666634 0.112765 -47.074625

-47.764888 SPX-MACO -47.764888 -47.764845 -47.736939 0.128721 -46.719956
g17 MACO 8854.615355 8949.925175 8950.020171 58.898262 9176.291456

8853.5396 SPX-MACO 8853.533874 8913.737242 8899.960982 36.999861 8951.24573
g19 MACO 35.864368 38.325524 38.312506 1.045887 41.130285

32.655592 SPX-MACO 32.655706 32.743630 32.809258 0.155246 33.206513

TABLE II
STATISTICAL RESULTS SHOWING THE INFLUENCE OF THE LOCAL SEARCH IN THE PERFORMANCE OF OUR APPROACH. HERE, MACO REFERS TO THE

ALGORITHM WITHOUT LOCAL SEARCH AND SPX −MACO REFERS TO THE VERSION THAT USES LOCAL SEARCH. THE EXACT SAME INITIAL

POPULATION WAS USED FOR BOTH APPROACHES IN ORDER TO AVOID ANYSTATISTICAL BIAS IN THE RESULTS.


