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Abstract. From within the variety of research that has been devoted
to the adaptation of Differential Evolution to the solution of problems
dealing with permutation variables, the Geometric Differential Evolu-
tion algorithm appears to be a very promising strategy. This approach
is based on a geometric interpretation of the evolutionary operators and
has been specifically proposed for combinatorial optimization. Such an
approach is adopted in this paper, in order to evaluate its efficiency on a
challenging class of combinatorial optimization problems: the Job-Shop
Scheduling Problem. This algorithm is implemented and tested on a se-
lection of instances normally adopted in the specialized literature. The
results obtained by this approach are compared with respect to those gen-
erated by a classical DE implementation (using Random Keys encoding
for the decision variables). Our computational experiments reveal that,
although Geometric Differential Evolution performs (globally) as well as
classical DE, it is not really able to significantly improve its performance.

1 Introduction

The Differential Evolution (DE) technique is an Evolutionary Algorithm pro-
posed by Storn and Price in the mid 1990s [22]. Characterized by a novel mu-
tation operator, this stochastic search technique has been found to be a power-
ful optimization tool for solving continuous optimization problems [12]. Unlike
other methods such as Genetic Algorithms, the canonical DE scheme is based
on a floating-point representation of the variables. Thus, the treatment of dis-
crete optimization problems requires an adaptation of its original operators. This
latter observation is even more relevant when dealing with permutation-based
problems since such problems involve, in addition to the discrete values restric-
tion, inherent constraints of interdependence among variables.

A significant amount of research has been recently devoted to this issue and
many techniques have been proposed, particularly focusing on methods for con-
verting real variables into permutations. However, none of all these techniques
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has succeeded in avoiding the redundancy in the mapping from real to permu-
tation spaces. As a consequence, the results obtained by DE are not able to
satisfactorily compete with those obtained by other metaheuristics when tack-
ling complex permutation-based problems. The other path for adapting DE to
problems dealing with permutation variables is the modification of the DE’s
operators. In 2009, A. Moraglio et al. adapted a geometric framework (previ-
ously introduced for Particle Swarm Optimization [13]) for its use with the DE
metaheuristic. The differentiation was transformed into a geometric operation,
applicable in any space when adopting an appropriate metric. In [14], the authors
mainly focused on the consideration of binary spaces and reported interesting
results for NK landscapes and Spears-DeJong functions. In a recently released
technical report [15], permutation and program spaces are further tackled. The
aim of the present paper is thus to evaluate the behavior of such a technique,
called Geometric Differential Evolution (GDE) for permutation spaces, on a
challenging problems class.

As a case study, the Job-Shop Scheduling Problem is chosen, for two main
reasons. First, there is no need to emphasize its inherent complexity, already
evidenced in many studies and simply justified by the inability for state-of-the-
art algorithms to identify optimal solutions of complex instances of this prob-
lem. The second reason is a previous work on the JSSP, which analyzed the
performance of techniques based on the transformation of real numbers to per-
mutations [20]. This precedent will allow us to compare the two strategies, i.e.,
transforming either the variable representation mode or the operators. The re-
mainder of this paper is organized as follows. Section 2 presents a short overview
on JSSP, while Section 3 is dedicated to the definition of the permutation-based
GDE algorithm. The experimental methodology and computational results are
presented in Section 4. Finally, some conclusions are drawn in Section 5.

2 Overview of the JSSP

2.1 A review on solution techniques

Scheduling problems, because of their many applications not only in the indus-
trial but also in the service fields [19], have attracted an increasing interest within
the Operations Research community. In the manufacturing area, the Job-Shop
Scheduling Problem is one of the most complex examples. In this problem, a set
of jobs, which all consist of several operations, is processed in a certain order on
a set of machines. The processing sequence of each job operations on the ma-
chines and the associated processing times are the problem data. The objective
is, then, to minimize the completion date of the last scheduled operation.

Because solving exactly the JSSP constitutes a challenging issue, much of
the research efforts have focused on the development of efficient methods. Re-
searchers have first concentrated on exact optimization techniques based on the
disjunctive graph representation [21]. However, the JSSP is hard for exact al-
gorithms and optimal solutions can be provided for instance sizes up to about
10 machines and 10 jobs. This feature has led to the development of heuristics
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methods: the Shifting Bottleneck heuristic (particularly the SB-I and SB-II ver-
sions presented in [1]) is an example of a heuristic which achieves very good
results even for mid-size and large instances.

With the development and enhancement of several metaheuristics, a variety
of local search and population-based heuristics have been applied to the JSSP:
Simulated Annealing [24], Tabu Search [23], Genetic Algorithms [6], GRASP [2],
etc. Aiming at simultaneously exploiting the benefits of several methods, hybrid
techniques have also been frequently used: Genetic Local Search [9], Ant Colony
Optimization coupled with a Tabu Search approach [10], a Tabu Search/Simu-
lated Annealing hybrid [26]. The two Tabu Search based algorithms proposed
by Nowicki and Smutnicki (TSAB [17] and i -TSAB [18]) have provided the best
results reported until now for this problem.

2.2 Problem formulation

The classical JSSP aims at assigning a finite set O of operations to a finite set
M of machines (|M | = m). Each operation oij ∈ O belongs to the sequence
of a job j and must be processed on a specific machine i. Conversely, each job
j ∈ J is characterized by a subset of operations Oj ⊂ O that must be processed
according to a defined order. Unlike the Flow-Shop case, the processing sequence
differs from one job to another. In most cases, each job j is processed exactly
once on each machine i, so that the total number of operations is |O| = nm and
the commonly used nomenclature refers to n×m-instances.

The typical objective of the classical JSSP is then to minimize the completion
time of the last operation scheduled, namely the makespan, while respecting
the following major constraints: (i) one machine cannot simultaneously process
more than one job at a time, (ii) preemption is not allowed, (iii) the processing
sequence of the operations belonging to a job must be respected (the starting
time of any operation is higher than the completion time of its predecessor).

The solution is an assignment of operations to machines on a precise time
period and is called a schedule. When an appropriate schedule builder is used (see
next section), this solution can be formulated as a multi-permutation, i.e., a set
of job permutations associated to each machine. The cardinality of all possible
solutions to the JSSP is therefore (n!)m.

2.3 Schedule classes

Attention must be paid to the fact that, for a given multi-permutation, an infinite
number of schedules might be built. An important issue therefore concerns the
construction of the schedule. Among the feasible schedules, the active schedules
are those for which no operations can be brought forward without delaying
another operation. It is well known that optimal schedules belong to the active
class [16]. Another relevant schedule class is the non-delayed one, for which no
idle time is allowed on a machine if this latter is free and an operation is available
for processing. This latter class also constitutes a subset of the active schedules
class, but may not contain the optimal solution.
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In the following, a schedule builder based on the parameterized Giffler &
Thompson’s algorithm is used [8]. This technique produces schedules that lie on
an region intermediate between the active and non-delayed classes, through the
introduction of a parameter δ that controls the number of possible schedules,
i.e., the number of solutions in the search space of the considered problem. When
δ=0, the built schedule is non-delayed while δ=1 allows the generation of active
schedules. This parameter should be tuned for each treated instance.

3 Geometric DE for multi-permutation spaces

The aim of this section is not presenting the whole theoretical framework and
detailed insights of the geometric adaptation of Differential Evolution to permu-
tation spaces, since such information can be found in [15]. We only provide here
the features necessary for a global understanding and for the implementation of
permutation-based GDE.

3.1 A geometric framework for DE

The basic idea in GDE is a re-interpretation of the evolutionary operators ac-
cording to a geometric point of view. Considering two vector solutions as points
in the space, the crossover of these two parents can be seen, in this sense, as
a geometric operation returning a point within the segment defined by the two
original solutions. The distance between the offspring vector and both parents
is then implicitly determined by the crossover rate. Clearly, in this context, the
definition of an appropriate metric associated to the considered seach space is
required; but this allows the extension of such concepts to any space endowed
with an adequate distance.

In [14], the reformulation of the DE operators is proposed according to this
geometric paradigm. Consider the classical DE mutation operator:

uG
ij = xG

3j + F (xG
1j − xG

2j),∀j ∈ {1, ..., N} (1)

where uG
ij is the mutated offspring generated for parent xG

ij , while xG
1j , xG

2j , xG
3j

are randomly selected individuals in the current population (xG
1j 6= xG

2j 6= xG
3j 6=

xG
ij) and F (F ∈ [0,1]) is the scaling factor.

Setting W = 1
1+F , then equation (1) can be written as:

W · uG
ij + (1−W ) · xG

2j = W · xG
3j + (1−W ) · xG

1j ,∀j ∈ {1, ..., N} (2)

Consider that U, X1, X2 and X3 are the point-wise representations associ-
ated to vectors uG

ij , xG
1j , xG

2j and xG
3j , respectively. The differentiation operator

can be represented as illustrated in Fig. 1 (taken from [14]): point E is the result
of the convex combination of points X3 and X1 with weights W and 1 −W
respectively, and can be constructed since X1 and X3 are known. Subsequently,
point U can be deduced as the point on the extension ray (ER) going out of X2
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and passing through E (E is the result of the convex combination of points U
and X2 with weights W and 1 −W , respectively). Thus, creating algorithmic
procedures that translate the convex combination and extension ray operations
would allow to design a geometric interpretation of the differentiation operator
based on the definition of a metric adapted to the considered space.

Fig. 1. Construction of U using convex combination and extension ray procedures

Similarly, regarding the crossover procedure, Moraglio et al. prove that the
discrete recombination applied to uG

ij and xG
ij (or, according to the geometric

paradigm, points U and Xi) produces an offspring that can be seen as the
convex combination of points U and Xi with weights Cr and 1−Cr respectively,
where Cr is the crossover rate used within DE.

3.2 GDE for the JSSP

In order to adapt the GDE framework to the job-shop scheduling problem, a
metric must be defined for permutation spaces. The distance between two con-
figurations will subsequently be computed as the sum of the distances between
the permutations, in each schedule, associated to every machine. This is proposed
in [15]. The swap distance appears to be particularly appropriate for the JSSP:
swapping two jobs in a sequence is a neighborhood definition commonly used
within many local search methods. The swap distance between two sequences
is then equal to the number of swapping mutation steps necessary to transform
one permutation into another.

In other words, let us consider that the permutation vectors constitute the
nodes of an undirected graph whose edges represent a swapping move between
two neighbor permutations (i.e. one permutation is attainable from the other
by only one swapping mutation step). The swap distance is thus the shortest
path, on this graph, to get from one vector to another. Note that this concept
involves, for a permutation having n elements, a total “diameter” of the search
space (maximum distance between two permutations) equal to n− 1.

Accordingly, for the convex combination procedure, the swap distance be-
tween both initial vectors is computed and the new vector is derived in such a
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way that it lies between the initial strings, at a distance obtained from multi-
plying each weight by the total swap distance. These distances are interpreted
as probabilities in order to construct a mask that determines, for each position,
to which parent element the offspring must be equal to. A similar procedure is
developed for the extension ray, in such a way that the convex combination of
the new vector and one of the initial ones results in the other parent. When the
distance between the initial strings is equal to the diameter of the search space,
it is impossible to generate an offspring farther away from one of them (outside
the segment defined by the initial vectors). Both of these processes are repeated
for each permutation in the schedule configuration (i.e., for every machine).

The detailed algorithms for all the above-mentioned procedures (computing
swap distances, convex combination and extension ray) are not presented here
but are explained in detail in [15].

4 Computational experiments

4.1 Methodology

The permutation-based GDE algorithm is evaluated on a selection of instances
chosen among several sets of JSSP instances commonly used in the specialized
literature:

- 3 instances due to [7]: FT06, FT10, FT20.
- 2 instances due to [1]: ABZ5, ABZ6.
- 6 instances due to [3]: ORB01-ORB06.
- 7 instances due to [11]: LA22, LA24, LA25, LA27, LA37, LA38, LA40.
- 4 instances due to [25]: YN1-YN4.

These examples, drawn from the OR-library [5], can be basically divided into
three groups, according to their complexity: easy (FT and ABZ), medium (ORB
and LA) and difficult instances (YN).

With respect to the GDE parameters tuning, population size NG and gener-
ation number NG are set in such a way that the number of objective evaluations
NP × NG is equal to the values commonly reported in the literature (note,
however, that this criterion may not always be fair since, in many cases, a sim-
plified objective computation mode is devised in order to shorten computational
times). Concerning the crossover rate Cr and the amplification factor F, prelim-
inary computations indicated that the best results are obtained when the former
adopts rather high values (between 0.8 and 1) and when the latter adopts values
randomly generated between 0.3 and 0.9.

4.2 Standard random-keys DE

As mentioned before, the aim of this study is to compare both strategies when
adapting DE to problems dealing with permutation variables, i.e., adapting the
variable representation mode or the internal DE’s operators. So, according to
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this, the results obtained by the described GDE algorithm are compared here
against those of a standard DE.

The DE version used here, fully described in [20], is DE/rand/1/bin, which
means that the vectors used within the differentiation operator are randomly
selected, only one difference is used and a binary crossover is performed for each
variable independently. Besides, the main feature of the algorithm is the encoding
procedure. In order to handle permutations, the Random Keys method, initially
proposed in [4], was implemented. A real number, bounded between 0 and 1,
is used for each operation and operations corresponding to the same machine
are sequenced according to the increasing order of their associated variable. For
instance, considering 5 jobs with the following variable vector on machine i : [0.41
0.68 0.02 0.85 0.37], the resulting sequencing order is: [2 4 0 1 3]. The Random
Keys technique is chosen here because it proved to be more efficient and effective
than two others (i.e., evolving dispatching rules and binary matrix priority based
on the disjunctive graph) as indicated in the comparative study reported in [20].

Besides, since the differentiation mutation is likely to produce variables lying
outside their bounds, a mixed constraint-handling technique is applied according
to a given probability PB (tuned for each instance): (i) setting the variable value
to the violated bound; (ii) using the violated bound as a symmetry center to
send the considered variable to the feasible side of the boundary.

4.3 Results

For each instance, we performed 20 runs of each method (classical DE and GDE).
The comparison is obviously drawn for equal numbers of objective evaluations.
The values reported in Table 1 indicate, for each technique, Makespan Relative
Errors (with respect to a reference makespan) and standard deviation of the
results over the 20 runs. b-MRE (respectively, to m-MRE ) reports the error of
the best objective value found over 20 runs fBest (respectively, the mean value
of the objective over the 20 runs fMean). The reference makespan is, typically, a
lower bound LB (optimal for all instances, except for YN1-YN4). Note that the
standard deviations provided in Table 1 are computed according to the makespan
values and not to the relative errors. The relative error is computed according
to the following formula:

b−MRE = 100× fBest − LB
LB

(3)

m−MRE = 100× fMean − LB
LB

(4)

A global observation of Table 1 shows a similarity of both techniques’ perfor-
mance. Regarding the b-MRE indicator, both methods provide similar results
for 36% of the treated instances. With respect to m-MRE, GDE is better in 45%
of the considered cases while the Random Keys DE is better for 50%.

However, some differences appear when considering separately each problem
category. On the one hand, GDE provides the best results for simple and com-
plex instances and, on the other hand, the Random Keys DE performs better
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Table 1. Computational results

Instance Size LB/Opt.
Geometric DE Random Keys DE

b-MRE m-MRE S. Dev. b-MRE b-MRE S. Dev.

FT06 6×6 55 0 0.18 0.31 0 0.18 0.44
FT10 10×10 930 1.40 2.33 4.50 1.40 1.97 5.07
FT20 20×5 1165 1.12 1.12 0.45 1.29 1.45 0.34
ABZ5 10×10 1234 0.41 0.44 1.47 0.41 0.84 4.87
ABZ6 10×10 943 0.53 0.53 0 0.53 0.73 4.97

Average 0.69 0.92 1.35 0.72 1.04 3.14

ORB01 10×10 1059 1.04 1.08 1.79 1.04 1.11 2.40
ORB02 10×10 888 0.68 0.92 1.44 0.79 0.99 1.64
ORB03 10×10 1005 1.59 3.86 9.37 1.59 2.54 6.73
ORB04 10×10 1005 1.09 1.94 3.99 1.29 1.92 4.22
ORB05 10×10 887 0.79 1.89 2.05 1.01 1.91 4.36
ORB06 10×10 1010 1.09 1.78 4.70 0.89 1.89 6.38
LA22 15×10 927 3.67 4.95 5.59 1.40 3.67 7.65
LA24 15×10 935 3.21 4.51 4.85 2.14 2.83 3.56
LA25 15×10 977 3.48 5.32 5.83 2.56 3.50 6.12
LA27 20×10 1235 5.67 7.10 7.28 4.78 6.44 8.85
LA37 15×15 1397 3.58 4.82 5.08 2.08 3.57 9.75
LA38 15×15 1254 4.85 6.59 7.96 3.01 3.71 5.30
LA40 15×15 1222 4.09 5.11 5.96 1.96 2.59 5.04

Average 2.68 3.83 5.07 1.89 2.82 5.54

YN1 20×20 846 12.06 14.02 6.10 13.36 14.59 5.40
YN2 20×20 870 12.64 14.86 7.42 13.86 15.23 6.73
YN3 20×20 840 13.45 14.73 5.47 14.40 15.48 4.60
YN4 20×20 920 14.13 16.01 5.50 14.89 15.49 4.01

Average 13.07 14.91 6.12 14.08 15.20 5.18

for medium instances. This behavior is further moderated for medium instances
since GDE is slightly better for the ORB class while being completely outper-
formed by the Random Keys DE in the LA class. This comment highlights the
fact that understanding why some instances are more difficult for one method
than for another still remains as an open question.

It is worth recalling that state-of-the-art algorithms, such as TSAB and i -
TSAB (complete results available in [17] and [18]) generally perform much better
than both of the DE versions considered here (specially on hard instances but
also for the simple ones, for which optimal solutions can be systematically deter-
mined). This comment must balance the previous observations concerning the
quality of the obtained results.

The deceiving results obtained by GDE could be tentatively explained by
the extension ray procedure used within the geometrically adapted differentia-
tion. As underlined in [15], this operation consists in generating point U (the
mutant, see Fig. 1) beyond point E, which is itself computed as the convex com-
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bination of points X1 and X3. However, in many cases, the distance between
X2 and E is already equal to the maximum distance between two permutations
(called the “search space diameter” in [15]). As a consequence, point U is equal
to point E, meaning that the differentiation operator degenerates into the sim-
ple convex combination of two parents X1 and X3: the explorative power of
the method is thus significantly damaged. Note that this phenomenon does not
occur for smaller alphabets (binary search spaces) because the probability to
generate two points separated by the maximum distance is much lower than in
the permutation case. Finally, this observation shows that GDE might not pro-
vide competitive results for high cardinality alphabets, especially if the variable
string size is big.

5 Conclusions

We presented in this study an evaluation of the Geometric Differential Evolu-
tion algorithm, adapted to the treatment of problems dealing with permutation
variables, recently proposed in [15]. The Job-Shop Scheduling Problem has been
adopted because it represents a challenging problem class for which a widely de-
veloped bank of instances is available. The results showed that the permutation-
based GDE globally performs as well as a classical implementation of DE for this
problem class. This may lead to the conclusion that this novel algorithm, based
on a modification of the initial DE’s operator, is really viable and able to com-
pete with a DE version having a special variables encoding mechanism for the
treatment of permutation-based problems. However, GDE is not able to signifi-
cantly improve the performance of classical DE for non-continuous optimization
problems and would be still outperformed by other metaheuristics (particularly
Tabu Search in the JSSP framework). Thus, more research is required in order
to produce a more competitive DE variant for problems such as JSSP.
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