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Abstract. Recent works have shown how hybrid variants of gradient-
based methods and evolutionary algorithms perform better than the
pure evolutionary method both for single-objective and multiobjective
optimization. This same idea has been used with Evolutionary Multiob-
jective Optimization (EMO), obtaining also very promising results. In
most of the cases, gradient information is used as part of the mutation
operator (and only for unconstrained MOPs), in order to move every
generated point to the exact Pareto front. In our approach, we use the
Karush-Kuhn-Tucker optimality condition for constrained optimization
problems to combine the information provided by the gradient vector of
each objective function and the gradient vectors of constraint functions to
obtain a feasible movement direction in those points near the border. In
our approach, gradients of the objective functions will be approximated
using quadratic regressions, trying to avoid local optima. The proposed
algorithm is able to converge on several nonlinear constrained multiob-
jective optimization problems obtained from a benchmark, consuming
few objective function evaluations (between 150 and 1000). Our results
indicate that our proposed scheme may produce a significant reduction
in the computational cost, while producing results of good quality, if
it is incorporated in a hybrid MOEA or if it is used to seed an EMO
algorithm.

Key words: Gradient-based method, constrained optimization, nonlin-
ear multiobjective programming, quadratic approximation

1 Introduction

MOEAs have been very successful in the solution of a wide variety of problems,
mainly during the last few years [2]. However, for certain types of applications,
MOEAs result particularly expensive (computationally speaking), since they re-
quire a large number of objective function evaluations in order to produce an
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acceptable approximation of the true Pareto front, specially for constrained prob-
lems, where a suitable constraint-handling mechanism is needed.

On the other hand, the classical (exact) methods for (multi-objective) opti-
mization (gradient based methods) consume just a few number of evaluations,
but can be trapped in local optima and require a lot of assumptions about the
problem: continuity, differentiability, explicit mathematical formulation, etc.

Besides, under proper assumptions, Newton’s method is quadratically conver-
gent, but its efficiency is reduced by its expensive computational cost, especially,
for the middle-large scale problems. The key point is to evaluate the gradient
and the Hessian efficiently, and two different approaches can be found:

– Use analytical derivatives The first option is manually obtaining analytic
derivatives of each objective and constraint functions. But this is only possi-
ble if an explicit mathematical formulation is available, and this is the main
weakness of this approach as many interesting problems could not be solve:
simulation based problems, design problems, etc. On the other hand, it is
an error-prone activity, because if the formulation is complicated, obtaining
analytical derivatives can be a hard task.

– Use estimated derivatives In this category we can find the Newton-like
methods, where derivatives are estimated in some efficient way. These meth-
ods do not require explicit formulae of derivatives but, on the other hand,
consume some more evaluations in order to compute the estimation.

On the other hand, the use of gradient information for constrained optimiza-
tion problem has been widely use for many years. Techniques such that Barrier
Methods and Penalty functions (see [3]), Interior-Point Methods ([7]) or Pro-
jected Gradient ([5], [8]) have been successfully used in continuous optimization.

Barrier and penalty methods are designed to face the problem by solving
a sequence of specially constructed unconstrained optimization problems. In a
penalty method, the feasible region is expanded from the feasible region to all of
R

n, but a large cost or “penalty” is added to the objective function for points that
lie outside of the original feasible region. In a barrier method, we assume we are
given a starting point in the interior of the feasible region, and we impose a very
large cost on feasible points that lie ever closer to the boundary of feasible region,
thereby creating a “barrier” to exiting the feasible region. Interior-point methods
moves through the interior of the feasible region following the gradient vector
of the objective function generating approximated solutions that asymptotically
converge to the exact solution, while projected gradient orthogonally projects
new generated unfeasible solutions over the feasible region.

In this work we propose an easy-to-implement method to iteratively generate
nondominated solutions for constrained multiobjective optimization problems.
In this method we use “global” estimated derivatives for the objective
functions (and analytical derivatives for constraint functions) but consuming
the less evaluations as possible while maintaining a high quality on the results.
We propose its use to seed and EMO method instead of using it along the whole
process (consuming too many evaluations).
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2 Definitions and basic concepts

We assume the following definition of a constrained MOP problem1:

Minimize f (x) := (f1(x), f2(x), . . . , fs(x)) (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . , m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = (x1, x2, . . . , xn)
T

is the vector of decision variables (normally bounded
ai ≤ xi ≤ bi), fi : R

n → R, i = 1, ..., s are the objective functions, and gi, hj :
R

n → R, i = 1, ..., m, j = 1, ..., p are the continuously differentiable constraint
functions of the problem.

Given a function f : R
n → R, for x ∈ R

n, a direction v ∈ R
n is a descent

direction if (· denotes the inner product and ∇f the gradient vector of f):

∇f(x) · v < 0 (4)

A generalized gradient method can be summarized in the following equation:

xk+1 = xk + αkvk

where vk is a descent direction and αk is the step size. One of the most commonly
used choice for the descent direction is the following (steepest descent direction):

xk+1 = xk − αk∇f(xk)

Obviously, one of the main difficulties for constrained problems is the feasi-
bility of xk+1. Specially when the constraints are nonlinear, a balance has to be
achieved between satisfying the constraints and reducing the objective function.

Moreover, choosing the optimum step size αk is desirable, but it may be
computationally expensive. Some other approaches, which has good properties
(e.g., convergence), are quite efficient. One of the most efficient is the Armijo’s
rule:

Let β ∈ (0, 1) be a prespecified value, let v be a descent direction and let x
be the current point. The condition to accept t (the step size) is:

f(x + tv) ≤ f(x) + βt∇f(x) · v

where we start with t = 1 and while this condition is not satisfied we set t := t/2.
The choice of β can be critical because the bigger the value of β, the bigger

the steps we can implement at the beginning; but the more evaluations that can
be consumed if too many reductions of t must be done to achieve the condition.
Armijo’s rule is mathematically correct and the “t” value always exists. However,
this value could be very small, which would be translated into an insignificant

1 Without loss of generality, we will assume only minimization problems.
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progress (this is, in fact, the main disadvantage of Armijo’s rule). This problem
is more significant for box-constrained problems or, in general, for constrained
problems when the current solution is over or close to the boundary between the
feasible and infeasible regions, or to the boundary of one of the decision variables,
and the descent direction moves it outside of the feasible space. Depending on
the violated constraints, we distinguish two cases: (a) if the new solution xk+1

violates constraints in (2) or (3) or, (b) if some variables of xk+1 is out of its
range.

(a) Lets denote by c1(x), c2(x), ..., cq(x) the violated constraints by xk+1. The
Karush-Kuhn-Tucker optimality condition (for equality constraint problems)
states that x∗ is a local minimizer if there exist real numbers λ1, ..., λq (La-
grange multipliers) such that

∇f(x∗) =

q∑

i=1

λi∇ci(x
∗).

In a regular situation (for example, if ∇f(x∗) and ∇ci(x
∗), i = 1, ..., q, are

independent), the above condition is imposible to achieve. This means there
exists a feasible direction v obtained by decomposing ∇f(x∗) in its pro-
jection over the space generated by {∇c1(x

∗), ...,∇cq(x
∗)} and its normal

component, v. So, this normal vector v is computed taken into account that
v = ∇f(x∗)−

∑q

i=1 λi∇ci(x
∗) has to be orthogonal to ∇ci(x

∗), for all i. So,
the coefficient vector (λ1, ..., λq) may be obtained by solving the system (all
gradient vectors are evaluated in x∗)




∇c1 · ∇c1 ∇c1 · ∇c2 · · · ∇c1 · ∇cq

∇c2 · ∇c1 ∇c2 · ∇c2 · · · ∇c2 · ∇cq

...
...

...
...

∇cq · ∇c1 ∇cq · ∇c2 · · · ∇cq · ∇cq







λ1

λ2

...
λq


 =




∇f · ∇c1

∇f · ∇c2

...
∇f · ∇cq


 .

Then, if xk+1 violates constraints c1, c2, ..., cq and the current solution xk

is close enough to them (in order to consider these constraints as active
constraints), the feasible direction considered is the above normal vector
(reducing the step size until xk+1 is feasible). The key issue is the following:
The closer xk to these violated constrains, the more precise the feasible di-
rection v but, due to some of these constraints are nonlinear, the closer xk to
constrains, the smaller the step size to obtain a feasible move. In our experi-

ments, x is considered close, or ε-active, to constraint ci if |ci(x)|
∇ci(x)·∇ci(x) < ε.

(ε = 0.001 for linear constraints and ε = 0.1 for nonlinear constraints).
(b) In this case, we apply the following rules for each violated variable i:

– If xk+1
i < ai, then xk+1

i =
ai+xk

i

2 .

– If xk+1
i > bi, then xk+1

i =
bi+xk

i

2 .

This way, the current solution xk is moved in a intermediate direction be-
tween the direction induced by ∇f(xk) and its projection over the violated
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constraints (like in (a)). In an informal sense, this kind of transformation
is also an adapted Armijo’s rule but considering different step sizes in each
coordinate.

3 Gradient Based method for Multi-Objective

Optimization

The goal now is trying to adapt some of the principles of single-objective opti-
mization to obtain a number of efficient points of the MOP problem. The main
idea is based on the Fritz-John optimality condition for MOP problems (see for
example [4])

– Given a point x ∈ X , a necessary condition to be Pareto optimal solution is
the existence of λ ≥ 0 such that:

p∑

i=1

λi∇fi(x) = 0

For a bi-objective optimization problem, this condition means that for any
Pareto optimal solution, we can find some λ ≥ 0 such that ∇f1(x) = −λ∇f2(x).
This is, for any Pareto optimal point, gradients of both objective functions are
parallel but in the opposite direction. It means that if we are placed in the
minimum of one of the objectives (for example the minimum of f1, a Pareto
optimal solution) and follow the direction of ∇f2(x), we will keep in the Pareto
front. This is shown graphically in Figure 1.

F (x)1

F (x)2

F (y)1

F (y)2

x y

Fig. 1. Pareto front on a bi-objective problem

This idea was used in [10], where they link s+1 local searches (more precisely,
tabu searches). The first local search starts from an arbitrary point and attempts
to find the optimal solution to the problem with the single objective f1. Let x1

be the last point visited at the end of this search. Then, a local search is applied
again to find the best solution to the problem with the single objective f2 using
x1 as the initial solution. This process is repeated until all the single-objective
problems associated with the s objectives have been solved. At this point, they
solve again the problem with the first objective f1 starting from xs, to finish
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a cycle around the efficient set. This phase yields the s efficient points that
approximate the best solutions to the single-objective problems that result from
ignoring all but one objective function, and additional efficient solutions may be
found during this phase because all visited points are checked for inclusion in the
approximation of the Pareto front, as probably most of the intermediate points
will lie on the Pareto front. This way, they obtain an initial set of efficient points
to be used as an initial population for the EMO method developed in [10].

In this work, we are going to use the same idea, link s + 1 single objective
local searches, but using a single-objective gradient based method instead of a
tabu search. The next subsection is devoted to show the main features on this
gradient-based local search mechanism.

3.1 Single-Objective Gradient based method

For our local search engine, we are going to use an steepest descent method, this
is, given the current point xk, the next point will be computed as follows:

xk+1 = xk − t · ∇̃f(xk)

where ∇̃f(xk) is an estimation of ∇f(xk) (or its projection/modification seen
in the above section), and t will be computed following our adapted Armijo’s
rule with β = 0.1 and starting with the value of t = 1. The reason to choose a
low value for β is the fact that small steps are also interesting for us while we
are on the Pareto front, as we are checking every intermediate solution for being
included in the final approximation. This is, we are not only interested in the
final point of each search, but also in the intermediate points.

To estimate the gradient of a function f , we will use a quadratic approxima-
tion over all its domain:

f(x) ≈ β0 +

n∑

i=1

β1
i · xi +

n∑

i=1

n∑

j=i

β2
i,j · xi · xj

This means that we are interested in global gradients instead of the local
information provided by a precise estimation of the gradients at each solution.

The number of parameters (N) to adjust such an approximation for a func-

tion with n variables is: N = 1 + n + n(n+1)
2 = n2+3n+2

2 . N represents the mini-
mum number of points needed to adjust such an approximation. For a problem
with 30 variables, for example, at least 496 will be needed. In order to generate
these N points efficiently, we used Latin-Hypercubes [9], which is a method that
guarantees a good distribution of the initial population in a multidimensional
space, as it is required in order to better fit the function with this quadratic
approximation. Once these points are generated and evaluated, we compute the
values of each parameter solving the corresponding system of equations using
a pseudo-inverse (due to its complexity when N is increased). This system of
equations can be formulated using matrices: X ·B = Y , so X ·B = (XtX)−1XtY .

Finally, we assumed the following stopping conditions:
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1. The step is too small, this is, the estimated gradient or the projected gradient
is too small: t · ‖∇̃f(xk)‖ < 0.01, or

2. The improvement is too small: |f(xk+1) − f(xk)| < 0.001.

The complete method is summarized in Algorithm 1.

Algorithm 1 Constrained Multi-Objective Gradient Based method: CMGBM

1: Generate a set InitPop with N initial points using Latin-Hypercubes.
2: Send each point in InitPop to the list of nondominated solutions: PF .
3: Use the set InitPop to adjust a quadratic approximation of each objective function

over all its domain.
4: for each objective function fi (repeating the first one) do
5: x0 =last point visited or random solution in PF when i = 0
6: while stopping conditions = FALSE or xk+1 is unfeasible do
7: Obtain xk+1 through the gradient-based method using e∇fi(x

k).
8: If xk+1 is unfeasible, check ε-active constraints for xk.
9: If xk is an interior point (it has no ε-active constraints), reduce the step size.

Otherwise, obtain a new xk+1 through the projected gradient over the ε-active
constraints.

10: Send xk+1 to PF .
11: end while
12: end for

4 Preliminary Results

To test the performance of CMGBM, we solved several constrained optimization
problems from the benchmark: Srinivas ([13]), Osyczka and Osyczka2 ([11]),
Tanaka ([14]), Binh ([1]) and Jimenez ([6]). All of them are nonlinear bi-objective
optimization problems with several nonlinear constraints. Moreover, they all
have 2 decision variables, but Osyczka which has 6 variables. For a quick overview
of these test functions, it can be seen www.cs.cinvestav.mx/ ∼ emoobook/.

Results obtained by CMGBM are not compare against other algorithms be-
cause the main aim is to show the viability of this scheme to obtain nondominated
solutions over the true Pareto front. This is why we perform 11 independent runs,
measured using the Inverted Generational Distance, IGD ([15]). IGD measures
the euclidean distance from the true Pareto front to the approximated front,
previously normalized to allow a fair comparison. So, the closer the IGD value
to zero, the better the approximation. IGD = 0 is obtained only when the ap-
proximated front is over the true Pareto front and the extremes have been also
achieved.

It can be observed in Table 1 that CMGBM produced IGD values really close
to zero. The first column shows the best IGD values (min), next one shows the
mean IGD values and its corresponding standard deviation. The third column
show the worst (max) of the eleven IGD values. Finally, last two columns show
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the average of the number of nondominated solutions obtained by CMGBM and
the mean value of the number of evaluations consumed. For these problems, the
CMGBM is able to find a high number of exact efficient points using very few
evaluations.

Test Function / IGD Min Mean (SD) Max N. Points N. Eval.

Srinivas 0.057 0.089 (0.013) 0.107 74.455 406.6

Osyczka 0.171 0.296 (0.136) 0.570 64.000 544.2

Osyczka2 0.102 0.140 (0.018) 0.159 37.546 917.4

Tanaka 0.091 0.489 (0.410) 1.227 17.091 239.8

Binh 0.046 0.072 (0.012) 0.084 224.727 594.1

Jimenez 0.010 0.043 (0.063) 0.216 129.091 262.3

Table 1. IGD values for the selected six test problems.

Figure 2 shows the nondominated solutions got by CMGBM. These plots
correspond to the best run (top) and the run in the median value (bottom) with
respect to the IGD metric. We can clearly see that in all problems, but Osycka2,
CMGBM converged to the true Pareto front after only about 500 fitness function
evaluations. And even for the hardest problem (Osyczka2), CMGBM obtained
some good solutions after only 1000 evaluations. On the other hand, CMGBM
was able to obtain the extreme points (of each objective function) in most of the
cases.

5 Conclusions

We have introduced a Constrained Multi-Objective Gradient-Based Method
(CMGBM) in order to generate efficient solutions of nonlinear constrained multi-
objective optimization problems with a low number of objective function eval-
uations. The main contribution is the way we use estimated gradient vector of
the objective functions and the gradient vector of the constraints to obtain an
improvement direction. Results show the efficiency of this method over several
nonlinear constrained MOPs, since CMGBM obtain good approximations of the
Pareto front consuming few objective function evaluations. With this preliminary
results we show how the use of gradient information could reduce the computa-
tional cost while quality is not decreased. We think, this gradient information
could be so useful to seed EMO algorithms and enhance their convergence. This
strategy could be more efficient than using gradients through all the EMO exe-
cution because once the EMO method is provided with solutions close (or in) to
the Pareto front, the use of gradient information is consuming a lot of evaluations
while not providing sensible advantages.

In the future, besides completing a comprehensive set of experiments, we
would like to improve this scheme using also approximated gradient vectors of
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Fig. 2. Best (top) and median (bottom) IGD values obtained by CMGBM for selected
problems
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the constraints, and adapt this mechanism for problems with more than two
objective functions.
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