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ABSTRACT
Scalarizing functions have been successfully used by Multi-Objective
Evolutionary Algorithms (MOEAs) for the �tness assignment pro-
cess. �eir popularity has to do with their low computational cost,
their capability to generate (weakly) Pareto optimal solutions, and
their e�ectiveness in solving many-objective optimization problems.
Nevertheless, recent studies indicate that the search behavior of
MOEAs strongly depends on the choice of the scalarizing function.
Besides, this speci�cation varies according to the Pareto-front geo-
metry of the problem at hand. In this work, we present a novel
hyper-heuristic for continuous search spaces, which combines the
strengths and compensates for the weaknesses of di�erent scala-
rizing functions. �ese heuristics have been proposed within the
evolutionary multi-objective optimization and mathematical pro-
gramming communities. Furthermore, the selection of heuristics is
conducted through the s-energy, which measures the even distribu-
tion of a set of points in k-dimensional manifolds. Experimental
results indicate that our proposed approach outperforms the use of
a single heuristic as well as other state-of-the-art algorithms in the
majority of the ZDT, DTLZ and WFG test problems.

CCS CONCEPTS
•Computing methodologies→ Continuous space search;

KEYWORDS
Multi-objective optimization, Genetic algorithms, Heuristics, Selec-
tion
ACM Reference format:
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1 INTRODUCTION
In this work, we focus on Multi-objective Optimization Problems
(MOPs), which comprise the simultaneous minimization of several,
o�en con�icting, objective functions of the form:

Minimize
{
f1 (x), f2 (x), . . . , fm (x)

}
subject to x ∈ X, (1)
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where x is the decision vector,
(
f1 (x), . . . , fm (x)

)T
∈ Y represents

the vector of m(≥ 2) objective functions, X ⊂ IRn is the decision
(variable) space, and Y ⊂ IRm is the objective space. MOPs having
four or more objectives are widely known as many-objective opti-
mization problems [19, 23], nowadays considered as a hot research
topic. �e solution to a MOP consists of �nding a set of decision
vectors that satisfy the property of Pareto optimality.1 �is is called
the Pareto Optimal Set (POS), and its corresponding image in Y is
named the Pareto Optimal Front (POF).

�roughout the years, Multi-Objective Evolutionary Algorithms
(MOEAs) have successfully shown their e�ectiveness in solving
MOPs [2, 18, 22]. �ey can �nd discrete approximations to the POS
in a single run without requiring particular assumptions, such as
continuity or di�erentiability. In fact, MOEAs perform random
search strategies that operate under Darwin’s principle of natural
selection, where the ��est individuals must achieve: 1) convergence
to the POF and 2) uniform distribution along the objective space
(diversity). One of the most preferred methods for �tness assign-
ment is through a Scalarizing Function (SF) IRm → IR [21], which
reformulates the MOP into several single-objective subproblems
with the aid of �xed target directions, also known as weight vectors.
�e idea behind a SF is that convergence is obtained by minimizing
a certain distance metric to the ideal point2, while diversity is kept
by the set of weight vectors.

In the literature, we can �nd some MOEAs that incorporate one
or two �xed SFs within their search engine, such as MOGLS [15] and
MSOPS [13], respectively. Other algorithms operate as frameworks,
where the decision maker must select the SF that best suits his (her)
needs, such as MOEA/D [28]. �e recent popularity of SFs has to
do with their e�ectiveness in solving many-objective optimization
problems at a low computational cost. SFs also present advantages
with respect to conventional MOEAs. For instance, approaches
based on Pareto optimality lose their ability to converge as the
number of objectives increases, whereas algorithms based on the
hypervolume indicator [29] are computationally too expensive to
deal with [19, 23]. Another advantage of SFs is their nice mathema-
tical properties. Most of them can generate at least weakly Pareto
optimal solutions.3 In addition, some SFs can capture the whole
POF by varying either the weights [6] or their parameter models,
which control the curvature of their contour lines [20].

Nevertheless, despite the evident advantages of MOEAs relying
on SFs, three crucial issues should be considered for a problem
at hand: 1) the se�ing of the weight vectors, 2) the choice of an

1 A decision vector x∗ ∈ X is Pareto optimal if @x ∈ X such that fi (x) ≤ fi (x∗ ) for
all i = 1, . . . ,m and fj (x) < fj (x∗ ) for at least one index j .
2 zi := min

{
fi (x) | x ∈ X

}
∀i ∈ {1, . . . ,m }.

3 A decision vector x∗ ∈ X is weakly Pareto optimal if @x ∈ X such that fi (x) <
fi (x∗ ) for all i = 1, . . . ,m.
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appropriate SF, and, if required, 3) the se�ing of the model para-
meters. About the �rst issue, it has been observed that a uniform
distribution of the weight vectors in [0, 1]m does not necessarily
imply that approximation sets will exhibit good diversity [3]. For
this reason, several e�orts have focused on the adaptation of the
weights (see for example [6, 8]). Regarding the second issue, some
studies have exhaustively researched only the scalarizing functions
WS, CHE, and PBI (see Table 1), which present some limitations. For
example, WS can only capture convex Pareto fronts [20], CHE loses
diversity for more than two objectives [11, 28], and, although PBI
can �nd evenly distributed solutions from three objectives onwards
[4, 28], its behavior depends on the parameter θ [27]. Moreover,
recent experiments have shown that, for a given MOP, the search
behavior of MOEAs strongly depends on the choice of these SFs
[14, 16, 17, 21]. Finally, concerning the third issue, certain SFs
require the speci�cation of some model parameters, which may
be sensitive to the Pareto-front shape. �us, some a�empts have
emerged to adjust them dynamically [26, 27].

In this work, we focus on the second issue (the choice of an
appropriate SF) and propose a hyper-heuristic [1], which combines
the strengths and compensates for the weaknesses of seven sca-
larizing functions. Our aims are to provide an algorithm that is
more generally applicable than current implementations and also
to release the decision maker from the di�cult task of selecting
an appropriate SF. �e proposed hyper-heuristic can be seen as a
search method for selecting low-level heuristics (i.e., SFs) to solve
continuous MOPs.

�e remainder of this paper is organized as follows. In Section 2,
we provide a brief review of the previous related work. In Section 3,
we explain our proposal. In Section 4, we compare the e�ectiveness
of our hyper-heuristic with regard to MOEA/D [28], NSGA-III [4],
and MOMBI-II [11] on the Zitzler-Deb-�iele (ZDT) [30], the Deb-
�iele-Laumanns-Zitzler (DTLZ) [5] and the Walking-Fish-Group
(WFG) [12] test suites. Finally we discuss our conclusions and
future work in Section 5.

2 RELATEDWORK
�e idea of using the simultaneous collaboration of di�erent SFs
within MOEAs dates back to 2003, when there were a few a�empts
to combine, at most, two SFs.

Hughes [13] scored the population using the CHE and the vector
angle distance scaling (also introduced in that work) for solving
continuous MOPs with two and three objectives. Although this
method, called Multiple Single Objective Pareto Sampling (MSOPS),
can deal with any Pareto-front geometry, it may generate dominated
solutions in disconnected regions, because the second SF is not
compatible with any form of Pareto optimality.

Ishibuchi et al. [16] modi�ed MOEA/D for automatically choo-
sing between CHE and WS. �e former was applied only for concave
parts of the Pareto front, where local concavity was detected as
long as an individual was identical to a certain number of neighbors.
However, when frequent changes occurred, this approach did not
perform well in combinatorial MOPs having up to 6 objectives. �e
reason was probably that both SFs drove individuals to entirely
di�erent regions when considering the same weight vector [16].

Table 1: Some scalarizing functions and their features.
Pareto-front shapes are abbreviated to x (convex), c (concave) or l
(linear). ≺ (�) denotes compatibility with (weak) Pareto optimality.
| | means that the optimal objective vector y∗ is nearly parallel to
the weight vector w.

Acronym Full Name Minimize u (y;w) := Support Model
Parameter

WS weighted ∑
i wiyi

x -sum ≺

exponential ∑
i
(
ep wi − 1) ep yi x, c, l

p = 100EWC weighted ≺

criteria

WPO weighted ∑
i
(yi )

p

wi

x, c, l
p = 3power ≺

| |

WN weighted (∑
i
|yi |

p

wi

) 1
p

x, c, l p = 0.5
norm ≺

| |

CHE chebyshev maxi
{
wi

���yi
���
} x, c, l -function �

achievement
max

{
yi
wi

} x, c, l
-ASF scalarizing �

function | |

AASF
augmented

max
{
yi
wi

}
+ α

∑
i
yi
wi α = 1e−4achievement x,c,l

scalarizing ≺ | |

function

PBI

d1 + θd2 ,

θ = 5
penalty where d1 :=

����y
•

w
‖w‖

����
x, c, l

boundary
intersection

and d2 :=




y − d1

w
‖w‖







| |

Shortly a�erwards, this issue was further analyzed in [17], explo-
ring two alternatives. In one approach an individual optimized a
previously assigned SF, whereas in the second strategy the popu-
lation increased linearly at the rate of |P | individuals per SF. Each
di�erent subpopulation focused on a particular SF.

On the other hand, multi-objective hyper-heuristics have re-
ceived li�le a�ention, particularly in continuous search spaces,
where the pool of heuristics usually focuses on variation operators.

In 2015, Gonçalves et al. [9], presented the MOEA/D Hyper-
Heuristic (MOEA/D-HH), which uses an adaptive choice function
to determine the Di�erential Evolution (DE) strategy that should
be applied to generate individuals at each iteration of a MOEA/D
variant. �ese authors proposed the following choice function to
compute the score of a given heuristic h:

CF (h) = αϕ
(
f1 (h) + f2 (д,h)

)
+ δ f3 (h), (2)

where д is the current heuristic, f1 and f2 are the mean rewards
of applying h alone and д followed by h, respectively. �e reward
is calculated as the di�erence between the CHE function value of
the parent and the child. f3 corresponds to the time elapsed since
h was last selected, α is a scale factor, which is problem dependent
and needs to be calibrated a priori. ϕ and δ are parameters that
control the intensi�cation and diversi�cation of the selection of the
best heuristics, respectively. Here, δ is set to 1 − ϕ and MOEA/D-
HH automatically updates ϕ through generations. �e heuristic
with a higher CF value is chosen to create o�spring, which is later
perturbed by polynomial-based mutation. �e pool of heuristics
consists of �ve DE strategies: 1) DE/rand/1/bin of slow convergence



A Hyper-Heuristic of Scalarizing Functions GECCO ’17, July 15-19, 2017, Berlin, Germany

speed and good exploration capability, suitable for solving multi-
modal problems; 2) DE/current-to-rand/1/bin for enabling the algo-
rithm to solve rotated problems more e�ectively; 3) DE/nonlinear,
which includes a non-linear part of the DE mutation operator; 4)
DE/rand/2/bin and 5) DE/current-to-rand/2/bin, which may provide
be�er perturbations than the two �rst strategies. In [9], this on-line
selection hyper-heuristic was tested on ten unconstrained instances
of the CEC’09 benchmark, improving the performance of MOEA/D
using a single heuristic.

Walker and Keedwell [24] introduced the Multi-Objective Se-
quence-based Selection Hyper-Heuristic (MOSSHH), which was the
�rst hyper-heuristic designed to solve many-objective optimization
problems. MOSSHH is based on a hidden Markov model to deter-
mine the mutation heuristic to be applied for generating a single
child from the current parent. �us, this approach works as a (1+1)-
Evolution Strategy complemented with an external archive, which
keeps all the non-dominated solutions discovered so far. �e pool
of seven mutation heuristics consists primarily in: 1) adding noise
to the current solution using three di�erent continuous probability
distributions, and 2) replacing the parent (or only a variable) with
another one, either randomly created or taken from the archive. At
each iteration, the child replaces the parent if the former dominates
the second. However, in another paper [25], this comparison rule
was changed by strategies based on the hypervolume indicator4,
the favor relation5 and the average rank6. Moreover, the hidden
Markov model is updated if the child is added to the archive and if
it was be�er than the parent. In [25], the three strategies were in-
dependently applied to solve continuous many-objective problems
(DTLZ) having up to 6 objectives. �e best results were obtained
using either the hypervolume or the favor relation. Although its
computational cost is low (even when using the hypervolume in
high dimensionality), this hyper-heuristic is reported to face di�-
culties in problems with disconnected Pareto-optimal regions in the
search space (like DTLZ6). Its authors indicated that this might be
due to the lack of crossover. Other disadvantages are that solutions
are not uniformly distributed and the external archive may grow
too much.

In contrast to these works, our proposed hyper-heuristic operates
in the survival selection, the population size remains constant, and
the pool of heuristics is scalable. Besides, it does not introduce new
parameters, and no external archive is required. In the following
section, we provide its design and its implementation details.

3 OUR PROPOSED APPROACH
�e proposed hyper heuristic is an extension of the elitist Genetic
Algorithm MOMBI-II (Many-Objective Metaheuristic Based on the
R2 Indicator II) [11], now named MOMBI-III. �is extension allows
the inclusion of more than one scalarizing function. �e core idea
is that each individual in the population minimizes a distinct scala-
rizing function, having its own weight vector. Our algorithm can

4 A solution x ∈ X is be�er than a solution y ∈ X, i�
∏m
i zi−fi (x) >

∏m
i zi−fi (y),

where z ∈ IRm is a reference point.
5 A solution x ∈ X favors a solution y ∈ X (x ≺f y), i� | {i : fi (x) < fi (y), 1 ≤ i ≤
m } | > | {j : fj (x) > fj (y), 1 ≤ j ≤ m } | .
6 A solution x ∈ X is be�er than a solution y ∈ X, i�

∑m
i ri (x) <

∑m
i ri (y), where

ri ∈ IN is the rank of the solution according to the i th objective. �e ranking process
considers the external archive.

be considered as a method that encourages convergence through
the optimization of the SFs, while diversity is accomplished by two
strategies: the weights and the heuristic selection.

�e pool of heuristics consists of seven scalarizing functions
H = {WS, EWC, WPO, WN, CHE, ASF, AASF}. �eir mathemati-
cal expressions, features and model parameters appear in Table 1,
whereas their corresponding contour lines are shown in Figure 1.
�e model parameters were established according to the values re-
commended in the literature. We selected this set of SFs due to their
compatibility with some form of Pareto dominance,7 a requirement
that PBI does not meet. For a graphical counterexample see Figure 1
(a ≺ b, but u (a;w) = u (b;w)). We also chose these SFs because
their contour lines are very di�erent, endowing our algorithm with
an increased capacity to handle di�erent Pareto-front geometries.
It is worth mentioning that in the original versions of WPO and
WN, the component wi is being multiplied by yi [21]. We did not
adopt this form since the search is driven to di�erent regions of the
objective space, as it occurred in [11, 16].

Heuristic selection is achieved through the use of s-energy [10]:

Es (A) :=
∑
i,j




ai − aj




−s
, (3)

where A =
{
a1, . . . , a |A |

}
, ai ∈ IRk , and s > 0 is a �xed parameter.

�is measure has been used to discretize k-dimensional manifolds
since its minimization leads to a uniform distribution of the points
in A, if s ≥ k [10]. Recently, the s-energy has been employed only
for comparison of MOEAs, se�ing s =m − 1, since the Pareto front
is at most an (m − 1)-manifold [8]. In order to know the individual
contribution to the s-energy, we de�ne:

∆Es (a,A) := Es (A) − Es (A \ {a})
2 , (4)

ful�lling that Es (A) =
∑
i ∆Es (ai ,A).

�e main loop of MOMBI-III is presented in Algorithm 1. First,
the population is initialized uniformly at random. �erea�er, it is
evaluated according to the MOP de�nition. At each iteration, new
individuals are created from parents selected uniformly at random
(lines 4 and 5). �ese individuals are evaluated and added to the
overall population in lines 6 and 7. Next, the reference points are
updated. Here, we used the ideal point for zmin and the nadir point
for zmax . �e la�er was calculated in the following way. First,
we looked for those individuals that minimized WPO and AASF,
using as weights the unitary vectors parallel to the axes. �e maxi-
mum values of each of the objective components corresponding to
these individuals constitute the point zmax . We ensured that these
individuals are di�erent to each other and that zmax enclosed at
least |P | members of the population. If these requirements were
not satis�ed we updated zmax with the worst objective values of
the whole population. In line 9, the objective function values are
normalized using the reference points. In the following steps, the
population is ranked and reduced to the desired size.

Algorithm 2 scores the population according to the pool of heuris-
tics H . In line 1, the ranks are initialized and in lines 2 to 10 those
individuals having the best value for each scalarizing function and
weight vector obtain the �rst rank. In Algorithm 3, the population
7 A solution x ∈ X dominates a solution y ∈ X, denoted by x ≺ y or f (x) ≺ f (y), i�
fi (x) ≤ fi (y) for all i = 1, . . . ,m and fj (x) < fj (y) for at least one index j .
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Figure 1: Contour lines of some scalarizing functions for the
weight vector w = (0.35, 0.65). �e non-�lled shapes denote
optimal solutions for each of the Pareto-front shapes.

is �rst sorted and partitioned in layers using the ranks. A layer
contains individuals with the same rank. We notice that ties are
broken using Pareto dominance. With this relation we can avoid
weakly-Pareto solutions in an e�ective manner. In lines 2 to 10,
the individuals belonging to the worst ranks are removed from the

Algorithm 1 Main Loop of MOMBI-III
Input: MOP, stopping criterion, weight vectorsW , heuristics H
Output: Final population P

1: Initialize population P at random
2: Evaluate MOP for each p ∈ P
3: while the stopping criterion is not satis�ed do
4: Select random parents from P
5: P ′ ← Generate o�spring using variation operators
6: Evaluate MOP for each p ∈ P ′

7: Q ← P
⋃

P ′

8: Update the reference points zmin and zmax

9: Normalize objective functions by se�ing
p.y← p .y−zmin

zmax−zmin , ∀p ∈ Q , where p.y ∈ IRm
10: R ← R2 Ranking (Q,W ,H )
11: P ← Reduce (Q,R, |P |)
12: return P

Algorithm 2 R2 Ranking
Input: Population Q , weight vectorsW , pool of heuristics H
Output: Ranks R

1: R[p]← ∞ ∀p ∈ Q
2: for all h ∈ H do
3: for all w ∈W do
4: for all p ∈ Q do
5: p.µ ← h(p.y;w)
6: Sort Q w.r.t. the �eld µ in increasing order
7: rank ← 1
8: for all p ∈ Q do
9: R[p]← min{R[p], rank }

10: rank ← rank + 1

population, either by discarding an entire layer or one individual
at a time. In case that more than two individuals have the same
rank, we remove the one with the highest contribution to the s-
energy. It is important to mention that for one set of high-�delity
objective-function evaluations, MOMBI-III can derive seven pieces
of information with very low computation e�ort. With a careful
implementation of the s-energy, the complexity of the algorithm is
O ( |P |2m+ |H | |W | |P |(log |P |+m)). It is assumed that |H | << |P | and
|W | = |P |. �us the complexity is reduced to O ( |P |2 (log |P | +m)).

4 RESULTS
In this section, we investigate the e�ectiveness of our proposed
hyper-heuristic, considering �ve instances of the ZDT test suite [30],
seven instances of the DTLZ benchmark [5], and all nine problems
of the WFG test suite [12]. �e experiments were divided in three
parts: comparison with single heuristic versions (Subsection 4.2),
contrast with some state-of-the-art MOEAs (Subsection 4.3), and
a case study for many-objectve optimization (Subsection 4.4). �e
�rst two experiments consider 2 and 3 objectives for the ZDT and
DTLZ/WFG test problems, respectively, whereas the last experi-
ment covers 4 to 10 objectives. In the following, we provide further
details about these experiments.
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Algorithm 3 Reduce
Input: Population Q , ranks R, desired size n
Output: Reduced population Q

1: {L1, . . . ,Lk } ← Sort the population in layers with respect to R.
2: while |Q | > n do
3: if |Lk | ≤ |Q | − n then {Remove members of the kth layer}
4: r ← Lk
5: k ← k − 1
6: else
7: Compute the contribution to the s-energy

E[p.y]← ∆Em−1 (p.y,Q ) for all p ∈
{
L1 ∪ . . . ∪ Lk

}

8: r ← arg maxp∈Lk E[p.y]
9: Lk ← Lk \ {r }

10: Q ← Q \ {r }
11: return Q

4.1 Experimental Settings
�e number of decision variables for ZDT1-3 was set to 30 and
for ZDT4,6 was set to 10. In the case of the DTLZ benchmark, the
number of decision variables was set to m + l − 1, where l was 5
for DTLZ1, 10 for DTLZ2-6, and 20 for DTLZ7. �e parameters for
the WFG benchmark are provided in Table 2.

For comparison purposes, we selected the algorithms MOEA/D
[28] (based on decomposition), NSGA-III [4] (based on reference
points) and MOMBI-II [11] (based on the R2 indicator). All adopted
the same parameter values of Table 2. We select these optimizers
since they have been reported to perform well in a wide range of
problems. In addition, they share common features, such as the
requirement of the set of weight vectors, which were generated
using the method described in [28]. Here, each weight vector takes
a value from {10−2, 1/H , 2/H , . . . ,H/H } where H ∈ IN. �e total
number of vectors is represented by the combinatorial number
CH+m−1
m−1 . �us, to keep this number low, we adopt a cardinality

similar to the population size (for 5 and 6 objectives the set was
pruned using a clustering technique, whereas for 8 and 9 objectives
two layers were employed, discarding duplicated points).

In the case of MOEA/D its scalarizing function was CHE for two
objectives and PBI with θ = 5 for the remaining objectives [4, 28].
�e population of MOEA/D was normalized during its evolution in
problems with di�erent scale, such as the WFG test suite and DTLZ7,
as suggested by its authors in the original paper. For MOMBI-II
the scalarizing function was ASF, and its parameters were: record
5, tolerance threshold 1 × 10−3 and 0.5 for the variance threshold.
�e parameter models adopted for MOMBI-III and all its variants
with single heuristics are established in Table 1.

�e variation operators were: Polynomial-based mutation and
Simulated Binary Crossover (SBX). For the mutation operator, its
probability and distribution index were set to 1/n and 20, respec-
tively. For the crossover operator, these parameters varied accor-
ding to the number of objectives, for two were 0.9 and 20, whereas
for higher dimensionality were 1.0 and 30. �e stopping criterion
consisted of reaching a maximum number of evaluations of the
MOP (see Table 2).

Table 2: Parameters adopted in our experiments

Objectives (m) 2 3 4 5 6 7 8 9 10
Population size 100 136 166 180 200 210 230 250 266
Objective function 40 60 70 80 80 90 100 100 110evaluations (×103)

W
FG

variables (n) 24 26 28 30 32 34 36 38 40
position-related 2 2 3 4 5 6 7 8 9parameters

Weight-vector 99 15 8 6 5 4 3,4 3,4 2,3partitions (H )
MOEA/D niche 20 27 33 36 40 42 46 50 53

Finally, for the performance assessment of the algorithms, we
relied on the hypervolume indicator [29], which measures conver-
gence and diversity at the same time. �e reference points for the
hypervolume indicator were (4, 4, . . .) for DTLZ3, (2, 2, . . . , 2, 8)
for DTLZ7, (3, 5, 7, . . .) for WFG, and (2, 2, . . .) for ZDT, DTLZ1,2,
and DTLZ4-6. �ese points are slightly worse in all objectives than
the nadir point. �e hypervolume indicator has some bias for fa-
voring non-linear Pareto fronts with clusters near the middle point
(knee region). To compensate this situation, we also adopted the
(m−1)-energy (see expression 3), which rewards even distributions;
and the Solow-Polasky indicator [7], de�ned by:

SPI (A) := (1, . . . , 1)1×|A |C−1 (1, . . . , 1)T
|A |×1 (5)

where C is a matrix with the entries ci, j := e−θ



ai−aj




, for all
i = 1, . . . , |A| and j = 1, . . . , |A|. θ is a normalizing parameter,
which was set to 10 in all experiments [7]. �is indicator is to be
maximized and it has been used to measure biological diversity
(its value can be interpreted as the number of species). Due to the
space limitation, the complete study is available for download at
h�p://delta.cs.cinvestav.mx/˜ccoello/2017.html.

We performed 30 independent runs for each MOEA and test
problem. We applied the Wilcoxon rank sum test (one-tailed) to the
mean of these indicators, in order to determine whether if MOMBI-
III performed be�er (↑) or not (↓) than the other approaches at the
con�dence interval of 99%. Moreover, due to multiple comparisons,
this value was adjusted by the Bonferroni correction.

4.2 Single Heuristics
Hyper-heuristics are meant to perform be�er than their constitutive
heuristics in a wide range of problems [1]. �us, motivated by this
requirement, MOMBI-III was compared with the pool of heuristics.
In this experiment, each SF was coupled independently to MOMBI-
III. �e results are presented in Tables 3, 4 and 5. Regarding the
hypervolume indicator, there is no doubt that MOMBI-III showed a
clear advantage over these single heuristics, except for the problems
ZDT1,2,6, DTLZ2,4, WFG4,6,9, were our proposed method was out-
performed by EWC, AASF and WPO. In spite of this, our MOMBI-III
achieved the �rst and second places 16 times, out of 21. On the other
hand, when evaluating with respect to the s-energy, our method
outperformed the other variants in 20 cases. Only for the concave
ZDT2, WN ranked �rst, and in this case only the extreme points
were found. �is suggests that MOMBI-III e�ectively minimized
this measure. Similarly, when using the Solow-Polasky indicator
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Figure 2: Pareto fronts produced by MOMBI-III

MOMBI-III outperformed the single heuristics, only in DTLZ1, CHE
found a be�er value without signi�cantly surpassing our algorithm.
It is worth noticing that a zero value of the Solow-Polasky indicator
means that it was not possible to calculate the inverse of the C
matrix (see expression 5), since all the population concentrates on
extreme points. In Figure 2, we show some approximations to the
Pareto front produced by MOMBI-III, corresponding to the median
hypervolume indicator.

4.3 State-of-the-art Algorithms
In this section, we compared MOMBI-III with respect to the well-
known MOEA/D and NSGA-III. Additionally, we considered MOMBI-
II, since our proposed method improves it. Experimental results
are shown in Tables 6 and 7. In the case of the hypervolume in-
dicator, we can observe again an overwhelming outperformance
of our proposed method, whose scores were in the top places on
18 instances out of 21. It was only outperformed by MOEA/D and
NSGA-III on the concave problems ZDT6 and DTLZ2. Moreover,
MOMBI-III won over its predecessor MOMBI-II in 15 instances, pro-
viding solid evidence of its superiority. Concerning the s-energy,
MOMBI-III performed be�er in 13 instances, being outperformed
on ZDT2 by the other MOEAs; DTLZ1 by MOEA/D and NSGA-III;
and WFG4,6-8 by MOEA/D. Finally, our proposed approach was
be�er than MOMBI-II in almost all the test problems adopted.

4.4 Many-Objective Problems
In this experiment, we investigated the behavior of MOMBI-III
in many-objective instances of DTLZ1. For this purpose, we per-
formed a comparative study with the same algorithms of the pre-
vious experiment. �e results of the hypervolume indicator are pre-
sented in Table 8. In this case, MOMBI-III outperformed MOEA/D
and MOMBI-II in all instances and performed slightly be�er than
NSGA-III. With this example, we intend to show the promising be-
havior of our proposal in many-objective problems. Nevertheless,
further studies in this direction are still required.

5 CONCLUSIONS AND FUTUREWORK
One of the recent trends in multi-objective optimization is the
development of generic methods, which can produce solutions
of acceptable quality using a set of easy-to-implement low-level
heuristics. �ese methods are known as hyper-heuristics and can
be seen as high-level methodologies, which automatically produce
an adequate combination of single heuristics for solving a broad
set of problems. In this paper, we presented for the �rst time, a
Hyper-Heuristic of Scalarizing Functions (MOMBI-III) for solving
continuous multi-objective optimization problems, which are trans-
formed into single-objective ones. �e adopted set of scalarizing
functions has several advantages, from which the most relevant
are its low computational cost and compatibility with Pareto domi-
nance. Although MOMBI-III can incorporate scalarizing functions
that are incompatible with any form of Pareto optimality (e.g., PBI),
an extra e�ort is required at each iteration to �lter dominated so-
lutions. Furthermore, MOMBI-III incorporates the s-energy for
generating even distributions in objective space. Our experimental
results showed that MOMBI-III signi�cantly outperformed single
heuristics as well as advanced algorithms, such as NSGA-III and
MOEA/D in the majority of the instances of the ZDT, DTLZ and
WFG test suites. Furthermore, our proposal showed promise in
solving many-objective problems. As part of our future work, we
would like to expand the set of heuristics, incorporating more va-
lues for the model parameters of the current scalarizing functions.
Such values might be automatically adapted. We would also like to
explore a probabilistic approach for the heuristic selection process,
since this is currently performed in an exhaustive way.
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Table 3: Median and standard deviation of the hypervolume indicator for single heuristics and MOMBI-III. �e two best values
are shown in gray scale, where a darker tone corresponds to the best value.

Problem WS EWC WPO WN CHE ASF AASF MOMBI-III
ZDT1 3.6539e+00 7.26e-4 ↑ 3.6620e+00 8.08e-5 ↓ 3.6333e+00 1.60e-2 ↑ 3.0000e+00 1.78e-4 ↑ 3.6614e+00 4.55e-5 ↑ 3.6614e+00 4.55e-5 ↑ 3.6614e+00 9.04e-5 ↑ 3.6616e+00 7.40e-5
ZDT2 3.0000e+00 1.71e-7 ↑ 3.3286e+00 1.02e-4 ↓ 3.3276e+00 1.20e-3 ↑ 3.0000e+00 4.02e-7 ↑ 3.3281e+00 1.60e-4 ↑ 3.3281e+00 1.60e-4 ↑ 3.3281e+00 1.65e-4 ↑ 3.3283e+00 1.51e-4
ZDT3 4.7070e+00 8.32e-2 ↑ 4.8148e+00 5.20e-5 ↑ 4.7813e+00 2.41e-1 ↑ 4.0361e+00 2.52e-4 ↑ 4.8140e+00 1.67e-4 ↑ 4.8140e+00 1.67e-4 ↑ 4.8141e+00 1.40e-4 ↑ 4.8152e+00 4.91e-5
ZDT4 3.6521e+00 1.72e-3 ↑ 3.6590e+00 1.26e-2 3.5424e+00 1.10e-1 ↑ 2.9967e+00 2.40e-3 ↑ 3.6584e+00 1.93e-3 3.6584e+00 1.93e-3 3.6580e+00 3.42e-3 3.6573e+00 2.47e-3
ZDT6 2.7741e+00 4.13e-4 ↑ 3.0348e+00 1.25e-3 ↓ 3.0347e+00 1.18e-3 ↓ 2.7728e+00 1.14e-3 ↑ 3.0312e+00 2.59e-3 3.0312e+00 2.59e-3 3.0309e+00 2.56e-3 3.0316e+00 2.20e-3

DTLZ1 7.8809e+00 1.42e-3 ↑ 7.9637e+00 2.81e-4 ↑ 7.8612e+00 7.14e-2 ↑ 7.8807e+00 2.17e-4 ↑ 7.9691e+00 2.21e-2 ↑ 7.9317e+00 2.50e-2 ↑ 7.9364e+00 2.32e-2 ↑ 7.9745e+00 1.14e-4
DTLZ2 7.0000e+00 3.43e-7 ↑ 7.3928e+00 7.36e-4 ↑ 7.4174e+00 1.37e-3 ↑ 7.0000e+00 2.97e-7 ↑ 7.3919e+00 4.29e-3 ↑ 7.4190e+00 1.73e-3 ↑ 7.4245e+00 3.68e-4 ↓ 7.4236e+00 9.48e-4
DTLZ3 6.2978e+01 1.30e+0 ↑ 6.3350e+01 1.44e-2 ↑ 6.2969e+01 1.78e+0 ↑ 6.2979e+01 2.30e-2 ↑ 6.3384e+01 1.05e-1 ↑ 6.3385e+01 2.47e-2 ↑ 6.3400e+01 1.52e-2 6.3415e+01 1.36e-2
DTLZ4 7.0000e+00 2.10e-1 ↑ 7.3931e+00 3.01e-1 ↑ 7.4186e+00 2.55e-1 ↑ 7.0000e+00 3.28e-1 ↑ 7.3983e+00 3.00e-1 ↑ 7.4234e+00 3.49e-1 ↑ 7.4252e+00 3.08e-1 ↓ 7.4247e+00 1.84e-1
DTLZ5 5.6716e+00 9.91e-3 ↑ 5.8123e+00 4.24e-2 ↑ 6.0001e+00 2.11e-2 ↑ 5.6716e+00 1.77e-2 ↑ 5.9656e+00 3.00e-2 ↑ 6.0410e+00 5.87e-3 ↑ 6.0412e+00 1.03e-2 ↑ 6.1021e+00 1.19e-3
DTLZ6 5.4390e+00 9.07e-2 ↑ 5.7566e+00 4.66e-2 ↑ 5.7683e+00 8.14e-2 5.3947e+00 9.99e-2 ↑ 5.7426e+00 7.22e-2 ↑ 5.8099e+00 7.57e-2 5.8163e+00 8.00e-2 5.8509e+00 9.41e-2
DTLZ7 1.5994e+01 2.18e-3 ↑ 1.7252e+01 1.08e-1 ↑ 1.6218e+01 6.09e-2 ↑ 1.5868e+01 3.30e-3 ↑ 1.7230e+01 9.60e-2 ↑ 1.7475e+01 2.81e-2 ↑ 1.7482e+01 3.77e-2 ↑ 1.7545e+01 1.02e-2
WFG1 5.4395e+01 1.32e+0 4.8913e+01 1.58e+0 ↑ 4.4832e+01 1.80e+0 ↑ 4.5190e+01 5.64e+0 ↑ 5.2472e+01 1.63e+0 5.2447e+01 1.63e+0 5.2128e+01 1.75e+0 5.4921e+01 1.67e+0
WFG2 9.9789e+01 3.57e-1 ↑ 1.0035e+02 1.40e-1 ↑ 9.7306e+01 1.64e-1 ↑ 7.1243e+01 1.21e+0 ↑ 9.9489e+01 2.85e-1 ↑ 1.0031e+02 1.22e-1 ↑ 1.0034e+02 1.36e-1 ↑ 1.0082e+02 1.04e-1
WFG3 5.4610e+01 4.01e-1 ↑ 7.3941e+01 5.60e-1 ↑ 7.2792e+01 8.79e-2 ↑ 5.6352e+01 3.26e-1 ↑ 7.4927e+01 2.44e-1 ↑ 7.5219e+01 1.92e-1 7.5138e+01 2.00e-1 7.5220e+01 1.54e-1
WFG4 5.6991e+01 1.34e-2 ↑ 7.5551e+01 9.92e-2 ↑ 7.6980e+01 9.20e-2 ↓ 5.6995e+01 9.27e-3 ↑ 7.5590e+01 1.70e-1 ↑ 7.6737e+01 8.43e-2 ↓ 7.6743e+01 7.67e-2 ↓ 7.6613e+01 8.90e-2
WFG5 5.3487e+01 5.78e-6 ↑ 7.2536e+01 9.41e-2 ↑ 7.3541e+01 4.35e-2 ↑ 5.3487e+01 4.34e-6 ↑ 7.2351e+01 1.53e-1 ↑ 7.3688e+01 4.58e-2 ↑ 7.3728e+01 6.67e-2 ↑ 7.3823e+01 5.24e-2
WFG6 5.4326e+01 3.83e-1 ↑ 7.2957e+01 2.84e-1 ↑ 7.4509e+01 3.06e-1 ↓ 5.4374e+01 3.99e-1 ↑ 7.2872e+01 3.65e-1 ↑ 7.4153e+01 3.93e-1 7.4305e+01 3.60e-1 7.4245e+01 2.87e-1
WFG7 5.7011e+01 4.57e-3 ↑ 7.5688e+01 4.23e-1 ↑ 7.6816e+01 5.35e-2 ↑ 5.7012e+01 3.36e-3 ↑ 7.5529e+01 2.59e-1 ↑ 7.6852e+01 7.72e-2 ↑ 7.6900e+01 6.40e-2 ↑ 7.7048e+01 4.94e-2
WFG8 5.2754e+01 7.05e-1 ↑ 7.1874e+01 3.21e-1 ↑ 7.2693e+01 3.06e-1 5.3782e+01 6.93e-1 ↑ 7.1874e+01 1.88e-1 ↑ 7.3041e+01 1.80e-1 7.2915e+01 1.71e-1 7.2842e+01 2.28e-1
WFG9 5.4922e+01 1.76e+0 ↑ 7.3757e+01 2.56e-1 ↑ 7.6333e+01 1.34e+0 ↓ 5.5106e+01 3.39e+0 ↑ 7.3891e+01 1.28e+0 ↑ 7.5062e+01 1.03e+0 7.5058e+01 1.12e+0 7.5127e+01 2.18e-1

Table 4: Median and standard deviation of the s-energy measure for single heuristics and MOMBI-III.

Problem WS EWC WPO WN CHE ASF AASF MOMBI-III
ZDT1 1.366e+05 3.34e+04 ↑ 5.741e+04 1.29e+02 ↑ 1.275e+05 4.58e+03 ↑ 4.472e+07 1.34e+08 ↑ 6.486e+04 1.03e+01 ↑ 6.486e+04 1.03e+01 ↑ 6.486e+04 5.02e+01 ↑ 5.639e+04 1.34e+02
ZDT2 1.684e+08 9.93e+08 ↑ 5.702e+04 1.13e+04 ↑ 6.501e+04 1.05e+02 ↑ 1.414e+00 3.24e+07 5.606e+04 2.22e+02 5.606e+04 2.22e+02 5.605e+04 3.14e+03 5.609e+04 1.10e+02
ZDT3 1.931e+06 8.62e+05 ↑ 6.505e+04 1.04e+04 ↑ 1.203e+06 1.61e+05 ↑ 5.737e+04 1.08e+08 ↑ 4.938e+04 4.73e+03 ↑ 4.938e+04 4.73e+03 ↑ 4.884e+04 5.74e+03 ↑ 4.404e+04 2.80e+02
ZDT4 1.176e+05 2.11e+04 ↑ 5.764e+04 2.25e+03 ↑ 1.415e+05 6.14e+04 ↑ 8.762e+06 3.16e+08 ↑ 6.486e+04 7.17e+02 ↑ 6.486e+04 7.17e+02 ↑ 6.485e+04 5.80e+02 ↑ 5.629e+04 2.69e+02
ZDT6 2.930e+09 1.50e+16 ↑ 7.231e+04 9.64e+03 ↑ 8.987e+04 1.03e+04 ↑ 9.295e+05 9.01e+10 ↑ 7.012e+04 5.11e+02 ↑ 7.012e+04 5.11e+02 ↑ 7.007e+04 3.52e+03 ↑ 6.936e+04 6.07e+02

DTLZ1 1.103e+41 4.69e+60 ↑ 6.064e+06 8.42e+10 ↑ 3.319e+13 2.92e+17 ↑ 3.302e+44 6.39e+61 ↑ 1.526e+06 4.75e+10 ↑ 8.164e+05 3.23e+14 ↑ 8.153e+05 1.11e+12 ↑ 7.981e+05 8.30e+03
DTLZ2 2.792e+23 2.48e+35 ↑ 1.212e+06 2.57e+06 ↑ 1.248e+05 1.04e+02 ↑ 9.271e+22 5.04e+43 ↑ 1.771e+07 2.05e+11 ↑ 1.238e+05 2.83e+02 ↑ 1.206e+05 7.42e+02 ↑ 1.182e+05 6.26e+02
DTLZ3 1.526e+12 5.09e+34 ↑ 6.366e+05 7.94e+08 ↑ 1.873e+14 3.76e+23 ↑ 2.113e+13 1.77e+33 ↑ 3.949e+05 6.15e+09 ↑ 1.364e+05 2.88e+04 ↑ 1.429e+05 7.87e+04 ↑ 1.167e+05 2.13e+03
DTLZ4 3.255e+23 8.42e+35 ↑ 1.077e+06 2.91e+24 ↑ 1.248e+05 3.72e+15 ↑ 4.021e+25 3.53e+73 ↑ 3.067e+05 1.49e+16 ↑ 1.222e+05 3.07e+16 ↑ 1.203e+05 1.36e+13 ↑ 1.176e+05 1.66e+06
DTLZ5 5.059e+26 3.88e+62 ↑ 1.433e+20 3.94e+23 ↑ 1.037e+18 1.14e+20 ↑ 1.086e+27 6.09e+57 ↑ 5.090e+16 8.80e+19 ↑ 2.547e+18 1.11e+22 ↑ 6.107e+19 1.58e+21 ↑ 7.102e+06 1.55e+14
DTLZ6 2.721e+39 1.45e+44 ↑ 3.706e+07 1.80e+08 ↑ 2.703e+07 1.19e+09 ↑ 3.910e+27 4.31e+33 ↑ 3.406e+06 9.04e+14 ↑ 3.433e+07 1.52e+13 ↑ 2.982e+09 1.01e+22 ↑ 8.296e+05 1.09e+14
DTLZ7 2.209e+14 3.57e+18 ↑ 8.873e+05 3.36e+08 ↑ 7.196e+06 1.02e+08 ↑ 1.148e+16 7.92e+17 ↑ 6.833e+05 1.45e+10 ↑ 1.111e+06 3.45e+06 ↑ 1.257e+06 3.84e+06 ↑ 9.824e+04 4.83e+03
WFG1 1.451e+09 1.35e+11 ↑ 1.355e+05 4.40e+06 ↑ 1.582e+07 8.35e+10 ↑ 8.852e+09 6.25e+16 ↑ 1.945e+05 3.17e+05 ↑ 8.232e+04 1.99e+05 ↑ 7.936e+04 1.58e+06 ↑ 4.654e+04 6.16e+03
WFG2 4.249e+07 8.85e+09 ↑ 6.491e+04 3.35e+05 ↑ 2.765e+06 1.25e+07 ↑ 2.854e+11 9.46e+12 ↑ 1.191e+05 1.24e+07 ↑ 2.845e+04 8.39e+05 ↑ 2.934e+04 8.69e+04 ↑ 2.064e+04 1.38e+03
WFG3 3.107e+13 2.45e+18 ↑ 1.800e+06 3.20e+09 ↑ 2.885e+06 5.79e+09 ↑ 3.518e+13 8.16e+15 ↑ 1.830e+05 5.31e+06 ↑ 9.107e+05 6.35e+06 ↑ 7.468e+05 8.65e+06 ↑ 3.911e+04 2.52e+03
WFG4 1.312e+10 3.10e+11 ↑ 1.500e+04 7.94e+04 ↑ 9.368e+03 1.18e+02 ↑ 4.125e+09 2.20e+13 ↑ 3.636e+05 2.38e+06 ↑ 9.360e+03 9.61e+02 ↑ 9.438e+03 2.51e+03 ↑ 8.353e+03 1.14e+02
WFG5 9.993e+16 2.50e+19 ↑ 1.926e+04 3.78e+04 ↑ 9.202e+03 3.00e+01 ↑ 2.037e+16 1.47e+21 ↑ 9.692e+06 4.80e+07 ↑ 9.111e+03 1.13e+03 ↑ 9.047e+03 1.32e+02 ↑ 8.419e+03 9.45e+01
WFG6 2.161e+10 1.29e+12 1.562e+04 3.91e+05 ↑ 9.186e+03 6.60e+01 ↑ 2.731e+10 1.02e+13 ↑ 2.838e+05 3.40e+07 ↑ 9.216e+03 9.11e+02 ↑ 9.245e+03 9.29e+02 ↑ 8.354e+03 1.01e+02
WFG7 1.235e+11 2.32e+12 ↑ 2.383e+04 1.06e+06 ↑ 9.439e+03 4.35e+01 ↑ 3.176e+11 8.53e+13 ↑ 5.113e+05 9.90e+06 ↑ 9.324e+03 6.27e+02 ↑ 9.301e+03 2.57e+02 ↑ 8.415e+03 1.17e+02
WFG8 3.879e+09 6.28e+12 ↑ 1.928e+04 1.54e+05 ↑ 2.482e+06 8.80e+06 ↑ 9.632e+08 1.51e+11 ↑ 3.408e+05 9.34e+05 ↑ 3.435e+04 2.19e+05 ↑ 5.806e+04 2.13e+05 ↑ 8.314e+03 1.23e+02
WFG9 6.356e+08 5.32e+13 ↑ 2.246e+04 4.22e+04 ↑ 9.663e+03 2.72e+02 ↑ 3.228e+09 8.34e+12 ↑ 1.047e+05 1.43e+07 ↑ 1.371e+04 5.40e+04 ↑ 1.196e+04 6.04e+04 ↑ 8.565e+03 9.60e+01

Table 5: Median and standard deviation of the Solow-Polasky indicator for single heuristics and MOMBI-III.

Problem WS EWC WPO WN CHE ASF AASF MOMBI-III
ZDT1 8.24e+00 1.55e-2 ↑ 8.36e+00 2.47e-2 ↑ 7.35e+00 1.30e-1 ↑ 2.00e+00 1.47e-2 ↑ 8.33e+00 3.78e-3 ↑ 8.33e+00 3.78e-3 ↑ 8.33e+00 5.34e-3 ↑ 8.37e+00 1.09e-3
ZDT2 2.00e+00 2.85e-3 ↑ 8.37e+00 7.66e-3 8.35e+00 6.87e-3 ↑ 2.00e+00 5.22e-3 ↑ 8.37e+00 8.79e-4 8.37e+00 8.79e-4 8.37e+00 3.16e-3 8.37e+00 7.20e-4
ZDT3 5.53e+00 6.97e-1 ↑ 1.12e+01 2.47e-2 ↑ 6.82e+00 4.89e-1 ↑ 2.00e+00 1.49e-3 ↑ 1.15e+01 1.26e-2 ↑ 1.15e+01 1.26e-2 ↑ 1.15e+01 1.11e-2 ↑ 1.15e+01 4.33e-3
ZDT4 8.24e+00 2.36e-2 ↑ 8.37e+00 1.36e-1 6.69e+00 7.26e-1 ↑ 2.00e+00 9.88e-2 ↑ 8.33e+00 2.56e-2 ↑ 8.33e+00 2.56e-2 ↑ 8.33e+00 5.72e-3 ↑ 8.37e+00 9.37e-3
ZDT6 2.00e+00 8.45e-3 ↑ 7.16e+00 9.58e-2 7.08e+00 8.49e-2 ↑ 2.01e+00 1.33e-2 ↑ 7.17e+00 9.85e-2 7.17e+00 9.85e-2 7.14e+00 1.65e-1 7.18e+00 1.34e-1

DTLZ1 0.00e+00 3.83e+0 ↑ 8.34e+00 2.79e-2 ↑ 3.05e+00 2.35e+0 ↑ 0.00e+00 9.61e-1 ↑ 9.44e+00 1.86e+0 8.98e+00 2.33e+0 ↑ 8.99e+00 1.97e+0 ↑ 9.24e+00 4.25e-1
DTLZ2 0.00e+00 0.00e+0 ↑ 2.45e+01 1.15e-1 ↑ 3.35e+01 1.19e-2 ↑ 0.00e+00 0.00e+0 ↑ 2.99e+01 4.05e-1 ↑ 3.37e+01 3.18e-2 ↑ 3.41e+01 4.38e-2 ↑ 3.44e+01 9.22e-2
DTLZ3 0.00e+00 1.54e+0 ↑ 2.56e+01 3.39e-1 ↑ 3.00e+00 1.28e+1 ↑ 0.00e+00 1.07e+0 ↑ 3.24e+01 6.53e+0 ↑ 3.39e+01 2.83e-1 ↑ 3.40e+01 4.05e-1 ↑ 3.47e+01 6.42e-1
DTLZ4 0.00e+00 0.00e+0 ↑ 2.45e+01 7.48e+0 ↑ 3.35e+01 6.28e+0 ↑ 0.00e+00 0.00e+0 ↑ 3.05e+01 7.70e+0 ↑ 3.40e+01 9.57e+0 ↑ 3.42e+01 7.77e+0 ↑ 3.45e+01 4.70e+0
DTLZ5 0.00e+00 1.37e+0 ↑ 7.88e+00 1.41e-1 ↑ 8.29e+00 3.06e-1 ↑ 2.23e+00 1.42e+0 ↑ 8.35e+00 2.04e-1 ↑ 8.48e+00 1.02e-1 ↑ 8.49e+00 1.32e-1 ↑ 8.98e+00 4.33e-1
DTLZ6 0.00e+00 0.00e+0 ↑ 1.17e+01 1.03e+0 ↑ 1.17e+01 1.29e+0 ↑ 4.33e+00 1.15e+0 ↑ 1.38e+01 1.35e+0 1.21e+01 1.23e+0 ↑ 1.20e+01 1.30e+0 ↑ 1.48e+01 2.00e+0
DTLZ7 5.97e+00 4.23e-1 ↑ 3.98e+01 1.51e+0 ↑ 1.87e+01 8.12e-1 ↑ 4.84e+00 9.68e-1 ↑ 3.29e+01 8.95e-1 ↑ 3.77e+01 8.64e-1 ↑ 3.77e+01 9.35e-1 ↑ 4.53e+01 1.16e+0
WFG1 2.15e+01 1.93e+0 ↑ 3.74e+01 3.85e+0 ↑ 1.99e+01 2.71e+0 ↑ 1.27e+01 3.13e+0 ↑ 5.06e+01 1.87e+0 ↑ 6.04e+01 3.30e+0 ↑ 6.07e+01 2.99e+0 ↑ 6.80e+01 4.92e+0
WFG2 3.55e+01 1.33e+0 ↑ 7.81e+01 2.59e+0 ↑ 2.70e+01 3.63e-1 ↑ 7.19e+00 5.35e-1 ↑ 6.95e+01 2.59e+0 ↑ 9.41e+01 1.83e+0 ↑ 9.46e+01 1.62e+0 ↑ 1.00e+02 2.50e+0
WFG3 4.81e+00 2.70e-1 ↑ 5.53e+01 2.24e+0 ↑ 3.09e+01 4.90e-1 ↑ 4.77e+00 2.83e-2 ↑ 5.20e+01 1.56e+0 ↑ 5.18e+01 1.45e+0 ↑ 5.11e+01 1.53e+0 ↑ 7.51e+01 1.17e+0
WFG4 3.47e+00 2.79e-2 ↑ 1.15e+02 8.66e-1 ↑ 1.22e+02 2.26e-1 ↑ 3.48e+00 3.20e-2 ↑ 1.10e+02 2.03e+0 ↑ 1.22e+02 3.21e-1 ↑ 1.22e+02 3.55e-1 ↑ 1.25e+02 4.10e-1
WFG5 3.00e+00 3.11e-4 ↑ 1.14e+02 8.23e-1 ↑ 1.22e+02 6.03e-2 ↑ 3.00e+00 4.05e-4 ↑ 1.06e+02 1.99e+0 ↑ 1.23e+02 1.56e-1 ↑ 1.23e+02 1.30e-1 ↑ 1.24e+02 4.00e-1
WFG6 3.11e+00 4.81e-2 ↑ 1.14e+02 9.22e-1 ↑ 1.22e+02 1.90e-1 ↑ 3.19e+00 2.40e-1 ↑ 1.06e+02 2.34e+0 ↑ 1.22e+02 5.71e-1 ↑ 1.22e+02 5.51e-1 ↑ 1.25e+02 4.93e-1
WFG7 3.48e+00 3.51e-3 ↑ 1.14e+02 8.71e-1 ↑ 1.22e+02 7.63e-2 ↑ 3.49e+00 5.64e-2 ↑ 1.05e+02 2.26e+0 ↑ 1.22e+02 2.49e-1 ↑ 1.22e+02 2.27e-1 ↑ 1.24e+02 4.31e-1
WFG8 3.28e+00 5.36e-2 ↑ 1.14e+02 9.71e-1 ↑ 7.34e+01 8.76e+0 ↑ 3.29e+00 5.09e-2 ↑ 9.93e+01 2.99e+0 ↑ 1.16e+02 2.05e+0 ↑ 1.16e+02 1.86e+0 ↑ 1.25e+02 5.11e-1
WFG9 5.55e+00 2.58e+0 ↑ 1.14e+02 9.79e-1 ↑ 1.21e+02 5.79e-1 ↑ 9.78e+00 1.92e+0 ↑ 1.10e+02 2.15e+0 ↑ 1.20e+02 1.15e+0 ↑ 1.19e+02 1.13e+0 ↑ 1.24e+02 3.61e-1
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Table 6: Median and standard deviation of the hypervolume
indicator for the compared MOEAs and MOMBI-III.

Problem MOEA/D NSGA-III MOMBI-II MOMBI-III
ZDT1 3.660e+00 1.58e-3 ↑ 3.661e+00 1.78e-4 ↑ 3.661e+00 8.04e-5 ↑ 3.662e+00 7.59e-5
ZDT2 3.326e+00 1.28e-3 ↑ 3.328e+00 2.27e-4 ↑ 3.328e+00 1.22e-4 ↑ 3.328e+00 1.14e-4
ZDT3 4.811e+00 2.95e-3 ↑ 4.813e+00 3.36e-4 ↑ 4.814e+00 8.81e-5 ↑ 4.815e+00 6.16e-2
ZDT4 3.649e+00 5.11e-3 ↑ 3.658e+00 7.45e-3 3.658e+00 4.11e-3 3.659e+00 1.64e-3
ZDT6 3.036e+00 1.26e-3 ↓ 3.024e+00 4.58e-3 ↑ 3.031e+00 2.28e-3 3.030e+00 2.55e-3

DTLZ1 7.975e+00 1.63e-4 7.975e+00 5.56e-4 7.937e+00 4.78e-3 ↑ 7.975e+00 5.54e-5
DTLZ2 7.426e+00 2.34e-5 ↓ 7.425e+00 4.06e-4 ↓ 7.376e+00 7.14e-3 ↑ 7.423e+00 9.85e-4
DTLZ3 6.339e+01 1.87e-2 ↑ 6.340e+01 2.83e-2 ↑ 6.336e+01 1.81e-2 ↑ 6.341e+01 6.25e-3
DTLZ4 7.426e+00 1.05e+0 7.425e+00 4.37e-1 7.407e+00 4.91e-3 ↑ 7.424e+00 1.84e-1
DTLZ5 6.050e+00 2.15e-4 ↑ 5.954e+00 2.18e-1 ↑ 6.015e+00 3.26e-3 ↑ 6.103e+00 1.09e-4
DTLZ6 5.821e+00 7.95e-2 5.444e+00 1.15e-1 ↑ 5.748e+00 6.70e-2 ↑ 5.877e+00 7.63e-2
DTLZ7 9.729e+00 2.61e-2 ↑ 1.739e+01 2.88e-2 ↑ 1.736e+01 1.15e-2 ↑ 1.754e+01 1.24e-2
WFG1 5.305e+01 1.45e+0 4.907e+01 1.59e+0 ↑ 5.443e+01 1.79e+0 5.492e+01 1.67e+0
WFG2 9.666e+01 1.16e+0 ↑ 1.003e+02 1.80e-1 ↑ 1.001e+02 1.61e-1 ↑ 1.008e+02 1.04e-1
WFG3 7.283e+01 6.74e-1 ↑ 7.408e+01 1.53e-1 ↑ 7.505e+01 1.47e-1 ↑ 7.522e+01 1.54e-1
WFG4 7.382e+01 4.23e-1 ↑ 7.656e+01 1.04e-1 7.668e+01 9.41e-2 7.661e+01 8.90e-2
WFG5 7.134e+01 5.35e-1 ↑ 7.373e+01 8.87e-2 ↑ 7.353e+01 8.09e-2 ↑ 7.383e+01 4.10e-2
WFG6 7.153e+01 6.24e-1 ↑ 7.412e+01 2.69e-1 7.401e+01 3.76e-1 7.422e+01 3.13e-1
WFG7 7.308e+01 8.38e-1 ↑ 7.685e+01 7.76e-2 ↑ 7.682e+01 8.26e-2 ↑ 7.700e+01 5.64e-2
WFG8 6.945e+01 9.24e-1 ↑ 7.285e+01 2.67e-1 7.266e+01 2.02e-1 ↑ 7.293e+01 2.29e-1
WFG9 6.821e+01 1.79e+0 ↑ 7.392e+01 9.19e-1 ↑ 7.489e+01 1.10e+0 7.513e+01 2.70e-1

Table 7: Median and standard deviation of the s-energymea-
sure for the compared MOEAs and MOMBI-III.

Problem MOEA/D NSGA-III MOMBI-II MOMBI-III
ZDT1 6.48e+04 5.26e+01 ↑ 6.49e+04 1.45e+02 ↑ 6.49e+04 1.43e+02 ↑ 5.69e+04 1.88e+02
ZDT2 5.61e+04 1.85e+02 ↓ 5.61e+04 3.70e+03 ↓ 5.61e+04 3.45e+02 ↓ 5.61e+04 1.02e+02
ZDT3 1.69e+06 5.51e+07 ↑ 1.32e+05 5.69e+04 ↑ 2.08e+07 1.28e+07 ↑ 4.40e+04 2.14e+03
ZDT4 6.45e+04 2.29e+02 ↑ 6.48e+04 5.55e+03 ↑ 6.49e+04 4.81e+03 ↑ 5.65e+04 3.04e+02
ZDT6 7.07e+04 2.30e+02 ↑ 7.00e+04 1.13e+04 ↑ 7.07e+04 7.50e+05 ↑ 6.94e+04 4.38e+02

DTLZ1 7.82e+05 2.25e+03 ↓ 7.84e+05 1.12e+08 ↓ 8.15e+05 1.43e+03 ↑ 8.01e+05 4.57e+03
DTLZ2 1.19e+05 5.54e+00 ↑ 1.19e+05 2.14e+02 ↑ 1.25e+05 3.36e+02 ↑ 1.18e+05 5.05e+02
DTLZ3 1.16e+05 3.65e+07 1.36e+05 9.25e+06 ↑ 1.39e+05 3.62e+10 ↑ 1.16e+05 1.51e+03
DTLZ4 1.19e+05 - ↑ 1.19e+05 9.79e+12 ↑ 1.24e+05 7.82e+02 ↑ 1.18e+05 1.68e+06
DTLZ5 6.38e+15 8.00e+15 ↑ 8.67e+14 1.89e+37 ↑ 6.45e+16 1.41e+18 ↑ 3.04e+06 1.52e+05
DTLZ6 1.21e+09 5.23e+10 ↑ 3.28e+11 1.64e+21 ↑ 4.89e+13 4.33e+15 ↑ 4.49e+05 1.78e+05
DTLZ7 3.07e+10 1.73e+18 ↑ 1.73e+06 1.01e+07 ↑ 5.54e+11 1.30e+12 ↑ 5.08e+04 2.22e+03
WFG1 8.87e+09 7.33e+11 ↑ 1.57e+05 5.71e+06 ↑ 3.48e+08 6.75e+10 ↑ 4.65e+04 6.16e+03
WFG2 2.50e+04 1.21e+08 ↑ 2.00e+04 8.16e+04 9.64e+08 3.12e+11 ↑ 2.06e+04 1.38e+03
WFG3 2.20e+09 1.26e+10 ↑ 2.66e+06 2.47e+08 ↑ 8.20e+08 1.89e+11 ↑ 3.91e+04 2.52e+03
WFG4 8.18e+03 1.28e+02 ↓ 8.93e+03 4.38e+01 ↑ 9.31e+03 1.00e+05 ↑ 8.35e+03 1.14e+02
WFG5 1.66e+05 8.21e+07 ↑ 8.85e+03 2.70e+01 ↑ 9.16e+03 3.99e+07 ↑ 8.40e+03 1.25e+02
WFG6 7.66e+03 1.41e+02 ↓ 8.94e+03 7.02e+04 ↑ 1.01e+04 6.12e+05 ↑ 8.40e+03 1.29e+02
WFG7 7.67e+03 1.40e+02 ↓ 8.86e+03 1.20e+03 ↑ 9.17e+03 1.64e+06 ↑ 8.45e+03 1.18e+02
WFG8 8.03e+03 2.16e+02 ↓ 2.18e+04 5.33e+05 ↑ 3.89e+08 2.05e+10 ↑ 8.29e+03 1.42e+02
WFG9 2.93e+05 3.65e+15 ↑ 1.08e+04 3.91e+04 ↑ 5.02e+05 1.12e+07 ↑ 4.31e+03 4.83e+01

Table 8: Median and standard deviation of the hypervolume
indicator on many-objective instances of DTLZ1.

m MOEA/D (1) NSGA-III (2) MOMBI-II (3) MOMBI-III (4)
4 1.5995e+01 1.23e-4 ↑ 1.5995e+01 8.66e-5 1.5945e+01 8.54e-3 ↑ 1.5995e+01 4.35e-5
5 3.1999e+01 9.18e-5 ↑ 3.1999e+01 6.97e-5 ↑ 3.1930e+01 1.68e-2 ↑ 3.1999e+01 3.65e-5
6 6.3998e+01 4.27e-4 ↑ 6.4000e+01 9.66e-5 ↑ 6.3922e+01 2.08e-2 ↑ 6.4000e+01 7.23e-5
7 1.2800e+02 8.25e-4 ↑ 1.2800e+02 1.36e-2 1.2784e+02 5.71e-2 ↑ 1.2800e+02 1.17e-4
8 2.5599e+02 4.47e-3 ↑ 2.5600e+02 2.00e-2 2.5577e+02 8.23e-2 ↑ 2.5600e+02 8.56e-4
9 5.1196e+02 2.69e-2 ↑ 5.1199e+02 7.76e-2 ↑ 5.1164e+02 1.78e-1 ↑ 5.1200e+02 1.36e-3
10 1.0238e+03 7.78e-2 ↑ 1.0240e+03 3.41e-2 ↑ 1.0232e+03 2.63e-1 ↑ 1.0240e+03 8.59e-4
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