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ABSTRACT

In this paper, we propose a dynamic mechanism to vary the
probability by which fitness inheritance is applied through-
out the run of a multi-objective particle swarm optimizer,
in order to obtain a greater reduction in computational cost
(than the obtained with a fixed probability), without dra-
matically affecting the quality of the results. The results ob-
tained show that it is possible to reduce the computational
cost by 32% without affecting the quality of the obtained
Pareto front.

Categories and Subject Descriptors: 1.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and
Search — Heuristic Methods; G.1.6 [Numerical Analysis]:
Optimization.

General Terms: Algorithms, Performance.

Keywords: Fitness Inheritance, Multi-Objective Optimiza-
tion, Particle Swarm Optimization.

1. INTRODUCTION

In fitness inheritance, originally proposed by Smith et al.
[3], the fitness value of an offspring is obtained from the
fitness values of its parents, with certain probability called
inheritance proportion (p;). This parameter (p;) has to be
fixed by the user and its value determines how much the
computational cost is going to be reduced. We propose a
mechanism to adapt the value of the inheritance propor-
tion in a dynamic way throughout the run, in order to
analyze how much can we reduce the computational cost
without dramatically deteriorating the quality of the ob-
tained results. The proposed approach is incorporated into
a Multi-Objective Particle Swarm Optimization (MOPSO)
algorithm previously proposed in [1], and tested using four
well-known multi-objective test functions.

2. DESCRIPTION OF OUR APPROACH

The MOPSO algorithm used in this work uses Pareto
dominance and a crowding factor to select and also to filter
the list of available leaders. Also, this approach uses differ-
ent mutation operators which act on different subdivisions
of the swarm, and incorporates the e-dominance concept to

Copyright is held by the author/owner(s).
GECCO' 06, July 8-12, 2006, Seattle, Washington, USA.
ACM 1-59593-186-4/06/0007.

Begin
Initialize swarm. Initialize leaders.
Send leaders to e-archive
crowding(leaders), g =0
While g < gmax
For each particle
Select leader. Flight. Mutation.
= If(p;) Inherit Else Evaluation.
Update pbest.
EndFor
Update leaders, Send leaders to e-archive
crowding(leaders), g+-+
EndWhile
Report results in e-archive
End

Figure 1: Pseudocode of the MOPSO algorithm.

fix the size of the set of final solutions produced by the al-
gorithm. Figure 1 shows the pseudocode of this MOPSO
algorithm (the symbol (=) indicates the line in which the
concept of fitness inheritance is incorporated).

We use a fitness inheritance technique that calculates the
new position of a particle in the objective space using the
formula': f(t) = fi(t — 1) + vfi(t), vEi(t) = Cir1i(Fobest; —
E(1) + Cara(Fgpest; — Ei(t)), where £, fopest; and fgbest; are
the values of the objective function ¢ for the current particle,
its pbest and gbest, respectively.

Based on previous experiments, we concluded that the
most important improvement throughout one run of our
MOPSO approach takes place during the first quarter of
the total of generations. Thus, we propose to set the value
of the parameter p; dynamically with respect to the current
generation number, in such a way that we increase the use
of fitness inheritance throughout the evolutionary process.
We propose six different functions (that we will call adaptive
functions) to adapt the value of the inheritance proportion.
Let gen be the number of the current generation and Gmax
the total number of generations. Figure 2 presents a plot of
the six adaptive functions. For each case p; = f(x).

3. RESULTS

We performed 30 runs using functions ZDT1, ZDT2, ZDT3
and ZDT4 [4]. The parameters used were 200 particles,
100 generations and 100 points in the final Pareto Front.
We implemented two unary measures of performance: Suc-

!This technique was found to be the best among the techniques
studied in [2].



Table 1: Obtained results for all the test functions and all the adaptive functions.

Function ZDT1 | no-inherit | nonlinearl | nonlinear2 | nonlinear3 linear nonlinear4 | nonlinearb
SCC mean 87 84 74 71 68 53 21
st. dev. 12.5 12.6 21 18.6 22.7 21.6 13.5
IGD mean 0.00096 0.00096 0.00103 0.00313 0.00280 0.00388 0.00838
st. dev. 0.00003 0.00003 0.00024 0.00890 0.00693 0.00979 0.01803
evaluations 20200 16306 13640 10295 10303 6966 4319
savings 0% 19.3% 32.5% 49% 49% 65.5% 78.6%
Function ZDT2 | no-inherit | nonlinearl | nonlinear2 | nonlinear3 linear nonlinear4 | nonlinearb
SCC mean 92 93 89 83 84 69 45
st. dev. 12.9 6.1 12.2 21.7 22.9 26.6 34.2
IGD mean 0.00067 0.00066 0.00067 0.00092 0.00078 0.00516 0.00378
st. dev. 0.00006 0.00002 0.00004 0.00100 0.00053 0.01390 0.00904
evaluations 20200 16304 13641 10295 10298 6968 4316
savings 0% 19.3% 32.5% 49% 49% 65.5% 78.6%
Function ZDT3 | no-inherit | nonlinearl | nonlinear2 | nonlinear3 linear nonlinear4 | nonlinear5
SCC mean 76 73 72 53 59 37 16
st. dev. 12.7 11.6 15.9 21.5 16.2 18 12.6
IGD mean 0.00090 0.00101 0.00200 0.00742 0.00232 0.01085 0.01779
st. dev. 0.00014 0.00027 0.00322 0.01375 0.00490 0.01371 0.01473
evaluations 20200 16312 13622 10290 10304 6966 4336
savings 0% 19.2% 32.6% 49.1% 49% 65.5% 78.5%
Function ZDT4 | no-inherit | nonlinearl | nonlinear2 | nonlinear3 linear nonlinear4 | nonlinearb
SCC mean 96 94 93 89 90 7 47
st. dev. 4.8 6.6 6.0 12.6 14.2 18.1 22.6
IGD mean 0.00096 0.00096 0.00096 0.00095 0.00100 0.00098 0.00124
st. dev. 0.00002 0.00002 0.00002 0.00003 0.00003 0.00008 0.00032
evaluations 20200 16287 13626 10315 10304 6958 4315
savings 0% 19.4% 32.5% 48.9% 49% 65.6% 78.6%
fx) _ _ quality.
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Figure 2: Plot of the six adaptive functions pro-
posed.

cess Counting (SCC) and Inverted Generational Distance
(IGD)?. Table 1 presents the results obtained.

As we can see in Table 1, it is possible to save even a
32% of evaluations (using adaptive functions nonlinearl and
nonlinear2) without significantly affecting the quality of the
obtained solutions. Also, the quality of the results when
having savings of 49% of the evaluations (using adaptive
functions linear and nonlinear3), is very acceptable. Only
in the cases in which savings of 65% and 78% of the evalua-
tions are obtained (using adaptive functions nonlinear4 and
nonlinear5), the corresponding results are of relatively low

2The SCC measure indicates the number of elements of the Pareto
front obtained, that belong to the true Pareto front of the prob-
lem. The IGD measure indicates how far is the true Pareto front
from the obtained Pareto front.

only on a few optimal solutions, the proposed approach may
be a suitable choice. As part of our future work, we plan to
test the proposed approaches on different test functions and
also on different evolutionary algorithms.
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