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Abstract—Nowadays, heuristics represent a com-
monly used alternative to solve complex optimization
problems. This, however, has given rise to the problem
of choosing the most effective heuristic for a given prob-
lem. In recent years, one of the most used strategies
for this task are the hyper-heuristics, which aim at
selecting/generating heuristics to solve a wide range
of optimization problems. Most of the existing selec-
tion hyper-heuristics attempt to recommend only one
heuristic for a given instance. However, for some classes
of problems, more than one heuristic can be suitable.
With this premise, in this paper, we address this issue
through an evolutionary multilabel learning approach
for building hyper-heuristics. Unlike traditional ap-
proaches, in the multilabel formulation, the result could
not be a single recommendation, but a set of potential
heuristics. Due to the fact that cooperative coevolu-
tionary algorithms allow us to divide the problem into
several subproblems, it results in a natural approach
for dealing with multilabel classification. The proposed
cooperative coevolutionary multilabel approach aims at
choosing the most relevant patterns for each heuristic.
For the experimental study included in this paper,
we have used a set of constraint satisfaction problems
as our study case. Our experimental results suggest
that the proposed method is able to generate accurate
hyper-heuristics that outperform reference methods.

I. Introduction

A number of heuristic methods have been proposed for
dealing with complex optimization problems. In spite of
their success, to date there is no single method that has the
best performance on all problems, and this is, indeed, not
possible in general, according to the well-known No Free
Lunch Theorem [1]. Thus, when facing an optimization
problem, the user has to choose the heuristic that best
solves it. This, however, can be a challenging task not only
due to the wide umbrella of possibilities, but also due to
the lack of guidelines that indicate in which cases a specific
heuristic is expected to be better than others. This fact has
been the main motivation for developing a research area
devoted to automating the design of algorithms.

In the field of optimization, one of the most recent
trends for automating the design of algorithms is the one
that considers using hyper-heuristics. The term hyper-
heuristic was initially used to describe heuristics for choos-
ing heuristics [2], [3]. Nowadays, this definition also in-

cludes the automatic generation of heuristics. In this sense,
hyper-heuristics operate at a higher level of generality by
working with the low level heuristics rather than working
directly with the solution of the problem [2], [4], [5].

Our research focuses on hyper-heuristics for heuristic
selection. In this approach, the strategy can access a pool
of available heuristics and selectively applies the one that
reaches a peak performance on the problem at hand.
Traditionally, hyper-heuristic approaches rely on machine
learning techniques to learn a model of the problem, which
in essence constitutes the hyper-heuristic. For example,
the last years have witnessed how various machine learning
strategies –such as lifelong learning [6], reinforcement
learning [7] and artificial neural networks [8]– have been
successfully applied to produce selection hyper-heuristics
for different problem domains. One way of doing this
learning is through the so-called supervised classification.
The idea is that, given a set of training instances, we
first identify the best heuristic for each instance and later,
a hyper-heuristic is built with the information of the
instance and the associated heuristic.

Note however, that different heuristics may show a sim-
ilar performance for a particular instance –a phenomenon
that occurs in many problem domains. This represents a
situation that is usually ignored by most of the hyper-
heuristic approaches: the fact that two or more heuristics
can be equally good or bad at a certain time [9]. Based
on our experience, we believe that preserving such infor-
mation about the set of all acceptable heuristics may be
beneficial for the hyper-heuristic process.

Based on the previous discussion, this paper proposes
a novel approach for heuristic selection that aims at
keeping the information of specific subsets of heuristics
that perform well for a particular instance. A natural
way for doing this is through multilabel classification [10],
which is a kind of supervised classification featured based
on predicting a set of responses, which are heuristics in
our case. In this regard, we have studied the use of evolu-
tionary algorithms because they have been found to have a
competitive performance on different supervised learning
tasks [11]–[14]. More specifically, we used a cooperative
coevolutionary algorithm [15], [16] to learn the set of most
relevant patterns for each heuristic. The contributions of



this paper are summarized as follows:
• The formulation of hyper-heuristics as supervised

multilabel classifiers. To the best of our knowledge,
this work is the first attempt to produce hyper-
heuristics that recommend a subset of the available
heuristics when they are invoked.

• A cooperative coevolutionary method to learn the
most relevant patterns for each single heuristic.

• An experimental study to validate the proposed
method.

With the aim to assess the effectiveness of our proposal,
we have adopted a suite of constraint satisfaction problems
(CSPs) as a study case. Our experimental results give
evidence of the suitability of the proposed method as it
is able to outperform traditional approaches.

The remainder of this paper is organized as follows. Sec-
tion II presents the basic concepts required to understand
the rest of the paper. Section III describes the proposed
method to deal with the design of hyper-heuristics. In
Section IV, we present our experimental study and the
analysis of the obtained results. Finally, Section V sum-
marizes the main conclusions of the paper and provides
some possible paths for future research.

II. Preliminaries
This section introduces basic concepts related to coevo-

lutionary algorithms, multilabel classification, and con-
straint satisfaction problems, which are used as a study
case for the proposed hyper-heuristic approach.

A. Coevolutionary Algorithms
A coevolutionary algorithm is an evolutionary algorithm

which is able to manage two or more populations si-
multaneously [17]. An important characteristic of these
algorithms is that they allow to split the problem into
different parts and assign a different population to each
subproblem. Each population focuses its efforts on solving
one specific part of the problem.

In a coevolutionary model, the interaction of individ-
uals from different populations delivers the solution for
the problem. Depending on the type of interaction, two
different kinds of coevolutionary algorithms can be de-
scribed [18]:
• Competitive coevolutionary algorithms [19].

The individuals of each population compete against
each other. In this sort of coevolution, the fitness
value of an individual decreases as the result of an
increment in the fitness value of its adversaries. Com-
petitive coevolution is normally adopted for game-like
problems.

• Cooperative coevolutionary algorithms [15],
[16]. Each population evolves individuals representing
a part of the solution. A complete solution is com-
posed by joining individuals from all the populations.
Therefore, the fitness value of an individual is the

result of its collaboration with other individuals from
other populations.

In this paper, we focus on cooperative coevolution be-
cause this approach allows decomposing the problem into
several subproblems, which can result in a natural way of
handling multilabel learning problems.

B. Multilabel Classification
Unlike traditional binary and multiclass classification

problems –where each instance belongs to only one class
label, in multilabel classification an instance may be asso-
ciated with a set of labels [10]. Formally, given a dataset
D = {(si, Yi)}, where si = [s1, . . . , sd] is an instance in a
d-dimensional feature space, Yi ⊆ {l1, . . . , lL} is the label
set associated with si, and i = {1, . . . ,m} is the number
of samples. The task is to learn a multilabel classifier
h : S → Y from D which predicts the label set of unseen
samples.

Two approaches have been widely applied to multilabel
data learning: data transformation and method adapta-
tion [10]. The first one is based on the idea of applying
transformation techniques to produce multiple single la-
bel datasets from the multilabel dataset. A single label
classifier is learned for each single label problem and the
outputs are combined. The second approach seeks to adapt
existing classification techniques, such that they generate
a set of labels instead of only one.

Many existing studies in multilabel classification rely
on simplifying the original problem. Nonetheless, taking
into account the information about the label correlation
represents one of the main concerns in this type of classi-
fication [20]–[23]. In this regard, several methods for data
transformation have been proposed. Perhaps, the most
well-known is the binary relevance method [24], which
consists of transforming the multilabel problem into L
single label problems, where a classifier is trained for each
single label problem. This method assumes that the labels
are fully independent. A second mechanism is to implicitly
incorporate the dependency information into the learning
process. One way of doing this is to treat the sets of
labels as a unit, and the dependency among the labels
is implicitly embedded in the training process. A similar
approach is based on a chain of classifiers [25], which
consists of introducing the predicted class label for one
classifier into the data given as input for the next one. The
latter one is specially used in the present study. Thus, the
different possible correlations in terms of the performance
for the different single heuristics can be represented in
a multilabel formulation. The heuristics considered for
this study are related to those designed for solving the
constraint satisfaction problem, which is detailed in the
next section.

C. Constraint Satisfaction Problems
The hyper-heuristic method described in this paper

can be applied to different combinatorial optimization



problems. To validate the proposed approach, we apply
it here to solve the CSP. We selected this problem mainly
because of its many practical applications [26], [27].

The CSPs considered for this investigation are defined
by a set of variables and the constraints among them. Each
variable can be assigned a value from a finite domain. To
solve a CSP, we are requested to assign a value to every
variable in the problem such that their values satisfy all
the constraints [28]. CSPs are usually solved by traversing
a depth-first search tree. At each node in the search tree,
the algorithm must select an unassigned variable and
one suitable value from its corresponding domain. If the
current assignment of the variables breaks at least one
constraint, the search backtracks and changes the value
of a previously assigned variable, and continues the search
from there.

At each node, the variable to assign, as well as the value
used for the assignment, are usually selected by heuristics.
In this paper, we have included five different heuristics for
variable selection, which are described as follows:

• Domain (DOM). DOM selects the variable with the
fewest remaining values in its domain [29].

• Degree (DEG). DEG selects the variable with the
largest degree [30], where the degree of a variable
is the number of constraints where such a variable
participates.

• Kappa (K). K selects first the variable that mini-
mizes the κ value of the resulting instance [31]:

κ =
−
∑

c∈C

log2(1− pc)∑
x∈X

log2(dx) (1)

where pc represents the tightness of constraint c
(the proportion of forbidden pairs of values in the
constraint) and dx stands for the domain size of
variable x.

• WDEG. WDEG attaches a weight to every con-
straint in the problem and increases it when its
respective constraint fails during the search [32], [33].
The weighted degree of a variable is calculated as
the sum of the weights of the constraints in which
the variable is currently involved. WDEG selects the
variable with the largest weighted degree.

• Domain over degree (DOM/DEG). It is the
result of the combination of DOM and DEG into a
single heuristic. DOM/DEG tries first the variable
with the smallest quotient of the domain size over
the degree of the variables [34].

Once a variable has been selected by using any of the
previously described heuristics, the first available value in
the domain of the selected variable is assigned to such a
variable.

Multilabel Dataset

Label 2Label 1 Label L. . .

111 . . . 0101 . . . 1 000 . . . 1

Cooperative Coevolution:
Multilabel Evaluation

Fig. 1: Population scheme for the evolutionary multilabel
learning

III. Evolutionary Multi-Label Hyper-Heuristics
Design

In this section, we propose a coevolutionary algorithm
to learn a set of patterns from the training data, which
can be used as a set of rules in the hyper-heuristic design.
The coevolutionary algorithm takes into account not only
the performance for each label, but also a measure of the
degree of disagreement among the correlated samples. The
rest of this section describes the proposed approach.

A. Initialization
As usually happens with evolutionary algorithms, the

learning process starts with an initial set of solutions.
These solutions are generated from the training set and
aim at selecting a subset of training samples to be used
by the k-nearest neighbor (k-NN) classifier as the hyper-
heuristic. For doing so, potential solutions are encoded
using a binary representation, as follows:

x = [b1, . . . , bm] (2)

where b = {0, 1} indicates whether a sample is used or not
and m is the dataset size.

Since in a multilabel classification problem there is more
than one label, a coevolutionary approach is adopted.
In the coevolutionary formulation, a subpopulation of
instances is used for each label. Thus, all subpopulations
share the same basic chromosome definition, as it is shown
in Fig. 1.

By using this representation scheme, all the individuals
will define a subset of the original dataset, with each
focused on selecting the most relevant subset of samples
for each label. Each individual symbolizes a reduced subset
which will be employed as a training set by the k-NN
classifier.

B. Evolutionary Operators
The subpopulations are evolved separately. The individ-

uals in each subpopulation are subject to two operations:
crossover and mutation. Since a binary representation is
used, we adopt Uniform Crossover. In this operator, each
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Fig. 2: Uniform crossover operation

bit is compared between two parents. The bits are swapped
with a fixed probability. This operator is graphically de-
picted in Figure 2.

We also adopt bit-flip mutation. In this operator, for
each bit, a random uniform probability is generated and
those positions where the random number is less than
the mutation probability are flipped. Finally, a binary
tournament selection is adopted to choose the parents to
be used in the reproduction step.

C. Fitness Function
In the optimization problem for multilabel learning, two

objectives are considered: (1) minimize the error rate of a
particular label and (2) minimize the Hamming score in
the multilabel problem.

A chain of classifiers is adopted for the multilabel
classification. This means that a total of L classifiers are
required, one per each label in the dataset. A characteristic
of the chain of classifiers is that each classifier is linked to
the rest through the labels of the previous classifiers. Using
this principle, an instance is classified as follows:

∀i ∈ {1, . . . , L} : y∗i = KNN (S∗,Z ∪ (y1, . . . , yi−1)) (3)

where KNN is a function that returns the predicted label,
S∗ is the reduced training set, Z is the set of samples to
be classified, and yi is the ith label.

The full solution for the multilabel classifier is built
considering an individual for the current subpopulation
and the best individuals for the others. Therefore, an
individual for each subpopulation is needed to compute the
fitness value. As we have previously stated, two measures
are considered: the error rate of the current label (errcl)
and the Hamming distance of the multilabel prediction
(H), which are defined as follows:

errcl = 1
m

m∑
j=1
L
(
y
∗(j)
cl , y

(j)
cl

)
(4)

H = 1
m

m∑
j=1

∑L
i=1 L

(
y
∗(j)
i , y

(j)
i

)
L

(5)

where L is a loss function that computes the error incurred
by the classifier. In our case, we have used the 0/1 loss
function, which takes the value of 1 if the prediction differs

from the true label and 0, otherwise. At this point, the
fitness value of an individual is computed as:

Fitness = α · errcl + (1− α) ·H (6)

where α is a weighting factor in the interval [0, 1]. In this
study, this value is set to 0.5.

D. Cooperative Coevolutionary Algorithm for Multilabel
Learning

In this subsection, we describe the cooperative coevolu-
tionary algorithm used for performing multilabel learning.
Algorithm 1 describes a basic pseudocode for the proposed
approach to perform multilabel learning. Next, we explain
in detail each instruction.

Algorithm 1 CCML
1: Generate randomly an initial population, Py for each

label y ∈ Y
2: Select individuals for each label
3: Evaluate all the population labels using the fitness

function
4: while a stopping criterion is not met do
5: Select the best solution for each label in the last

generation
6: Create an offspring for each population label
7: Evaluate individuals for each population label using

the fitness function
8: Select a population for each label using both the

parent and the offspring populations
9: end while

• Instruction 1 generates an initial population for each
label in the multilabel dataset. This step includes
the random generation of the individuals using the
representation described in subsection III-A.

• The second instruction randomly selects an individ-
ual for other population labels to build a complete
solution to the problem.

• In instruction 3, the evaluation of the fitness of each
individual is performed. This evaluation is done by
considering the blocks of complete solutions con-
structed and using the fitness function defined for this
purpose.

• Here is where the iterative coevolutionary process
starts.

– In instruction 5, the best solutions for each pop-
ulation label in the last generation are selected in
order to be used in the construction of a complete
solution to the multilabel problem.

– Instruction 6 creates an offspring for each pop-
ulation based on the evolutionary operators de-
scribed in subsection III-B.

– Next, the children are evaluated using the fitness
function, instruction 7.



– Instruction 8 constructs the population for the
next generation by selecting the best individuals
both for the parents and for the offspring popu-
lations.

The evolutionary process finishes when a given stopping
criterion is satisfied. The final solution is obtained by
joining the best individual for each population. With this
solution, the final multilabel model is constructed, which
would represent the designed hyper-heuristic to be used
for solving future problems.

IV. Experiments and Results
In this section, we describe the configuration for the

experiments as well as the results obtained with the
proposed method and with respect to other studies.

A. Experimental Settings
This section describes the instances used as well as the

validation process that we adopted.
1) Benchamrk Instances: For our experiments, we used

a set of benchmark CSPs taken from a public repository.1
The 482 CSP instances considered for this research are
coded in XCSP 2.1 format and represented in extension.
Among the available instances in the repository, we in-
cluded a mixture of sets that contain instances from differ-
ent classes, such as random, quasi random and patterned
instances.2

Every instance in this research has been characterized
by using the following CSP features:
• Global constraint density. The global constraint

density is calculated as the number of constraints
in the instance divided by n(n − 1)/2, which repre-
sents the maximum number of possible bidirectional
constraints in the instance (where n stands for the
number of variables in the instance).

• Global constraint tightness. The local constraint
tightness is calculated as the fraction of forbidden
pairs of values in a given constraint. The global
constraint tightness of a CSP instance is the average
of the local constraint tightness among all the con-
straints.

• Kappa. The value of κ is used as an estimate of the
hardness of an instance in relation to its size [31]. This
feature is calculated as depicted in Eq. 1.

• Global clustering coefficient. The neighborhood of
a variable x is composed by all the variables immedi-
ately connected to x by one constraint. The local clus-
tering coefficient is calculated as the constraint den-
sity of the neighborhood. Thus, the global clustering
coefficient can be defined as the average of the local
clustering coefficients among all the variables in the

1Available at http://www.cril.univ-artois.fr/∼lecoutre/
benchmarks.html

2The specific sets of instances used in this work can be referred
to by the names given in the repository: 2-30-15, geom, ehi-85,
25-10-20, coloringExt, bqwh-15-106 and bqwh-18-141

instance. The local clustering coefficient represents
the number of constraints among the neighbors of a
variable over the variable that is directly connected
to (by a constraint).

2) Validation Process: We have adopted hold-out as our
validation procedure. In hold-out validation, the dataset
is divided into two disjoint parts, such that one part is
used to fit the model parameters and the other one is used
to assess performance. For our experiments, 50% of the
dataset is used as the training set and the remainder 50%
is used as the test set. We decided in favor of hold-out
instead of the well-known cross validation due to the fact
that stratified sampling from cross validation could not
work for multilabel problems.

Two performance measures are adopted to assess the
effectiveness of our proposal. The first one is the success
rate, which counts the ratio at which a given method is
able to solve the set of problems/instances at a given time,
which has been fixed to 20 seconds. The second one is
related to a measure of the performance of the selected
heuristic; in this case, this measure is the time required
for the heuristic to solve the CSP.

The statistical evaluation is carried out by a set of non-
parametric tests. The Wilcoxon signed rank test [35] is
used for pairwise comparisons, and the Aligned Friedman
test [36] with Holm’s procedure [37] are used for multiple
comparisons. These non-parametric tests have been widely
recommended for safe and robust comparisons in [38]–[41].
In all cases, the significance level is set to α = 0.05.

Regarding the parameters for the evolutionary multi-
label method, a population size equals to 80 for each
label is considered. The probability of crossover (CR) and
mutation (MR) is fixed in 1 and 0.10, respectively. In
order to avoid the risk of producing overfitting during the
learning step, the stopping criterion is fixed to perform a
relative low number of fitness evaluations. The number
of evaluations (evals) of the fitness function is set to
2,000. Moreover, the value of k equal to 7 is used for the
KNN evaluation. These parameters were experimentally
determined. For doing this, we have evaluated, using the
two-fold cross validation, the performance of the proposed
method under each configuration of CR = {0.8, 0.9, 1.0},
MR = {0.05, 0.10, 0.20}, and k {1, 3, 5, 7, 9}.

B. Experimental Study
In this subsection, we present the experimental study

performed to assess the validity of our proposal. The
experimental study is divided into three parts: the first one
compares the performance of the hyper-heuristic against
the single heuristics. The second one aims at comparing
the multilabel approach against a traditional multiclass
one. Finally, the third one compares with a state-of-
the-art method specifically designed for producing hyper-
heuristics for CSPs.

1) Comparing with Single Heuristics: The aim of this
experimental study is to compare the performance of

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html


TABLE I: Performance of the proposed approach
(EMLHH) and single heuristics.

Method Success Rate Time (ms)
DOM 0.8132 5742.77
DEG 0.3444 14721.63
Kappa 0.7759 5921.61
WDEG 0.6639 8557.13
DOM/DEG 0.6515 8291.64
EMLHH 0.9501 2328.94

TABLE II: Ranks obtained with Aligned Friedman test
and adjusted p-values (APV) determined with Holm’s
procedure.

Method Rank p APV
DEG 1110.86 < 0.05 < 0.05
WDEG 813.11 < 0.05 < 0.05
DOM/DEG 784.61 < 0.05 < 0.05
DOM 638.24 < 0.05 < 0.05
Kappa 596.77 < 0.05 < 0.05
EMLHH 397.40 — —

the hyper-heuristic based on a cooperative coevolutionary
algorithm (EMLHH) against the single heuristics. This will
allow us to show the benefits of our proposal. Table I
shows the results obtained by each heuristic and the
proposed method. We report the success rate and the
average time spent for each heuristic/hyper-heuristic to
solve the problem. It is worth noting that for comparative
purposes, in the time measure, when considering the mul-
tilabel approach, one random label is selected from those
recommended by EMLHH.

We perform a statistical analysis to determine if such
differences are statistically significant. The Aligned Fried-
man test and Holm’s procedure are used to this end. The
results of these tests are shown in Table II

Based on the results and statistical tests, the following
can be stressed:
• Hyper-heuristics outperform all single heuristics in

terms of the success rate. This means that for most
problems, the hyper-heuristic is able to find a solution
to a CSP instance.

• Due to the evolutionary process, the learning of the
hyper-heuristic can be computationally expensive.
Nevertheless, once this has been built, the time to
give a recommendation is usually small.

• The time required to solve the problem for the hyper-
heuristic is lower than that required for the best
heuristic (DOM).

• The results have been supported by statistical tests,
which have shown that the hyper-heuristic is able to
improve with a statistically significant difference to
all the heuristics considered in this study.

• Selecting the most suitable heuristic for each problem
provides better solutions than working with a single
one.

2) Comparing with a Multiclass Approach: The main
goal of this section is to compare the performance of

TABLE III: Results obtained with EMLHH and standard
multiclass classifiers for building hyper-heuristics.

Method Success Rate Time (ms)
NB 0.9419 2643.12
MLP 0.8797 3789.05
KNN 0.9378 2625.37
J48 0.9378 2571.95
RF 0.9129 3116.96
EMLHH 0.9501 2328.94

TABLE IV: Ranks obtained with the Aligned Friedman
test and adjusted p-values (APV) determined with Holm’s
procedure.

Method Rank p APV
MLP 833.45 < 0.05 < 0.05
RF 732.30 0.13 0.53
NB 713.63 0.31 0.53
KNN 701.00 0.50 0.53
J48 685.52 0.78 0.99
EMLHH 675.10 — —

the proposed method (EMLHH) against the traditional
multiclass approach. To this end, we have trained several
common multiclass classifiers using the same dataset. The
set of classifiers are Näıve Bayes (NB), Multilayer Percep-
tron (MLP), K-nearest neighbors (KNN), a decision tree
(J48), and Random Forest (RF). It is worth noting that in
those samples for which more than one heuristic performs
well, only one is randomly chosen.

Table III reports the obtained results both for EMLHH
and the multiclass classifiers. We report both the average
success rate of the single heuristics and the resulting time
when such hyper-heuristic is used to solve the problem.

Table IV reports the results of the statistical tests
performed over this set of experiments.

Based on these results, the following can be highlighted:
• The success rate of EMLHH is superior to the one

obtained by common multiclass approaches. This is
due to the fact that, for similar problems, different
heuristics can achieve similar performance, which
makes harder for a single multiclass approach to
correctly predict the assigned target.

• When comparing with respect to the time required to
solve the problem, we can notice a similar behavior.
The time for solving the problems is, on average, lower
with the proposed approach than with standard ones.

• For most of the reference methods, there is no statisti-
cally significant difference, but the success rate for the
hyper-heuristic is better. This means that, on average,
for most cases, EMLHH is able to find a solution using
our available time budget.

• The lack of a statistical significant difference is due
to the fact that multiclass classifiers can recommend
a heuristic with a similar performance to the one
assigned as the target, which further confirms our
initial premise that has motivated this study: different
heuristics can perform well for a given problem.



TABLE V: Reported results using the proposed approach
(EMLHH) and a reference method (EHH) [8].

Case EHH EMLHH
Worst 7972.51 2688.20
Median 7220.88 2328.94
Best 5964.96 2293.80

The use of coevolution for breaking the multilabel clas-
sification problem into several single label problems has
been found to be quite beneficial, allowing EMLHH to
produce a more accurate selection of the single heuristic
and keeping the information of those having a similar
performance.

The cooperation between individuals of different popu-
lations allows us to select the most relevant patterns for
each label at the time that it removes the samples that
can be considered as noisy and irrelevant for the labels.
This can be noted in the improvement in the performance
measures.

3) Comparing with a Reference Method: The goal of this
section is to show the benefits of our proposed approach
with respect to a classical evolutionary method. To this
aim, we have compared with EHH, described in [8]. This
generator runs a genetic algorithm to produce rules of the
form state→ heuristic. By following this methodology,
we generated three hyper-heuristics specifically designed
for the sets of instances and heuristics considered in this
investigation.

Table V shows the results obtained for each method. We
compare in terms of the required time for each method to
solve the CSPs. Since evolutionary algorithms work with
a randomly generate population, we have run the methods
using ten different seeds, and we report the best, median,
and the worst case for each one.

We have applied the Wilcoxon Signed Rank test in
order to validate if the difference between both methods
is statistically significant. This test has revealed with a
p < 0.05 that, indeed, the performance difference between
both approaches is statistically significant.

If we analyze the results shown in Table V, we can note
that EMLHH outperforms EHH. Our approach is able to
significantly reduce the time spent in solving the problem.

V. Conclusions and Future Work
This paper introduced an evolutionary multilabel ap-

proach to design hyper-heuristics, which is based on the
idea that, for some problems, different heuristics can have
a similar performance. Through an experimental study, we
have shown that the use of a cooperative scheme allows
our approach to select the most relevant patterns for each
label.

The results achieved by the proposed method in the
experimental study have shown that it is able to offer
a significant improvement when it is compared to the
standard multiclass approach and an evolutionary method
designed to generate hyper-heuristics for solving CSPs.

These results have been contrasted with statistical tests,
which have confirmed our hypothesis that the use of
a multilabel approach can lead to the design of more
effective hyper-heuristics. Moreover, the CSPs have been
used as a study case; nonetheless, this approach attempts
to be general and it can be applied to other domains
without requiring major modifications.

As a result of our experimental study, we can also
point out some interesting paths for future research. For
instance, the fitness function is based on an aggregated
formula that combines both error rate per label and the
Hamming score. A natural extension is to formulate it as
a multi-objective optimization problem by explicitly and
simultaneously optimizing these two criteria. Moreover,
exploring different learning techniques, such as neural
networks in the cooperative coevolutionary method is
another interesting path. Finally, we would like to test the
proposed method in other domains in order to assess its
applicability to other kind of problems.
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