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Abstract—Cost-sensitive learning is one of the most adopted
approaches to deal with data imbalance in classification. Un-
fortunately, the manual definition of misclassification costs is
still a very complicated task, especially with the lack of domain
knowledge. To deal with the issue of costs’ uncertainty, some
researchers proposed the use of intervals instead of scalar
values. This way, each cost would be delimited by two bounds.
Nevertheless, the definition of these bounds remains as a very
complicated and challenging task. Recently, some researches
proposed the use of genetic programming to simultaneously
build classification trees and search for optimal costs’ bounds.
As for any classification tree there is a whole search space of
costs’ bounds, we propose in this paper a bi-level evolutionary
approach for interval-based cost-sensitive classification tree in-
duction where the trees are constructed at the upper level while
misclassification costs intervals bounds are optimized at the lower
level. This ensures not only a precise evaluation of each tree but
also an effective approximation of optimal costs intervals bounds.
The performance and merits of our proposal are shown through
a detailed comparative experimental study on commonly used
imbalanced benchmark data sets with respect to several existing
works.

Index Terms—Cost-sensitive learning, misclassification costs’
intervals, classification tree induction, bi-level optimization, evo-
lutionary algorithms.

I. INTRODUCTION

Several real-world classification applications encouter the
class imbalance problem. This fact leads to biased classifiers
that achieve low accuracy on the minority class with high
accuracy on the majority one. These biased classifiers cannot
be decisive for applications such as bioinformatics and medical
diagnosis [1]. This is because the minority class is more
important than the majority one in several applications. Cost
sensitive learning is an important technique that is used for the
improvement of classifiers to make them sensitive to several
misclassification costs [2], [3]. However, existing cost sensitive
methods share the same shortcoming that consists in manually
designing cost matrices. Unfortunately, it cannot be easy for
humains to correcly specify misclassification costs for several
mistakes.

Cost intervals are easier to be provided by experts because
they can provide information about the most serious type of
mistakes. Cost information encompasses cost values, interval
of costs, and costs distribution [4]. The latter ones are usually
unknown. This way, cost sensitive approaches that are based
on a manual design for cost matrices cannot be applied. For
this reason, the main goal consists in searching for methods

that are able to simultaneously learn costs in order to construct
cost-sensitive classifiers.

Genetic Programming (GP) could be applied for the clas-
sification task as an evolutionary algorithm that is able to
automatically evolve solutions [5]. Indeed, a tree or several
generated trees could represent a classifier. The main goal
consists in selecting informative features in an automatic way.
However, the generated classifiers by a GP method could be
biased due to the disproportionate class distribution.

Recently, researchers have investigated GP with cost sen-
sitive learning in order to simultaneously build classification
trees and search for optimal costs’ bounds [6], [7]. In fact, by
the use of intervals, possible mistakes could be tolerated in the
decision making process due to the uncertainty consideration
[4], [7]. In spite of obtaining promising results, proposed
approaches have a single level model that does not optimize
interval-based cost matrices [7]. However, there is a whole
search space of costs’ bounds for any classification tree. In
other words, the evaluation of a classifier necessitates trying
several interval-based cost values in order to be more fair
and precise. Motivated by this observation, we propose a
bi-level modeling in which the trees are constructed at the
upper level while misclassification costs intervals bounds are
optimized at the lower level. The proposed model is solved
using an enhanced version of an existing co-evolutionary
algorithm called CEMBA [8]. The resulting approach is named
Bi-ICOS (Bi-level Interval-based COst Sensitive). The main
contributions of the paper are the following:

• Proposing a bi-level modeling of the interval-based cost-
sensitive classification tree induction problem that evolves
classification trees at the upper level and optimizes the
misclassification costs intervals bounds for each classifier
at the lower level. In fact, the classification tree is passed
as a fixed parameter to the lower level and then a
whole lower level evolutionary process is executed to
approximate the optimal misclassification costs intervals
bounds of the considered classifier. Compared to single
level modeling, the bi-level one ensures a more precise
and fair evaluation of the evolved classification tree;

• Designing an improved and enhanced version of an
existing co-evolutionary algorithm in order to solve the
proposed bi-level model by modifying the migration
strategy. This latter one ensures both efficacious variation
and diversification of the evolved classification trees.



• Assessing the performance of Bi-ICOS on ten commonly-
used imbalanced datasets with up to 336 instances and
12600 features. The obtained results illustrate the ability
of Bi-ICOS in outperforming recent cost sensitive GP
methods and GP-based methods in terms of the evolved
costs intervals bounds and the Area Under a Curve (AUC)
results.

II. BACKROUND AND PREVIOUS RELATED WORK

When the imbalanced data classification task suffers from
high dimensionality, it is very difficult to improve the accuracy
of both minority and majority classes by selecting good-quality
features. Indeed, biased classifiers could be constructed based
on the use of features that are biased towards the majority
class.

Several real-world applications confront different mistakes
that lead to different losses. For instance, in medical analysis,
the fact of classifying a cancer patient as a healthy one is a
more serious mistake than the fact of classifying a healthy
patient as a cancer person. One of the important methods that
have been successfully used for imbalanced data classification
is cost sensitive learning. Indeed, cost values are considered
in order to treat the possible mistakes. The main goal is
to minimize the total cost of a cost-sensitive classifier. Cost
sensitive approaches are based on a cost matrix in order to
indicate the possible cost of misclassification. It is important to
mention here that there are two types of misclassification costs:
(1) instance-dependent cost values (i.e., every used instance
has its own cost) and (2) class-dependent cost (i.e., different
classes have different misclassification costs).

Bahnsen et al. [9] proposed a framework based on example-
dependent cost-sensitive trees. The proposed framework cre-
ates several decision trees using random sub-samples from
the training set. Moreover, two cost-sensitive combination
approaches were proposed where the first approach is a cost-
sensitive weighted voting and the second one is a cost-sensitive
stacking approach. In [10], authors tackled face recognition by
proposing a cost-sensitive kernel logistic regression with cost-
sensitive approach based on the k-nearest neighbor. Zhou et
al. [11] studied the fact of considering cost-sensitive learning
for the multi-class classification case. Indeed, these authors
proposed examining costs consistency before utilizing the re-
scaling in order to improve the performance of classifiers.
When the cost information is unavailable [12], reseachers
utilize the class imbalance ratio in order to construct the cost
matrix. This approach is oversimplified and does not consider
the characteristics of data. In other works [13] [14], the cost
matrix is optimized in order to ensure the construction of cost
sensitive classifiers in case of unknown cost information.

The investigation of cost sensitive learning and GP has
gained the attention of researchers. For instance, Li et al. [15]
investigate the performance of GP in order to tackle cost
sensitive classification. The main idea consists in manipu-
lating the training data while ensuring the modification of
the learning algorithm. The resulting approach is called CGP
(Constrained Genetic Programming) that builds decision trees

Fig. 1: Example illustrating how GP is utilized for the classi-
fication task (inspired by [7]).

while minimizing misclassification costs and errors through
the use of a novel fitness function. However, the cost in-
formation is provided by domain experts. Recently, Pei et
al. [6] propose the use of the class imbalance ratio in order to
automatically learn costs without the need of obtaining the
cost matrix information from domain experts. Indeed, two
cost-sensitive methods based on GP have been introduced.
On the one hand, the first method incorporates the learned
cost values into the GP fitness function. On the other hand,
the second proposed method integrates the cost values into
the GP classification process based on the use of a three-
way decision idea. More recently, Pei et al. [7] proposed a
cost-sensitive genetic programming approach that is able to
automatically learn interval costs. These latter ones are utilized
by the GP constructed classifiers to make them sensitive to
several mistakes.

In cost sensitive learning, the optimal classification predic-
tions are taken based on the cost matrix. Indeed, the minority
and the majority class are given by Class 0 (positive) and Class
1 (negative), respectively. In this way, the class-dependent cost
matrix could be given as follows:

Matrix =

(
C00 C01

C10 C11

)
where C01 and C10 represent costs of a false positive and a
false negative, respectively. C00 is the true positive cost while
C11 denotes the true negative cost. It is important to mention
that C01 < C10, C01 > C11, and C10 > C00 [16]. In this
way, the prediction of an instance noted h into a class noted
a necessitates finding the lowest expected cost [16]. In fact,
when h is predicted into a, the expected cost R is calculated
as follows:

R(h, a) =
∑
b

P (b|h)Cab (1)

where P (b|h) represents the probability of instance h belong-
ing to class b. It is worth mentioning that if b represents the
true class label, then the predicting cost of instance h into a
is given by Cab. Concerning the correct prediction, it occurs
when a = b. Conversely, the incorrect prediction occurs when



Fig. 2: Illustration of the new migration strategy.

i 6= j. Based on the previous equation, the possible costs of
classifying instance h into Class 1 or Class 0 are given as
follows:

R(h, 1) = P (0|h)C10 + P (1|h)C11 (2)

R(h, 0) = P (0|h)C00 + P (1|h)C01 (3)

Consequently, we can say that instance h is predicted to
Class 0 when P (1|h) ≥ C10−C00

C10−C00+C01−C11 ; however, h is
predicted to Class 1 otherwise [16]. Concerning the optimal
prediction for h, it is the Class 1 when R(h, 1) ≤ R(h, 0). In
order to separate the two classes, Pei et al. [6] introduce the
classification threshold as follows:

TH =
C10 − C00

C10 − C00 + C01 − C11
(4)

that is simplified to [6]:

TH =
C

C + 1
(5)

because both C00 and C11 are equal to 0 in order to indicate
that there is no misclassification cost that could be caused by
correct predictions. Moreover, the false negative cost C10 is
set to a value (C) greater or equal to 1 while C01 (the cost of
a false positive) is equal to 1.

III. PROPOSED APPROACH BI-ICOS

A. Motivations and main idea

The use of GP was the choice of some researchers to
tackle the imbalanced classification. Indeed, an individual is
represented by a GP tree based on terminal and function sets.
Internal nodes of a tree are constructed using the function
set (i.e. operators or functions), while terminals could be the
dataset features. To effectively make GP work on imbalanced

data classification, Pei et al. [6] introduced the threshold mov-
ing idea. As illustrated by Fig. 1, a GP classifier is constructed
using + and × as operators (taken from the adopted function
set) and four features: F3, F15, F29, and F50 (taken from
the terminal set). Each adopted instance is input into the
following expression: (F3 + F15) × (F29 × F50) and a
result value R is generated as the output. In the following,
the adopted instance is classified into the majority class if
the obtained value R is less than TH (threshold); otherwise,
it is classified into the minority class. Recently, an Interval-
based Cost-Sensitive Genetic Programming approach (ICS-
GP) was proposed by Pei et al. [7] in order to tackle the
high-dimensional imbalanced data classification. Indeed, the
Strongly Typed GP (STGP) was used to develop a tree where
the left sub-tree performs the classifier construction and the
right sub-tree performs the cost interval learning. The main
goal was to automatically develop classifiers while learning
cost intervals. In fact, for each individual, the right sub-tree
generates a cost interval that will be utilized by the left sub-
tree (i.e., the classifier) in order to evaluate classifiers and
to make them sensitive to possible classification errors. This
approach has obtained good results beacuse it is based on the
fact of automatically learning cost intervals that are needed for
the cost sensitive classifiers construction. Unfortunately, the
classifier evaluation is not fair and not precise because for each
left sub-tree (i.e., classifier), a single right sub-tree (i.e. cost
interval) is generated. Indeed, to make the classifier evaluation
more precise, it is required to try several cost intervals and
then to determine the best generated one that will be used
in the evaluation step. In other words, there is a whole search
space of costs’ bounds for any classification tree. Motivated by
this observation, we propose in this paper, a bi-level modeling
that performs the trees construction at the upper level while



misclassification costs intervals bounds are optimized at the
lower level. By following this bi-level model, a population
of right sub-trees (i.e., several cost intervals) are generated,
for each clssification tree, at the lower level problem and the
best cost interval will be passed to the upper level in order to
terminate the classifier evaluation. This fact ensures not only a
precise evaluation of each constructed tree but also an effective
approximation of optimal costs intervals bounds.

In order to solve the resulting bi-level modeling, we have
designed an enhanced version of an existing co-evolutionary
algorithm named CEMBA (Co-Evolutionary Migration-Based
Algorithm) [8] by modifying its migration strategy in order to
ensure efficacious diversification and variation of classification
trees. CEMBA [8] is based on decomposition and migration
schemes that make it efficient and effective in reducing the
number of evaluations while obtaining good upper level and
lower level results. To ensure efficacious diversification, we
propose a new migration strategy that is explained in Fig. 2.
Indeed, we are manipulating four cases as follows. For case
(a), the left sub-tree remains selected when it has a right
sub-tree at the lower level, and for case (b), the left sub-tree
remains discarded when it is discarded at the upper level and
its corresponding right sub-tree does not exist at the lower
level. Concerning case (c), it occurs when there is a left sub-
tree at the upper level while its right sub-tree does not exist
at the lower level. In this way, a random variable denoted as
V is generated between 0 and 1. Consequently, if V < 0.5,
then the left sub-tree will be discarded; otherwise, it remains
selected at the upper level and a random right sub-tree will
be chosen from the lower level population. Case (d) occurs
when the left sub-tree is discarded at the upper level while its
corresponding right sub-tree exists at the lower level. In this
case, if the random variable V < 0.5, then this left sub-tree
will be selected at the upper level and the right sub-tree will
be used to determine cost interval information; otherwise, both
left and right sub-trees will be discarded.

B. Detailed description

1) Upper level (left sub-tree):
The upper level of the proposed approach performs the

classifier construction by generating the GP left sub-tree.
Terminal and function sets are given by Table I. Fig. 3
illustrates an example of an evolved tree. The left sub-tree
in Fig. 3 is utilized as a classifier, that will be transformed
to an arithmetic expression Classifier ((F15 + F25) + F59).
In the previous expression, the adopted features (F15, F25,
and F59) are taken from the terminal set while + is an
operator chosen from the function set. The output value of
the arithmetic expression is normalized into the range [0,1]
using the min-max normalization method as follows [7]:

prea = 1− OUTVa −min(OL)

max(OL)−min(OL)
(6)

where OUTVa represents the value of the left sub-tree output
taking the instance a as an input. The OUTVa list for all the
training instances is given by OL, the minimum value in OL

Fig. 3: Example illustrating the main idea of our proposed
approach, Bi-ICOS.

is given by min(OL), and the maximum one is represented
by max(OL). After that, based on the received cost interval
values (i.e., Cmin and Cmax) from the lower level, the upper
level computes the classification thresholds as follows [7]:

Threshold1 =
Cmax

Cmax + 1
(7)

Threshold2 =
Cmiddle

Cmiddle + 1
(8)

After that, the constructed classifier ensures the prediction
for the majority and the minority classes based on the two



TABLE I: The used terminal and function sets.

Left sub-tree Right sub-tree
Terminal set Random constant Initial cost interval values [Cmin, Cmax] (the adopted values are uniformally distributed in [1, 2])

Features taken from the used dataset
Function set +, -, ×, %, if, and Classifier Additioncost: Cmax = Cmax1 + Cmax2, Cmin = Cmin1 + Cmin2,

multiplicationcost: Cmax = Cmax1 × Cmax2, Cmin = Cmin1 × Cmin2,
Divisioncost:if Cmax1

Cmax2
> 1, then Cmax1

Cmax2
; otherwise, Cmax2

Cmax1
(the same rule for Cmin),

substructioncost: Cmax = max(1, Cmax1 - Cmax2), Cmin = max(1, Cmin1 - Cmin2),
and Cost

classification thresholds.
a) The training set classification predictions:

On the one hand, when using Threshold1, the instance a
is classified into the majority class if prea ≥ Threshold1;
otherwise, a is classified into the minority class. On the other
hand, when using Threshold2, the instance a is classified
into the majority class if prea ≥ Threshold2; otherwise, a is
classified into the minority class.

b) Evaluation:
Each upper level individual (i.e., a tree) is evaluated using

the GMean [14]:

GMean =

√
TP

TP + FP
× TN

TN + FP
(9)

where FP denotes false positive, TP represents true positive,
while TN and FN are true negative and false negative,
respectively. In fact, the GMean is computed for each threshold
(i.e., Threshold1 and Threshold2): (1) GMean value using
Threshold1 (GMT1) and GMean value using Threshold2
(GMT2). Consequently, the fitness function combines the two
GMean values as follows:

GMean = GMT1 +GMT2 (10)

c) Variation:
Based on the obtained fitness values, best individuals are

selected by the tournament selection. After that, the genetic
operators (i.e., sub-tree crossover, sub-tree mutation [5], and
elitism) are applied in order to generate new populations
until reaching a stopping criterion. Finally, the best individual
(i.e., tree) is selected in order to ensure the predictions of
classification on the test set.

d) The test set classification predictions:
Additionally to Threshold1 and Threshold2, a new

Threshold3 is also utilized.

Threshold3 =
Cmin

Cmin + 1
(11)

The main goal is to ensure the classification decisions
for unseen instances [7]. Indeed, the instance a is classified
into the majority class if prea ≥ Threshold1; however a
is classified into the minority class if prea ≤ Threshold3.
Moreover, when prea belongs to the range [Threshold3,
Threshold1], then, the decision is taken based on Threshold2
and prea. as follows. Suppose that max(Prominority) is the
maximum value in the probabilities list of instances that were
predicted to the minority class and min(Promajority) is the
minimum value in the probabilities list of instances that were

predicted to the majority class. When pre ≥ Threshold2, if
prea is nearer to max(Prominority) than min(Promajority),
a is classified to the minority class; otherwise a is classified
to the majority class.

2) Lower level (right sub-tree):
The lower level ensures the cost interval learning task.

Indeed, several right sub-trees are generated at the lower
level for each classifier (i.e., classification tree). Terminal and
function sets are given by Table I. The right sub-tree in Fig. 3
generates three cost intervals: (1.15, 1.20), (1.02, 1.11), and
(1.40, 1.65). Each interval is represented by (Cmin, Cmax)
where both Cmin and Cmax are obtained through the use of
the uniformly distributed random numbers between 1 and 2. As
given by Fig. 3, the right sub-tree (i.e. Cost1) is transformed
to: Cost( multiplicationcost( additioncost((1.15, 1.20), (1.02,
1.11))), (1.40, 1.65)). This way, the obtained cost interval is
Cost( multiplicationcost((2.17, 2.31), (1.40, 1.65)) = (3.03,
3.81) = (Cmin, Cmax).

a) Evaluation:
Each lower level individual (i.e., a right sub-tree) evolves

a cost interval. Since the main goal is to minimize the
misclassification cost, the best cost interval is the one having
the minimum [Cmin, Cmax] values.

b) Variation:
Based on the obtained cost interval, best lower level

individuals are selected by the tournament selection. After
that, the genetic operators (i.e., sub-tree crossover, sub-tree
mutation [5], and elitism) are applied in order to generate new
lower level populations until reaching a termination criterion.
In fact, the best individual (i.e., right sub-tree) is passed
to the upper level in order to evaluate the corresponding
classification tree.

IV. EXPERIMENTAL STUDY

A. Used datasets
In order to examine the proposed Bi-ICOS, we have used

ten datasets (gene expression datasets) in the experiments [17]
(cf. https://schlieplab.org/Static/Supplements/CompCancer/
datasets.htm and https://sci2s.ugr.es/keel/imbalanced.php). As
illustrated by Table II, the adopted datasets may encounter
the class imbalance issue with the high-dimensionality aspect.
We mention here that IR represents the class imbalance ratio
(#maj
#min , where #maj is used to denote the instances number

in the majority class while #min is utilized to present the
instances number in the minority class).

https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm
https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm
https://sci2s.ugr.es/keel/imbalanced.php


TABLE II: Datasets details.

Dataset #Instances #Features IR (Approximately)
Lung 156 12,600 8
Tomlins-2006-v1 104 2,315 8
Yeoh-2002-v1 248 2,526 5
Gordon-2002 181 1,626 5
DLBCL 77 5,469 3
Shipp-2002-v1 77 798 3
Leukemia 72 7,129 2
Colon 62 2,000 2
Golub-1999-v1 72 1,868 2
Armstrong-2002-v1 72 1,081 2

B. Baseline methods

The proposed Bi-ICOS was compared to a recent interval-
based cost sensitive approach (i.e., ICS-GP [7]), GP-based
sampling methods (i.e., GPSMOTE [18] and GPADASY N

[19]), and GP approaches that apply several fitness functions
(i.e., GPave based on the weighted-average classification ac-
curacy [20], GPG−mean based on G-mean [14], and GPaucw

based on Wilcoxon-Mann-Whitney (aucw) [21]).

C. Parameters settings and statistical methodology

In order to evaluate our proposed Bi-ICOS, we have used
the trial-and-error method [22] for tuning the parameters (cf.
Table III). For the other compared algorithms (i.e., ICS-GP,
GPSMOTE , GPADASY N , GPave, GPG−mean, and GPaucw),
we adopted the parameters settings of the following paper [7].
Moreover, we utilized the number of evaluations as a termina-
tion criterion which is set to 781,250 evaluations. Furthermore,
we have launched 30 runs. Concerning the statistical test, the
Friedman statistical test was adopted followed by a posthoc
analysis based on the Holm test because we are performing
multiple comparisons. Indeed, the first one is used to detect if
an algorithm is statistically different from the other algorithms
or not, while the second one adjusts the p-values in order to
determine the pairwise relationships [23]. It is important to
mention that three statistical symbols are used: (1) “+” (better),
(2) “-” (worse), and (3) “≈” (no significance).

D. Obtained results and discussions

The Area Under a Curve (AUC) is used in order to
compare the proposed Bi-ICOS with ICS-GP, GPSMOTE ,
GPADASY N , GPave, GPG−mean, and GPaucw. AUC is a
widely used performance metric in imbalanced data classifi-
cation that evaluates both true positive and false positive rates
many times while ensuring the variation of thresholds in order
to provide an accurate curve rendition [1]. The obtained best,
median, and standard (std) results of Bi-ICOS with its peer
algorithms is given by Table IV. By comparing the obtained
AUC results among all runs, our proposed Bi-ICOS achieves
the best performance than other used methods in 8 out of the
10 datasets.

Compared with ICS-GP, our proposed Bi-ICOS achieves
better results and the superiority of Bi-COS appears on the
Leukemia dataset in which Bi-ICOS achieves 7.57% higher

TABLE III: Default parameters settings for Bi-ICOS.

Upper level Population (UP) size UP1 = 25, UP2 = 25
Lower level Population (LP) size LP1 = 25, LP2 = 25
Upper level generations number 25
Lower level generations number 25
Stopping criterion 781250 evaluations
Initialization Ramped half-and-half
Crossover type and probability Sub-tree crossover with a probability of 0.8
Mutation type and probability Sub-tree mutation with a probability of 0.2
Selection Tournament selection with a size equal to 6
Maximum tree depth 10
Elitism 1

AUC. Indeed, both ICS-GP and Bi-ICOS do not require deter-
mining a pre-defined classification threshold in order to ensure
the classification. However, two classification thresholds are
computed by using the evolved cost interval values. In this
way, both algorithms will be able to predict both majority
and minority classes. The main difference between Bi-ICOS
and ICS-GP reveals in the fact that our proposed Bi-ICOS is
based on a bi-level modeling in which the misclassification
costs intervals bounds are optimized at the lower level. In this
way, Bi-ICOS is able to ensure not only a precise evaluation
of each generated tree but also an effective approximation of
optimal misclassification costs intervals bounds.

Compared with GPave, our proposed Bi-ICOS obtains
significantly better performance in terms of the median AUC
in all datasets. Indeed, it is observed from the table that Bi-
ICOS achieves higher AUC in the range [1.09%, 16.00%]
than GPave. It is important to mention that GPave is based
on a standard classification strategy related to a weighting
coefficient. This latter one is used in order to specify the
importance of a majority class to a minority one. However,
it is not easy to determine this coefficient because it is given
by domain experts which is not the case of our proposed Bi-
ICOS. Indeed, Bi-ICOS is based on a combination of GP and
cost sensitive learning in order to automatically learn costs
without requiring information from domain experts.

Compared with GPGMean, Bi-ICOS achieves better results.
Indeed, the superiority of Bi-ICOS appears in Yeoh-2002-
v1 dataset (32.72% higher than GPGMean). This observation
is explained by the fact that the proposed Bi-ICOS does
not require the determination of a predefined threshold prior
in order to ensure the classification process. Moreover, two
classification thresholds are computed using the evolved cost
interval.

Compared with GPaucw, Bi-ICOS is significantly better in
8 datasets. For the other two datasets, GPaucw is slightly
higher than Bi-ICOS. It is worth mentioning that GPaucw is
able to achieve promising classification results compared to
GPGMean, GPave, GPADASY N , and GPSMOTE . However,
it could be seen from the table that our poposed Bi-ICOS
is able to outperform GPaucw due to the proposed bi-level
modeling that ensures a precise and fair evaluation. Compared
with GPSMOTE and GPADASY N , our proposed Bi-ICOS is
significantly better in all used datasets.

In summary, all the previous observations that demonstrate
the merits of the proposed Bi-ICOS are explained by two main



facts. On the one hand, cost-sensitive learning is used to help
GP to address the performance bias issue while improving
the classification performance by automatically learning the
needed interval-based cost information. On the other hand,
the proposed bi-level modeling ensures a precise evaluation of
each generated tree and an effective approximation of optimal
costs intervals bounds.

E. Analysis of GP trees examples for Lung and Colon diseases

To further discuss the obtained results, we have chosen two
datasets (Lung with IR = 8 and Colon with IR = 2) in order to
analyze examples of the evolved GP trees by Bi-ICOS. First,
for the adopted lung disease dataset, there are 156 instances
with 12600 features. In the example given by Fig. 4(a), the
generated tree has 13 nodes in total, in which 4 features
are selected from a totality of 12600 features. The selected
features are used in order to develop a classification tree (i.e.,
the left sub-tree). The generated cost interval is [1.29, 1.11]. It
is important to mention that for the test set, Bi-ICOS generates
100% AUC result for the lung dataset on both minority and
majority classes. Second, for the adopted colon disease dataset,
there are 62 instances with 2000 features. Fig. 4(b) gives an
example of a tree that is evolved for the colon disease dataset.
This tree is composed from 11 nodes in which two features
have been selected while the evolved cost interval is [3.63,
2.78]. It is important to mention that Bi-ICOS achieves 100%
AUC result for the colon dataset on both minority and majority
classes. One can notice that the left sub-tree of the lung disease
case is more complicated than the left sub-tree of the colon
disease case. This observation could be explained by the fact
that the lung dataset includes more features than the colon
dataset.

V. CONCLUSIONS AND FUTURE WORK

The aim of this paper was to tackle the imbalanced data
classification. The main contributions are given as follows.
First, we have proposed a bi-level modeling for the interval-
based cost sensitive classification tree induction where trees
are constructed at the upper level and misclassification costs
intervals bounds are optimized at the lower level. Second,
we have designed an improved version of an existing co-
evolutionary bi-level algorithm to solve the resulting bi-level
modeling. The main goal is to ensure efficacious variation and
diversification of the evolved classification trees by modifying
the migration strategy of the adopted algorithm. The resulting
approach is named Bi-ICOS.

To test the efficiency of the proposed bi-level modeling,
Bi-ICOS was compared with respect to recent interval-based
cost sensitive approach and GP-based approaches with several
fitness functions. Experiments on ten commonly-used imbal-
anced datasets illustrate the ability of Bi-ICOS on achieving
better classification performance. The obtained results show
the merits of the bi-level modeling in ensuring not only a
precise evaluation of each evolved tree but also an effective
approximation of the optimal costs intervals bounds.

TABLE IV: The obtained AUC results (%).

Dataset Method Best Median Std*

Lung

Bi-ICOS 100 99.49 2.03
ICS-GP 100(≈) 98.29(-) 3.63(-)
GPSMOTE 100(≈) 80.99(-) 16.20(-)
GPADASY N 100(≈) 82.50(-) 15.01(-)
GPave 100(≈) 83.49(-) 14.77(-)
GPG−mean 99.15(-) 80.97(-) 18.30(-)
GPaucw 100(≈) 92.24(-) 13.30(-)*

tomlins-
2006-
v1

Bi-ICOS 100 98.89 1.25
ICS-GP 100(≈) 97.37(-) 2.50(-)
GPSMOTE 100(≈) 83.30(-) 13.40(-)
GPADASY N 100(≈) 84.59(-) 13.27(-)
GPave 100(≈) 88.80(-) 13.50(-)
GPG−mean 100(≈) 84.46(-) 14.60(-)
GPaucw 100(≈) 91.20(-) 9.80(-)*

Yeoh-
2002-
v1

Bi-ICOS 100 98.92 2.30
ICS-GP 100(≈) 97.80(-) 3.90(-)
GPSMOTE 100(≈) 87.37(-) 9.31(-)
GPADASY N 100(≈) 84.30(-) 10.26(-)
GPave 100(≈) 84.01(-) 11.82(-)
GPG−mean 95.66(-) 66.20(-) 16.29(-)
GPaucw 100(≈) 99.02(+) 2.28(+)*

Gordon-
2002

Bi-ICOS 100 99.28 1.98
ICS-GP 100(≈) 97.10(-) 2.41(-)
GPSMOTE 100(≈) 97.39(-) 3.01(-)
GPADASY N 100(≈) 97.80(-) 2.88(-)
GPave 100(≈) 98.19(-) 2.85(-)
GPG−mean 100(≈) 98.40(-) 2.98(-)
GPaucw 100(≈) 99.35(+) 1.97(+)*

DLBCL

Bi-ICOS 100 87.75 9.50
ICS-GP 100(-) 81.60(-) 11.90(-)
GPSMOTE 98.05(-) 83.10(-) 9.63(-)
GPADASY N 100(≈) 79.55(-) 10.87(-)
GPave 97.97(-) 75.06(-) 15.80(-)
GPG−mean 100(≈) 76.80(-) 16.01(-)
GPaucw 100(≈) 86.30(-) 9.61(-)*

SHIPP-
2002-
V1

Bi-ICOS 100 88.12 4.17
ICS-GP 95.10(-) 83.99(-) 9.17(-)
GPSMOTE 98.10(-) 81.95(-) 12.01(-)
GPADASY N 95.90(-) 79.50(-) 12.33(-)
GPave 98.82(-) 82.64(-) 9.92(-)
GPG−mean 95.93(-) 82.79(-) 10.11(-)
GPaucw 100(≈) 82.55(-) 9.60(-)*

Leukemia

Bi-ICOS 100 95.17 4.66
ICS-GP 100(≈) 87.60(-) 9.45(-)
GPSMOTE 100(≈) 87.61(-) 9.43(-)
GPADASY N 100(≈) 89.80(-) 8.50(-)
GPave 97.95(-) 88.40(-) 7.93(-)
GPG−mean 100(≈) 81.12(-) 15.70(-)
GPaucw 100(≈) 86.77(-) 9.47(-)*

Colon

Bi-ICOS 97.17 83.65 3.64
ICS-GP 93.06(-) 78.89(-) 6.45(-)
GPSMOTE 93.01(-) 76.11(-) 10.30(-)
GPADASY N 87.89(-) 74.08(-) 10.65(-)
GPave 92.10(-) 76.04(-) 9.77(-)
GPG−mean 93.24(-) 72.01(-) 12.60(-)
GPaucw 92.15(-) 79.31(-) 6.10(-)*

GOLUB-
1999-
V1

Bi-ICOS 100 99.59 1.50
ICS-GP 100(≈) 99.02(-) 3.02(-)
GPSMOTE 100(≈) 91.95(-) 10.51(-)
GPADASY N 100(≈) 91.21(-) 9.98(-)
GPave 100(≈) 91.86(-) 10.21(-)
GPG−mean 100(≈) 90.02(-) 11.77(-)
GPaucw 100(≈) 98.30(-) 3.43(-)*

ARMSTRONG-
2002-
V1

Bi-ICOS 100 99.29 1.86
ICS-GP 100(≈) 98.10(-) 2.91(-)
GPSMOTE 100(≈) 91.51(-) 9.70(-)
GPADASY N 100(≈) 92.39(-) 9.51(-)
GPave 100(≈) 94.70(-) 8.22(-)
GPG−mean 100(≈) 92.25(-) 7.83(-)
GPaucw 100(≈) 94.72(-) 4.71(-)



Fig. 4: Illustration of two examples of GP trees for (a) lung and (b) colon diseases.

Several future paths of research could be followed from
this work. For instance, it would be interesting to investigate
Bi-ICOS’ performance for the multi-class classification case
since we have only considered binary classification. Also,
it would be interesting to investigate ensemble learning in
order to improve the generality of learned cost intervals.
Indeed, the main goal is to improve the Bi-ICOS performance
with the application of ensemble learning in order to explore
how several cost-sensitive classifiers could use the same cost
information.
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