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Abstract— This paper presents a new multi-objective evolu- recently that researchers have started to develop MOEASs tha
tionary algorithm (MOEA) which adopts a radial basis function  perform a very low number of fitness function evaluationse Th
(RBF) approach in order to reduce the number of fitness ., mqse of this paper is precisely to introduce a new hybrid
function evaluations performed to reach the Pareto front. The . . . .
specific method adopted is derived from a comparative study approach Wh'_Ch Ciombln.es a MOEA with RB.FS In order' to
conducted among several RBFs. In all cases, the NSGA-II produce a quick (i.e., with a low number of fitness function
(which is an approach representative of the state-of-therain  evaluations) approximation of the Pareto front. Then, foug
the area) is adopted as our search engine with which the sets are used to diversify the neighborhood surroundiniy efc
RBFs are hybridized. The resulting algorithm can produce vey 6 hondominated solutions produced with this hybrid MOEA
reasonable approximations of the true Pareto front with a vey . '
low number of evaluations, but is not able to spread solutios in such that th_e rest of th_e Pareto_front 1S _reconstructed.
an appropriate manner. This led us to introduce a second stagto The remainder of this paper is organized as follows. Sec-
the algorithm in which it is hybridized with rough sets theory in  tion Il provides the required background for the use of Riadia
order to improve the spread of solutions. Rough sets, in thisase, Basis Functions to approximate a function. In Section Iig w
act as a local search approach which is able to generate solons provide a brief introduction to rough sets theory and a quick
in the neighborhood of the few nondominated solutions prewusly . . . .
generated. We show that our proposed hybrid approach only review _of the most_ relevant previous related work is desatib
requires 2,000 fitness function evaluations in order to solv test N Section IV. Section V describes our proposed approach. Ou
problems with up to 30 decision variables. This is a very low comparison of results is provided in Section VI. Finally, in
value when compared with today’s standards reported in the Section VII, we provide some of the paths for future research

specialized literature. and the conclusions of this work.
I. INTRODUCTION II. FITNESSAPPROXIMATION USINGRBFs

Multi-objective optimization problems are of great impor- RBFs were first introduced by R. Hardy in 1971 [4]. This
tance, since they are very common in a wide variety of disde'm is made up of two different wordsadial and basis
plines. Multi-objective problems have two or more objeetiv functions A radial function refers to a function of the type:
which are normally in conflict with each other. Therefore, ‘RIS R: (z xq) — ¢(||x zdll2)
instead of having a single solution, they normally have a set = P e Lo a2
of solutions (called the Pareto optimal set) all of which are for some functiony : R — R. This means that the function
equally good among themselves. value ofg at a point@ = (z1,...,z4) only depends on the

Despite the existence of a variety of mathematical préuclidean norm ofz’:
gramming techniques to solve multi-objective optimizatio
problems, the use of evolutionary algorithms in this ares. ha 17 ||z =
become very popular in the last few years [1], [2], mainly
because of their ease of use, and their wide applicability.
However, despite their several advantages, multi-ohjecti
evolutionary algorithms (MOEAS) tend to require an impatta
number of objective function evaluations, in order to achia
reasonably good approximation of the Pareto front, evermwh
dealing with benchmark problems of low dimensionality. § hi n N
issue bec_omes_ critical when attempting to s_olve real-worlfl RS R: T Z XNg(T —T) = Z o7 - T2
problems in which we can only afford performing a very low — pat
number of fithess function evaluations. It has been onlyl unti D

d
> 2?2 = distance of to the origin
=0

And this explains the termadial. The termbasis functioris
explained next. Let's suppose we have certain points (@alle
centers)7,..., ¥, € R% The linear combination of the
gmctiong centered at the pointg is given by:



Type of nga' Function (probably) inside X if it belongs to the upper approximation.

linear splines [r] . . .
TPS thin plate splines  |r|2™+1 In|r| Theboundaryis the difference of these two sets, and the bigger
Cs cubic splines r® the boundary the worse the knowledge we have of3eOn
MQSs multiquadrics splines /1 + (er)? the other hand, the more precise is the grid implicity used to
GA Gaussian e (D define the indiscernibility relatio®, the smaller the boundary
TABLE | regions are. But, the more precise is the grid, the bigger the
RADIAL BASISFUNCTIONS number of elements i/, and then, the more complex the

problem becomes. Consequently, the goal is obtaining ‘15mal
grids with the maximum precision possible. These two aspect
are calledDensity andQuality of the grid. If ¢ is the number
where || — 77| is the Euclidean distance between thef criteria (in our case, the number of objectiveg), is the
points T and 7’;. So, f becomes a function which is in thei-th criterion, b; is the j-th value of thei-th criterion (we
finite dimensional space spanned by the basis functions: assume these values are ordered increasingly), then:

g:: @ = 9|7~ 7)) Density(G) — ZIQZ
Now, let us suppose that we already know the values of i=1 j=1
a certain function” : R? — R at a set of fixed locations | Low(X)|
Z;,...,Zn. These values are namgd = H(F;), so we try Quality(G) =

to use thez; as centers in equation (1). If we want to force ‘ ‘ 2
the functionf to take the valueg; at the different points;, wherez; is 1 if b} is active in the grid andLow(X)]| is the
then we have to put some conditions on the This implies cardinality of the lower approximation oX .

the following: IV. PREVIOUSRELATED WORK
n

; gy N - = Currently, there exist several evolutionary algorithmatth
Vi€ (Lo} £y = 1) = 3 (- (1T~ 7)) use a meta-model to approximate the real fithess function
and reduce the total number of fitness evaluations without
degrading the quality of the results obtained. Note however
that very few of these approaches are multi-objective. Next
we will briefly review the most significant work in this area.
Various approximation levels or strategies adopted foefn

i=1
In these equations, only thg; are unknown, and the
equations are linear in their unknowns. Therefore, we catewr
these equations in matrix form:

¢(0) ¢z —a2l) .. d(ler —2nl) A1 f1 . . . . . .
s(lwz — @1l (0) o sllaz = enl) Az 1 approximation in evolutionary computation are proposed in
: : : R I [6]. Ong et al. [10] used surrogate models (RBFs) to solve

¢Ulen —=21)  @lllen —w20) ... #(0) An 4 computationally expensive design problems with constsain

Typical choices for the basis functiop$ ) include linear The authors used a parallel evolutionary algorithm coupled
splines, cubic splines, multiquadrics, thin-plate spirend With sequential quadratic programming in order to find ojatim

Gaussian functions as shown in Table I. solutions of an aircraft wing design problem. In this cabe, t
authors construct a local surrogate model based on radi& ba
IIl. ROUGH SETS THEORY functions in order to approximate the objective and comstra

Rough sets theory was proposed by Pawlak [11] as a n&mctions of the problem. Karakasis et al. [7] used surregat
mathematical approach to imperfect knowledge. The bagdicsmodels based on radial basis functions in order to deal with
this approach are briefly described next. computationally expensive problems. A method called Ioexa

Let us assume that we are given a set of objéttsalled Pre-Evaluation (IPE) is applied into a MOEAs selection
the universeand an indiscernibility relationR C U x U, mechanism. Such method helps to choose the individuals that
representing our lack of knowledge about elementé/ofin are to be evaluated using the real objective function, right
our case,R is simply an equivalence relation based on a gridfter a meta-model approximation has been obtained by the
over the feasible set; this is, just a division of the feas#dt surrogate. The results are compared against a conventional
in (hyper)-rectangles). LeXK be a subset of/. We want to MOEA in two test problems, one from a benchmark and
characterize the seX with respect toR. The way rough sets one from the turbomachinery field. Voutchkov & Keane [5]
theory expresses vagueness is employing a boundary regitudied several surrogate models (RSM, RBF and Kriging) in
of the setX built once we know points both insid&® and the context of multi-objective optimization using the NSGA
outside X . If the boundary region of a set is empty it mean [3] as the MOEA that optimized the meta-model function
that the set isrisp; otherwise, the set isough (inexact). A given by the surrogate. The surrogate model is trained with 2
nonempty boundary region of a set means that our knowledgéial points and the NSGA-II is run on the surrogate model.
about the set is not enough to define the set precisely.  Then, the 20 best resultant points given by the optimization

Then, each element iV is classified asertainly inside are added to the existing data pool of real function evadmsti
X if it belongs to the lower approximation opartially and the surrogate is re-trained with these new solutions. A



comparison of results is made in 4 test functions (from @f values. InM dimensions, these objects are called Latin-
to 10 variables), performing only 400 real fitness functiorlypercubes. Once a Latin-Hypercube has been created, we
evaluations. Knowles [8] proposed “ParEGQ”, which corsisthoose the center of each hypercube as the place where the
of a hybrid algorithm based on a single optimization modétitial P individuals are chosen. Then, we evaluate th&se
(EGO) and a Gaussian process, which is updated after evawgividuals with the real objective functions, and traireth
function evaluation, coupled to an evolutionary algorithmmeta-model using the RBFs. As we are dealing with multi-
EGO is a single-objective optimization algorithm that usesbjective problems, we decided to train the multiple obyest
Kriging to model the search landscape from the solutiorseparately. Consequently, we obtain a different RBF peh eac
visited during the search and learns a model based on Gaussibjective, so these objectives are still in conflict with keac
processes (called DACE). This approach is used to solva-mutither as they are an approximate model of the real objectives
objective optimization problems of low dimensionality (tgp Thus, we now have to solve a different multi-objective pesbl

6 decision variables) with only 100 and 250 fitness functidmased on the different RBF obtained during the training

evaluations. process.
We use the NSGA-II [3], which adopts a fast nondominated
V. PROPOSEDAPPROACH sorting approach to classify solutions according to lewdls

o . : nondomination and a crowding distance operator, which is
Our proposed approach, is divided in two different phases . . : . )
) . résponsible for preserving diversity. The NSGA-II is admpt

and each of them consumes a fixed number of fithess function® " .~ ;
; : t0_optimize the meta-model obtained by the RBFs. From
evaluations. In the first phase, our surrogate-based MOEA |

applied for 1000 fitness function evaluations. Howeve esina the nondominated solutions found by the NSGA-II, we
bp : e %ecided to retain only 20 points. These new points obtained

several RBFs exist, we decided to perform acomparativeystub the NSGA-II are compared with respect to all the points

among several of them, in order to determine which one | . ; ) .
. iN the main population and those that are different with
the most appropriate for our purposes. The results of this

comparative analysis are discussed in Section VI, réspect to all the points contained in the main population

) A re accepted and evaluated using the real objective functio
The results obtained from the first phase led us tp CO”C'“g lues. All the solutions contained in the main population a
that a local search mechanism was necessary in order

0 . :
. . : used to re-train the meta-model (using RBFs) and get another
Zprrr:aacdhﬂk])?atrt]gpgomrlcr)]aﬁ:tsc?r:ugg?ﬁepéi\??euIﬂg:gt%ngbmt proximation of the real objectives. As it is shown in Figur
uer pproximat : . u . this procedure is repeated until the numberMtiz Fval
be achieved. Thus, the second phase of our algorithm cens
of applying rough sets theory for 1,000 fithess function ev.

aluations is fulfilled. With this procedure, the size oéth
. . . . . ain population is increased as the real objective function
uations in order to improve the solutions produced durirey ti% Pop )
first phase.

valuations are performed. As the main population becomes
larger, the training process takes more computational time
A. RBFs-based MOEA do the 'appro.ximation because tlhematrix is Iarger. and the
matrix inversion process takes more and more time. So, we
The RBFs-model adopted in our approach is shown irecided to accept a maximum of 500 solutions in the main
Figure 1. As can be seen, the NSGA-II [3] is used to optimizsopulation. When this number is reached, we choose only
the approximated model generated by the RBFs. Our approaled 300 best solutions (based on rank & crowding distance
keeps two populations: the main population (which is used $orting) to continue with the training process. At the end of
select the parents) and a secondary population, that setaime procedure, we select 52 nondominated solutions from the
dominated solutions found during the evolutionary processain population, and we store 100 dominated solutions in
(this secondary population is needed by the second phasse tha secondary population, which stores the dominated point
uses rough sets). needed for the Phase Il. Every removed point from the main
First, we generate” individuals using Latin-Hypercubespopulation is included in the secondary population. If this
[9], which is a method that guarantees a good distribution eécondary population reaches a size of 100 points, a rank and
the initial population in a multidimensional space. If we @o crowding distance sorting is used to keep only 100 points (th
simple random sampling of the initial points, where the nevemainder are eliminated).
sample points are generated without taking into account the ] o o
previously generated sample points, we may not be able By Phase 2: Rough Sets in Multi-Objective Optimization
obtain points in some critical areas from the search spaceFor our MOPs we will try to approximate the Pareto front
Our approximation model requires a good distribution of thesing a rough sets grid. To do this, we will use an initial
sample points provided, in order to build a good approxiorati approximation of the Pareto front (provided by the main
of the real functions and therefore the importance of adgpti population obtained from the first phase previously descijb
this approach. A Latin cube is a selection of one point fromnd we implement a grid in order to get more information
each row and column of a square matrix. Mi dimensions, about the front which allow us to improve this initial approx
the corresponding item is a set &f points, where, in each imation. As indicated before, we need to design a grid that is
dimension, there is exactly one point per column or ranget so expensive (computationally speaking) but that sféer
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Fig. 1. RBFs algorithm, which uses the NSGA-II to optimize theta-model.
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% f o Nondominated to create it, we will try to use just a few points. However,
. \mmmam such points must be as far from each other as possible,
' because the better the distribution the points have in titialin

- approximation the less points we need to build a reliabld.gri
; On the other hand, in order to diversify the search we build
3 several grids using different (and disjoint) sdisS and E'S
/ coming from the initial approximation. To ensure these sets
0 are really disjoint we will mark each point as explored or
. non-explored (i.e., we distinguish if it has been used ortaot
compute a grid) and we will not allow repetitions. AlgoritHim
describes a Rough Sets iteration.

£

% f;

Fig. 2. Decision variable space (left) and objective fumttspace (right)

Algorithm 1 Rough Sets Iteration

1: ChooseNumE f f non-explored points of'S.

2: ChooseNumDom non-explored points oDS.
reasonably good knowledge about the Pareto front to be usddGenerateNumEf f efficient atoms.

; L ‘o A 4:for i=0to NumEff do
to improve the initial approximation. To this aim, we have5: for j—0toOf fspring do

to decide which elements @f (that we will callatoms and 6: Generate (randomly) a pointew in atomi and send taE:S
are rectangular portions of decision variable space) aeén 7 if new is efficientthen

the Pareto optimal set and which are not. Once we have t@@a en'(;‘?f'“de inES

efficient atomswe can easily intensify the search over thesg. it A point old in ES is dominated bynew then

atoms as they are built in decision variable space. To creafe Sendold to DS

this grid, as an input we will havé/ feasible points divided }g i?”se'; is dominated by a point S then
in two sets: the nondominated points{) and the dominated 14: Removenew

ones YS5). Using these two sets we want to create a grid t: end if

describe the seES in order to intensify the search on it. Thisigf enznf?)rfor

is, we want to describe the Pareto front in decision variable-

space because then we could easily use this information to

generate more efficient points and then improve this initial VI. DISCUSSION ANDRESULTS
approximation. Figure 2 shows how information in objective As we have mentioned, our main goal is to reduce the
function space can be translated into information in deoisi number of fitness function evaluations. Thus, our experiaien
variable space through the use of a grid. design considers that only a few function evaluations are
We must note the importance of thi&S set since in a rough performed in several multi-dimensional test problems ftbm
sets method the information comes from the description @DT set [13]. The detailed description of these test functions
the boundary of the two sets. Then, the more efficient point&as omitted due to space restrictions (see [13] for further
provided the better. However, it is also required to providieaformation). However, all of these test functions are lgab
dominated points, since we need to estimate the boundéwe, unconstrained minimization problems and have betwee
between being dominated and being nondominated. Orit@ and 30 decision variables. Three performance measures
this information is computed, we can simply generate moweere adopted in order to allow a quantitative assessment of
points in the “efficient side”. Since the computational cokt our results: (1) Inverted Generational Distant@}), which
managing the grid increases with the number of points usida variation of a metric proposed by Van Veldhuizen [12]




in which the true Pareto is used as a reference; (2) Two Set
Coverage $C), proposed by Zitzler et al. [13], which performs
a relative coverage comparison of two sets; and (3) Spread
(S), proposed by Deb et al. [2], which measures both progress
towards the Pareto-optimal front and the extent of spread. F
each test problem, 30 independent runs were performed.
This section is divided in two parts: in the first one, we
compare the results obtained by the surrogate-based N$GA-I
with respect to the original NSGA-II. Both approaches perfo
1,000 real function evaluations in this case. In the secamt] p
the Rough Sets Theory algorithm is applied for another 1,000
real function evaluations and the results are compared with
respect to the original NSGA-II performing 2,000 evaluatio

A. First Phase Analysis

The first phase of our approach uses several parameters:

main population size# = 20), internal NSGA-II population

—— ZDT1 pareto front
---0---NSGA-II
---0---LRBF

Function 2
N
T

0.6
Function 1

size (nga2 = 52), internal NSGA-II maximum number of Fig. 3. Pareto fronts generated by RBFs variants and NSG&FIZDT1

generations@,,s4q2 = 50), crossover rate .9, mutation rate
= 1/n (n = number of decision variables), = 15, n,, = 20.
The NSGA-II used the following parameters: crossover rate =
0.9, mutation rate =1/n, n. = 15, n,,, = 20, population size
= 52 and maximum number of generations = 20. .
In this study, we perform 1,000 real function evaluations us
ing different RBFs: Linear (LRBF), Thin Plate (TPRBF), cabi
(CRBF), multiqguadrics (MQRBF) and Gaussian (GRBF). They
are all compared to the original NSGA-II. The results repdrt
in Table Il correspond to the mean and standard deviatign (
of the performance metrics (IGD, SC and S). We show in
boldface the best mean values per test function of 30 runs®
per each test function by all algorithms. We show the plot of
all the nondominated solutions generated by a single run of
the different algorithms in Figures 3, 4 and 5. In all cases,
we generated thé’Fy,.,. of the problems using exhaustive
enumeration so that we could make a graphical comparison
of the quality of the solutions produced by our approach.
« LRBF: Using the Linear Radial Basis Function, the
algorithm shows a poor performance dealing with high-
dimensional problems. The NSGA-II outperforms this

test functions as that obtained with the NSGA-Il. None
of the approaches was able to reach the true Pareto Front.
MQRBF: Using a Multiqguadric function, the results
shown in Table Il are quite competitive with respect to
the NSGA-II in almost all the ZDTs functions, except
for ZDT4 in which MQRBF shows a poor performance.
In Figure 5(a), it can be seen that in ZDT4, MQRBF is
far away from the true Pareto front and from the results
obtained by the NSGA-II.

GRBF: With the Gaussian RBF, the algorithm shows
the best performance of all the variants, regarding all
the performance measures. GRBF gets the best results in
ZDT1, ZDT2 and ZDT6 from all the variants compared
and also outperforms the NSGA-II. In ZDT3 and ZDT4,
the NSGA-II outperforms GRBF. Graphically, GRBF is
the most competitive method in all cases, showing a good
aproximation to the real Pareto Front in ZDT1, and in
the other test functions, it obtains a reasonably good
approximation.

approach in all cases except for ZDT1. Graphically, it can We can conclude from the results shown in Table IlI

be observed that in all the plots the NSGA-II is closer tdhat the GRBF algorithm is the one that shows the best
the true Pareto front than the LRBE. overall performance in these particular multi-dimensiaeat

. TPRBF: With Thin Plate Splines, the algorithm showdunctions. So, in the second phase of our analysis, we extend
the worst performance of the variants studied in thi§ie solutions generated by the GRBF model and we show the
paper. With respect to the performance measures adopﬂ@gr,formance of the algorithm when it is hybridized with rbug
in all cases TPRBF is outperformed by the NSGA-Ipets theory.
and graphically, it can be seen that this approach never
reaches the true Pareto front and stays far away from e
other techniques. If we pay particular attention to the plots shown in Figures

« CRBF: Using the Cubic function, the algorithm outper-3, 4 and 5, corresponding to all the RBFs, it can be seen that
formed the NSGA-II only in ZDT1, ZDT2 and ZDT6. they only get a few solutions on the Pareto front. So, clearly
With respect to the Spread metric, it can be shown that thenvergence is achieved at the expense of sacrificing spread
results are very poor. The NSGA-I| gets better results tharf solutions along the Pareto front. This led us to think that
CRBF in Spread in almost all the functions except fowe incorporated a local search method such as the rough sets
ZDT6 (in which the difference is very low). Graphically,theory, we could fill up the holes (gaps) and find the solutions
the performance of the CRBF is almost the same in all thieat are missing in these Pareto sets. So, we decided taperfo

Second Phase Analysis



Function 2

IGD Set Coverage Spread
Function SURROGATE NSGA-II SURROGATE NSGA-II SURROGATE NSGA-II
Mean o Mean o Mean o Mean o Mean o Mean o
ZDT1 (LRBF) 0.10288 0.03272 | 0.20800 0.03104| 0.23604 0.34404 | 0.69013 0.37920] 0.66046 0.05919 | 0.74052  0.06068
ZDT1 (TPRBF) | 0.69647 0.08921| 0.20800 0.03104 | 1.00000  0.00000| 0.00000 0.00000 | 0.82493  0.04287| 0.74052 0.06068
ZDT1 (CRBF) | 0.11771 0.20930 | 0.20800 0.03104| 0.16837 0.32175| 0.78346  0.39462| 0.56614 0.16527 | 0.74052  0.06068
ZDT1 (MQRBF) | 0.04180 0.04852 | 0.20800 0.03104| 0.00526 0.02834 | 0.98805 0.05761| 0.57483 0.09978 | 0.74052  0.06068
ZDT1 (GRBF) | 0.01897 0.06016 | 0.20800 0.03104| 0.03066 0.16514 | 0.96666 0.17950| 0.48263 0.09297 | 0.74052  0.06068
ZDT2 (LRBF) 0.81028 0.13745] 0.46775 0.08492 | 0.32425 0.30095] 0.01587 0.04487 | 0.89139 0.06925| 0.89369  0.06795
ZDT2 (TPRBF) | 1.22407 0.15678| 0.46775 0.08492 | 1.00000  0.00000| 0.00000 0.00000 | 0.89555  0.04259| 0.89369 0.06795
ZDT2 (CRBF) | 0.42130 0.27687 | 0.46775 0.08492| 0.27473 0.32160 | 0.52686  0.41170| 0.80797 0.14153 | 0.89369  0.06795
ZDT2 (MQRBF) | 0.17984  0.26638 | 0.46775 0.08492| 0.11527 0.29924 | 0.81726  0.35576| 0.66155 0.22242 | 0.89369  0.06795
ZDT2 (GRBF) | 0.10576 0.16785| 0.46775 0.08492| 0.01333 0.04988 | 0.94326  0.18007| 0.65771 0.20612 | 0.89369 0.06795
ZDT3 (LRBF) 0.20736 0.04469| 0.18475 0.03819 | 0.96288  0.02922| 0.00418 0.01684 | 0.84313  0.02779| 0.76863 0.05741
ZDT3 (TPRBF) | 0.62043 0.10131| 0.18475 0.03819 | 0.99791  0.01121| 0.00000 0.00000 | 0.84909  0.05301| 0.76863 0.05741
ZDT3 (CRBF) | 0.24337 0.1551| 0.18475 0.03819 | 0.31808 0.39346 | 0.58778  0.43849| 0.74887 0.10645 | 0.76863  0.05741
ZDT3 (MQRBF) | 0.20586 0.08155| 0.18475 0.03819 | 0.29712 0.33232| 0.58882  0.38307| 0.76560 0.07593 | 0.76863  0.05741
ZDT3 (GRBF) | 0.26424 0.10398| 0.18475 0.03819 | 0.55617  0.37069| 0.29089 0.38190 | 0.79371  0.05849| 0.76863 0.05741
ZDT4 (LRBF) | 15.17009 5.51475] 12.34834 3.47526 | 0.28802 0.30796 | 0.46673  0.33417| 0.98826  0.00945| 0.98714 0.01113
ZDT4 (TPRBF) | 24.62728  6.10294| 12.34834 3.47526 | 0.95417  0.08144| 0.02198 0.05112 | 0.99180 0.00297| 0.98714 0.01113
ZDT4 (CRBF) | 29.54019 6.04672| 12.34834 3.47526 | 0.76380  0.24553| 0.03269 0.10027 | 0.99524  0.00311| 0.98714 0.01113
ZDT4 (MQRBF) | 32.53860  7.58354| 12.34834 3.47526 | 0.71297  0.23332| 0.02190 0.05226 | 0.99533  0.00260| 0.98714 0.01113
ZDT4 (GRBF) | 18.56345  4.81500| 12.34834 3.47526 | 0.34171 0.33166 | 0.41920 0.33087| 0.99136  0.00584| 0.98714 0.01113
ZDT6 (LRBF) 1.58455 0.41908] 1.40626 0.20648 | 0.97790 0.06191] 0.00000 0.00000 | 0.94045  0.03465| 0.92336 0.04662
ZDT6 (TPRBF) | 2.43238 0.29497| 1.40626  0.20648 | 1.00000  0.00000| 0.00000 0.00000 | 0.91622 0.03926 | 0.92336  0.04662
ZDT6 (CRBF) 1.28818 0.68509 | 1.40626 0.20648| 0.45890 0.41739| 0.33283 0.29411 | 0.89442 0.05776 | 0.92336  0.04662
ZDT6 (MQRBF) | 0.58939  0.20367 | 1.40626 0.20648| 0.02484 0.09983 | 0.70901  0.30467| 0.88068 0.09220 | 0.92336  0.04662
ZDT6 (GRBF) | 0.51180 0.13866 | 1.40626 0.20648| 0.00333 0.01795| 0.76644  0.27833| 0.85790 0.04349 | 0.92336  0.04662
TABLE Il

COMPARISON OF RESULTS BETWEENRBFS ALGORITHM AND THE NSGA-I1 (LO0OOEVALUATIONS).

A=

v TPRBF

A 6 #% 4 o o

ZDT2 pareto front
---NSGA-II
---LRBF
---TPRBF
---CRBF
---MQRBF
---GRBF

Function 2

0.4 0.6

Function 1

(a) ZDT2

------ LRBF

A6 % 4 00
v
H
(@]
A
@©
l

ZDT3 pareto front
---NSGA-II

0.0 0.2

0.4 0.6

Function 1

(b) ZDT3

Fig. 4. Pareto fronts generated by RBFs variants and NSG&rIEZDT2 and ZDT3 test functions.

1,000 more fitness function evaluations, aiming to fill up th@used in the first analysis), so that the NSGA-II performs
gaps along the Pareto front. The second phase uses tHi@®0 fitness function evaluations in total. This will allav
more parameters: number of points randomly generatedensidir comparison between both approaches. It can be observed
each atom Qf fspring), number of atoms per generationghat in the ZDTs test problems our approach produced the
(NumEff) and the number of dominated points considbest results with respect to the SC metric in all cases. The

ered to generate the atom&'¢mDom). Of fspring = 1,

same applies for the IGD metric, except for ZDT4. Also, our

NumEff = 2 and NumDom = 10. The NSGA-Il used approach outperformed the NSGA-II with respect to the sprea
the same parameters described in the first analysis excegtric in three cases (ZDT1, ZDT2 and ZDT6). Graphically,
for the maximum number of generations = 40 instead of 20can be seen that our approach gets closer to the true Pareto
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Fig. 5. Pareto fronts generated by RBFs variants and NSEArIZDT4 and ZDT6 test functions.

front in ZDT1, ZDT2, ZDT3 and ZDT6, but not in ZDT4. expensive (computationally speaking). In such applicetio
The poor performance of all the approaches in ZDT4 mighte can afford sacrificing a good distribution of solutions fo
be attributed to the bad scalability presented by appraachbe sake of obtaining a reasonably good approximation of the
based on genetic algorithms such as the NSGA-II. Pareto front with a low number of evaluations.

Our results indicate that the NSGA-II, despite being a highl As part of our future work, we are interested in refining the
competitive MOEA, is not able to converge to the true Paretateraction mechanism between the RBF and the MOEA, such
front in most of the test problems adopted when performirtgat the interleaving of these two approaches maximizes per
only 2,000 fitness function evaluations. If allowed a highdormance. We are also interested in experimenting with rothe
number of evaluations, the NSGA-II would certainly producapproximation techniques such as artificial neural netsork
a very good (and well-distributed) approximation of thed®ar and Gaussian processes. We are also interested in studying
front. However, our aim was precisely to provide an altekat the use of regression-based RBFs to improve the problem of
approach that could require a lower number of evaluatiow&ta training overfitting when the number of data increases.
than a state-of-the-art MOEA while still providing a highly
competitive performance. Such an approach could be useful ACKNOWLEDGMENT

in real-world applications with objective functions redog a  The first and second authors acknowledge support from
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the most appropriate model for our needs. However, despite] Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary

achieving a good convergence, this RBF cannot produce a BA;%%'g_h;S John Wiley & Sons, Chichester, UK, 2001. ISBN 0-471-
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previously found by the RBF. This hybrid was found to provide ~ g faces.J. Geophys. res76:1905-1915, 1971.
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. . . Computing in Design and Manufactyneages 167 — 175, Holland, 2006.
approach could be a viable alternative for real-world a@pli (g) vaochu Jin. A comprehensive survey of fitness approxiomatin

tions in which each evaluation of the fitness function is very evolutionary computationSoft Computing9(1):3—-12, 2005.

REFERENCES



—— ZDT1 pareto front
---o--- NSGA-II
--<-- GRBF + RS 9

Function 2
Function 2

—— ZDT2 pareto front —— ZDT3 pareto front
————— NSGA-I ? e NSGAI
---a-- GRBF+RS 4k ---a---GRBF+RS
H
“eoeq NSGAI 3L &
® 4.

Function 2

Ty
-« NSGAI

GRBF+RS
GRBF+RS 0

L
04 0.6 0.0 0.2

Function 1

(a) ZDT1

—— ZDT4 pareto front
--a---NSGA-II
-4 GRBF+RS

70

60

50

a0

30

Function 2

20

GRBF+RS

L
0.4

Function 1

(b) ZDT2

L
0.6

L
08 04 06

Function 1

(c) ZDT3

—— ZDT6 pareto front
--a---NSGA-Il
-1+ GRBF+RS

B NSGA-Il

Function 2

TTreees, GRBF4RS

.
“NSGA-II
ol
L L L L L L 0 L L L 1
0.0 02 04 0.6 0.8 1.0 0.2 04 06 0.8 1.0
Function 1 Function 1
(d) zDT4 (e) ZDT6
Fig. 6. Pareto fronts generated by GRBF+RS algorithm and Al8Gor ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 test functions.
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Function MORSA NSGA-II MORSA NSGA-II MORSA NSGA-II
Mean e Mean [ea Mean e Mean [ea Mean o Mean [ea
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TABLE IlI
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