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Abstract—The maintenance of a proper diversity is an impor-
tant issue for the correct behavior of Evolutionary Algorithms
(EAs). The loss of diversity might lead to stagnation in suboptimal
regions, producing the effect known as “premature convergence”.
Several methods to avoid premature convergence have been
previously proposed. Among them, the use of Multi-objective Evo-
lutionary Algorithms (MOEAs) is a promising approach. Several
ways of using MOEAs for single-objective optimization problems
have been devised. The use of an additional objective based on
calculating the diversity that each individual introduces in the
population has been successfully applied by several researchers.
Several ways of measuring the diversity have also been tested.
In this work, the main weaknesses of some of the previously
presented approaches are analyzed. Considering such drawbacks,
a new scheme whose aim is to maintain a better diversity than
previous approaches is proposed. The proposed approach is
empirically validated using a set of well-known single-objective
benchmark problems. Our preliminary results indicate that the
proposed approach provides several advantages in terms of
premature convergence avoidance. An analysis of the convergence
in the average-case is also carried out. Such an analysis reveals
that the better ability of our proposed approach to deal with
premature convergence produces a reduction in the convergence
speed in the average-case for several of the benchmark problems
adopted.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are one of the most popular
strategies for solving complex optimization problems. EAs
have shown great promise for obtaining solutions for large and
difficult optimization problems. There are two major targets
when improving the performance of EAs [1]. On the one hand,
with the aim of reducing the computational burden involved in
the use of EAs, their convergence must be as fast as possible.
However, on the other hand, premature convergence must be
avoided. These aims are conflicting, so the improvement in
one of them might negatively influence the other one.

Premature convergence is one of the most frequent draw-
backs that must be faced when using evolutionary approaches.
It appears when every member of the population is in a
suboptimal region and the scheme is not able to generate

new individuals that are superior to their parents. For many
problems, EAs might have a tendency to converge towards
local optima. The likelihood of this occurrence depends on the
shape of the fitness landscape [2]. The main reason for having
premature convergence is that the use of finite population
sizes leads to the phenomenon known as genetic drift [3].
Several methods have been devised to deal with premature
convergence [4]. Among them, some of the most commonly
used are the following:

• Restart the approach when stagnation is detected [3].

• Increase the population size with the aim of avoiding
genetic drift [3].

• Apply mating restrictions as incest prevention [5], i.e.,
avoid the mating of individuals which are very similar.
This is also known as speciation.

• Perform cataclysmic mutation [6]—highly disruptive
mutations—when the diversity has been lost.

• Perform selection applying fitness sharing [7]. In
this case, highly similar individuals are clustered and
penalized by sharing the obtained fitness values among
the members of the group that lie in the same niche
(i.e., those that are very close from each other either
in decision or in objective function space).

• Apply crowding-based selection where each offspring
replaces similar individuals in the parents popula-
tion [8].

• Use complex population structures, such as the island-
based model [9] or the cellular approaches [10].

Multi-objective evolutionary algorithms (MOEAs) are the
adaptation of EAs for dealing with multi-objective optimization
problems. Several MOEAs have been proposed in the literature.
Among them, the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) is one of the most popular ones. The optimiza-
tion goal of multi-objective solvers involves multiple objec-
tives [11]. First, the distance of the resulting non-dominated set
to the Pareto Front should be minimized. A good distribution



of the solutions found is also desirable. Finally, the extent
of the non-dominated front should be maximized. In order to
fulfill these requirements, most MOEAs try to maintain a proper
diversity in the space of the objectives. Several authors have
claimed that, for this reason, the use of multi-objective solvers
for single-objective optimization might be helpful [12].

Multiobjectivization [13] is a method that allows the use
of multi-objective solvers for dealing with single-objective
optimization problems. Multiobjectivization changes the fit-
ness landscape of the optimization problem and, therefore, it
can be useful to avoid premature convergence and/or stagna-
tion [14]. Consequently, multiobjectivization might facilitate
the resolution of the considered problem. However, it can
also produce a problem which is harder than the original
one [15]. Multiobjectivization can be carried out following
two general schemes: decomposition and aggregation. The
first one is based on decomposing the original objective into
several components. Then, each of the components is used as
an objective. The second type of multiobjectivization is based
on adding a new objective function. Such a function is used
together with the original objective function. Another way of
using multi-objective solvers for single-objective optimization
is by considering the preservation of the diversity as an
objective [12], [16]. These approaches have been referred to as
multiobjectivization in some previous works [17], [18]. How-
ever, there is an important difference between this new kind of
approaches and the original definition of multiobjectivization:
in the new proposal, the calculation of the additional objective
depends on the other individuals of the population. In order to
avoid misunderstandings, the term multiobjectivization is not
used in this paper to refer to this sort of scheme. Instead, the
term diversity-based multi-objective methods is used.

Several diversity-based multi-objective methods were pro-
posed in [18] for single-objective optimization. They are an
extension of the methods proposed in [12], [16]. Basically,
the genetic distance between each individual and its nearest
individual is calculated, and considered as the second objective
to optimize. Then, the NSGA-II is applied. Thus, individuals
which are in highly populated regions are penalized. In addi-
tion, a penalization of the individuals with a very poor fitness
is carried out. Results were compared with those obtained
by single-objective approaches, showing the benefits of the
diversity-based multi-objective schemes. In this paper, some
drawbacks of such a scheme are detected and analyzed. In
addition, a new scheme that overcomes such disadvantages
is proposed. The main objective of the new proposal is to
maintain a better diversity than the original approach, with the
aim of avoiding premature convergence. The computational re-
sults show that the new scheme produces improvements in the
avoidance of premature convergence. However, convergence
speed has been reduced in the average case.

The rest of the paper is organized as follows. Section II
presents the main diversity-based multi-objective schemes
available in the literature. The main drawbacks of the pre-
viously presented methods are described in Section III. Such
a section is also devoted to describe the set of modifications
that have been incorporated in our proposed scheme in order
to overcome the detected weaknesses. Then, our experimental
validation is presented in Section IV. Finally, conclusions and
some lines of future work are given in Section V.

II. DIVERSITY-BASED MULTI-OBJECTIVE APPROACHES

Diversity-based multi-objective approaches for single-
objective optimization are based on calculating, for each
individual, an additional objective that does not depend solely
on the genotype. In the rest of the paper, the original objective
is referred to as fitness objective, while the additional objective
is referred to as diversity objective. Several options have been
proposed to define the diversity objective. In some cases, such
objectives have not been a direct measure of the diversity.
However, they promote the maintenance of a proper diversity
in the population. Among them, some of the best well-known
are the following [12]:

• Random: A random value is assigned as the diversity
objective to be minimized. Smaller random values may
be assigned to some low-quality individuals that would
get a chance to survive.

• Inversion: In this case, the optimization direction of
the fitness objective function is inverted and is used as
the diversity objective. This approach highly decreases
the selection pressure. In fact, every member is non-
dominated, so it must be carefully applied.

• Time stamp: The diversity objective is calculated as a
time stamp of each individual. Each individual in the
initial population is marked with a different time stamp
represented by a counter which gets incremented every
time a new individual is created. From the second
population all newly generated individuals get the
same time stamp that is set to the population size
plus the generation index. This time stamp must be
minimized.

In other cases, the definitions are a direct measure of the
diversity. Note that a measure of the population diversity is
not required. Instead, the objective must be a measure of the
diversity introduced by the individual in the population. The
most popular objectives are based on calculating Euclidean
distances among individuals [16]:

• DCN: The distance to the closest neighbor of the
population has to be maximized.

• ADI: The average distance to all individuals of the
population has to be maximized.

• DBI: The distance to the best individual of the popu-
lation, i.e., the one with the lowest fitness—if we deal
with a minimization problem—has to be maximized.

In other cases, the diversity objective depends on the
formulation of the problem. In [17], the objective is calculated
considering the distances among the behaviors of a set of
robots that are evolved. Thus, the approach is very similar
to the one proposed in [16], but the distances in the genotype
are replaced by distances in the behavior.

An analysis considering several objective definitions was
performed in [16]. It revealed the superiority of the distance-
based diversity objectives. An extension of these methods was
proposed in [18]. Such an extension has been considered as the
starting point of this research. The scheme works as follows.
The MOEA applied is the NSGA-II. The diversity objective is
the DCN. However, it was modified with the aim of penalizing



Figure 1. Behavior of NSGA-II with DCN-THR

the individuals having a very low quality. In order to perform
the penalization, it incorporates the use of a threshold ratio
(th ∈ [0, 1]) which must be specified by the user. Such a
diversity objective is named DCN-THR. Being bestF it the
fitness value of the best individual of the population, and
shift a value that ensures that bestF it − shift ≥ 0 in
the whole optimization process, the threshold value (v) for
a minimization problem is defined as:

v =
(bestF it− shift)

th
+ shift (1)

The threshold ratio is used to avoid the survival of indi-
viduals with a very low quality. Figure 1 shows the behavior
of DCN-THR. Each individual is represented with a circle with
its tag inside. Their non-domination ranks are also shown. The
diversity objective of individuals whose fitness value is higher
than v (represented by a broken line) is assigned to 0. For the
remaining individuals, DCN is used. As a result, individuals
that cannot achieve the fixed threshold are penalized. There-
fore, the aim of DCN-THR is to maintain a proper diversity
among individuals with a minimum level of quality. In the case
where th = 0, individuals are never penalized. Thus, DCN-
THR with th = 0 has the same behavior as the DCN function.
The incorporation of the threshold value provided significant
benefits. The main drawback is that the proper threshold value
depends on the problem to solve. However, a hyperheuristic
was used to automatically control this parameter.

III. IMPROVEMENT OF THE DIVERSITY PRESERVATION

The aforementioned scheme obtained high-quality solu-
tions for a large set of single-objective optimization prob-
lems [19]. However, a subsequent analysis showed that in
some executions premature convergence was arising. Although
the probability of appearance was very low, it was a clear
disadvantage. Thus, an analysis to detect the reasons of the
emergence of the genetic drift was developed.

Figure 2 shows a simple single-objective function with one
decision variable. The function—which must be minimized—
presents two local maxima that separate the space into three
different regions. Each dot represents an individual which
is alive in the current generation. It might be a member of
the population or a member of the offspring. Each region is
covered by two individuals, so a proper diversity has been

Figure 2. Simple function in which diversity maintenance problems arise

Algorithm 1 Proposed survivor selection scheme (DCN-THR-
REF)

1: Best = Individual with best f(x)
2: NewPop = { Best }
3: CurrentMembers = CurrentMembers - { Best }
4: while (|NewPop| < N) do
5: Calculate DCN-THR of CurrentMembers, considering as refer-

ence NewPop
6: ND = Non-dominated individuals of CurrentMembers
7: Selected = Randomly select an individual of ND
8: NewPop = NewPop ∪ Selected
9: CurrentMembers = CurrentMembers - {Selected}

10: end while

maintained. Assuming that the population size has been fixed
to three individuals, the survivor selection mechanism must
choose the three individuals that will pass to the next gener-
ation. In order to preserve a proper diversity, an individual of
each region should be selected. Every considered individual
has been assigned the same value in its fitness objective.
Therefore, the diversity objective determines which members
will survive. In this case, the first front consist of individuals
C and D, the second front consist of individuals E and F, and
the last front consist of individuals A and B. Thus, in case
of using NSGA-II with the DCN or DCN-THR approach, the
individuals that will survive are C, D, and E or F. Therefore,
a proper diversity is not maintained since all individuals
belonging to the first region are discarded. In the previous
example it was assumed that every individual presents the same
value in the fitness objective with the aim of simplifying the
explanation. However, similar drawbacks happen even if the
fitness objective is not the same for every individual.

The main reason for the improper behavior of the NSGA-II

with the DCN-THR scheme is that the diversity objective is a
direct measure of the diversity introduced by the individual in
the current generation. As a result, performing the selection of
the individuals without considering the individuals that have
been previously selected to survive is not appropriate. In order
to overcome such a drawback, we propose in Algorithm 1
a new survivor selection scheme (DCN-THR-REF). First, the
best individual in the population, i.e., the one with the low-
est objective function value—for a minimization problem—
is selected. Thus, elitism is ensured in the approach. The
ties are broken at random. Then, while the population is not



filled with N individuals, the following steps are executed.
First, the DCN-THR objective is recalculated. The calculation
considers the currently selected individuals as the reference,
i.e., for each pending individual, the distance to the nearest
individual previously selected is calculated. Note that in order
to update the objective values, the only distances that must
be calculated on each step are the ones with the last selected
individual. Then, considering the individuals which have not
been selected, the non-dominated front is calculated. Finally, a
non-dominated individual is randomly selected to survive. It is
important to note that the new approach is not a deterministic
model. This might also help to avoid premature convergence.

Let us consider the behavior of the new survivor selection
scheme with the function in Figure 2. Since every individual
has the same value for the fitness function, the first individual
is randomly selected. If we assume that the first selected
individual is E, then, since A is the farthest individual to
E, it will be the second selected individual. Finally, the C
individual will be selected because it is far enough from both
A and E. Thus, an individual of each region is selected. In
fact, independently of the first selected individual, the approach
always selects an individual of each region.

IV. EXPERIMENTAL EVALUATION

This section shows the experimental evaluation performed
with the optimization schemes described in Section III.
The models have been implemented using METCO [20]
(Metaheuristic-based Extensible Tool for Cooperative Opti-
mization). Tests have been run on a Debian GNU/Linux com-
puter with four AMD R© Opteron TM (model number 6164
HE) at 1.7 GHz and 64 GB RAM. The compiler that has
been used is GCC 4.6.3. The analyses have been performed
with the benchmark problems F1-F11 [19]. They are a set
of scalable continuous optimization problems which must be
minimized. The parameter D allows setting the number of
variables of the problems. In this research, the value D = 50
has been considered. These problems have different features
and they combine different properties regarding the modality,
the separability, and the ease of optimization, dimension by
dimension.

Since our experiments involve the use of stochastic al-
gorithms, comparisons have been carried out applying the
following statistical analysis, considering a significance level
of 5%. First, a Shapiro-Wilk test is performed in order to
check whether or not the values of the results follow a normal
(Gaussian) distribution. If so, the Levene test checks for the
homogeneity of the variances. If samples have equal variance,
an ANOVA test is done. Otherwise, a Welch test is performed.
For non-Gaussian distributions, the non-parametric Kruskal-
Wallis test is used to compare the medians of the algorithms.

Two kinds of experiments have been performed. The first
one focuses on analyzing the average behavior of the new pro-
posed scheme. The last one focuses on analyzing the properties
of the approach regarding premature convergence. For doing
such an analysis, the behavior of the worst executions obtained
with the scheme has been studied.

A. Analysis of the average case

In the first analysis, NSGA-II with DCN-THR and DCN-THR-
REF was executed, using different values of th. Specifically,

Table I. PROBABILITY OF SELECTING THE BEST INDIVIDUALS

Prob. of 10 best ind. Prob. of 20 best ind.

DCN-THR DCN-THR-REF DCN-THR DCN-THR-REF

F1 90.01% 79.68% 85.02% 72.17

F2 94.44% 87.73% 89.89% 83.37

F3 91.05% 86.57% 85.10% 79.37

F4 92.11% 91.04% 87.02% 86.35

F5 89.97% 79.86% 84.03% 72.42

F6 99.50% 97.12% 94.52% 92.93

F7 90.84% 84.32% 84.80% 78.04

F8 92.63% 90.24% 84.60% 85.62

F9 93.16% 90.64% 90.46% 87.37

F10 91.09% 82.52% 85.11% 74.03

F11 92.75% 90.56% 88.44% 87.79

the values th = {0, 0.2, 0.4, 0.6, 0.8} were considered. Typical
values were considered for the remaining parameters of NSGA-
II. The population size was fixed to 100 individuals, a mutation
probability (pm) equal to 0.02 ( 1

D
) was considered, and the

crossover operator was applied in every case (pc = 1). The
mutation operator adopted was polynomial-based mutation,
while the crossover operator adopted was the simulated binary
crossover (SBX). In every case, the parameter shift was fixed
to -1000. This value is lower than any of the optima of the
considered problems. Finally, the stopping criterion was fixed
as the execution of 1× 105 function evaluations.

The NSGA-II configurations have been independently run
100 times for each benchmark problem. Figure 3 shows the
median obtained for each case at the end of the executions. In
the cases where the differences between the results obtained
with DCN-THR-REF and DCN-THR have been statistically
significant, a vertical line joining their medians is shown.
In most cases (F2 and F3 are the exceptions), the model
that used DCN-THR-REF obtained a higher median than the
model that considered DCN-THR. Moreover, in most cases,
differences have been statistically significant. The reason is that
maintaining a proper diversity might reduce the convergence
speed of the average case. In fact, the aim of maintaining a
proper diversity is not to improve the convergence speed of
the average case, but to prevent the achievement of highly
suboptimal results in the worst executions.

In order to better understand the reasons why the new
approach presents a suboptimal behavior, the probability of
survival of the best-fitted individuals has been experimentally
calculated when using DCN-THR-REF and DCN-THR with
th = 0. Table I shows the average probability of survival
of the 10 best individuals, and of the 20 best individuals. In
every case, the probabilities of selecting the individuals with
best fitness values have been larger for the configurations that
use DCN-THR than for the configurations that consider DCN-
THR-REF. This means that the scheme with DCN-THR tends
to focus on the best-fitted individuals, while the scheme with
DCN-THR-REF performs a more diverse selection. Therefore,
for the cases in which premature convergence does not arise—
the majority of the executions—the selection based on DCN-
THR converges faster. Other values of th were also tested. The
selection probabilities highly depend on th. However, for a
fixed th value, higher probabilities have appeared with DCN-
THR than with DCN-THR-REF in every case.

The previous analysis has shown the superiority of the
DCN-THR scheme in the average case. In order to quantify
such an improvement, run-length distributions [21] (RLDs)
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Figure 3. Median of the fitness obtained with different threshold values

have been used. They show the relationship between success
ratios and number of evaluations. Success ratio is defined as the
probability of achieving a certain quality level. Table II shows
the percentage of evaluations that are saved by using DCN-
THR, considering a success ratio of 50%. The quality level
has been fixed as the highest median obtained by DCN-THR

or DCN-THR for each threshold value in 1 × 105 evaluations.
The negative values indicate that DCN-THR-REF obtained a
better performance. For each problem, data for the threshold
value that obtained the best median is shown in boldface. In
the average case, the number of extra evaluations required by
DCN-THR-REF is considerable.

Table II. PERCENTAGE OF SAVED EVALUATIONS BY NOT USING THE

REFERENCE

Th = 0 Th = 0.2 Th = 0.4 Th = 0.6 Th = 0.8

F1 20% -5% -40% 5% -17.5%

F2 -17.5% -17% -17.5% -15% -17.5%

F3 30% -22.5% -27.5% -27.5% 5%

F4 32.5% 35% 32.5% 37.5% 27.5%

F5 25% 25% 30% 2.5% -25%

F6 35% 40% 45% 40% 35%

F7 17.5% 25% 28.20% 7.89% 40%

F8 10% 10% 12.5% -2.5% 12.5%

F9 35% 23.07% 27.5% 37.5% 30%

F10 45% 42.5% 37.5% 32.5% 22.5%

F11 30% 32.5% 37.5% 30% 32.5%
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Figure 4. Boxplots of the worst-behaved executions

B. Analysis of the worst case

In the second analysis, the worst-case behavior of the
previous considered approaches has been studied. For each
problem, the threshold value that performed the best with
DCN-THR has been used. In order to perform the analysis,
each configuration was executed 3.000 times. The executions
were gathered in groups of 100 executions, and the worst of

each group was stored. Thus, a set of 30 results for each
configuration and benchmark problem was taken into account.
The obtained data represents the worst results that are obtained
with a 1% of probability.

Figure 4 shows the boxplots of the fitness values obtained
by using DCN-THR, and DCN-THR-REF. Three different stop
criteria have been considered: 2.5× 104, 5× 104, and 1× 105
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Figure 5. Boxplots obtained by considering a population with 500 individuals

Table III. STATISTICAL COMPARISON BETWEEN DCN-THR AND

DCN-THR-REF

25.000 ev. 50.000 ev. 100.000 ev.

F1 ↑ ↑ ↑

F2 ↑ ↑ ↑

F3 ↑ ↑ ↑

F4 ↓ ↓ ↔

F5 ↑ ↑ ↑

F6 ↓ ↓ ↓

F7 ↓ ↑ ↑

F8 ↓ ↓ ↑

F9 ↓ ↓ ↓

F10 ↑ ↑ ↑

F11 ↓ ↓ ↓

evaluations. The advantages of using DCN-THR-REF are clear
in most problems. Table III shows the statistical comparison
between the considered approaches. The symbol ↑ is used to
denote that differences between the models are statistically
significant and that DCN-THR-REF obtains a lower median and
mean value. In the cases in which the opposite occurs, the
symbol ↓ is used. Finally, for the cases in which the differences
have not been statistically significant, the symbol ↔ is used.
The model that used DCN-THR-REF has obtained statistically
better results that the model with DCN-THR in 7 problems,
when the stopping criterion has been fixed to 1× 105 function
evaluations.

A deeper analysis has been performed for the problems in
which DCN-THR-REF did not produce benefits in the previous
experiments (F4, F6, F9, and F11). First, it is important to
note that for such problems, convergence had not been reached
after performing 1×105 evaluations. Thus, they were executed
considering a longer stopping criterion (2.5×106 evaluations).
In such a case, the model that used DCN-THR-REF was superior
to the model that used DCN-THR for the problem F4. The
obtained boxplots are shown in Figure 6. In the remaining
problems, the results obtained by both models were similar.
In fact, the statistical analyses indicate that the differences
among them are not significant. In such problems, premature
convergence has appeared with DCN-THR-REF and with DCN-
THR.

Finally, with the aim of avoiding the suboptimal results in
such problems, both configurations were executed considering
a population size of 500 individuals. Figure 5 shows the
boxplots obtained with such models after 2.5 × 106 function
evaluations. Data which is tagged with the text “Worst” has
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F4)

been generated by gathering the executions in groups of 100
items, and selecting the worst ones. Data which is tagged with
the text “all” considers the complete set of 3.000 runs. In
this case, the superiority of DCN-THR-REF is clear in every
case. Suboptimal results obtained with a population size of
100 individuals have been avoided. The statistical comparison
shows the superiority of the model that applies DCN-THR-REF.
In addition, the benefits of DCN-THR-REF not only concern the
worst-behaved executions, since such advantages are clear even
when considering the complete set of executions.

V. CONCLUSIONS AND FUTURE WORK

Premature convergence is one of the main problems which
can arise when applying EAs. Although several options to avoid
premature convergence have been proposed, there is no method
which had been found to be the best. Among the designed
schemes, MOEAs are a promising approach. The reason is
that in MOEAs the maintenance of diversity is intrinsically
promoted. MOEAs can be applied to single-objective optimiza-
tion following several guidelines. A typical scheme consists in
using the original function to optimize as the fitness objective,
and a measure of the diversity introduced by the individual
as the diversity objective. Among these methods, DCN-THR

is one of the most promising approaches. It calculates the
diversity considering the distance of each individual to its
nearest individual in the population. In addition, it penalizes



the worst-behaved individuals. Thus, it maintains a proper
diversity among the best-behaved individuals.

In this paper, it has been shown that with the previous
method, genetic drift might appear. The reasons of the loss
of diversity have been explained. In addition, a new survivor
selection scheme has been designed and integrated with the rest
of the steps of NSGA-II. Its main aim has been to maintain
a better diversity and to avoid premature convergence. The
computational study has been performed with a large set of
single-objective benchmark problems. The analysis has shown
that in several cases, convergence speed has been reduced for
the sake of maintaining a proper diversity. However, in every
tested problem it has provided benefits in terms of premature
convergence avoidance. There have been some problems in
which both the original scheme and the new proposal suffered
from premature convergence—considering a low probability—
when a population size of 100 individuals was considered.
However, when increasing the population size, the new scheme
showed its best capability to avoid premature convergence.
Moreover, in such cases it was superior not only in the worst
case, but also in the average-case. In addition, another feature
that adds value to this new scheme is its robustness: the
solutions obtained from execution to execution do not differ
excessively, especially if compared to the differences among
solutions of DCN-THR executions. Such a feature could be
of vital importance for real-time environments where unpre-
dictable low-fitness solutions must be avoided at all costs.

Several lines of future work might be explored. First, since
MOEAs normally try to explicitly maintain a proper diversity in
objective space, but not in decision variable space, the appli-
cation of the new scheme might be helpful for multi-objective
optimization problems. Another line of future work might
be to perform comparisons among the different preservation
mechanisms exposed in the introduction. Although there are
several papers dealing with such mechanisms independently,
a comparison including them all could be of great academic
value. In addition, including a larger set of benchmark prob-
lems with the aim of drawing more general conclusions would
be very interesting.
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