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Abstract—Supervised machine learning techniques include
classification and regression. In regression, the objective is to
map a real-valued output to a set of input features. The main
challenge that existing methods for regression encounter is how to
maintain an accuracy-simplicity balance. Since Regression Trees
(RTs) are simple to interpret, many existing works have focused
on proposing RT and Model Tree (MT) induction algorithms.
MTs are RTs with a linear function at the leaf nodes rather than
a numerical value are able to describe the relationship between
the inputs and the output. Traditional RT induction algorithms
are based on a top-down strategy which often leads to a local
optimal solution. Other global approaches based on Evolutionary
Algorithms (EAs) have been proposed to induce RTs but they
can require an important calculation time which may affect the
convergence of the algorithm to the solution. In this paper, we
introduce a novel approach called Bi-level Evolutionary Model
Tree Induction algorithm for regression, that we call BEMTI,
and which is able to induce an MT in a bi-level design using an
EA. The upper-level evolves a set of MTs using genetic operators
while the lower-level optimizes the Linear Models (LMs) at the
leaf nodes of each MT in order to fairly and precisely compute
their fitness and obtain the optimal MT. The experimental study
confirms the outperformance of our BEMTI compared to six
existing tree induction algorithms on nineteen datasets.

Index Terms—Model Trees, Induction, Regression, Bi-level
optimization, Evolutionary Algorithm.

I. INTRODUCTION

Machine Learning (ML) is a sub-area of Artificial Intel-
ligence (AI) where computers learn to build a model upon
historical data in order to be able to make a prediction on
new data. Supervised ML tasks aim to define a function or a
model that maps input feature vectors to output vectors and
are divided into two categories: regression and classification
[1]. In regression tasks, the outputs are real values (i.e., an
integer or a floating-point value). Several regression techniques
exist to solve regression problems such as Artificial Neural
Networks (ANNs), Support Vector Machines (SVMs), Naı̈ve
Bayes (NB), and Regression Trees (RTs) [2]. Tree-based tech-
niques are widely used in many real-world problems since they
provide compact and interpretable representations as opposed
to other “black-box” methods, for instance SVMs and ANNs
[3] which are complex and computationally expensive.
Among the existing top-down RT induction algorithms in the
literature we can cite the Classification And Regression Tree
(CART) [4] which is based on recursive partitioning, and the
REPTree [5] which consists of building a tree based on the
variance and then applies a tree pruning procedure. Other tree

induction algorithms use Model Trees (MTs) instead of RTs
such as the M5 system [6] which builds MTs with multi-
variate linear models at the leaves, as well as an ensemble-
based algorithm using M5 called Ensemble of M5 (E-M5) [7].
MTs can be thought of as a variation of RTs in which each
leaf node is represented by a regression function rather than a
numerical value [8]. The regression function in the leaves of an
MT can model the relationship between the input variables and
the predicted value. All of the aforementioned algorithms are
based on a top-down strategy and are considered greedy and
lead generally to locally optimal solutions. Recently, global
tree induction approaches based on Evolutionary Algorithms
(EAs) have been proposed to induce Decision Trees (DTs)
and RTs and are popular alternatives to traditional top-down
algorithms. Fan and Gray [9] proposed the TARGET algorithm
for RT induction. Czajkowski and Kretowski [10] proposed
the Global Model Tree (GMT) framework followed by all
its extensions, i.e., oGMT [11], mGMT [8], and pGMT [3].
Geerts et al. [12] proposed the GeoTree algorithm to induce
RTs with three split types. Evolutionary Algorithms (EAs)
have been popular in decision and regression tasks since they
provide a global search and can avoid being stuck in local
optima [14].

One key issue of the top-down induction algorithms is that
they are greedy and based on recursive partitioning which
may lead to obtain locally optimal solutions. Furthermore,
although EAs perform a global exploration of the search
space and could generate more efficient solutions, they might
increase the calculation time of the algorithm used at each
generation due to a poor evaluation of the individuals which
may affect the convergence of the algorithm to the optimal
solution [3]. Motivated by these observed issues, we propose a
new approach to induce MTs based on a bi-level design called
Bi-level Evolutionary Model Tree Induction (BEMTI) for
regression. BEMTI solves a regression problem by evolving
and evaluating a population of induced MTs in the upper-
level, and optimizing the Linear Models (LMs) at the leaves
of the MTs, in the lower-level. The use of an MT as a base
regressor in BEMTI ensures the explainability of the prediction
model whereas the bi-level optimization guarantees a fair and
precise evaluation. The main contributions of this paper can
be summarized as follows:

1) Considering the regression task as a bi-level optimiza-



tion problem where we induce, evolve and evaluate a
set of MTs in the upper-level, and a sequence of LMs
of each MT at the lower-level.

2) Introducing a Bi-level Evolutionary Model Tree Induc-
tion algorithm, that we call BEMTI, as a solution to
a regression problem. MTs ensure the interpretability
of the model whereas the evolutionary bi-level strategy
guarantees a fair and precise evaluation of the solutions.

3) Showing that BEMTI is able to obtain better results
in terms of prediction error than several tree induc-
tion algorithms from the literature when applied on
regression datasets, thus confirming the added value of
BEMTI in solving regression problems compared to
greedy approaches and recent EAs.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief review on existing tree induction
algorithms. Section III describes our proposed approach called
BEMTI. Section IV presents the experimental environment.
In Section V the results of the experiments are reported and
discussed. Finally, in Section VI, we conclude the paper and
present some possible paths for future work in this area.

II. PREVIOUS RELATED WORK

A. Traditional machine learning methods for regression

Regression tasks aim to find a function that maps a vector
of independent feature variables X = (x1, x2, .., xi, .., xd)
to a dependant real-valued output variable y, for a given
set of training data, where d is the number of features. ML
algorithms for regression can be classified into the following
categories: ANNs, SVMs, NB, and tree-based methods [2].
Wu and Yen [15] proposed to use an ANN for regression
by training a network to find a regression function that maps
the inputs into the output in the observed data. ANNs have
the advantage of being able to model non-linear relationships
between the features and the target in a regression task [2].
However, because of their “black-box” structure, the training
process is incomprehensible for humans which makes ANN
models for regression hard to understand and interpret [16].
Drucker et al. [17] proposed to use SVMs for regression and
introduced Support Vector Regression (SVR). The basic idea
behind SVR is to find the hyperplane that has the maximum
number of points of the data. Frank et al. [18] proposed to
apply the probabilistic classifier NB to solve regression tasks.
Existing works showed that NB has the same performance
as linear regression and worse than tree-based algorithms.
RTs offer interpretable and effective models having a compre-
hensible decision making process as opposed to “black-box”
algorithms [3], [11], [16]. One of the most prominent DT and
RT induction algorithm is the Classification And Regression
Tree (CART) system introduced by Breiman et al. [4]. The
algorithm consists of constructing RTs by iterative splitting
of the data where each split minimizes the Residuals Sum of
Squares (RSS). Other tree induction algorithms employ MTs
which are variants of RTs where single values at the leaves
are replaced by multi-variate linear functions [3], [19], and

allow more accurate predictions than RTs. Among the MTs
induction algorithm we refer to the M5 system proposed by
Quinlan [6] which generates MTs by performing a splitting
process based on the standard deviation of the node involved
in the subset of the training data and then performs a pruning
process, and to the Stepwise Model Tree Induction (SMOTI)
proposed by Malerba et al. [20] and which induces MTs in
a stepwise fashion. Additionally, Arora et al. [5] proposed
the REPTree algorithm which induces an RT with a top-
down strategy by varying the variance either high or low and
applying a reduced-error pruning process. Other algorithms
based on ensemble learning have been proposed to induce RTs
and consist of dividing the training data and building multiple
models and then averaging their results [21]. Breiman [22]
proposed the Bagging (BAG) method, whose name comes
from the contraction of the words Bootstrap and Aggregating.
BAG constructs an ensemble of trees independently using
bootstrapping of the data and aggregating the results in the
end. Boosting [23] is another ensemble method which differs
from bagging since each sample is drawn according to the
performance of the basic rule applied to the previous sample.
Later on, Breiman [24] proposed random forests which selects
a random subset of features to split each node in a tree.
Sattari et al. [7] proposed the E-M5 to induce MTs using
four ensemble-based approaches along with the M5 algorithm
as a base regressor which are: stochastic gradient boosting,
bagging, rotation forest, and random sub-space. The main
challenges of the top-down tree induction algorithms are their
greedy nature without a global consideration of further nodes
in the tree and that they generally lead to local optima [9].
Moreover, ensemble approaches could lead to “black-box”
models which are difficult to interpret [7].

B. Evolutionary methods for regression

More recent studies have proposed global tree induction
methods based on EAs as an alternative to classical top-down
tree induction algorithms. EA-based methods could enhance
the chances of converging to global optima and avoid locally
optimal solutions which are sensitive to small changes in the
data. Fan and Gray [9] proposed TARGET (Tree Analysis with
Randomly Generated and Evolved Trees), which is based on a
genetic algorithm to search for the optimal solution. TARGET
begins by creating randomly a population of RTs using a
recursive split. Each node could be subject to a split based on
a split probability; otherwise, it becomes a leaf node. Genetic
operators are then applied and the best trees are retained from
one generation to another using the Bayesian Information
Criterion (BIC) as a measure of tree fitness. Czajkowski
and Kretowski proposed the GMT framework [10] to induce
regression trees by applying an EA. The initial population in
GMT is composed by MTs generated randomly using a top-
down strategy like M5 or CART. MTs are evaluated using the
BIC and the algorithm stops when some convergence criteria
are satisfied. In some further work, Czajkowski and Kretowski
[11] extended the GMT solution with the use of a linear
combination of features in the split nodes instead of uni-variate



TABLE I
DESCRIPTION OF EXISTING STATE-OF-THE-ART REGRESSION TREE INDUCTION ALGORITHMS.

Reference Algorithm Category Solution encoding LimitationsGreedy EA
[4] CART ✓ Builds RTs using recursive partitioning of the data

into sub-groups based on split rules selected in a
forward stepwise search.

No consideration of nodes further down the tree
and leads to local optimal solutions.

[6] M5 ✓ Builds MTs with multi-variate linear models at
each node.

No consideration of nodes further down the tree
and leads to local optimal solutions.

[20]
SMOTI ✓ Constructs MTs stepwise where each node can be a

split or a straight line regression to ensure a global
effect.

Generates MTs that may overfit the data.

[5] REPTree ✓ Builds a decision or regression tree based on the
variance and then applies a reduced error pruning.

Produces large trees which may affect the inter-
pretability of the model.

[22]
BAG ✓ Builds multiple trees based on a subset of the

training data and then aggregates the results.
Affects the interpretability of the model.

[7] E-M5 ✓ Builds model trees using ensemble methods based
on M5.

Generates complex models difficult to interpret.

[9] TARGET ✓ Repeatedly and randomly generates trees where
each node can be a split node or a leaf node based
on a fixed probability until no more nodes can be
split.

Evolves regression trees.

[10]
GMT ✓ Induces MTs which globally search for the best

tree structure, with tests at internal nodes and LMs
at the leaves.

Does not include the oblique splits in internal
nodes and the tree is larger.

[11]
oGMT ✓ Induces oblique MTs by splitting hyper-planes in

non-terminal nodes and multiple LMs in the leaves.
Increases the calculation time.

[8] mGMT ✓ Induces trees with uni-variate, oblique, regression,
or model representations.

Not efficient for large datasets, does not include
non-linear regression models in the leaves.

[3] pGMT ✓ Induces MTs using a Pareto-based strategy with a
multi-objective fitness function.

Increases the calculation time of each evolution-
ary loop and may affect the convergence of the
EA.

[12]
GeoTree ✓ Induces multi-variate decision trees with axis-

parallel splits, oblique splits or Gaussian splits.
Uses an EA for splits search.

Does not perform a global search and generates
near-optimal solutions.

tests and introduced the Oblique Global Model Tree algorithm
(oGMT) where the generated trees are partitioned by oblique
hyper-planes and are much smaller and more accurate than
the axis-aligned tree. The same authors expanded their GMT
approach in the Mixed Global Model Tree (mGMT) algorithm
[8] where the structure of the induced tree is not known in
advance (i.e., uni-variate, oblique, regression, model). This
way, the solution is able to self-adapt to the analyzed data
of the problem. A later version of the GMT framework called
Pareto approach for GMT (pGMT) [3] aims to find Pareto
efficient solutions by adopting a Pareto-based multi-objective
optimization strategy in the fitness function employed in GMT.
Geerts et al. [12] proposed the Geospatial Regression Tree
(GeoTree) algorithm which induces regression trees with three
types of splits: axis-parallel, oblique and Gaussian. GeoTree
employs a genetic algorithm to generate the best orthogonal,
oblique and Gaussian candidate splits. Table I summarizes the
reviewed tree induction algorithms and underlines for each one
its category (i.e., greedy or EA), its solution encoding and its
main limitations.

Although the aforementioned studies have proposed several
RT induction algorithms, three main issues persist. First, the
statistical and ML approaches generate local-optimal solu-
tions (i.e., local-optimal models) due to their greedy search
nature. Second, the lack of maintaining the interpretability-
accuracy trade-off is the main barrier of the applicability of

deep learning-based methods. Finally, the main shortcoming
of EAs concerns the convergence of the algorithm to the
optimal solution caused by the interruption of the evolution
when all the individuals become identical and no relevant
exploration can be performed. This can be explained because
the proposed EAs consider the induction task as a single-level
optimization problem. Therefore, we propose a novel approach
called BEMTI which employs an EA to induce MTs in a bi-
level fashion as a solution to the regression problem.

III. OUR PROPOSED APPROACH: BEMTI

A. Main idea and motivation

Similarly to existing EAs for regression, the GMT frame-
work considers the induction task as a single-level optimiza-
tion problem [10]. Each individual of the initial population,
(i.e., MT), is induced using a traditional top-down strategy
algorithm. Internal nodes define a splitting condition whereas
leaf nodes correspond to linear or local models (LMs) rep-
resented by a multi-variate regression function. Each LM in
the MT is a linear weighted sum of variables augmented by
a bias value. However, before evaluating a particular LM,
its parameters should be optimized to come up with a more
precise and fair fitness value computation. Motivated by this
observation, the main idea of our approach (BEMTI) consists
of modelling the MT induction task as a Bi-Level Optimization
Problem (BLOP) [25] and then solve it using a suitable bi-level
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Fig. 1. Illustration of the main principle of our BEMTI approach.

EA. Evolutionary optimization allows escaping local optima
as opposed to traditional top-down induction algorithms while
MTs ensure the interpretability of the results since they are
able to model the relationship between input features and
the output. Fig. 1 illustrates the main framework of our
proposed BEMTI approach. The upper-level is composed by
a population of induced MTs and then, a new population of
solutions is generated over time using genetic operators, (i.e.,
crossover and mutation operators). A lower-level optimization
process, involving the coefficients of the sequence of LMs,
which constitute the lower-level solution Xl, is carried out
for every upper-level solution Xu. Once again, the genetic
information of the lower-level population is recombined and
mutated to form the new population. The individuals of the
lower-level population are computed using the AvgSSE(MT )
defined in equation (7). When the algorithm reaches a stopping
criterion, the sequence of the best LMs’ parameter vectors,
i.e., X∗

l , is sent to the upper-level in order to precisely and
fairly measure the quality of this MT using the BIC defined
in equation (1) as the fitness function corresponding to each
solution.

B. Upper-level

1) Solutions encoding: The upper-level population is ini-
tialized using a top-down strategy to induce the MTs. Each
upper-level solution is encoded as an mGMT since the repre-
sentation of the model could affect its predictive performance
[8]. In fact, the structure of the nodes in a tree-shaped model
(decision, regression, uni-variate regression, multi-variate re-
gression), allows to obtain different kinds of trees (decision
tree, regression tree, axis-parallel tree, oblique tree). However,
in real-life problems, it is difficult to fix the most appropri-
ate representation in advance [8]. The mGMT induces trees
aligned with the characteristics of the data. The split nodes
of the MT can be represented by uni-variate and multi-variate
conditions. The first involves a single variable that splits data

x1 > -1.2

x2 > 0.5

Where:

LM1 = 0.18*x2 + 0.005

LM2 = 0.25*x1 + 0.2*x2+ 0.5
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Fig. 2. Illustration of the upper-level individual of our proposed BEMTI
approach.

space in an axis-parallel fashion, while the second combines
several variables so that the resulting splitting hyperplane
would be oblique. Fig. 2 illustrates an individual of the upper-
level where each internal node is represented by a uni-variate
condition. The leaf nodes are represented by multi-variate
LMs. In BEMTI, we limit the maximum number of variables
of each oblique split to three in order to effectively capture the
data distribution [11]. We note that the condition sign is less-
or-equal (≤) and the variables’ weights lie within [-10, 10]
following the recommendations of Czajkowski and Kretowski
[26].

2) Fitness function: The upper-level solutions of BEMTI
are evaluated based on the quality of each MT. We adopt the
BIC as the fitness function of the upper-level since it allows
evaluating both effectiveness and efficiency. The former is
measured in terms of the MT error, while the latter assesses
the tree complexity. The BIC is expressed as follows [3]:

BIC(MT ) = Error(MT ) + Complexity(MT ) (1)

where
Error(MT ) = −2ln(L(MT )) (2)

and
Complexity(MT ) = ln(n) ∗ k(MT ) (3)

L(MT ) is the maximum likelihood function of the MT and
is expressed as follows [3]:

ln(L(MT )) = −0.5n∗ [ln(2π)+ ln(SSE(MT )/n)+1] (4)

where n is the number of instances in the dataset, SSE(MT )
is the sum of squared residuals of the tree MT and is defined
as follows [27]:

SSE(MT ) =

n∑
i=1

(y − ŷ)2 (5)

where y is the real value of the output of the dataset and ŷ is
the predicted one. k(MT ) estimates the number of the MT
parameters as follows [10]:

k(MT ) = 2(Q(MT ) +M(MT )) (6)

where Q(MT ) is the number of nodes in the MT and
M(MT ) is the sum of the numbers of attributes of all leaf
nodes’ LMs in the tree MT .
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Fig. 3. Illustration of the lower-level individual of BEMTI.

3) Genetic operators: For both levels, we use the binary
tournament operator [28] for mating selection. At each itera-
tion, this operator randomly chooses two solutions and then
preserves only the best one in the mating pool. This process is
repeated until filling this pool. For the crossover operator, we
adopt the subtree exchange [29] that first selects an internal
node in each parent tree and then switches the two resulting
subtrees. As for the mutation operator, we can vary either the
condition of an internal node or the LMs at the leaves. We
employ the Polynomial-based Mutation (PM) operator [30] to
vary the attributes, the weights, and/or the related threshold
of an internal node. The operators and variables of the LMs
in the leaf nodes can be randomly replaced by other ones
while the coefficients are varied using the PM operator. The
latter is applied with a repair strategy that allows respecting
the definition intervals of the coefficients.

C. Lower-level

1) Solution encoding: The lower-level of our approach
BEMTI is composed of a population of LMs where each LM is
represented by a linear weighted sum of variables augmented
by a bias value. As shown in Fig. 3, each individual of the
lower-level can be seen as a sequence of the coefficients of a
set of LMs. Based on the recommendations of previous works
[10], [26], the coefficients vary within the interval [-10, 10],
while the bias is generated from the normal distribution N(0,
σ2) [31].

2) Fitness function: For each upper-level solution MT, a
vector composed of the coefficients of the set of LMs is passed
to the lower-level and will be subject to an optimization pro-
cess. The candidate solutions of the lower-level are computed
using the fitness function defined as:

AvgSSE(MT ) =
1

NLM(MT )

NLM(MT )∑
i=1

SSEi(MT ) (7)

where NLM(MT ) is the number of the LMs of the tree MT
and SSEi(MT ) is the SSE value of the ith LM of MT .

3) Genetic operators: Since the lower-level solution is
encoded as a vector of real numbers composed of a sequence
of weights and biases, we use the Simulated Binary Crossover

TABLE II
CHARACTERISTICS OF THE ANALYZED DATASETS.

Name #Features #Instances
2D planes 10 40768
Ailerons 40 13750
Bank32NH 32 8192
Bank8FM 8 8192
California Housing 8 20640
CompAct 22 8192
CompAct(s) 8 8192
Delta Ailerons 6 7129
Delta Elevators 6 9517
Elevators 18 16559
Fried 10 40768
House 16H 16 22784
House 8L 8 22784
Kinemaics 8 8192
Pole Telecomm 48 15000
Puma32H 32 8192
Puma8NH 8 8192
Stock 10 950
Wisconsin Cancer 32 194

(SBX) operator [32], which is one of the most popular
crossover operators adopted in numerical optimization (as well
as the PM operator) to vary the coefficients of the LMs.

IV. EXPERIMENTAL STUDY

A. Benchmark datasets

Several regression datasets used in the original papers of
the peer algorithms were analyzed in order to conduct the
comparative study of our BEMTI against six RT and MT in-
duction algorithms. The datasets are detailed in Table II, which
shows for each of the nineteen datasets its name (Name), the
number of its features (#Features), as well as the number of
instances (#Instances). These datasets are available on GitHub
at: github.com/renatopp/arff-datasets/tree/master/regression.

B. Baseline approaches

We conducted our experimental study with a comparison
of our proposed BEMTI against the most representative tree
induction algorithms from the state-of-the-art which are:

- REPTree [5]: A popular top-down induction algorithm.
- BAG [22]: Ensemble of regression trees allowing to

build a large number of predictors based on the CART
algorithm.

- M5 [6]: Uni-variate MT inducer which is the greedy
counterpart of the GMT framework.

- E-M5 [7]: Ensemble of MTs based on greedy M5.
- mGMT [8]: Global MT inducer using EA, the single-level

counterpart of our BEMTI, and
- pGMT [3]: A Pareto-based extension of the GMT frame-

work.

C. Performance metrics

To assess the performance of the studied algorithms, we
used two scale-dependant metrics which are the Mean Abso-
lute Error (MAE) and the Root Mean Squared Error (RMSE)

https://github.com/renatopp/arff-datasets/tree/master/regression


TABLE III
PARAMETERS SETTINGS.

Algorithm Parameter Value
Evolutionary-based algorithms

BEMTI

Tree depth
Upper-level population size
Lower-level population size
Upper-level generations
Lower-level generations
Crossover rate
Mutation rate
Elitism size

8
50
100
200
200
0.2
0.8
5%

pGMT

Population size
Number of generations
Crossover rate
Mutation rate
Elitism size

50
1000
0.2
0.8
50%

mGMT

Population size
Number of generations
Crossover rate
Mutation rate
Elitism size

50
1000
0.2
0.8
2%

Greedy algorithms
E-M5 Shrinkage rate 1
M5 Split threshold 5%

BAG Grow and prune ratios
Bootstrap replicates

90%-10%
25

REPTree Minimum variance for split 1E-3

since they are considered as the most commonly adopted
metrics for regression problems. MAE measures the average
of the absolute difference between the actual and the predicted
values, it is very easy to compute and to understand and it is
relatively robust to outliers. MAE is expressed as follows [33]:

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

where yi and ŷi are respectively the real value and the pre-
dicted value of the output of the instance i, and n is the number
of instances. RMSE is the square root of the Mean Squared
Error (MSE) and it is a scale-dependant metric. Nevertheless,
its main shortcoming is its sensitivity to forecasting outliers
since it is based on squared values of the prediction error.
RMSE is defined by the following expression [33]:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (9)

D. Parameters settings and statistical testing

To assess the performance of our BEMTI, it is important
to choose the best configuration of parameters. A parameter
tuning process has been conducted to find the most efficient
values of the population size and the tree depth for our BEMTI
algorithm. The performance of each parameter is evaluated
with respect to the RMSE metric tested on the benchmark

TABLE IV
THE AVERAGE RMSE VALUES OBTAINED BY EACH OF THE CONSIDERED

ALGORITHMS OVER 31 RUNS FOR EACH DATASET.

Dataset REPTree BAG M5 E-M5 mGMT pGMT BEMTI
2D planes 1.045 1.040 0.996 0.995 0.996 0.995 0.990
Ailerons 2.0E-4 1.8E-4 1.6E-4 1.6E-4 1.6E-4 1.6E-4 1.6E-4
Bank32NH 0.094 0.087 0.082 0.082 0.083 0.081 0.082
Bank8FM 0.040 0.033 0.030 0.029 0.029 0.028 0.028
California Housing 9.7E4 7.8E4 11.3E4 7.7E4 7.4E4 7.3E4 7.1E4
CompAct 3.294 2.794 2.655 2.654 2.654 2.650 2.642
CompAct(s) 3.945 3.220 3.284 3.222 3.263 3.220 3.222
Delta Ailerons 1.8E-4 1.7E-4 1.7E-4 1.7E-4 1.7E-4 1.7E-4 1.7E-4
Delta Elevators 1.4E-3 1.4E-3 1.4E-3 1.4E-3 1.4E-3 1.4E-3 1.3E-3
Elevators 3.9E-3 3.2E-3 2.5E-3 2.4E-3 2.3E-3 2.3E-3 2.4E-3
Fried 1.920 1.496 1.554 1.396 1.067 1.155 1.062
House 16H 3.9E4 3.4E4 3.6E4 3.5E4 3.9E4 3.4E4 3.4E4
House 8L 3.5E4 3.1E4 3.2E4 3.1E4 3.3E4 3.1E4 3.0E4
Kinemaics 0.198 0.165 0.176 0.158 0.141 0.149 0.141
Pole Telecomm 8.965 6.377 6.870 6.630 7.080 7.354 6.395
Puma32H 0.009 0.008 0.008 0.007 0.007 0.007 0.007
Puma8NH 3.424 3.266 3.216 3.210 3.202 3.199 3.185
Stock 1.41 1.02 1.08 0.993 0.885 0.782 0.779
Wisconsin Cancer 35.88 32.71 33.80 32.12 30.33 29.94 29.90
Average rank 5.05 (7) 3.32 (5) 3.68 (6) 2.53 (3) 2.58 (4) 1.84 (2) 1.21 (1)
Bold values indicate the performance of the top-ranked algorithm.

datasets. Furthermore, Friedman and Iman-Davenport statisti-
cal tests along with the Shaffer [34] test were used to verify
if a configuration outperforms the others on most datasets.
These statistical tests calculate the ranks achieved by each
compared algorithm on the datasets. The null hypothesis H0
considers that all the selected algorithms are equal regarding
their average ranks. H0 is accepted when the returned value,
i.e., p-value, is less than a fixed significance level α. The
Shaffer post-hoc statistical test is adopted to find out which
algorithm outperforms the others in the case where the H0
is rejected. The tested values of the considered parameters in
the tuning procedure are: 50, 100 and 200 for the population
size, and 8, 12, and 16 for the tree depth. Consequently, the
parameter values which obtained the best average ranks on
the test datasets and validated by Friedman, Iman-Davenport
and Shaffer tests are selected, i.e., a population size of 50 for
the upper-level, 100 for the lower-level, and a tree depth of 8,
as given in Table III. We note that the remaining parameters
include the number of generations, the crossover and mutation
rates, and the elitism size. The compared algorithms were
tested based on the best configurations given in their original
papers which are also listed in Table III and can be found in
the KEEL software [35]. In our work, all presented results,
corresponding to an average of 31 runs, were obtained by 10-
fold cross-validation.

V. RESULTS AND DISCUSSION

A. Comparison of the peer algorithms using the RMSE metric

Table IV presents the average RMSE values obtained by
each of the studied algorithms on the 19 datasets over 31
runs. The last row of the table, named Average rank, gives the
average rank for each algorithm based on RMSE values over
all datasets. The obtained results show that BEMTI is the most
stable algorithm, without instantaneous failures compared to
all other algorithms. In fact, our proposed algorithm succeeded
to attain the best average RMSE values, i.e., the lowest
prediction error, in almost all cases of the tested datasets with
15 times of first rank and 4 times of second rank, computing



Fig. 4. RMSE values obtained by the compared algorithms over 31 runs using
the 2D planes dataset.

the lowest average rank which equals to 1.21. The pGMT
algorithm performs well by achieving the second best average
rank, which equals to 1.84, with 8 times of first rank, 9
times of second rank and 1 time of third and sixth ranks.
The third average rank of 2.53 was reached by E-M5 with
3 times of first rank, 8 times of second rank, 3 times of
third rank and 5 times of other ranks followed by mGMT
with a slightly greater average rank equal to 2.58 with 5
times of first rank, 3 times of second rank, 8 times of third
rank and 3 times of other ranks. In Fig. 4, we illustrate
the performance variation of the RMSE values obtained by
REPTree, BAG, M5, E-M5, mGMT, pGMT and BEMTI using
the 2D planes dataset. The horizontal axis corresponds to the
algorithm and the vertical axis corresponds to the associated
RMSE values over 31 runs. This comparison confirms the
effectiveness of our BEMTI as opposed to the other algorithms
of the experimental study. In fact, the distribution of the RMSE
values shows that our BEMTI approach reaches the lowest
RMSE median value which is located at 0.99 as opposed to
the other compared algorithms, i.e., REPTree, BAG, M5, E-
M5, mGMT and pGMT reaching median values respectively
located at 1.041, 1.034, 0.993, 0.993, 0.992, and 0.992. We
also note that the results obtained by the EAs considered in
the experimental study could not compete with our proposed
BEMTI.

Therefore, the efficiency of our BEMTI algorithm compared
to the studied GMT-based algorithms (i.e., pGMT and mGMT)
can be explained by the bi-level scheme adopted in our
BEMTI. In fact, the upper-level search designs MTs where
LM parameters, which are weights and biases, are defined by
genetic variation operators. On the other side, the lower-level
optimizes each of the LMs’ parameters, and then returns the
best LM having the optimal parameters’ values to the upper-
level in order to precisely and fairly compute its fitness, which
is not the case of pGMT and mGMT. The latter can be seen
as a single-level version of our BEMTI since they calculate

TABLE V
RESULTS OF THE FRIEDMAN AND IMAN-DAVENPORT TESTS IN TERMS OF

RMSE (α = 0.05).

Test Parameters
Crit. value Value H0 p-value

Friedman 12.5916 77.7636 Rejected <0.0001
Iman-Davenport 6.3125 27.2261 Rejected <0.0001

TABLE VI
THE AVERAGE MAE VALUES OBTAINED BY EACH OF THE CONSIDERED

ALGORITHMS OVER 31 RUNS FOR EACH DATASET.

Dataset REPTree BAG M5 E-M5 mGMT pGMT BEMTI
2D planes 0.700 0.743 0.732 0.731 0.732 0.731 0.729
Ailerons 1.3E-4 1.2E-4 1.1E-4 1.1E-4 1.1E-4 1.1E-4 1.1E-4
Bank32NH 0.079 0.073 0.069 0.069 0.070 0.068 0.069
Bank8FM 0.031 0.028 0.023 0.022 0.022 0.022 0.022
California Housing 7.8E4 6.3E4 9.1E4 6.2E4 5.9E4 5.9E4 5.7E4
CompAct 2.042 1.732 1.646 1.645 1.645 1.643 1.638
CompAct(s) 2.958 2.415 3.463 2.416 2.447 2.415 2.416
Delta Ailerons 1.4E-4 1.3E-4 1.3E-4 1.3E-4 1.3E-4 1.3E-4 1.3E-4
Delta Elevators 1.0E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.0E-3
Elevators 3.3E-3 2.7E-3 2.1E-3 2.0E-3 2.0E-3 2.0E-3 2.0E-3
Fried 1.411 1.099 1.421 1.026 0.784 0.849 0.780
House 16H 2.7E4 2.3E4 2.5E4 2.4E4 2.7E4 2.3E4 2.3E4
House 8L 2.5E4 3.1E4 2.3E4 2.3E4 2.4E4 2.3E4 2.2E4
Kinemaics 0.162 0.135 0.144 0.129 0.115 0.122 0.115
Pole Telecomm 5.379 3.826 4.122 3.978 4.248 4.412 3.837
Puma32H 0.007 0.006 0.006 0.005 0.005 0.005 0.005
Puma8NH 2.773 2.645 2.604 2.600 2.593 2.591 2.579
Stock 0.916 0.663 0.702 0.645 0.575 0.508 0.506
Wisconsin Cancer 25.83 23.55 24.33 23.12 21.83 21.55 21.52
Avg Rank 4.53 (7) 3.37 (5) 3.58 (6) 2.42 (3) 2.47 (4) 1.84 (2) 1.21 (1)
Bold values indicate the performance of the top-ranked algorithm.

directly the fitness of each individual MT without optimizing
its LMs’ parameters. In order to verify the statistical validity
of the obtained RMSE results, a statistical study is carried
out on the selected algorithms. Firstly, we checked if there
are significant differences between the selected algorithms
based on the Friedman and Iman-Davenport test. As we
can see in Table V, the Friedman and Iman-Davenport tests
confirmed the existence of statistically significant differences
since their generated values are higher than the critical value,
which allows to reject the H0 with a p-value < 0,0001 for
the Friedman test and a p-value < 0,0001 for the Iman-
Davenport test. Consequently, we proceed with the Shaffer
test which performs a comparison between all the selected
algorithms. Results showed that BEMTI has the best behavior
compared to all the remaining algorithms and that statistical
differences exist between each selected algorithm and the
other algorithms. Hence, we can conclude that our BEMTI
is the best performing algorithm followed by pGMT, E-M5
and mGMT when solving the RT design problem, which is
compatible with the obtained average rank values of the all
selected algorithms.

B. Comparison of the peer algorithms using the MAE metric

The average MAE values over 31 runs, obtained by each
of the considered algorithms using the 19 datasets are shown
in Table VI. The last row of the table, i.e., Average rank,
presents the average rank of each algorithm. The computed
MAE values confirm the results of the obtained RMSE values
(cf. section V-A) and generated similar results to those of
RMSE since BEMTI maintains the best performance over



Fig. 5. MAE values obtained by the compared algorithms over 31 runs using
the Puma8NH dataset.

all the compared algorithms with an average rank equal to
1.21 followed by pGMT, E-M5, and mGMT which achieved
respectively average ranks equal to 1.84, 2.42 and 2.47, despite
the difference between the two metrics since RMSE is more
sensitive to outliers. Fig. 5 illustrates the MAE values obtained
by the selected algorithms of the experimental study over 31
runs using the Puma8NH dataset. BEMTI outperforms all
the other algorithms and attained the lowest median MAE
value which is equal to 2.579, followed by pGMT (2.589),
mGMT (2.593), E-M5 (2.597), M5 (2.598), BAG (2.64), and
REPTree (2.769). The statistical validity of the obtained MAE
results is checked by verifying the existence of significant
differences between the compared algorithms using the Fried-
man and Iman-Davenport test as shown in Table VII. These
first statistical tests validate the statistically differences by
generating values which surpass the critical values allowing
to reject the H0 (p-value < 0,0001 for the Friedman test
and p-value < 0,0001 for the Iman-Davenport test). Then, we
applied the Shaffer’s test and the obtained results showed that
our BEMTI performed well by presenting the best behavior
in comparison to the selected algorithms and that there is
no significant statistical differences with respect to the other
algorithms. The MAE study validates the conclusion obtained
by the RMSE study showing that BEMTI outperforms the
compared algorithms from the greedy catgory, i.e., REPTree,
BAG, M5 and E-M5 and from the EA category which are
mGMT and pGMT, thus, confirming the added value of the
use of a bi-level optimization to induce MTs along with the
EA. These results can be explained by the fact that the lower-
level of our BEMTI ensures a second optimization of the MT
candidates by a further exploration of the search space to find
the best sequence of LMs’ coefficients of each upper-level
solution as opposed to pGMT and mGMT, in which the EA
is restricted to a single evaluation of the MTs and do not
consider the optimization of the coefficients of the LMs. We
can conclude that our proposed BEMTI is able to obtain a

TABLE VII
ALGORITHMS COMPARISON MAE - FRIEDMAN AND IMAN-DAVENPORT

TESTS (α = 0.05).

Test Parameters
Crit. value Value H0 p-value

Friedman 12.5916 60.1343 Rejected < 0.0001
Iman-Davenport 5.3678 15.6163 Rejected < 0.0001

meaningful performance improvement compared to the state-
of-the-art EAs.

VI. CONCLUSION AND PERSPECTIVES

In this work, we proposed a new global approach called
BEMTI to induce MTs as a solution to the regression problem
based on an EA. Our algorithm relies on a bi-level architecture
where each level intends to optimize a well-defined objective.
Indeed, the upper-level evolves a set of MTs characterized by
univariate or oblique tests at internal nodes and LMs in the
leaves sought by an EA. In the lower-level, a population of
LMs is evolved in order to find the best model which presents
the optimal solution. The BEMTI method has been compared
to four top-down RT induction algorithms as well as two EAs
by computing the RMSE and MAE values applied on nineteen
regression datasets. Results show the outperformance of our
proposed approach and confirm the added value of the bi-level
optimization along with EAs. Some threats to validity can be
related to our approach which can impact the main findings of
our work. Three types of threats to validity can be identified:
(1) construct validity, (2) internal validity, and (3) external
validity. Construct validity concerns the relationship between
the theoretical aspect of the study and the observed results.
In our work, we used two metrics to conduct the comparative
study which are the RMSE and the MAE, since the former is
sensitive to the outliers whereas the latter reports the errors
equally. However, other metrics can be used for regression
such as the R2 metric [2] which is able to indicate how well
the predictions of the model can fit the data and, therefore, it
can be a good measure. Internal validity guarantees that the ob-
tained results represent the truth and are not affected by other
hypotheses. The stochastic nature of our proposed BEMTI
may present an internal threat to validity. The Shaffer test was
conducted to mitigate this threat. However, a control method
can be used in order to tune the parameters of our aproach.
External validity concerns the capability of the approach to
be generalized to a broader context. Our BEMTI achieved
competitive results compared to the other algorithms in our
experimental study. Nevertheless, using other datasets from
various domains would be more interesting. Following this
work, several directions for future research are worth investi-
gating. First, so far, BEMTI is designed to deal with single-
output regression. Recent research suggests that multi-output
learning is possible for numerical forecasting, especially with
the considerable development of multi-tasking learning [36].
Second, another direction is domain adaptation for transfer
learning. As BEMTI could be trained on a particular dataset



and provide desired outcomes, the change of the dataset would
alter its performance. To transfer the ability of the learnt MT
to make predictions on unseen but relatively similar datasets,
domain adaptation [37] could be a wise choice.
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