(7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Galileo Galilei. Dialogues Concerning Two New Sci-
ences. Evanston, Ill. Northwestern University Press,
1950. Originally published in 1665.

James M. Gere and William Weaver. Analysis of
Framed Structures. D. Van Nostrand Company, Inc.,
1965.

David E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Reading, Mass.
: Addison-Wesley Publishing Co., 1989.

David E. Goldberg and Manohar P. Samtani. Engi-
neering optimization via genetic algorithm. In Ninth
Conference on Electronic Computation, pages 471-82,

New York, N.Y., 1986. ASCE.

W. M. Jenkins. Towards structural optimization via
the genetic algorithm. Computers and Structures,
40(5):1321-7, 1991.

W. M. Jenkins. Plane frame optimum design environ-
ment based on genetic algorithm. Journal of Struc-
tural Engineering, 118(11):3103-13, November 1992.
K. V. John and C. V. Ramakrishnan.
weight design of trusses using improved move limit

method of sequential linear programming. Comput-
ers and Structures, 27(5):583-91, 1987.

S. F. J6zwiak. Probability-based optimization of truss
Computers and Structures, 32(1):87-91,

Minimum

structures.
1989.

Sushil Louis and Gregory Rawlins. Designer genetic
algorithms: Genetic algorithms in structure design.
In Richard K. Belew and Lashon B. Booker, edi-
tors, Fourth International Conference on Genetic Al-
gorithms, pages 53—60, University of California, San
Diego, July 1991. Morgan Kauffman Publishers.

D. T. Pham and Y. Yang. Optimization of multi-
modal discrete functions using genetic algorithms. In
Institute of Mechanical Engineers (Part D), pages 53—
9, 1993.

Kent Porter. Handling huge arrays. Dr. Dobb’s Jour-
nal of Software Tools for the Professional Program-
mer, 13(3):60-3, March 1988.

David Powell, Michael Skolnick, and S. Tong. En-
geneous:domain independent, machine learning for
design implementation. In J. David Schaffer, edi-
tor, Third International Conference on Genetic Algo-

rithms, pages 151-9, George Mason University, June
1989. Morgan Kauffman Publishers.

David Powell, Michael M. Skolnick, and S. Tong.
Using genetic algorithms in engineering design opti-
mization via non-linear constraints. In Fifth Interna-
tional Conference on Genetic Algorithms, pages 424—
31, University of Illinois at Urbana-Champaign, July
1993. Morgan Kauffman Publishers.

S. Rajeev and C. S. Krishnamoorthy. Discrete opti-
mization of structures using genetic algorithms. Jour-
nal of Structural Engineering, 118(5):1233-50, May
1992.

[21]

[22]

[23]

[24]

(23]

[26]

[27]

28]

[29]

S. Rao, K. Sundararaju, B. Prakash, and C. Balakr-
ishna. Multiobjective fuzzy optimization techniques
for engineering design.

42(1):37-44, 1992,
M. P. Saka and M. Ulker. Optimum design of ge-

ometrically nonlinear space trusses. Computers and
Structures, 42(3):289-99, 1992.

Computers and Structures,

Marc Schoenauer and Spyros Xanthakis. Constrained
ga optimization. In Fifth International Conference on
Genetic Algorithms, pages 573-80, University of Illi-
nois at Urbana-Champaign, July 1993. Morgan Kauff-
man Publishers.

A. B. Templeman and D. F. Yates. A linear program-
ming approach to discrete optimum design of trusses.
In H. Eschenauer and N. Olholff, editors, Optimiza-
tion Methods in Structural Design, pages 133-9. Bl
Wissenschaftsverlag, Mannheim, Germany, 1983.

Andrew B. Templeman. Discrete optimum structural
design. Computers and Structures, 30(2):511-8, 1988.

A. R. Toakley. Optimum design using available sec-
tions. Journal of the Structural Division. ASCE,
94(ST 5):1219-33, 1968.

Garret N. Vanderplaats. Numerical Optimization
Techniques for Engineering Design with Applications.
McGraw-Hill Book Company, 1984.

Ming Zhou and Renwei Xia. An efficient method of
truss design for optimum geometry. Computers and
Structures, 35(2):11579, 1990.

D. M. Zhu. An improved templeman’s algorithm for
optimum design of trusses with discrete member sizes.
Engrg. Opt., 9:303-12, 1986.

Method | Weight | Al A2 A3 A4 A5 A6 AT A8 A9 A10
Rajeev 5613.84 | 33.50 | 1.62 | 22.00 | 15.50 | 1.62 | 1.62 | 14.20 | 19.90 | 19.90 | 2.62
CONMIN 5563.00 | 25.20 | 1.89 | 24.87 | 15.83 | 0.10 | 1.75 | 16.76 | 19.73 | 20.98 | 2.51
OPTDYN | 5472.00 | 25.70 | 0.10 | 25.11 | 19.39 | 0.10 | 0.10 | 15.40 | 20.32 | 20.74 | 1.14
LINRM 6249.00 | 21.57 | 10.98 | 22.08 | 14.95 | 0.10 | 10.98 | 18.91 | 18.42 | 18.40 | 13.51
SUMT 5932.00 | 30.69 | 2.37 | 31.62 | 11.66 | 0.10 | 3.71 | 21.71 | 20.90 | 13.97 | 3.26
M-3 5719.00 | 25.84 | 3.07 | 26.42 | 12.77 | 0.10 | 3.43 | 19.34 | 19.17 | 18.76 | 4.42
M-5 5725.00 | 25.83 | 2.88 | 26.45 | 12.75 | 0.10 | 3.77 | 19.37 | 19.18 | 18.77 | 4.38
GRP-UI 5727.00 | 24.78 | 4.17 | 24.78 | 14.45 | 0.10 | 4.17 | 17.46 | 19.26 | 19.27 | 5.26
GENETIC | 5586.59 | 30.00 | 1.62 | 22.90 | 13.50 | 1.62 | 1.62 | 13.90 | 22.00 | 22.00 | 1.62

Table 4: Comparison of our results (GENETIC) with other methods reported in the literature for the plane truss.

For more detailed information about each one of these methods, see [2] and [20].

Method | Weight | Al A2 A3 A4 A5 A6 AT A8
Zhu 562.93 | 0.100 | 1.900 | 2.600 | 0.100 | 0.100 | 0.800 | 2.100 | 2.600
Rizz 545.16 | 0.010 | 1.988 | 2.991 | 0.010 | 0.010 | 0.684 | 1.676 | 2.662
Schmit 545.22 | 0.010 | 1.964 | 3.033 | 0.010 | 0.010 | 0.670 | 1.680 | 2.670
Rajeev 546.01 | 0.100 | 1.800 | 2.300 | 0.200 | 0.100 | 0.800 | 1.800 | 3.000
GENETIC | 493.94 | 0.100 | 0.700 | 3.200 | 0.100 | 1.400 | 1.100 | 0.500 | 3.400

Table 5: Comparison of our results (GENETIC) with other methods reported in the literature for the space truss.
Notice that Rizz and Schmit are continuous methods. For more detailed information about each method, refer

to [29] and [20].

analysis programs to C in order to have more trans-
portability (a C version of the SGA is already avail-
able). Until now, all our work has been done on IBM
PCs. We wish to make our code generally available
and are working to do so. Our code does not require
an extremely fast computer, although a mathematical
coprocessor is helpful.

Our technique could be extended to other engineer-
ing areas that present equally complex problems. For
example, hydraulics presents many optimization prob-
lems requiring tedious and complex calculations.

6 Conclusions

GAs seem to be a good choice for discrete structural
optimization. They offer several advantages that other
techniques lack such as generality and the ability to
deal directly with discrete search spaces. GAs per-
formed well on a plane truss and 3-D truss problem as
compared to more traditional techniques. We do not
claim that GAs are the golden key to structural op-
timization that engineers have sought for nearly two
centuries. There is no doubt, however, that GAs have

potential for automating discrete structural optimiza-
tion.

References

[1] Jasbir S. Arora. Introduction to Optimum Design.
McGraw-Hill Book Company, 1989.

[2] Ashok Dhondu Belegundu. A Study of Mathemat-
tcal Programming Methods for Structural Optimiza-
tton. PhD thesis, University of Iowa, Dept. of Civil
and Environmental Engineering, 1982.

[3] Andrzej Marek Brandt, Wojciech Dzieniszewski, Ste-
fan Jendo, Wojciech Marks, Stefan Owczarek, and
Zbigniew Wasiutynski. Criteria and Methods of Struc-
tural Optimization. M. Nijhoff Publishers, 1986.

[4] Bill P. Buckles and Frederick E. Petry. Genetic Al-
gorithms. Technology Series. IEEE Computer Society
Press, 1992.

[5] Carlos A. Coello. Andlisis de estructuras reticulares
por computadora (método de rigideces). Tesis de Li-
cenciatura, 1991. (in Spanish).

[6] Kalyanmoy Deb. Optimal design of a welded beam
via genetic algorithms. AJAA Journal, 29:2013-15,
November 1991.

set of all possible cross-sectional areas (the S list) is fed
into the program. Then, the constraints on maximum
allowable stress and maximum deflection are provided.
The program that does the structural analysis is exe-
cuted separately to generate the stiffness matrix and
its results are stored in a separate file. The GA is
then executed and the user provides the size of pop-
ulation, number of generations, etc. After that, the
program starts iterating, reading and rewriting the file
that contains the results of the analysis, modifying it
with values from the chromosomes at each generation.
As progress is made, a simplified report is sent to the
output device (a laser printer in our case) showing the
current generation and the best solution found so far.

4 Comparison of Results

Tables 4 and 5 compare our results to techniques
reported in the literature. The GA performed well,
surpassing all but two of the other methods for the
plane truss and surpassing all the other methods for
the space truss.

Though the space truss has a smaller intrinsic
search space its analysis takes more CPU time. The
reason is that a space truss has more degrees of
freedom—because there are more unknown forces act-
ing on each of its nodes. Since we have to solve the
structure for each chromosome in order to get its fit-
ness, fitness evaluation has the potential to take too
much time if the structure is sufficiently large, even
though its search space could be relatively small.

It should be pointed out that Rajeev and Krish-
namoorthy [20] use a genetic algorithm to optimize
the two trusses presented in this work, but they make
assumptions that considerably reduce the size of the
search space based on imposing a lower and upper
bound on each member’s values. They assume that
one design variable can take only 16 possible values.
This assumption reduces the chromosome length to
only 4 bits, and therefore the size of the search space
gets small enough to find reasonable solutions using
populations of 20, 30, and 40 individuals, running
through no more than 20 generations. However, even
without making those assumptions (i.e., dealing with
a larger search space), we find superior results, though
we use bigger population sizes and a larger number of
generations.

Rajeev and Krishnamoorthy [20] proposed an in-
teresting fitness function

F(2) = [¢(2)maz + 6(2)min] — ¢() ()

where F'(z) is the fitness of candidate solution z,
&(#)maz and ¢(x)min are respectively the maximum
and minimum ¢(z) over the population, ¢(z) is

o(z) = f(z)(1 + KC) (4)
C= ZC]' (5)

and m is the number of constraints, the c; are the
amounts by which each constraint is violated, f(z) is
the weight function (see Equation 1) and K weights
the constraint violations. They found a value of K=10
suitable for the two problems addressed here.

They used F'(z) following Goldberg’s suggestion of
subtracting ¢(z) from a large constant for minimiza-
tion problems, so that all the fitness values are positive
and individuals get fitness values according to their
actual merit.

Following the same track, Jenkins [11] uses the mass
of the structure as his objective function. Then, in
order to present the problem in minimization form, he
writes the objective function as

F(2) = Frnae — f(2) (6)

where F), 4, 18 the mass of the heaviest possible struc-
ture. We took a simpler approach by considering just
the inverse of the weight as our objective function, be-
cause we want to minimize the weight of the structure.
This reduces the amount of computing and, as can be
seen from the results, seems to work fine. In fact,
even if the constant v is not used (see Equation 2)
and we just drop the fitness value to zero when a con-
straint is violated, we still get similar results, though
sometimes larger populations are required, to avoid an
all-zero fitness initial population.

5 Future Work

Our goal is to develop an automated structural de-
sign system that uses GAs. The genetic algorithm ap-
proach is so general that the code developed here can
be used with only minor modification to optimize the
remaining framed structures (plane and space frames,
plane grids and beams). We are trying to find a more
realistic fitness function that doesn’t require too much
bookkeeping. In terms of implementation, work con-
tinues to overcome the memory and execution time
constraints of personal computers. The programs used
are far from optimal—much work remains to be done
in terms of fine tuning the code. However, at the mo-
ment, the main concern is to translate the structural

B> N

Group Number Members

1 1-2

1-4, 2-3, 1-5, 2-6
2-5, 2-4, 1-3, 1-6
3-6,4-5

3-4, 5-6

3-10, 6-7, 4-9, 5-8
3-8, 4-7, 6-9, 5-10
3-7, 4-8, 5-9, 6-10

SOl | O OY | W N

Table 2: Group membership for the 25-bar space truss
shown in Figure 3.

Figure 3: 25-bar space truss used for example No. 2.

B

Node | Fx (lbs) | Fy (lbs) | Fz (Ilbs)
1 1000 -10000 -10000
2 0 -10000 -10000
3 500 0 0
6 600 0 0

Node X Y Z
1 -37.50 0.00 200.00
2 37.50 0.00 200.00
3 -37.50 37.50 | 100.00
4 37.50 37.50 | 100.00
5 37.50 -37.50 | 100.00
6 -37.50 | -37.50 | 100.00
7 -100.00 | 100.00 0.00
8 100.00 | 100.00 0.00
9 100.00 | -100.00 | 0.00
10 -100.00 | -100.00 | 0.00

Table 1: Loading conditions for the 25-bar space truss
shown in Figure 3.

A space truss is similar to a plane truss
except that the members may have any direc-
tions in space. The forces acting on a space
truss may be in arbitrary directions, but any
couple acting on a member must have its mo-
ment vector perpendicular to the axis of the
member. The reason for this requirement is
that a truss member is incapable of support-
ing a twisting moment.

Loading conditions are given in Table 1, member
groupings are given in Table 2, and node coordinates
are given in Table 3. The assumed data are: modulus
of elasticity, E = 1x10* ksi (6.89x 10* MPa), p = 0.10
Ib/in® (2,770 kg/m?); o, = 240,000 psi, u, = £0.35
in. The set of areas available for this truss is [20]
S={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1,
1.2, 1.3, 14,15, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3,

Table 3: Coordinates of the joints of the 25-bar space
truss shown in Figure 3.

2.4,2.5,2.6,2.8,3.0,3.2, 3.4} (in?).

3 Implementation Details

We use a customized version of the SGA (Simple
Genetic Algorithm) presented in Goldberg [9]. Dy-
namic memory management [17] is used instead of
static arrays. Also, binary tournament selection is
used instead of the roulette wheel selection. Finally,
several of the original functions and procedures are
rewritten.

The user provides a maximum number of genera-
tions as the stopping criteria. The crossover probabil-
ity is approximately 0.80, and the mutation probabil-
ity is 0.01. We don’t deactivate the mutation rate as
Rajeev and Krishnamoorthy [20] propose. To analyze
the structures we used programs from [5].

The basic operation of the program is simple. The

Tou 5T 25T

Figure 1: 10-bar plane truss used for example No. 1.

ure 1. Gere and Weaver [8] define a plane truss as
follows:

A plane truss is idealized as a system of
members lying in a plane and interconnected
at hinged joints. All applied forces are as-
sumed to act in the plane of the structure,
and all external couples have their moment
vectors normal to the plane. The loads may
consist of concentrated forces applied at the
joints, as well as loads that act on the mem-
bers themselves. For purposes of analysis,
the latter loads may be replaced by stati-
cally equivalent loads acting at the joints.
Then the analysis of a truss subjected only to
joint loads will result in axial forces of ten-
sion and compression in the members. In
addition to these axial forces, there will be
bending moments and shear forces in those
members having loads that act directly upon
them. The determination of all such stress
resultants constitutes the complete analysis
of the forces in the members of a truss.

The objective of the problem is to minimize the
weight of the structure, f(xz),

10

fle)=>" pA;jL; (1)

i=1

where x is the candidate solution, A; is the cross-
sectional area of the jth member, L; is the length
of the jth member, and p is the weight density of the
material. The assumed data are: modulus of elastic-
ity, £ = 1 x 10* ksi (6.89 x 10* MPa), p = 0.10 1b/in®
(2,770 kg/m?), and vertically downward loads of 100
kips (445.374 kN) at nodes 2 and 4. Additionally, the
truss is subject to the following set of constraints

0j <og, forj=1to10
U]'S‘ua

[1[ofoJ1]1]o[[1]1]o[1]1]o[a] 1] J1[o][1]1]o] [0

Substring for A10 Substring for A9 Substring for Al

Figure 2: Binary representation of a chromosome.

where o; is the stress in member j, o, is the maximum
allowable stress for all members, u; is the displacement
of each node (horizontal and vertical), and wu, is the
maximum allowable displacement for all nodes.

The constraints can be expressed in normalized
form as ws
<4 _-1<0
Ta Uq

The fitness function used was
P(z) = 1/(f(@)[10000 +1]) (2)

where v is the count of the number of constraints vio-
lated by a given solution. When there is no violation
to the constraints, the fitness is simply the inverse of
the weight. As constraints are violated, the fitness is
lowered correspondingly. The constant 1000 was de-
termined experimentally.

The constraints for this problem are as follows. The
maximum displacement is 2 inches (50.8 mm) and the
stresses are limited to £25 ksi (172.25 MPa). The list
of discrete values, taken from the American Institute
of Steel Construction Manual [1], is S={1.62, 1.80,
1.99,2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38,
3.47,3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59,
4.80,4.97,5.12,5.74,7.22,7.97, 11.5, 13.5, 13.9, 14.2,
15.5,16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5}
(in?).

Since there are 10 design variables, and each can
take any of the 42 available sections, the intrinsic size
of the search space is 421° (=2 101%). A 6 bit GA rep-
resentation is used and the extra codes are assigned to
random values taken from S. Thus each chromosome
is 60 bits long (6 bits/truss x 10 trusses) as shown in
Figure 2. The representation can easily be adapted
when the number of bars in the truss changes. It also
has the advantage of using relatively small amounts of
computer memory, even for large trusses.

Optimization of a Space Truss

Our second example is the 25-bar space truss taken
from Rajeev and Krishnamoorthy [20], shown in Fig-
ure 3. A space truss is defined in Gere and Weaver [8]
as follows:

e GAs operate on multiple partial solutions simul-
taneously (sometimes called implicit parallelism),
gathering information from a population of search
points to direct subsequent search efforts. Their
ability to maintain multiple partial solutions con-
currently helps make GAs less susceptible to the
problems of local maxima and noise.

These characteristics make GAs a good choice for
structural optimization.

1.1 Previous Work

Goldberg and Samtani [10] appear to have first
suggested the use of GAs for structural optimization.
They considered the use of a GA to optimize a 10-bar
plane truss. A few others have applied the technique
to the design of welded beams [6], plane frames [12], a
trussed-beam roof structure and a thin-walled cross-
section [11], and generalized trusses [20].

Pham and Yang [16] presented interesting work on
the optimization of multi-modal discrete functions us-
ing GAs. Powell, et al. [18] described a domain in-
dependent design optimization tool for engineers in-
volved with iterative design called EnGENEous. This
program uses expert systems and genetic algorithms
to move from a domain independent system with no
knowledge to a domain dependent system with knowl-
edge. It has been used in the design of cooling fans,
molecular electronic structure, and aircraft engine tur-
bines, with the authors claiming an increase in engi-
neer productivity by a factor of 10. Powell, et al. [19]
showed the results of examining 10 engineering design
optimization problems with regard to the comparative
performance of GAs and numerical techniques.

Schoenauer and Xanthakis [23] presented a general
method of handling constraints in genetic optimiza-
tion, based on the Behavioural Memory paradigm.
Instead of requiring the problem-dependent design of
either repair operators (projection onto the feasible
region) or penalty functions (weighted sum of con-
straint violations and the objective function), they
sampled the feasible region by evolving from an ini-
tial random population successively applying a series
of different fitness functions which embody constraint
satisfaction. Only in the final step was the optimiza-
tion restricted to the feasible region. The success of
the whole process is highly dependent on the genetic
diversity maintained during the first steps, ensuring
a uniform sampling of the feasible region. They ap-
plied this scheme to test problems of truss structure
optimization: a 10-bar (2D) and a 25-bar (3D) truss.

Louis and Rawlins [15] discussed the application of

GAs to design structures, focusing on combinatorial
circuit design problems—given a set of logic gates, de-
sign a circuit that performs a specified function.

There is a large amount of research in the area of
structural optimization. Scientists have used many
techniques, from gradient methods to sophisticated
variations of Newton’s method. Arora [1], Brandt, et
al. [3], Vanderplaats [27] and Belegundu [2] presented
good reviews of these methods. Also, Templeman [25]
offers a review of several methods for the optimum
design of trusses, emphasizing the problems of using
them in a computer-aided design context.

Much recent work has been done on optimization of
discrete structural systems. Toakley [26] proposed a
model to optimize statically determinate trusses using
a list of sizes of their members. Templeman and Yates
[24] proposed a method to optimize statically indeter-
minate trusses that considers stress and displacement
constraints. Zhu [29] introduced a modification to this
method that considerably improves its performance.
John and Ramakrishnan [13] proposed the use of se-
quential linear programming with a branch and bound
algorithm for discrete structural optimization. Saka
and Ulker [22] presented an algorithm for structural
optimization of statically indeterminate space trusses
subject to stresses, displacements, and cross-sectional
constraints. Their algorithm is based on the use of
an iterative linear analysis of the structure. Rao, et
al. [21] considered the use of multiobjective fuzzy op-
timization techniques for engineering design and pre-
sented examples of plane and space trusses. Zhou and
Xia [28] proposed a method for the configurational
optimization of a truss subject to displacement, stress
and buckling constraints under multiple load condi-
tions. Their method generates a sequence of approx-
imate convex problems which are solved by a dual
method of convex programming. Finally, Jézwiak [14]
presented a probability-based approach in which the
mean value of the structural mass is taken as the ob-
jective function.

2 Examples

We present two examples of the application of our
method in this section. We concentrate on defining
the problem and the inputs to the GA. We present
our obtained results in a later section of the paper.

Optimization of a Plane Truss

Our first example is the 10-bar plane truss taken
from Rajeev and Krishnamoorthy [20], shown in Fig-

Using Genetic Algorithms for Optimal Design of Trusses

Carlos A. Coello Coello

Michael Rudnick

Alan D. Christiansen

Department of Computer Science
Tulane University

New Orleans, LA 70118

Abstract

This paper presents a method for optimizing the
design of plane and space trusses subject to a spec-
ified set of constraints. Qur method is based upon
a search technique using genetic algorithms. Tradi-
tional structural optimization techniques consider a
continuous search space, and consequently lead to un-
realistic solutions because structural members are not
available in continuously varying sizes. A practical
method should consider only the discrete values associ-
ated with commonly available materials. On the other
hand, most modern structural optimization techniques,
even when they consider a discrete search space, suf-
fer a lack of generality, and tend to be limited to a
certain kind of structure. Genetic algorithms remedy
these two problems since they can deal with discrete
search spaces and they are general enough to be easily
ertended to any kind of structure without substantial
modifications. Qur results show the genetic algorithm
can provide very good solutions, often surpassing other
complex and specialized techniques.

1 Introduction

Galileo appears to be the first scientist who stud-
ied the optimization of structures, as we can see in his
work on the bending strength of beams [7]. Bernoulli,
Lagrange, and Navier are just a few of the other great
scientists who sought the “best” shapes for structural
elements to satisfy the given strength requirements.
As time passed, this discipline evolved and became
an engineering area known as Structural Optimization,
which seeks to determine the most economical geomet-
rical shapes satisfying the constraints (e.g. stresses
and deflections) imposed on the design.

Traditionally, the design of a certain structure has
depended on the experience of an engineer. Con-
sequently, designed structures have often been sub-

optimal. More recently, engineers have started using
computers to automate structural design. However,
their use has concentrated mainly in iterative design.
In other words, engineers have been doing their same
work, but now a lot faster and more accurately.

To what extent can computers assist engineers in
a more sophisticated manner? Several researchers are
developing techniques that may eventually lead to the
fully automated design of structures. However, most
of these techniques share some problems: due to their
mathematical origin (most of them are linear program-
ming techniques) they tend to treat structural opti-
mization as a problem in which the search space is
continuous, when it’s really discrete. Only a small
number of structural shapes are available in the mar-
ket.

We focus on the use of genetic algorithms to op-
timize the design of plane and space trusses. The
technique considers a discrete search space, yielding
more realistic results than linear programming meth-
ods. Though some structural optimization techniques
can deal with discrete search spaces, they suffer an in-
herent lack of generality and therefore can’t be readily
extended to other kinds of structures.

The genetic algorithm (GA), for its part, is problem
independent. The code developed for this work can be
reused to solve the remaining framed structures (plane
and space frames, plane grids and beams) with little
change. Finally, the GA has performance compara-
ble to existing techniques, sometimes even surpassing
them.

GAs differ from traditional search techniques in
several ways [4]:

e GAs don’t require problem specific knowledge to
carry out a search.

e GAs use stochastic instead of deterministic oper-
ators and appear to be robust in noisy environ-
ments.

