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Cédex, France
{Emilia.Tantar,El-Ghazali.Talbi}@lifl.fr

2 CINVESTAV-IPN, Computer Science Department, México D.F. 07360, Mexico
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Summary. This work deals with the computation and the selection of approximate
– or ε-efficient – solutions of {0, 1}-knapsack problems. By allowing approximate
solutions in general a much larger variety of possibilities for the underlying problem
is offered to the decision maker. We enlighten the gap that can occur when passing
ε-approximate solutions from the objective space into the parameter space (in terms
of neighborhood). In this paper, we propose a novel adaptive ε-approximation based
stochastic algorithm for the computation of the entire set of ε-efficient solutions,
state a convergence result, and address the related decision making problem. For
the latter we propose an interactive selection process which is intended to help the
decision maker to understand the landscape of the obtained solutions.

Key words: {0,1}-knapsack problems, epsilon-adaptive method, approximate so-
lutions, interactive selection procedure.

1 Introduction

In a multi-objective optimization problem (MOP) several objectives have to be
optimized concurrently. Based on the standard dominance relation for optimality,
the set of optimal solutions (the Pareto set) typically forms a (k − 1)-dimensional
object, where k denotes the number of objectives involved in the MOP. Though the
trustworthy approximation of this set is already a challenging task in practice, it can
make sense in certain situations to consider even a superset of the Pareto set. Using a
weaker concept of optimality, nearly optimal solutions or approximate solutions can
be defined. This can e.g. be done via the use of ε-dominance (Loridan, 1984), where
the value of ε determines the quality of the approximation. The main advantage of
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allowing approximate solutions is that by this, in general, a larger flexibility can be
offered to the decision maker (DM) whose task is to select an ’adequate’ solution
according to the given problem. In this work we aim for the numerical treatment
of {0,1}-knapsack problems which have a wide range of real-world applications,
e.g. capital budgeting (Rosenblatt and Sinunany-Stern, 1989), relocation problems
(Kostreva et al., 1999), or planning remediation (Jenkins, 2002). Moreover in all of
them the value of ε has a physical meaning, and thus, the potential loss compared
to possible exact solutions is computable.

The explicit computation of approximate solutions has been addressed in sev-
eral studies, most of them employing scalarization methods, e.g. (Blanquero and
Carrizosa, 2002; Engau and Wiecek, 2007; White, 1986), or aiming for robust ap-
proximations of the ε-efficient front (Deb et al., 2005; Laumanns et al., 2004; Schütze
et al., 2008, 2009), without providing several preimages for the same objective func-
tions range. Recently, archiving strategies have been proposed (Schütze et al., 2008;
Schütze et al., 2007) to maintain the entire set of ε-efficient solutions (denote by
Eε) in the limit using stochastic search algorithms. On the basis of this work we
propose a novel population based search procedure which is designed to compute the
approximate solutions of the {0,1}-knapsack problems. The novelty of the approach
consists - besides the approximation of the entire set of ε-efficient solutions - of the
proposed mechanism used for adapting the values of ε during the search as to ensure
convergence towards the desired level of accuracy, in the limit and in a probabilistic
sense. Furthermore, we propose an interactive procedure which should help the DM
to explore the landscape of Eε, and which should thus ease his or her task to find
the ’right’ solution according to the current situation.

The remainder of this paper is organized as follows: in Section 2, we give the
required background for the understanding of the sequel. In Section 3 we state
the problem and motivate why we have chosen to tackle it with stochastic search
algorithms. In Section 4 we propose such an algorithms and give some numerical
results. In Section 5 an interactive selection procedure is proposed, and finally we
conclude in Section 6.

2 Background

In the following we consider multi-objective optimization problems

min
x∈Q

{F (x)}, (MOP)

where the function F is defined as the vector of the objective functions F : Q →
Rk, F (x) = (f1(x), . . . , fk(x)), and where Q ⊂ Rn is finite.

Definition 1. (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) y ∈ Rn is dominated by a point x ∈ Rn (x ≺ y) with respect to (MOP) if
F (x) ≤p F (y) and F (x) 6= F (y), else y is called nondominated by x.

(c) x ∈ Rn is called a Pareto point if there is no y ∈ Rn which dominates x. Denote
by PQ the set of Pareto points of a given MOP.

Definition 2. Let ε = (ε1, . . . , εk) ∈ Rk
+ and x, y ∈ Rn.
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(a) x is said to ε-dominate y (x ≺ε y) with respect to (MOP) if F (x) − ε ≤p F (y)
and F (x)− ε 6= F (y).

(b) x is said to −ε-dominate y (x ≺−ε y) with respect to (MOP) if F (x)+ε ≤p F (y)
and F (x) + ε 6= F (y).

The definition in (b) is of course analogous to the ’classical’ ε-dominance relation
in (a) but with a value ε̃ ∈ Rk

−. However, we highlight it here since it will be used
frequently in this work. While the ε-dominance is a weaker concept of dominance,
−ε-dominance is a stronger one. We now define the set of interest

Definition 3. (Schütze et al., 2007) Denote by PQ,ε the set of points in Q ⊂ Rn

which are not −ε-dominated by any other point in Q, i.e.

PQ,ε := {x ∈ Q| 6 ∃y ∈ Q : y ≺−ε x} (1)

Algorithm 1 gives a framework of a generic stochastic multi-objective optimiza-
tion algorithm, which will be considered in this work. Here, Q ⊂ Rn denotes the
domain of the MOP, Pj the candidate set (or population) of the generation process
at iteration step j, and Aj the corresponding archive.

Algorithm 1 Generic Stochastic Search Algorithm
1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do
4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for

3 The Problem

In this section we present the class of MOPs – bi-objective {0,1}-knapsack problems
– which is being considered, and make further on some discussions on it:

f1, f2 : {0, 1}n → R, f1(x) =

nX
j=1

c1
jxj , f2(x) =

nX
j=1

c2
jxj (2)

s.t.
nX

j=1

wjxj ≤ W, xj ∈ {0, 1}, j = 1, . . . , n,

where ci
j represents the value of item j on criterion i, i = 1, 2; xj = 1, j = 1, . . . , n,

if item j is included in the knapsack, else xj = 0. wj is the weight of item j, and W
the overall knapsack capacity.

Here we are particularly interested in instances where the items have ’similar’
values – i.e., where some ci

j ’s (not necessarily all) are within a relatively small range
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– since in that case the set of ε-efficient solutions can become large, even for small
values of ε.

Table 1 shows some results for n = 500 items, and where the values ci
j are chosen

within the interval [10− d, 10 + d], d = 1, 2, 3. We can observe that the magnitudes
of P̃Q – the number of nondominated solutions found by the search procedure–
is nearly independent from the choice of the interval. This does not hold for the
magnitudes of ˜PQ,ε, i.e., the set of points which are not −ε dominated by any other
test point. We see that | ˜PQ,ε| gets larger the closer the values of the items are, and
in all cases we have | ˜PQ,ε| > |P̃Q|. However, in case the values of the items vary a
lot, it can happen that PQ = PQ,ε, even for large values of ε (see e.g. (Laumanns
et al., 2004) or (Tantar, 2009)).

|P̃Q| | ˜PQ,ε|
ci

j ∈ [9, 11] 8.7 144.93
ci

j ∈ [8, 12] 8.87 42.8
ci

j ∈ [7, 13] 9.07 26.93

Table 1. Some numerical results for MOP (2) with n = 500, averaged over 30
test runs. We have taken the algorithm described in Section 4 using a population
of 100 individuals ,with a number of 10,000 generations. P̃Q denotes the set of
nondominated solutions and ˜PQ,ε the set of points which are not −ε dominated by
any other test point generated by the algorithm, for ε = (5, 5).

The next example shows that PQ,ε can be highly disconnected, which motivates
to tackle such problems with stochastic search algorithms since ’classical’ exact
methods designed to locate PQ and which utilize the locality of such MOPs, can
probably not easily be tuned in order to solve the problem adequately (however, the
authors do not foreclose that such algorithms will not exist in future).

Example 1. For this example, we consider n = 6, w = 1, W = 3, and the costs

c1 = (95, 120, 80, 98, 105, 87)

c2 = (107, 75, 115, 97, 90, 108)
(3)

Here, PQ consists of 18 points- two pairs of solutions having the same values in the
image space - including x1 = (1, 1, 1, 0, 0, 0) with F (x1) = (295, 297) (see Figure
1). When choosing ε = (5, 5) – the value of εi = 5 relates to approximately 5
percent of the average weight of one item – we see that x2 = (0, 0, 0, 1, 1, 1) with
F (x2) = (290, 295) is an ε-efficient solution since it is ε-dominating x1 (and only this
point). The Hamming distance is 6, thus the maximal possible value. There exists
also x4 = (0, 1, 1, 1, 0, 0) which is an ε-efficient solution since it is ε-dominating
x3 = (1, 0, 0, 1, 1, 0), with F (x3) = (298, 294), x3 ∈ PQ. The Hamming distance
between x3 and x4 is 4.

Further instances with larger distances of approximate solutions to PQ can be
constructed, see also the example in Section 5 or (Tantar, 2009).
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Fig. 1. The set of feasible solutions for the considered example. It can be observed
that PQ,ε contains one solution with dH = 6 and several solutions with dH = 4.

4 A Stochastic Search Algorithm

4.1 The Algorithm

The algorithm is a population based evolutionary technique designed for providing
PQ,ε approximation sets. It is intended as the first component of an exploratory
process which offers to the users information about PQ,ε approximation sets, required
in studying the solutions landscape. The idea behind the exploration strategy is to
improve the performances obtained using the archiving strategy by adapting the ε
values to the feasible solutions landscape.

The adaptation of ε values during the exploration appeared in the context of
providing PQ approximations (Grosan, 2006). It consisted of a gradual decrement
by 1 of the value of ε each time the number of consecutive generations without
improvement attained a specific value. Although efficient, the process could not
guarantee the convergence towards a desired value of ε in a finite number of steps
and necessitated also large values for the initial ε, which implies a large number of
iterations.

In this paper we propose the general assumptions required to prove convergence
toward PQ,ε. These assumptions are taken into account in constructing a specific
decrease function together with a way of considering the distance criterion between
two consecutive archives in the adaptive process. For simplicity, we assume that
all components of ε are identical, i.e., ε = (ε∗, . . . , ε∗). The value of ε∗ is specified
by the user, as well as a maximal starting value, εmax. The maximal value can be
deduced for specific problems by performing bounds computations for the objective
functions.

Algorithm 2 exposes the generic components of the proposed adaptive ε-approximate
searching strategy. The technique facilitates the reduction of the number of genera-
tions required in order to attain a PQ,ε final set.

As regards the termination criterion, for a given t, the two conditions t ≤
MaxNoGenerations and εt ≥ εmin must be met in order to continue the loop.
This implies that in the worst case the algorithm will terminate after the maximal
number of generations by employing the Decrease(t) adaptation for εt.
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Algorithm 2 Generic Adaptive ε-Approximation Search
1: t = 0;
2: ε0 = εmax

3: A0 = ∅
4: P0 ⊂ Q drawn at random
5: dist = 0
6: while ¬ Termination Criterion(Pt) do
7: Pt+1 = Generate(At,Pt);
8: Evaluate(Pt+1);
9: At+1 = ArchiveUpdate(εt, Pt, At);

10: ∆ = dist(At+1, At);
11: if ∆ < MinimalQualityIncrease then
12: εt+1 = Decrease(t + Increase(∆))
13: else
14: εt+1 = min(εt, Decrease(t));
15: end if
16: t = t + 1;
17: end while

4.2 Discussion and Analysis

Adaptation of ε

The distance criterion consists in computing a comparative metric between At+1

and At - dist(At+1, At) = Metric(At+1, At). If the value of the improvement falls
below a specified threshold - denoted as MinimalQualityIncrease - the length of
the step used in decreasing the value of ε increases by ∆. For our purposes the C-
metric, proposed in (Zitzler and Thiele, 1999), is computed between At+1 and At. It
was chosen by its ability of providing the percent of solutions from At+1 which are
dominating the ones in At. Also it has the advantage of being computed indepen-
dently, without considering external factors, as a specified point. Other comparative
metrics can be similarly employed.

Let Decrease : N → [ε∗, εmax] be a monotonically decreasing function which
defines the value of ε in the adaptive process. The following assumption on Decrease
is necessary in order to ensure convergence in the limit toward PQ,ε:

∃t0 ∈ N : ε(t) = ε∗, ∀t ≥ t0. (4)

For our computations we have used the following function:

Decrease(t) := εmax − exp−γ( β
MaxNoGenerations

t)
2

∗(εmax − ε∗), for t ≤ t0, (5)

where β represents an arbitrarily large value.

ArchiveUpdate

Here we use the archiving strategy proposed in (Schütze et al., 2007) and which was
designed to maintain the entire set of ε-efficient solutions with generic stochastic
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search algorithms. The archiving strategy is simply the one which keeps all obtained
points which are not −ε-dominated by any other test point, i.e.

ArchiveUpdatePQ,ε(ε, P, A) := {x ∈ P ∪A : y 6≺−ε x ∀y ∈ P ∪A}, (6)

The following theorem states a result on the underlying abstract algorithm of
the procedure proposed above.

Theorem 1. Let an MOP of the form (2) be given and ε ∈ Rk
+. Further let

∀x ∈ {0, 1}n : P (∃l ∈ N : x ∈ Pl) = 1 (7)

Then an application of Algorithm 1, where ArchiveUpdatePQ,ε() is used to update
the archive, leads to a sequence of archives Al, l ∈ N, with

lim
l→∞

dH(PQ,ε, Al) = 0, with probability one, (8)

where dH denotes the Hausdorff distance.

Proof. This is a direct consequence of a result from (Schütze et al., 2007), which
holds for the continuous case.

Remark 1. a) The crucial assumption required to obtain convergence is (7). This is
e.g. fulfilled if the sequence (Pt)t≥0 of candidate sets obtained by Generate() is a
homogeneous finite Markov chain with irreducible transition matrix (Iosifescu, 1980;
Rudolph and Agapie, 2000).

b) By (4) it is assured that PQ,ε is computed in the limit. In the first steps, where
larger values of εi are used (in order to increase the performance of the algorithm),
outer approximations of PQ,ε are generated since for all ε1, ε2 ∈ Rk

+ with ε1 ≤p ε2 it
follows that PQ,ε1 ⊂ PQ,ε2 . Condition (4) has to be added for theoretical purposes
since the function f : R+

0 → R+
0 ,

f(∆) = dist(PQ,ε+1∆, PQ,ε) = sup
p∈PQ,ε+1∆

inf
q∈PQ,ε

||p− q||, (9)

does not have to be continuous (e.g., if F (Q) is not convex).

4.3 Numerical results

Employing the ArchiveUpdatePQ,ε has the advantage of preserving a larger spec-
trum of alternatives for a nondominated candidate solution. It can be observed
from Figure 2 that the solutions obtained by the adaptive technique include all the
solutions provided by the ArchiveUpdateND. For the adaptive process we used
εmax = 5 and ε∗ = 2 (and thus ε = (2, 2)). For both algorithms a comparable num-
ber of evaluations has been performed, each of the algorithms being executed with
the same maximal number of generations, namely 10,000 generations. The size of
the population was set to 100 individuals.

Also, a comparative study between the non-adaptive version of the algorithm
and the adaptive technique has been entailed - see Table 2. The same configuration
of the parameters as before has been kept and the maximum allowed number of
generations was reduced to 1000, for simplifying the statistical process.
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Fig. 2. Approximations of PQ and PQ,ε for an instance with n = 30 and for ε =
(2, 2). Though ε is relatively small, the set of approximate solutions is much larger
than the set of nondominated points, offering thus more possibilities for the DM.

Table 2. Comparative results between the adaptive and non-adaptive version.

|PQ,ε| |PQ| C-metric
Nb. objects Instance Adaptiv Non-adaptiv Adaptiv Non-adaptiv Adaptiv Non-adaptiv

300 inst1 84.7 65.4 25.5 20 0.44 0.52

300 inst2 79.4 75.4 21.6 22.4 0.44 0.48

300 inst3 61.7 61 19.9 18.5 0.29 0.55

400 inst1 70.2 65.6 23 21 0.33 0.45

400 inst2 76.4 67.2 24.9 21.2 0.46 0.33

400 inst3 59.1 56.2 19.5 19.1 0.44 0.51

500 inst1 62.8 57.5 22.3 21.6 0.35 0.5

500 inst2 51.2 54.4 18.4 18.3 0.4 0.47

500 inst3 54.5 52.5 18.9 19.3 0.46 0.4

5 Interactive Selection Method

Having computed an approximation of PQ,ε (denote by ˜PQ,ε), the question naturally
arises how to select a suitable point out of this (large) set according to the given
application. The scope of this section is to propose such a selection mechanism.

The selection mechanism is intended as the second step of the exploration pro-
cess. The target users are developers who want to focus on specific interest regions in
order to gather knowledge about the topology of the landscape described by subsets
of PQ,ε and F (PQ,ε) sets. The selection mechanism starts in the image space due
to its low dimensionality. The main steps of the Interactive Selection Method are
exposed in the following. ˜PQ, ε - the given approximation of the set which has to be
explored - is computed using the Algorithm 2.
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Algorithm 3 Interactive component
1: F := nondominated solutions of ˜PQ, ε
2: while user ¬ satisfied do
3: R = User Input Interest Region(F)
4: ObjectiveSpaceDisplay (PQ,ε(R), PFQ,ε)
5: DecisionalSpaceDisplay (PQ,ε(R))
6: end while

The user visualizes a filtered front - further denoted as F - composed only of
the Pareto non-dominated solutions from the PQ,ε. Further he specifies a region by
employing graphical tools and/or by specifying a tolerance value for ε. The solutions
from PQ,ε contained in the specified interest region, R - further denoted as PQ,ε(R)
- are graphically depicted in both the objective and the decisional space, see Fig. 3.
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Fig. 3. Interactive Selection: ObjectiveSpaceDisplay (left), DecisionSpaceDisplay
(right) for the problem depicted in Section 3. Decision space (right): representation
of the selected interest region, having first axis - dH(Pareto point, current point) ,
the second axis - average (dH(neighborhood)).

6 Conclusions

In this paper we have addressed the computation of ε-efficient solutions for {0,1}-
knapsack problems by means of an ε-adaptive process and have shown the conver-
gence in the limit of the technique towards the PQ,ε set. The success of the technique
relies on the cooperation between the archiver and the adaptive choice of the values
of ε, this allowing a better spreading of the final archive.

For future work the design of a specific comparison metric should be addressed
in order to speed up the adaptive process. Another topic of interest consists in
the design of benchmarks for which the ε-efficient set is difficult to reach, useful
in stressing adaptive methods and archiving techniques which are ε-approximate
oriented.
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