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Abstract. Particle Swarm Optimization (PSO) is a bio-inspired meta-
heuristic that has been successfully adopted for single- and multi-objective
optimization. Several studies show that the way in which particles are
connected with each other (the swarm topology) influences PSO’s be-
havior. A few of these studies have focused on analyzing the influence of
swarm topologies on the performance of Multi-objective Particle Swarm
Optimizers (MOPSOs) using problems with two or three objectives.
However, to the authors’ best knowledge such studies have not been done
so far for many-objective optimization problems. This paper provides an
anlysis of the influence of the ring, star, lattice, wheel, and tree topolo-
gies on the performance of SMPSO (a well-known Pareto-based MOPSO)
using many-objective problems. Based on these results, we also propose
two MOPSOs that use a combination of topologies: SMPSO-SW and
SMPSO-WS. Our experimental results show that SMPSO-SW is able to
outperform SMPSO in most of the test problems adopted.

Keywords: Swarm topology · Particle Swarm Optimization · Multi-
objective Particle Swarm Optimization · Multi-objective optimization ·
Many-objective optimization

1 Introduction

Particle Swarm Optimization (PSO) is a metaheuristic that simulates the move-
ments of a flock of birds or a school of fish seeking food [8]. PSO adopts a swarm
of particles that communicate with each other intending to find the optimal so-
lution. It has been experimentally shown that the communication networks con-
necting the particles (the swarm topology) influence PSO’s performance [7,11].
Therefore, selecting the right swarm topology is crucial for obtaining good solu-
tions.

There are numerous extensions of PSO for solving multi-objective optimiza-
tion problems (see for example [4,18,9,5,13]). However, there are few studies on
the influence of swarm topologies on the performance of Multi-Objective Parti-
cle Swarm Optimizers (MOPSOs) and such studies only analyze problems with
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three or fewer objectives [17,14,15]. Consequently, the influence of the swarm
topology in the solution of many-objective problems remains as an unexplored
topic.

In this paper, we analyze the influence of the ring, star, lattice, wheel, and tree
topologies on the performance of the Speed-constrained Multiobjective Particle
Swarm Optimizer (SMPSO) [12] using many-objective problems. In particular,
we adopt the DTLZ1, DTLZ2, DTLZ3, DTLZ4, and DTLZ7 problems from
the Deb-Thiele-Laumanns-Zitzler (DTLZ) [3] test suite with 3, 5, 8, and 10
objectives.1 As will be seen later on, the results obtained show that the wheel and
star topologies provide the best performance concerning the hypervolume and s-
energy indicators. Based on these results, we propose here two new MOPSOs that
use a combination of these two topologies: the SMPSO-SW and the SMPSO-WS.
Our preliminary experimental results show that SMPSO-SW is very competitive
with respect to the original SMPSO.

The remainder of this paper is organized in the following way. In Section 2,
we provide a brief explanation of background concepts. Then, in Section 3, we
explain what a swarm topology is, and we give some examples. After that, in
Section 4, we discuss the functionality of SMPSO as well as the way in which we
modified it for handling different swarm topologies. In Section 5, we present the
results of our initial experiments. Based on these results, we propose two new
MOPSOs described in Section 6. Finally, in Section 7, we provide our conclusions
and some possible paths for future work.

2 Background

2.1 Multi-objective Optimization

In multi-objective optimization, the aim is to solve problems of the type2:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:

gi(x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]
T

is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ...,m,
j = 1, ..., p are the constraint functions of the problem.

1 Although many-objective problems are those having more than 3 objectives, our ex-
periments include test problems with 3 objectives to allow a more clear visualization
of the effect of dimensionality increase in objective function space.

2 Without loss of generality, we will assume only minimization problems.
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A few additional definitions are required to introduce the notion of optimal-
ity used in multi-objective optimization:

Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is non-
dominated with respect to X , if there does not exist another x′ ∈ X such that
f(x′) ≺ f(x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

Therefore, our aim is to obtain the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3).

In this paper, we address problems with more than three objectives (the
so-called many-objective optimization problems).

2.2 Particle Swarm Optimization

PSO is a bio-inspired metaheuristic proposed by James Kennedy and Russel
Eberhart in 1995 [8]. PSO operates with a swarm that is a set composed of po-
tential solutions called particles. Each particle moves towards promising regions
influenced by its previous best position and the best position found so far by the
particles in the neighborhood.

Let xi(t) be the position of a particle in generation t. Then, PSO updates its
position using the following expression:

xi(t+ 1) = xi(t) + vi(t+ 1). (4)

vi(t+ 1) is known as the velocity vector and is defined by:

vi(t+ 1) = wvi(t) + C1r1(xpi
− xi(t)) + C2r2(xli − xi(t)) (5)

where r1, r2 ∈ U(0, 1); C1 and C2 are positive constants called cognitive and
social factors, respectively; and w is a positive parameter called inertia weight.
The position xpi is the best solution found by the particle, and xli is the best
solution found by the particle’s neighbors (known as leader). Each particle’s
neighborhood is determined by the swarm topology, which defines the connec-
tions of influence among particles.
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3 Swarm Topologies

A swarm topology is a social network represented by a graph where each vertex
is a particle, and there is an edge between two particles if they influence each
other [11]. A topology can change along with the generations (dynamic topology)
or remain static during the execution (static topology). Its formal definition is
the following [10]:

Definition 1. A swarm topology at generation i is a graph Ti = (Pi, Ei)
where the vertex set Pi = {p0, p1, ..., pn−1} is a set of particles.

Many swarm topologies have been proposed over the years, each of which
having different characteristics. For this study, we selected five static topologies
which are representative of the state-of-the-art in the area [7,11]:

– Lattice. The graph of this topology represents a two-dimensional lattice.
Each particle influences the neighbors above, below, and two on each side.
See Fig. 1a.

– Star (gbest). Each particle in this topology influences the remaining particles
in the swarm. See Fig. 1b.

– Tree. The particles in this topology are arranged hierarchically, resembling
a tree. Each particle influences its father and its children, and viceversa. See
Fig. 1c.

– Wheel. In this topology, a central particle influences the others in the
swarm, and they influence it as well. See Fig. 1d.

– Ring (lbest). In this topology, each particle influences its two nearest neigh-
bors. See Fig. 1e.

4 Multi-objective Particle Swarm Optimizer with a
Topology Handling Scheme

A single-objective PSO updates the position xpi
with the position xi(t) at each

generation if f(xi(t)) is better than f(xpi
). Then, PSO examines the personal

best positions in the particle’s neighborhood and selects its leader from it. In
contrast, in multi-objective optimization, we often find incomparable solutions.
Therefore, most of the MOPSOs store the best positions found so far in a separate
set (called external archive) and take the leaders from it without specifying the
particle’s neighborhood.

We selected for the experimental analysis a standard Pareto-based MOPSO
that works in this way, the SMPSO [12]. Its core idea is to control the particles’
velocity employing a constriction factor χ that prevents high-velocity values and
guarantees convergence under certain conditions [1]. This coefficient is defined
by:

χ = 2/(2− ϕ−
√
ϕ2 − 4ϕ) (6)
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(a) Lattice (b) Star (c) Tree

(d) Wheel (e) Ring

Fig. 1. Swarm topologies of state of the art.

where

ϕ =

{
C1 + C2 if C1 + C2 > 4

1 if C1 + C2 ≤ 4
(7)

Moreover, SMPSO implements a mechanism to constrain the accumulated
velocity of the particle i in the dimension j using the following expression:

vi,j(t) =


δj if vi,j(t) > δj

−δj if vi,j(t) ≤ −δj
vi,j(t) otherwise

(8)

where δj = (upper limitj − lower limitj)/2, and the jth decision variable is in
the range [lower limitj , upper limitj ].

Therefore, the particles’ velocity is computed using equation (5) and then
the result is multiplied by the constriction factor defined in equation (6), and it
is bounded using the rule defined in equation (8).

In general, SMPSO works in the following way. First, the swarm is initialized
with random values, and the external archive is created with the non-dominated
solutions of the swarm. Then, until a maximum number of generations is reached,
each particle leader is selected by randomly taking two solutions from the exter-
nal archive and selecting the one with the largest crowding distance, which mea-
sures how isolated is a solution from the others. Next, with the selected leaders,
the velocity and position of the particles are computed. Moreover, polynomial-
based mutation [2] is applied to the new particles using a probability pm, and
the resulting particles are evaluated. Finally, the personal best positions of the
particles and the external archive are updated. If the external archive exceeds its
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maximum number of elements, the element with the lowest crowding distance is
removed.

In SMPSO (and in most of the MOPSOs), the particles stored in the external
archive represent the best positions that have been found and, therefore, the
corresponding leaders are selected from among them. This sort of leader selection
scheme does not allow the use of different topologies, because the interaction with
the external archive does not consider the particle’s neighborhood. Therefore,
it is necessary to use a different leader selection scheme in order to consider
different swarm topologies in SMPSO.

In [15], we proposed two topology handling schemes that differ in the place
from which the leaders are taken. Scheme 1 examines the personal best position
of the particles and selects the leaders from them. And scheme 2 assigns the
elements from the external archive to each of the particles. Then, the leader is
selected by examining the external archive elements assigned to the particle’s
neighbors.

Here, we adopt scheme 2 in SMPSO (the resulting version is called SMPSO-
E2) because this scheme had the best performance in the study reported in [15].
The difference between SMPSO and SMPSO-E2 is that at each generation,
SMPSO-E2 assigns the external archive elements to each particle. The archive
elements are assigned again if the archive size is smaller than the swarm size.
Then, each particle’s leader is selected by randomly taking two of its neighbors
and picking the one that has the assigned element with the largest crowding
distance. After that, the following steps are the same as in the original SMPSO.

5 Experimental Analysis

To carry out our experimental analysis, we compared SMPSO and SMPSO-
E2 using the tree, lattice, star, ring, and wheel topologies. For that sake, we
performed 30 independent runs of each MOP using the parameters shown in
Table 1.

Table 1. Parameters of the MOPSOs adopted in this study

Parameter Value

Archive size 300
Swarm size 300

Mutation probability (pm) 1/n
Inertia weight (w) 0.1

Max number of generations 2500

We adopted the DTLZ1-DTLZ4 and DTLZ7 problems from the scalable Deb-
Thiele-Laumanns-Zitzler (DTLZ) test suite [3]. We tested these problems with
3, 5, 8, and 10 objectives where the decision variables (n) are defined by n =
m + k − 1 and m is the number of objectives. We used a value of k = 5 for
DTLZ1, k = 10 for DTLZ2-4, and k = 20 for DTLZ7.
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For assessing performance, we used the hypervolume [19] and s-energy [6]
indicators. The hypervolume measures the size of the objective space covered
by the approximated set, given a reference point. The larger the space covered,
the better the approximation. Therefore, the aim is to maximize the hypervol-
ume indicator. We used as reference points the worst objective function values
obtained in the approximated sets for each problem, multiplied by 1.1. On the
other hand, the s-energy indicator measures the uniform distribution of a set in
a d-dimensional manifold. A lower s-energy value implies an approximation set
with higher diversity. Moreover, to evaluate the results’ statistical confidence,
we applied the Wilcoxon signed-rank test with a significance level of 5%.

Tables 2 and 3 present the mean and the standard deviation of the hyper-
volume and s-energy indicators. The best values have a gray background, and
the symbol “*” means that the difference of the corresponding algorithm with
respect to the others is statistically significant.

Table 2. Mean and standard deviation of hypervolume indicator for SMPSO and
SMPSO-E2. The best values have a gray background, and the symbol “*” indicates
that the result is statistically significant.

m SMPSO SMPSO-E2
Lattice Star Tree Wheel Ring

DTLZ1

3 1.3992e-1 (2.3e-4) 1.4008e-1 (2.5e-4) 1.3999e-1 (2.3e-4) 1.4007e-1 (2.8e-4) *1.4077e-1 (4.7e-4) 1.4017e-1 (2.9e-4)
5 7.349e-2 (6.1e-4) 7.4196e-2 (5.1e-4) 7.3538e-2 (4.5e-4) 7.4221e-2 (4.9e-4) *7.5724e-2 (4.2e-4) 7.4519e-2 (6.1e-4)
8 2.4274e+12 (7.0e+8) 2.4276e+12 (6.5e+5) 2.4276e+12 (1.0e+7) 2.4276e+12 (1.5e+6) *2.4276e+12 (1.8e+5) 2.4275e+12 (3.1e+7)
10 3.6423e+16 (0.e+0) 3.6423e+16 (1.3e+11) 3.6423e+16 (3.6e+9) 3.6423e+16 (1.3e+11) 3.6423e+16 (1.1e+10) 3.6409e+16 (7.5e+13)

DTLZ2

3 9.8288e-1 (2.4e-3) 9.8372e-1 (2.4e-3) 9.8330e-1 (3.e-3) 9.8388e-1 (2.e-3) *9.8831e-1 (2.9e-3) 9.8334e-1 (2.3e-3)
5 8.3629e+1 (8.0e-2) 8.3699e+1 (7.8e-2) 8.3619e+1 (8.7e-2) 8.3701e+1 (1.e-1) *8.4043e+1 (3.4e-2) 8.3682e+1 (6.6e-2)
8 7.2833e+3 (8.6e+0) 7.2976e+3 (5.4e+0) 7.2836e+3 (1.1e+1) 7.2930e+3 (6.9e+0) *7.3311e+3 (1.3e+0) 7.2945e+3 (6.5e+0)
10 1.7587e+5 (4.3e+2) 1.7623e+5 (2.0e+2) 1.7585e+5 (4.4e+2) 1.7618e+5 (2.1e+2) *1.7688e+5 (5.6e+1) 1.7632e+5 (1.5e+2)

DTLZ3

3 1.0220e+0 (2.e-3) 1.0230e+0 (2.6e-3) 1.0219e+0 (2.2e-3) 1.0230e+0 (3.1e-3) *1.0287e+0 (3.3e-3) 1.0236e+0 (2.5e-3)
5 1.5944e+10 (0.e+0) 1.5944e+10 (0.e+0) 1.5944e+10 (0.e+0) 1.5944e+10 (0.e+0) 1.5944e+10 (0.e+0) 1.5944e+10 (0.e+0)
8 2.9538e+24 (7.e+17) 2.9538e+24 (8.5e+17) 2.9538e+24 (6.6e+17) 2.9538e+24 (8.1e+17) *2.9538e+24 (0.e+0) 2.9538e+24 (9.7e+17)
10 9.5943e+30 (7.7e+23) 9.5943e+30 (1.e+24) 9.5943e+30 (8.5e+23) 9.5943e+30 (1.1e+24) *9.5943e+30 (2.3e+15) 9.5943e+30 (1.4e+24)

DTLZ4

3 1.1089e+0 (1.9e-3) 1.1082e+0 (2.1e-3) 1.1092e+0 (2.2e-3) 1.1082e+0 (2.2e-3) *1.1159e+0 (2.9e-3) 1.108e+0 (2.5e-3)
5 7.7119e+1 (2.3e-2) 7.7087e+1 (1.9e-2) 7.7113e+1 (2.1e-2) 7.7098e+1 (2.2e-2) *7.7139e+1 (2.7e-2) 7.7083e+1 (2.2e-2)
8 1.4538e+4 (7.2e-1) 1.4537e+4 (1.5e+0) 1.4538e+4 (6.9e-1) 1.4537e+4 (1.2e+0) 1.4537e+4 (2.3e+0) 1.4536e+4 (1.5e+0)
10 3.4448e+5 (1.3e+1) 3.4438e+5 (7.7e+1) 3.4448e+5 (1.3e+1) 3.444e+5 (5.6e+1) 3.4415e+5 (5.4e+2) 3.443e+5 (1.7e+2)

DTLZ7

3 2.595e+0 (9.4e-3) 2.5939e+0 (1.1e-2) 2.5937e+0 (5.6e-3) 2.593e+0 (1.2e-2) 2.5981e+0 (1.3e-2) 2.5952e+0 (7.9e-3)
5 4.0609e+0 (4.5e-2) 4.0549e+0 (5.7e-2) 4.0451e+0 (8.6e-2) 4.0871e+0 (5.9e-2) *4.2474e+0 (5.8e-2) 4.0565e+0 (6.6e-2)
8 6.3453e+0 (1.4e-1) 6.4385e+0 (1.2e-1) 6.2954e+0 (1.7e-1) 6.4785e+0 (1.1e-1) *7.0286e+0 (8.2e-2) 6.4752e+0 (1.1e-1)
10 3.7925e+1 (3.8e+0) 3.8882e+1 (7.9e-1) 3.8786e+1 (2.2e-1) 3.9125e+1 (1.8e-1) *3.9788e+1 (2.7e-1) 3.9112e+1 (1.9e-1)

Table 2 shows that, on average, the wheel topology has the best performance
for the hypervolume indicator in all of the objectives. In comparison, the star
topology performs worst. Regarding the other topologies, the tree topology per-
forms better than the lattice, and the lattice topology performs better than
the ring. We validated in [16] the topologies’ obtained arrangement using the
Wilcoxon signed-rank test with a significance level of 5%. Therefore, it seems
that the lower the degree of connectivity the topology has, the better the hy-
pervolume value. Compared with SMPSO, the SMPSO-E2 with wheel topology
performed better in almost all problems.

Conversely, Table 3 shows that the star topology had the best performance
on average in all of the problems regarding the s-energy indicator; and the wheel
topology had the worst performance. If we compare the topologies with the
original SMPSO, the SMPSO-E2 with the star topology performed better than
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Table 3. Mean and standard deviation of s-energy indicator for SMPSO and SMPSO-
E2. The best values have a gray background, and the symbol “*” indicates that the
result is statistically significant.

m SMPSO SMPSO-E2
Lattice Star Tree Wheel Ring

DTLZ1

3 6.1494e+8 (2.7e+8) 7.1795e+8 (2.3e+8) *6.0124e+8 (5.4e+8) 6.2656e+8 (1.4e+8) 1.2194e+9 (3.7e+8) 6.3859e+8 (1.3e+8)
5 3.7068e+10 (2.3e+10) 5.4841e+10 (2.3e+10) 2.8204e+10 (1.8e+10) 6.4885e+10 (2.8e+10) 2.5939e+11 (8.2e+10) 8.9301e+10 (3.1e+10)
8 2.1012e+11 (6.5e+11) 2.3178e+11 (2.3e+11) 1.3365e+11 (3.1e+11) 2.1332e+11 (2.5e+11) 1.4822e+12 (9.5e+11) 3.1467e+11 (3.6e+11)
10 7.3677e+10 (2.4e+11) 1.8238e+11 (2.8e+11) 9.4263e+11 (3.2e+12) 2.8388e+11 (5.9e+11) 3.4625e+12 (5.6e+12) 3.0778e+11 (5.7e+11)

DTLZ2

3 7.6337e+9 (8.5e+9) 2.148e+10 (5.e+9) 9.1892e+9 (9.1e+9) 2.0046e+10 (6.3e+8) 2.1769e+10 (7.3e+9) 2.0061e+10 (2.5e+7)
5 3.6556e+10 (2.3e+10) 9.1259e+10 (4.3e+10) 2.9936e+10 (2.1e+10) 1.2281e+11 (3.2e+10) 1.3777e+11 (1.3e+10) 1.4109e+11 (2.3e+10)
8 9.6620e+10 (4.8e+10) 1.6801e+11 (6.6e+10) 7.7822e+10 (3.3e+10) 2.1695e+11 (9.2e+10) 6.0208e+11 (8.6e+10) 3.2113e+11 (1.1e+11)
10 1.7591e+11 (5.2e+10) 2.8241e+11 (8.3e+10) 1.9251e+11 (5.7e+10) 2.9815e+11 (8.1e+10) 9.5665e+11 (1.4e+11) 4.5666e+11 (1.6e+11)

DTLZ3

3 8.3273e+9 (8.3e+9) 1.8324e+10 (4.8e+9) 8.6146e+9 (8.6e+9) 1.9597e+10 (2.7e+9) 2.1457e+10 (7.2e+9) 2.0907e+10 (3.7e+9)
5 7.7074e+9 (1.4e+10) 3.1648e+10 (2.8e+10) 2.8588e+9 (6.1e+9) 5.1345e+10 (3.7e+10) 1.4193e+11 (2.2e+10) 9.0929e+10 (5.e+10)
8 8.7195e+9 (1.7e+10) 1.0675e+10 (1.2e+10) 5.3661e+9 (1.0e+10) 2.2667e+10 (3.8e+10) 6.3975e+10 (1.6e+11) 2.4668e+10 (3.3e+10)
10 1.6612e+10 (2.2e+10) 2.6718e+10 (3.3e+10) 1.0395e+10 (1.6e+10) 2.2187e+10 (2.4e+10) 1.5392e+10 (1.5e+10) 2.7334e+10 (4.1e+10)

DTLZ4

3 1.2133e+10 (1.3e+10) 2.0457e+10 (1.9e+9) 1.519e+10 (8.3e+9) 2.0117e+10 (2.e+8) 2.0134e+10 (2.4e+8) 2.01e+10 (1.6e+8)
5 8.4434e+10 (3.5e+10) 1.6135e+11 (3.1e+10) 8.3891e+10 (3.e+10) 1.5889e+11 (2.7e+10) 1.6925e+11 (3.1e+10) 1.7089e+11 (2.6e+10)
8 2.8836e+11 (7.0e+10) 2.8382e+11 (7.2e+10) 2.6838e+11 (7.1e+10) 3.0473e+11 (8.e+10) 5.8014e+11 (3.6e+11) 3.6321e+11 (1.1e+11)
10 4.6999e+11 (8.2e+10) 4.4684e+11 (8.6e+10) 4.5576e+11 (1.1e+11) 4.4513e+11 (9.1e+10) 4.3781e+11 (1.8e+11) 4.9120e+11 (1.4e+11)

DTLZ7

3 4.3088e+7 (1.1e+7) 7.2996e+8 (3.6e+9) 4.9655e+7 (3.7e+7) 6.3745e+7 (7.4e+7) 1.3143e+9 (4.3e+9) 7.1740e+8 (3.6e+9)
5 7.8658e+8 (2.1e+9) 7.4775e+8 (1.2e+9) 1.9315e+9 (5.e+9) 4.8294e+9 (7.7e+9) 1.4197e+10 (1.2e+10) 3.5381e+9 (5.6e+9)
8 3.1266e+10 (2.6e+10) 7.0838e+10 (3.4e+10) 2.5010e+10 (2.3e+10) 9.037e+10 (5.2e+10) 4.0819e+11 (1.2e+11) 9.6846e+10 (4.6e+10)
10 5.7154e+10 (4.5e+10) 1.4790e+11 (7.0e+10) 5.9874e+10 (3.2e+10) 1.8519e+11 (8.9e+10) 1.1722e+12 (3.4e+11) 1.8915e+11 (7.5e+10)

the original SMPSO in more problems. However, the Wilcoxon test did not
show a statistical significance of the results and in [16] we could not define a
statistically confident arrangement between all the topologies.

In summary, we can see that the wheel topology had the best performance
regarding the hypervolume indicator and the star topology had the best per-
formance concerning the s-energy indicator. The results also show that there
could be a relationship between the degree of connectivity and the hypervolume
values.

6 Combining Topologies

The previous experiments showed that the wheel topology had the best perfor-
mance with respect to the hypervolume indicator. In contrast, the star topology
performed best with respect to the s-energy indicator. Therefore, it can be eas-
ily inferred that the wheel topology promotes the MOPSO’s convergence, and
that the star topology improves the solution’s distribution. Thus, if we use both
topologies, we could balance the exploration and exploitation of the SMPSO-E2.

In order to validate this hypothesis, we modified the SMPSO-E2 to use a
dynamic topology that adopts one topology the first half of the generations and
changes to another one for the second half of the generations. The version of
SMPSO-E2 that uses the wheel topology the first half of the genrations and the
star topology during the second half is called SMPSO-WS. Furthermore, the
SMPSO-E2 that uses star topology during the first half of the generations and
the wheel topology during the second half is called SMPSO-SW.

We performed 30 independent runs of SMPSO, SMPSO-WS, and SMPSO-
SW with the parameters and problems that we used in the previous experimental
study. For assessing performance, we used again the hypervolume (with the same
reference points) and s-energy indicators.
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Tables 4 and 5 show the mean and standard deviation of the hypervolume
and s-energy indicator. The “*” symbol means that the difference between the
corresponding algorithm and the others is statistically significant.

Table 4. Mean and standard deviation of hypervolume indicator for SMPSO, SMPSO-
WS, and SMPSO-SW. The best values have a gray background, and the symbol “*”
indicates that the result is statistically significant.

m SMPSO SMPSO-WS SMPSO-SW

DTLZ1

3 1.3992e-1 (2.3e-4) 1.4004e-1 (2.1e-4) *1.4056e-1 (4.6e-4)
5 7.349e-2 (6.1e-4) 7.3924e-2 (4.6e-4) *7.5737e-2 (2.5e-4)
8 2.4274e+12 (7.0e+8) 2.4276e+12 (5.6e+5) 2.4276e+12 (4.1e+6)
10 3.6423e+16 (0.e+0) 3.6423e+16 (0.e+0) 3.6423e+16 (1.8e+9)

DTLZ2

3 9.8288e-1 (2.4e-3) 9.8370e-1 (2.7e-3) *9.8981e-1 (2.7e-3)
5 8.3629e+1 (8.0e-2) 8.3745e+1 (8.1e-2) *8.4007e+1 (6.6e-2)
8 7.2833e+3 (8.6e+0) 7.3003e+3 (5.e+0) *7.3293e+3 (3.1e+0)
10 1.7587e+5 (4.3e+2) 1.7637e+5 (1.3e+2) *1.7681e+5 (7.7e+1)

DTLZ3

3 1.0220e+0 (2.e-3) 1.0228e+0 (2.0e-3) *1.0281e+0 (3.7e-3)
5 1.5944e+10 (0.e+0) 1.5944e+10 (0.e+0) 1.5944e+10 (0.e+0)
8 2.9538e+24 (7.e+17) 2.9538e+24 (3.4e+17) *2.9538e+24 (0.e+0)
10 9.5943e+30 (7.7e+23) 9.5943e+30 (4.9e+23) *9.5943e+30 (1.8e+23)

DTLZ4

3 1.1089e+0 (1.9e-3) 1.1089e+0 (2.1e-3) *1.1140e+0 (2.9e-3)
5 7.7119e+1 (2.3e-2) 7.7119e+1 (2.e-2) *7.7142e+1 (2.4e-2)
8 *1.4538e+4 (7.2e-1) 1.4538e+4 (7.2e-1) 1.4537e+4 (1.6e+0)
10 *3.4448e+5 (1.3e+1) 3.4445e+5 (2.9e+1) 3.4431e+5 (1.5e+2)

DTLZ7

3 2.595e+0 (9.4e-3) 2.5919e+0 (8.7e-3) 2.5958e+0 (1.1e-2)
5 4.0609e+0 (4.5e-2) 4.0212e+0 (6.1e-2) *4.2420e+0 (6.3e-2)
8 6.3453e+0 (1.4e-1) 6.3408e+0 (1.3e-1) *7.0338e+0 (1.1e-1)
10 3.7925e+1 (3.8e+0) 3.8854e+1 (2.6e-1) *3.9817e+1 (1.6e-1)

Regarding the hypervolume indicator, it is clear that SMPSO-SW performs
best in almost all of the test problems. We assume that this happened because
the algorithm examines new regions in the search space at the beginning of
the search with the star topology; consequently, the algorithm seems to be able
to find promising regions of the search space, which makes it a very successful
approach. Then, it exploits these promising regions using the wheel topology,
obtaining a refined solution. In contrast, the SMPSO-WS tries two exploit a
non-promising region using the wheel topology and then moves to many regions
using the star topology thus preventing the algorithm from converging.

In the case of the s-energy indicator, the SMPSO performs best in almost
all of the problems. Therefore, neither the SMPSO-WS nor SMPSO-SW had
enough impact on this indicator.
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Table 5. Mean and standard deviation of s-energy indicator for SMPSO, SMPSO-
WS and SMPSO-SW. The best values have a gray background, and the symbol “*”
indicates that the result is statistically significant.

m SMPSO SMPSO-WS SMPSO-SW

DTLZ1

3 6.1494e+8 (2.7e+8) 1.2030e+9 (3.6e+9) 1.1281e+9 (2.3e+8)
5 3.7068e+10 (2.3e+10) 3.3739e+10 (1.7e+10) 2.1303e+11 (8.6e+10)
8 *2.1012e+11 (6.5e+11) 2.4204e+11 (1.9e+11) 1.3907e+12 (6.6e+11)
10 *7.3677e+10 (2.4e+11) 3.3888e+11 (6.8e+11) 4.9779e+12 (4.7e+12)

DTLZ2

3 *7.6337e+9 (8.5e+9) 2.09e+10 (3.5e+9) 2.0074e+10 (4.7e+7)
5 *3.6556e+10 (2.3e+10) 1.3925e+11 (1.8e+10) 1.3772e+11 (1.8e+10)
8 *9.6620e+10 (4.8e+10) 4.5010e+11 (3.0e+10) 5.6628e+11 (8.1e+10)
10 *1.7591e+11 (5.2e+10) 7.123e+11 (9.0e+10) 8.4480e+11 (8.7e+10)

DTLZ3

3 *8.3273e+9 (8.3e+9) 1.9799e+10 (1.6e+9) 2.3675e+10 (1.1e+10)
5 *7.7074e+9 (1.4e+10) 6.7153e+10 (4.4e+10) 9.3200e+10 (4.6e+10)
8 8.7195e+9 (1.7e+10) 1.224e+10 (2.6e+10) 6.5998e+10 (2.7e+11)
10 1.6612e+10 (2.2e+10) 1.3346e+10 (2.4e+10) 1.4024e+10 (1.6e+10)

DTLZ4

3 *1.2133e+10 (1.3e+10) 2.0995e+10 (3.8e+9) 2.1590e+10 (7.2e+9)
5 *8.4434e+10 (3.5e+10) 1.2783e+11 (4.4e+10) 1.5963e+11 (3.1e+10)
8 2.8836e+11 (7.0e+10) 2.6689e+11 (5.9e+10) 4.7546e+11 (1.3e+11)
10 4.6999e+11 (8.2e+10) 4.6444e+11 (9.7e+10) 5.4920e+11 (2.7e+11)

DTLZ7

3 4.3088e+7 (1.1e+7) 4.8593e+7 (2.3e+7) 1.6039e+9 (4.3e+9)
5 7.8658e+8 (2.1e+9) 5.3764e+8 (7.4e+8) 1.1789e+10 (1.1e+10)
8 3.1266e+10 (2.6e+10) 3.0083e+10 (1.9e+10) 4.8259e+11 (1.6e+11)
10 5.7154e+10 (4.5e+10) 6.5817e+10 (3.7e+10) 1.1618e+12 (2.9e+11)

7 Conclusions and Future Work

In this work, we analyzed the influence of the star, ring, wheel, lattice, and tree
topologies on the performance of MOPSOs. The experimental results showed a
relationship between the connectivity degree of topologies and the hypervolume
values. If the connectivity degree decreases, the hypervolume value will increase.

The experimental results also showed that the wheel topology causes bet-
ter values of the hypervolume indicator. In contrast, the star topology produces
better values of the s-energy indicator. Hence, the wheel topology promotes the
MOPSO’s convergence, and the star topology improves the solution’s distribu-
tion.

Therefore, in order to balance the exploitation and exploration of SMPSO-E2,
we proposed two MOPSOs that use a combination of the wheel and star topolo-
gies: the SMPSO-WS and the SMPSO-SW. The SMPSO-SW outperformed the
original SMPSO in most of the test problems adopted regarding the hypervolume
indicator.

As part of our future work, we plan to test an adaptative topology that
changes its connectivity degree depending on the behavior of the MOPSO.
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15. Valencia-Rodŕıguez, D.C., Coello Coello, C.A.: A Study of Swarm Topologies and
Their Influence on the Performance of Multi-Objective Particle Swarm Optimizers.
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