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Abstract—The covariance matrix self-adaptation evolution
strategy with repelling subpopulations (RS-CMSA-ES) is one of
the most successful multimodal optimization methods currently
available. However, some of its components may become inef-
ficient in certain situations. This study introduces the second
variant of this method, called RS-CMSA-ESII. It improves the
adaptation schemes for the normalized taboo distances of the
archived solutions and the covariance matrix of the subpop-
ulation, the termination criteria for the subpopulations, and
the way in which the infeasible solutions are treated. It also
improves the time complexity of RS-CMSA-ES by updating the
initialization procedure of a subpopulation and developing a more
accurate metric for determining critical taboo regions. The effects
of these modifications are illustrated by designing controlled
numerical simulations. RS-CMSA-ESII is then compared with
the most successful and recent niching methods for multimodal
optimization on a widely adopted test suite. The results obtained
reveal the superiority of RS-CMSA-ESII over these methods,
including the winners of the competition on niching methods for
multimodal optimization in previous years. Besides, this study
extends RS-CMSA-ESII to dynamic multimodal optimization and
compares it with a few recently proposed methods on the modified
moving peak benchmark functions.

Index Terms—Continuous optimization, niching, evolutionary
algorithm, dynamic optimization,

I. INTRODUCTION

AN optimization problem has been traditionally perceived
as that of finding a single best solution (the global

optimum) given an objective function, decision parameters,
and possibly, problem constraints. There are real-world prob-
lems with features that are not easy to formulate, e.g. a
product’s aesthetics, or a company’s preferences towards spe-
cific suppliers. In these situations, the decision-maker may
be interested or even need a set of diverse optimal solutions
instead of one. The best solution to the actual problem may
then be selected from this diverse set of near-optimal solutions
considering hard-to-formulate aspects of the actual problem.
Additionally, knowing all near-optimal solutions of a problem
might be crucial in certain problems. For example, a design
engineer may need to know all the resonance frequencies of
a mechanical system [1].
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Finding multiple global optima, and in some cases, good
local optima, can be achieved by multimodal optimization
(MMO), which can be perceived as an extension of global
optimization. Methods tailored for MMO employ niching, a
diversity preservation strategy which makes it possible to con-
verge to distinct global optima. The field of MMO has attracted
a lot of interest in the recent decade. A growing number of
niching strategies have been proposed [1] and combined with
a variety of population-based optimization methods such as
differential evolution and genetic algorithms [2]. Furthermore,
a competition on niching methods for MMO has been regularly
held at some reputable international conferences such as the
IEEE Congress on Evolutionary Computation (CEC) and the
Genetic and Evolutionary Computation Conference (GECCO)
since 2013 [3].

Multimodal optimization also plays an important role in
dynamic optimization, a field of optimization in which the
problem landscape frequently changes over time [4], [5]. Quite
often, these changes are not substantial [6], and the problem
landscape after a change resembles the one before it [7].
An efficient dynamic optimization method should be able to
exploit past information to re-optimize the changed problem as
fast as possible. This can be achieved by analyzing the time-
history of the global minimum. However, since the values of
the optima change as well, a local optimum in the previous
time step may become the global one in the new time step [8].
Therefore, an efficient dynamic optimization method should
track the history of all good local optima even if only the best
solution is desired.

Many MMO methods can have a good performance on sim-
ple problems. MMO imposes all the challenges associated with
global optimization (e.g., presence of deceptive local optima,
absence of a global structure, ill-conditioned landscapes, high
dimensionality [9]). Besides, there are challenges peculiar to
MMO, such as the existence of global optima with irregular
shapes, sizes, and distribution. Many niching strategies and
MMO methods fail in addressing these challenges effectively.
More specifically, niching strategies that rely on a user-tuned
distance metric (the niche radius) are vulnerable to problems
in which global optima are irregularly distributed or have
attraction regions of different size and shape. Therefore, many
MMO methods show a significant performance drop when
facing moderately hard problems. In the following, some of
the most remarkable studies in the field of MMO are briefly
reviewed.
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A. Related Studies

Fitness sharing [10] and crowding [11] are the earliest
niching strategies for MMO. Fitness sharing reduces the
fitness of the solutions which are too close to each other.
In crowding, offspring compete with their nearest parents for
survival. Several varieties of these strategies have been later
introduced for genetic algorithms [12], [13]; however, they can
be integrated with other population-based methods after some
customization.

Many MMO methods restrict the competition or
information-sharing to close solutions, e.g., using a ring
topology in particle swarm optimization (PSO) [14]. Some
other methods, such as locally informed particle swarm
(LIPS) [15] and close neighbor mobility optimization
algorithm (CNMM) [16] determine neighbor particles based
on their Euclidean distance. A similar idea has been followed
with differential evolution by performing local mutation and
recombination [17], [18], [19], [20]. A different mutation
scheme was proposed in distributed individuals differential
evolution (DIDE) [21] according to which random solutions
are generated in the neighborhood of a solution for mutation.
Voronoi neighborhood based crowding DE (VNCDE) [22]
employs a more unconventional neighborhood criterion based
on the Voronoi diagram.

Some studies have defined an auxiliary objective as a
niching strategy. This strategy converts the MMO problem into
a multiobjective optimization problem, a technique which is
referred to as multi-objectivization [23]. For example, the bi-
objective multi-population genetic algorithm (BMPGA) [24],
defines minimization of the gradient vector norm as the second
objective. This method requires derivatives of the objective
function which are not available in black-box optimization
problems. Deb and Saha [25] followed a similar methodology
but provided a heuristic to avoid calculation of the gradient of
the objective function. A few other methods [26], [27] defined
an auxiliary objective to maximize the average distance of
solutions to each other. Although the auxiliary objective may
sufficiently encourage diversity, Yu et al. [28] defined two
auxiliary objectives for this purpose in their DE-based method.

The success of the covariance matrix adaptation evolution
strategy (CMA-ES) [29] in global optimization and its re-
markable capability in learning the shape of the basin has
resulted in several MMO methods using CMA-ES as the core
search algorithm. For example, covariance matrix adaptation
with adaptive niching (NCMA) [30] determines an elliptic
shape for the limits of a niche by using the Mahalanobis
distance metric given the covariance matrix of the population
distribution. It adapts the niche radius such that each niche has
ten members. The covariance matrix self-adaptation evolution
strategy with repelling subpopulation (RS-CMSA-ES) [31]
combines a strategy based on repelling subpopulations with
CMSA-ES [32], a simple but effective evolution strategy. This
method can learn both the shapes and the relative sizes of
global optima.

Clustering has emerged as a popular strategy for MMO,
considering the recent publications on this topic. Preuss [33]
combined CMA-ES with the nearest-better clustering (NBC),

a strategy to provide a rough estimate for the location of
the niches based on initial random sampling and clustering.
This strategy has also been used in combination with DE
[34]. An improved variant of NBC-CMA-ES, named NEA2
[35], won the competition on niching methods for MMO held
at the 2013 IEEE Congress on Evolutionary Computation
(CEC’2013). Automatic niching differential evolution (ANDE)
[36] combines affinity propagation clustering [37] for niching
with a contour prediction approach and a two-level local
search to estimate the approximate location of the optimum.
NCjDE-2LSar [38] combines jDE with density-based spatial
clustering of applications with noise (DBSCAN) [38], two
local search mechanisms and an external archive. A few
studies have employed other clustering methods, such as K-
means clustering [39], and clustering solutions based on the
similarity of their values [40].

The niching migratory multi-swarm optimizer (NMMSO)
[41] divides the population into multiple swarms which search
for niches in parallel. This method can migrate particles to
create new swarms or to combine two swarms if they are
exploring the same basin. NMMSO performs spectacularly
well on low-dimensional separable problems (e.g., the Vincent
function). It outperforms NEA2 on the CEC’2013 test suite for
MMO; however, it fails when the problem landscape is more
complicated, and the problem’s dimensionality is not low.

Maree et al. [42] developed a two-phase MMO method.
The first phase employs a sequential clustering heuristic based
on the hill-valley method developed by Ursem [43] to cluster
a population of randomly sampled solutions. In the second
phase, a core search algorithm initiates from each cluster. They
tested their hill-valley clustering method with different core
search methods based on evolution strategies. Later on, the
authors improved their method by introducing new stopping
criteria to terminate subpopulations that are deemed unlikely
to converge to a new global optimum [44]. This method,
called HillVallEA, has won the aforementioned competition
on niching methods for MMO in 2018 and 2019.

As discussed earlier, MMO plays an important role in dy-
namic optimization, and thus, there have been several studies
on dynamic MMO (see [45] for a review of these methods).
The moving peak benchmark (MPB) [46] has served as a
widely-accepted tunable benchmark generator for dynamic
MMO [45] owing to its flexibility and formulation simplic-
ity. More recently, dynamic MMO has been formulated for
tracking multiple global optima over time. Some practical
applications of this formulation include dynamic multipath
routing [47], dynamic tracking of multiple targets [47], and
solving a time-dependent system of equations [48]. Some
recent studies have concentrated on this type of dynamic MMO
[49], [48].

B. Contribution and Outline

This study introduces an improved RS-CMSA-ES, denoted
by RS-CMSA-ESII, which overcomes some major drawbacks
of the existing variant. The introduced improvements include
1) a novel scheme for learning the basin sizes of the global
minima, 2) a new adaptation scheme for the mutation profile
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when elite solutions are involved, 3) two additional termination
criteria that can predict whether a subpopulation can find a new
global minimum, 4) a new bound-handling mechanism, 5) a
time-efficient initialization method, and 6) a more accurate
estimate for determining critical taboo regions. As a result
of these improvements, RS-CMSA-ESII outperforms the best
existing MMO methods by a clear margin, at least when
evaluated on the widely accepted CEC’2013 test suite for
MMO [3]. Finally, this study extends RS-CMSA-ESII to
dynamic MMO problems by combining it with a prediction
method to exploit past information.

The rest of this article is organized as follows: Section II
provides a brief review of RS-CMSA-ES. The improved
method, RS-CMSA-ESII, is explained in Section III. Sec-
tion IV runs a controlled numerical simulation to clarify the
importance of the improvements made to the components
of RS-CMSA-ES. Section V compares RS-CMSA-ESII with
the best and most well-known niching methods for MMO.
Section VI extends RS-CMSA-ESII to dynamic MMO and
compares its performance with a few relevant and recently
developed methods for this purpose. Finally, conclusions are
drawn in Section VII.

II. A BRIEF REVIEW OF RS-CMSA-ES

In RS-CMSA-ES, Ns subpopulations search the space of
decision parameters in parallel. Ideally, each subpopulation
would converge to a distinct global minimum. Each sub-
population (Pi, i = 1, 2, . . . , Ns) has its center (xmeani ),
global step size (σmeani), covariance matrix (Ci), and best
solution (xbesti ). Diversity is preserved by enforcing weaker
subpopulations to stay away from taboo regions. These taboo
regions are ellipsoids whose centers are taboo points. For Pi,
these taboo points are the union of:
• previously identified global minima stored in an archive

(denoted by A) unless xbesti is better than the value of
that archived solution.

• centers of superior subpopulations, which are the sub-
populations whose best values are better than xbesti . In
this case, Pi is considered as an inferior subpopulation to
those subpopulations.

The mth solution in A (m = 1, 2, . . . , |A|) has three
properties: location (xAm ), value (fAm ), and a scalar parameter
called the normalized taboo distance (d̂Am ), which determines
the relative size of the corresponding taboo region. This
parameter is adapted during the optimization process. For
subpopulation Pi, the shapes of taboo regions are determined
by the covariance matrix of Pi. In contrast, the sizes of these
taboo regions are determined by both the mutation profile of
Pi and the normalized taboo distances of the taboo regions (for
archived solutions) and default normalized taboo distance d̂def
(for superior subpopulations); for example, Fig. 1 illustrates
the taboo regions for P2 in the presence of archived solutions
xA1 , xA2 with d̂A1 = 0.5 and d̂A2 = 1.5, the superior
subpopulation P1, and the inferior subpopulation P3. For this
example, d̂def = 0.75.

The evolution scheme for each subpopulation is based on
CMSA-ES [32], except that elitism has been incorporated to
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Fig. 1. Illustrations of taboo regions (ellipses with solid lines) for the
subpopulation P2 in the presence of a superior subpopulation (P1), an inferior
subpopulation (P3), and two archived solutions xA1

, xA2
with d̂A1

= 1.5

and d̂A2
= 0.5. d̂def = 0.75 and u21, u22 are the square root of the first

and the second eigenvalue of C2.

the selection scheme. At each iteration, the jth solution is
sampled using the sampling strategy of CMSA-ES:

σj ← σmean exp (τσN (0, 1)) , sj ← ND(0,1),

xj ← xmean + σj sj ,
(1)

in which τσ is the learning rate for the global step size and
ND(0,1) samples a vector of D random numbers from the
standard normal distribution.
xj should be outside all taboo regions defined for Pi to be a

taboo-acceptable solution; otherwise, it is rejected, and a new
xj is sampled. If multiple successive samples are rejected, the
taboo regions temporarily and slightly shrink. Since checking
against all taboo regions may require a lot of computations,
xj is checked against critical taboo points only to improve the
time-complexity of the sampling process. Critical taboo points
are a subset of taboo points whose taboo regions may reject
at least 1% of the sampled solution (Ptrej≥0.01). Calculation
of Ptrej is not simple, and RS-CMSA-ES employs a simple
model to provide an upper estimate for Ptrej of each taboo
region [31].

After sampling and evaluating λ taboo-acceptable solutions,
the best Nelt solutions from the previous iteration are ap-
pended to the subpopulation. These solutions are then sorted
according to their values, and the µ-best solutions are selected
to update Pi:

C←
(
1− 1

τc

)
C+

1

τc

µ∑
j=1

wj
(
sjs

T
j

)
, (2)
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in which τc is the decay time constant [32], and wj’s are
logarithmically decreasing weights as used for CMA-ES [29]:

wj =
ln(µ+ 1)− ln(j)∑µ

k=1 (ln(µ+ 1)− ln(k))
, j = 1, 2, . . . , µ. (3)

xmean and σmean are updated as follows [39]:

xmean ←
µ∑
j=1

wj xj , σmean ← σmean

 ∏µ
j=1 σ

wj
j∏λ+Nelt

j=1 σ

(
1

λ+Nelt

)
j


(4)

When all subpopulations have been terminated because of
convergence, stagnation, or divergence, their best solutions
(xbesti ’s) are analyzed. The best solutions that do not represent
a global minimum, when compared with the best archived
value (fmin

A ), are discarded. The remaining ones are checked
against the archived solutions using the hill-valley strategy [43]
to reveal which ones represent new global minima. The hill-
valley heuristic is a simple yet efficient technique to detect
whether two solutions (say x1 and x2) share the same basin.
It evaluates a third solution (x3) between these two solutions.
If x3 is worse than both x1 and x2, then it is concluded that
x1 and x2 belong to different basins. It is worth noting that
the hill-valley heuristic is not always accurate and may result
in a false negative or a true positive outcome.

The newly detected global minima are added to A. Then, the
normalized taboo distances of the archive solutions are updated
based on the number of subpopulations that have converged
to them. Given the updated A, a new restart with an updated
population size is performed, and this process continues until
the evaluation budget is exhausted. The flowchart of RS-
CMSA-ES is provided Fig. 2.

RS-CMSA-ES emerged as the most successful method on
the CEC’2013 test suite for multimodal optimization in 2016.
The method, however, suffers from some shortcomings:

• The adaptation of normalized taboo distances stalls if the
subpopulations do not converge to global minima.

• The adaptation of the covariance matrix involving elite
solutions favors search directions that have been success-
ful in the past. However, these directions may not be the
best ones after some iterations since the center of each
subpopulation changes over time.

• The subpopulations that converge to undesirable local
minima or already identified global minima waste a lot
of the evaluation budget.

• The estimate for the criticality of a taboo region highly
overestimates the actual value which may result in un-
necessarily high time-complexity.

• The treatment for bound-violating solutions is primitive:
it always prefers feasible solutions to infeasible ones,
making it difficult to find near-the-bound global minima
(if any).

• The subpopulation initialization process is unnecessarily
time consuming.

RS-CMSA-ESII aims to address these drawbacks of RS-
CMSA-ES.
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III. RS-CMSA-II

The general structure of RC-CMSA-ESII is similar to that
of RS-CMSA-ES. However, the new variant enjoys several
improvements in its components. These improvements are
discussed in this section. Following the findings in [50], the
number of subpopulations in RS-CMSA-ESII is one (Ns = 1).
This means that the whole population consists of one sub-
population, which is denoted by P. This setting simplifies the
search operators and improves the exploitation of information.
Besides, it means the taboo regions are defined only by the
archived solutions.

A. Update of the Normalized Taboo Distances

When updating d̂Am ’s, RS-CMSA ignores the subpopula-
tions that failed in converging to a global minimum (new or
already identified). If this is the case with most subpopulations,
it slows down the adaptation of d̂Am ’s. The new updating
scheme has addressed this issue. Furthermore, it follows a
completely distinct idea. Based on the analysis of xbest using
the hill-valley strategy [43], three cases may happen:
• Case I: P has converged to a new global minimum.
• Case II: P has converged to the archived solution xAm .
• Case III: P has not converged or has converged to an

undesirable minimum.
For each case, the proper action is performed. Case I is

the most desirable case; therefore, RS-CMSA-ESII does not
change the normalized taboo distances. It simply appends
xbest to A with the normalized taboo distance of d̂def .

Case II indicates that d̂Am was not large enough to keep
P away from xAm . Thus, RS-CMSA-ESII increases d̂Am
and slightly reduces the normalized taboo distances of other
archived solutions.

d̂Am ←


d̂Amexp

(
τd̂
)

if m = m

d̂Amexp

(
−
τd̂ (1−αnew)

|A| − 1

)
if m 6= m and |A|>1

m = 1, 2, . . . , |A| .
(5)

In this equation, 0 ≤ τd̂ is the learning rate for the adap-
tation of the normalized taboo distances, and 0 ≤ αnew ≤ 1
determines the expected likelihood that xbest is a new global
minimum if it is a global one. A smaller αnew means a greater
reduction in d̂Am6=m . This reduction is important since the
normalized taboo distances of some archived solutions might
be unnecessarily large. The default values of αnew = 0.5 and
τd̂ = 1/

√
D are recommended following the settings for RS-

CMSA-ES [31]. This setting means that if xbest is a global
minimum, it should be a new one 50% of the times. If this ratio
is less than 50%, the geometric mean of d̂Am ’s will increase
to further push future populations away from already detected
global minima.

Case III implies that the normalized taboo distances of
all archived solutions might have been unnecessarily large.
Therefore, RS-CMSA-ESII slightly reduces d̂Am ’s:

d̂Am ← d̂Amexp

(
−
τd̂ αglobal

|A|

)
,m = 1, 2, . . . , |A| . (6)
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Fig. 3. Update of the suggested directions (sj ’s in (7)) for adaptation of the
covariance matrix.

In this equation, 0 < αglobal controls the reduction amount.
A greater αglobal results in a higher chance of converging to
a global minimum; however, it is more likely that this global
minimum is an already identified one. Based on some prelimi-
nary numerical simulations, the default value of αglobal = 0.5
is recommended.

B. Elitism and Adaptation of the Covariance Matrix

Elitism is not a part of CMSA-ES [32]; however, it is
beneficial for MMO. The elite selection of RS-CMSA-ES is
particularly useful in low dimensional problems. RS-CMSA-
ESII follows the same formulation for updating xmean and
σmean when performing elite selection; however, a new strat-
egy to update C is proposed in this study because of the
highlighted drawbacks of the corresponding scheme in RS-
CMSA-ES (see Section II). The adaptation mechanism in
RS-CMSA-ESII, unlike the corresponding one in RS-CMSA-
ES, takes the iterative changes in the population center into
account. After the calculation of the new xmean, this strategy
first updates the vector sj of the survived elite solutions from
previous iterations:

sj ←
xj − xmean

σj
, j = 1 + λ, 2 + λ, . . . , Nelt + λ. (7)

This update encourages searching along the line connecting
xj to the new xmean. Then, this vector is used to update the
covariance matrix according to (2).

An exemplary case is depicted in Fig. 3. The subpopulation
with its center at xkmean has generated seven sample offspring
(squares) at iteration #k, three of which are selected for
recombination (solid squares) and update of the subpopulation
center (xk+1

mean). Let us assume x4 is an elite solution. In RS-
CMSA-ES, s4 is (x4 − xkmean) (red dashed vector), whereas
in RS-CMSA-ESII, it is x4 − xk+1

mean (solid purple vector).

C. New Termination Criteria

In RS-CMSA-ES, a subpopulation is considered as con-
verged if the change in the value of the best non-elite solution
in the last tolHistSize = 10+ b30D/λc iterations is less than
tolHistFun , the value of which depends on the target tolerance
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of the objective function (εf ). RS-CMSA-ESII employs two
additional termination criteria that identify and terminate a
subpopulation which is unlikely to converge to a new global
minimum in the future. If effectively formulated, they can
substantially improve the efficiency of the search. These two
termination criteria follow the same goals as the additional
stopping criteria introduced by Maree et al. [44], but they
use different formulations. The first stopping criterion, the
merge operator, aims to detect convergence to a solution in
A. The second stopping criterion predicts if the population
may converge to a global minimum at all.

1) Merge Operator: Although archived solutions repel P,
the normalized taboo distance of an archived solution might be
small in comparison with the attraction region of that global
minimum. In such a case, P may converge to that minimum;
however, the convergence rate would be low because the
taboo region that circumscribes the global minimum repels
P. Convergence to an already identified global minimum may
be useful to update (in this case, to increase) the normalized
taboo distance of that archived solution for the future restarts.
However, since the convergence can be very slow, it will
deplete the evaluation budget. To overcome this issue, RS-
CMSA-ESII utilized a merge operator which aims to predict
if P is converging to an archived solution, and if so, it identifies
the corresponding archived solution.

The merge operator exploits the hill-valley strategy to check
if xbest shares the same basin with a solution in A. There are
two main challenges when employing this strategy:

• The hill-valley strategy requires additional function eval-
uations whenever it is executed. Considering that the
population evolves, xbest should be checked against the
solutions in A frequently. This process itself will consume
a lot of function evaluations, reducing the benefits that
can be gained from the merge operator.

• It is possible that xbest is in the basin of an archived
solution; however, it will leave that basin in the future if
it is allowed to evolve. It can happen especially at early
iterations of a restart when the mutation strength is high
and xbest can significantly change.

To overcome these challenges, a mergeability indicator is
defined which quantifies how likely P is converging to the
archived solution xAm :

M(xAm ,P) =
1 + d̂Am

L̂m

L̂m =

√
(xAm − xmean)

T
(σ2

meanC)
−1

(xAm − xmean)

, (8)

in whichM(xAm ,P) indicates the mergeability of P into xAm ,
and L̂m is the Mahalanobis distance between xAm and xmean.
Archived solutions with a mergeability greater than the merge-
ability threshold Tmerge are flagged as potential candidates, in
which Tmerge is a control parameter set by the user. The hill-
valley test is then executed for xAm if it is the only potential
candidate for merge in the last 0.1tolHistSize iterations. If the
test outcome is positive, P is predicted to converge to xAm .
Therefore, P is terminated and xbest ← xAm ; otherwise this
test will not be executed for the next 0.1tolHistSize iterations.
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Fig. 4. Trade-off between the potential reduction in the used FEs and false
positive (FP) predictions by the merge operator for different values of the
mergeability threshold (Tmerge)

Like any other binary classification test, the merge operator
may make false or true predictions. The value of Tmerge should
be selected such that the number of false positives (FP) is
minimized while the number of function evaluations saved by
the merge operator is maximized. This can be achieved by a
proper selection of Tmerge. A simple simulation is designed
in this study to find such a value. In this simulation, the
function evaluation at which the merge operator has flagged
P for termination is recorded; however, P is not terminated
because of the merge operator. At the end of the restart,
the potential savings in the number of function evaluations
(FE save) by the merge operator is calculated, which is the
function evaluation at which P was terminated minus the one at
which P was flagged for merge. The overall potential reduction
in the consumed function evaluations (FESAVE) is the sum of
FE save in all restarts.

For this simulation, 3D Shubert and 3D Vincent problems
[3] are considered because of their unique features: The
Shubert function has 81 irregularly distributed global minima
of similar basin sizes and many local minima. In contrast, the
Vincent function has no local minima; however, the basins
vastly differ in the shape and size. The evaluation budget
(FEmax) of each problem is 400,000.

Fig. 4 shows FESAVE/FEmax and the number of false
positives for different values of Tmerge, averaged over 20
independent runs and two problems. As observed, the number
of FP monotonously increases with Tmerge. FESAVE increases
with Tmerge up to Tmerge = 0.7. Therefore, Tmerge must be
less than 0.7. The suggested value is Tmerge = 0.5.

2) Local Convergence Predictor: A subpopulation that
seems to be converging to an undesirable local minimum can
be identified before convergence when performing MMO. The
reason for this is that there is the “best-value-so-far” from
previous restarts (fmin

A ). It is possible to predict if P is going
to converge to an equally good or even a better solution in
the future. For example, Maree et al. [44] assumed a “conver-
gence rate” and compared the actual convergence rate of the
subpopulation with the expected convergence rate. If the actual



7

 

 

 

                  

0

5

10

15

20

25

30

35

40

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10

P
o
te

n
ti

al
 R

ed
u

ct
io

n
 i
n

 F
E

 (
%

)

F
P

clocal

FP Potential Reduction in FE (%)

Fig. 5. Trade-off between the potential reduction in the adopted FEs and
the number of FP by the local convergence predictor for different values of
clocal.

convergence rate is not high enough, then the subpopulation
is predicted to converge to a local minimum. RS-CMSA-ESII
follows the same goal but uses a different method since the
presence of taboo regions and elitism may hinder the progress
rate. The employed formulation calculates the average fluctua-
tions in the value of xbest in the last 0.5tolHistSize iterations.
If it is less than clocal

(
f(xbest)− tolHistFun − fmin

A

)
, it

concludes that P might not converge to a global minimum.
clocal is a control parameter defined by the user. A greater
clocal terminates P earlier, which results in a greater FESAVE;
however, it increases the number of FP.

A simulation similar to the one proposed earlier is per-
formed to provide insights into the effect of clocal. The local
convergence predictor may flag P for termination, but it does
not terminate it. FESAVE from this termination criterion and
the number of FP are then calculated for different values
of clocal. For this simulation, the merge operator has been
deactivated.

Fig. 5 shows the effect of clocal on FESAVE and the average
number of FP for 3D Shubert and 3D Vincent functions, when
FEmax = 400000. Both the number of FP and FESAVE

monotonously increase with clocal; however, the number of FP
increases at a faster rate. The default value of clocal = 0.04
is suggested based on this graph and a few other numerical
studies.

D. Bound Handling

At early iterations of a restart, it is common that some
sampled solutions fall outside the search range. RS-CMSA-ES
sorts infeasible solutions based on their constraint violations
while feasible solutions are always preferred over infeasible
ones. A repair operator is used in RS-CMSA-ESII to improve
its near-bound search capability. This operator relocates the
variable that has violated the bound constraint to a random
point on a line segment whose middle point lies on xmean.
This process is illustrated schematically in Fig. 6.

 

𝒙mean 

𝑎 

𝑎 

𝐴 

𝐵 

𝒙1 
Boundary of search space 

Fig. 6. Repair of a bound-violating sample (x1). The repaired solution is
randomly generated on the line segment AB.

E. Initialization of the population

A shortcoming of the initialization process of RS-CMSA-
ES is that it initiates with a conservatively large σini

mean at
the beginning of each restart. This value gradually decreases
when multiple successive attempts to generate xmean fail;
however, this process may take an unnecessarily long time
even though the initialization process does not use any function
evaluations. The improved initialization process addresses this
issue. For the first restart, σini

mean is set to a conservatively
large value (σini

mean =
√
D). This value may require reduction

so that xmean can be generated. The value of σini
mean at which

xmean is successfully generated is preserved (σini−s
mean). Since

the update of taboo regions is gradual, it is unlikely that in
the next restart, an acceptable xmean may be generated if
σini
mean is much greater than σini−s

mean. Therefore, for the next
restart, σini

mean initiates with a slightly greater value than σini−s
mean

(σini
mean ← 1.04σini−s

mean). σini
mean is likely to gradually decrease

until an acceptable point for xmean is generated and selected.
Then, the mutation profile of the population is defined as
follows:

σmean ← min
{
2σini

mean, 0.3
}

C←
[
xU − xL

][
xU − xL

]T . (9)

This strategy can substantially reduce the time required for
initialization. This is especially important for RS-CMSA-ESII
since there is only one subpopulation at each restart, and
thus, many restarts will be performed until the end of the
optimization process.

F. Calculation of criticality of a taboo region

The time required for sampling new solutions strongly
depends on the number of critical taboo points. One problem
with RS-CMSA-ES is that the estimated value for Ptrej,
which determines which taboo points are critical, can be much
greater than the actual one. RS-CMSA-ESII overcomes this
shortcoming by providing a more accurate estimate of Ptrej

by utilizing the properties of the Mahalanobis distance metric
to rescale the search space according to the mutation profile
of the population, as shown in Fig. 7.

Fig. 7a illustrates the population P in the proximity of the
taboo point xA with the normalized taboo distance of d̂A. Let
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X1X2 be the global coordinate system of the search space and
x1x2 the auxiliary coordinate system along the main axes of
the covariance matrix. The triangles represent some sampled
solutions, one of which is not taboo acceptable (the solid
triangle). Fig. 7b replots Fig. 7a when the space has been
scaled along x1 and x2 with the scaled factor of 1/ (σmean u1)
and 1/ (σmean u2), in which u1 and u2 are the square root
of the eigenvalues of C. This scaling does not change the
acceptability of the sampled solutions. The distribution of
samples in the rescaled space (x1x2) follows an isotropic
normal distribution with standard deviation of one, and the
taboo region is now a circle of radius d̂A.

From all the points on the line segment AC, point B has
the highest probability density function. Using the value of
the density function at this point for all the points on the
line passing through AC, an upper limit for the probability
that the sampled solution falls inside the taboo region can be
easily calculated as follows:

Ptrej(xA, d̂A) =

∫ L̂+d̂A

L̂−d̂A
ϕ(x)dx, ϕ(x) =

1√
2π

exp

(
−x

2

2

)
,

(10)
in which ϕ(x) is the probability density of the standard normal
distribution function. Like before, taboo points with Ptrej >
0.01 are considered critical.

In order to compare this new estimate for Ptrej with the
existing one, a simple numerical simulation is performed. In
this simulation, the subpopulation P has its center on the origin
(xmean = 0, σmean = 1) and C is a diagonal matrix. The
taboo region is xA = r01 with d̂A = 2. Ptrej(xA, d̂A) is then
calculated using three methods:
• the existing estimation method adopted in RS-CMSA-ES

[31]
• the new estimation method according to (10)
• a Monte Carlo simulation with 10000 sampled solutions

according to the defined mutation profile.
Fig. 8 shows Ptrej(xA, d̂A) calculated using these three

methods for different values of r0 when C has a condition
number of 10 (Fig. 8a) and 10000 (Fig. 8b). The 95%
confidence interval for the Monte Carlo simulation was too
narrow to be shown on the graph; therefore, it can be perceived
as a relatively accurate estimate of the true Ptrej. This figure
shows that:
• Both estimation methods overestimate the true
Ptrej(xA, d̂A); however, the new one is more accurate.

• The superiority of the new estimation method over the
existing one intensifies when the condition number of
C is high (Fig. 8b). In this case, the new estimate still
provides a good approximation, whereas the existing one
highly overestimates Ptrej(xA, d̂A).

G. An Illustrative Example

The capabilities of RS-CMSA-ESII and its ability to learn
the basin sizes of global minima are explored by analyzing its
behavior when optimizing the 2D Vincent function (Fig. 9a).
This function has 36 global minima with diverse sizes and
relative distances, which challenge the niching capability of

an MMO method. Fig. 9 illustrates snapshots of RS-CMSA-
ESII immediately after reinitialization of the subpopulation at
different restarts, including the taboo regions (thin red circles),
the initialized subpopulation (thick black circle), and the global
minima of the problem (blue stars). The number of detected
global minima (NDGM) is also provided. It can be observed
that:

• By restart #7, seven global minima have been detected,
indicating that the subpopulation in each previous restart
has converged to a new global minimum. RS-CMSA-ESII
has defined a taboo region around each detected global
minimum. The normalized taboo distances of all these
taboo regions are equal at this stage.

• At restart #22, some taboo points have larger taboo re-
gions. More importantly, there is a noticeable correlation
between the size of the global minimum and the radius of
the corresponding taboo region. This means RS-CMSA-
ESII is learning the relative sizes of the basins of the
detected global minima.

• From restart #22 to restart #84, RS-CMSA-ESII detects
new global minima in some restarts. In other restarts, it
adapts the size of the existing taboo regions according to
the adaptation mechanism explained in Subsection III-A.
A noticeable (but not perfect) correlation between the size
of the basins of the global minima and the corresponding
taboo regions can always be detected.

• In this specific run, RS-CMSA-ESII detected all 36 global
minima by the beginning of restart #96. At this point, it
has used only 27,827 function evaluations, about 14%
of the evaluation budget defined for this problem in the
CEC’2013 test problems for MMO [3].

It is remarkable that the shape and sizes of the taboo regions
change during a restart since they are coupled to the mutation
profile of the subpopulation. The initial mutation profile is
determined by the search space ranges. For this problem,
the search space is [0.25, 10]2; therefore, the initial mutation
profile is Isotropic, resulting in circular taboo regions at the
beginning of each restart.

IV. MODULAR ANALYSIS

This section runs a controlled experiment to study the
impact of the modifications made to RS-CMSA-ESII on
its performance. In addition to RS-CMSA-ESII, five other
variants of this method are considered. In each variant, one
component of this method that was improved or developed
in this study is suppressed or replaced by the corresponding
component in RS-CMSA-ES. These variants are:

• RS-CMSA-ESII\{Archive}: The proposed method for
the adaptation of the normalized taboo distances is re-
placed by the old adaptation method in RS-CMSA.

• RS-CMSA-ESII\{Elite}: The proposed method for the
adaptation of C involving elite solutions is replaced with
the corresponding method in RS-CMSA-ES.

• RS-CMSA-ESII\{Repair}: The proposed repair strategy
is suppressed. Instead, the strategy of RS-CMSA-ES for
treating bound-violating solutions is employed.
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the population P with xmean = 0 and σmean = 1 as a function of r0 using
three estimation methods. The condition number of C is a) 10 and b) 10000.

• RS-CMSA-ESII\{Merge}: The formulated merge opera-
tor is suppressed.

• RS-CMSA-ESII\{Local}: The formulated local conver-
gence predictor is suppressed.

Except for the modified component, all other components of
these variants are identical to those of RS-CMSA-ESII. The
control parameters are set to their default values and those
recommended in RS-CMSA-ES [31], except for the following
control parameters:

• Number of subpopulations (Ns) = 1
• Population Size (λ) = 6

√
D (fixed)

• Learning rate for the step size (τσ = 1
2
√
D

)

• Parents size (µ) = max {1, b0.2λ+ .5c}
• Number of elite solutions d0.1λe
• tolHistFun = 10−6

The well-known peak ratio (PR) performance indicator [3]
is employed to compare the performance of these variants
with RS-CMSA-ESII. Twelve benchmark problems from the
CEC’2013 test suite for MMO [3] are considered for this
purpose. The other eight problems were too easy to distinguish
the pros and cons of each variant. Each experiment was
repeated 50 times independently using a single core and
1GB of allocated memory. Table I presents the mean and
standard error of the calculated PR for each problem and each
variant of RS-CMSA-ESII. The problems in which the studied
component has provided a practically meaningful difference
are highlighted in boldface. The obtained results reveal that:

• Each new or modified component of RS-CMSA-ESII
provides a detectable benefit to RS-CMSA-ESII when the
overall performance is considered.

• When each problem is considered, the updated compo-
nent is either beneficial or at least does not deteriorate the
performance. The only exception is the introduced repair
operator which turned out to be detrimental for PID=14.

• The studied components improve or do not change the
time complexity of the method, except for the new elite
strategy. However, considering the number of function
evaluations for all 12 problems (9 × 400, 000 + 3 ×
200, 000=4, 200, 000), the time per evaluation is in the
range of 0.5-1.5 ms (including the time required for a
function evaluation). Therefore, the required time by the
optimization operators is negligible considering that in
most practical problems, each function evaluation may
take from a few seconds to a few hours.
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(a) 2D Landscape
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(b) Restart #7, NDGM=7
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Fig. 9. Response of RS-CMSA-ESII when optimizing the 2D Vincent function. a) Fitness landscape of the problem. b-d) Taboo regions (red thin circles)
and the initialized subpopulation (black thick circle) at different restarts, immediately after the initialization of the subpopulation. The number of detected
global minima (NDGM) is reported for each case. Global minima are shown by blue stars. Taboo regions are shown with a scale factor of 0.25 for better
visualization. The center of the subpopulation is the center of the black circle, the radius of which is one-fourth of the mutation strength of the initialized
subpopulation.

TABLE I
PEAK RATIO (MEAN ± SE) OF DIFFERENT VARIANTS OF RS-CMSA-ESII ON 12 TEST PROBLEMS OF THE CEC’2013 COMPETITION ON NICHING

METHODS FOR MMO [3]. THE NUMBERS IN BOLDFACE INDICATE A MEANINGFUL PERFORMANCE DIFFERENCE. THE REPORTED TIME IS THE AVERAGE
TIME TO RUN ALL 12 PROBLEMS

PID RS-CMSA-ESII RS-CMSA-ESII RS-CMSA-ESII RS-CMSA-ESII RS-CMSA-ESII RS-CMSA-ESII
\{Archive} \{Elite} \{Repair} \{Merge} \{Local}

8 0.997 ± 0.001 0.996 ± 0.001 0.984 ± 0.002 0.999 ± 0.000 0.982 ± 0.002 0.955 ± 0.004
9 0.990 ± 0.001 0.965 ± 0.002 0.985 ± 0.001 0.987 ± 0.001 0.899 ± 0.002 0.990 ± 0.001
11 1.000 ± 0.000 0.977 ± 0.008 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
12 1.000 ± 0.000 0.990 ± 0.005 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
13 0.993 ± 0.005 0.870 ± 0.010 0.903 ± 0.012 1.000 ± 0.000 0.963 ± 0.010 0.930 ± 0.012
14 0.850 ± 0.007 0.837 ± 0.003 0.833 ± 0.000 0.883 ± 0.011 0.837 ± 0.003 0.840 ± 0.005
15 0.750 ± 0.000 0.750 ± 0.000 0.750 ± 0.000 0.743 ± 0.005 0.750 ± 0.000 0.750 ± 0.000
16 0.833 ± 0.000 0.773 ± 0.011 0.820 ± 0.006 0.787 ± 0.011 0.793 ± 0.010 0.790 ± 0.010
17 0.750 ± 0.000 0.750 ± 0.000 0.750 ± 0.000 0.738 ± 0.009 0.738 ± 0.005 0.735 ± 0.006
18 0.667 ± 0.000 0.667 ± 0.000 0.667 ± 0.000 0.637 ± 0.009 0.667 ± 0.000 0.667 ± 0.000
19 0.703 ± 0.009 0.667 ± 0.008 0.705 ± 0.008 0.578 ± 0.018 0.505 ± 0.005 0.667 ± 0.008
20 0.618 ± 0.004 0.593 ± 0.008 0.615 ± 0.005 0.410 ± 0.013 0.365 ± 0.015 0.603 ± 0.008

Avg. 0.846 ± 0.001 0.820 ± 0.002 0.834 ± 0.001 0.813 ± 0.003 0.792 ± 0.002 0.827 ± 0.002
Time (min) 51.9 80.4 37.9 59.1 51.5 102.0

V. COMPARISON WITH OTHER MMO METHODS

This section compares the performance of RS-CMSA-ESII
with the most successful niching methods for MMO. The test
suite and experimental setup of the CEC’2013 competition on
niching methods for MMO [3] are followed for this purpose.
This test suite has been employed in similar events in the
subsequent years. Besides, many researchers have adapted this
test suite and reported their results on its problems, which
facilitates a fair performance evaluation and comparison. The
selected methods for comparison are:
• The winners of this competition in previous years, which

are NEA2 [35], NMMSO [41], RS-CMSA-EA [31], Hill-
VallEA18 [44], and HillVallEA19 [51]. These methods
were the winners of this competition in 2013, 2015, 2016,
2018, and 2019, respectively.

• MMO methods that have been recently published in
top journals and reported their results on this test suite,
including ANDE [36], LBPADE [20], DIDE [21], FBK-
DE [34], MMDE [40], TS-ABC [52], and NCjDE- 2LSar
[38]. The results of these methods have been directly
excerpted from the corresponding publications.

RS-CMSA-ESII is employed for MMO of all 20 problems
of the CEC’2013 test suite for MMO [3]. Each problem
was optimized 50 times independently with random seeds

0, 1, . . . , 49, and PR for each problem was calculated and av-
eraged for three function tolerances (εf = 10−5, 10−4, 10−3).
These function tolerances were selected since many of these
methods have reported results for them. Besides, a looser
function tolerance may calculate a PR greater than the actual
one for the problems with basins of different sizes (e.g., the
3D Vincent function). For TS-ABC [52], only the results for
εf = 10−4 have been reported in the corresponding publica-
tion; therefore, for this method, the reported PR represents the
averaged PR over three function tolerances. For NCjDE-2LSar
[38], PR has been reported for εf = 10−3 and εf = 10−5 only;
therefore, for this method, the calculated PR is the average of
the reported PR for these two tolerances.

Table II presents the calculated PR for each problem and
each method. For RS-CMSA-ESII, the standard error of the
calculated PR is also provided. Furthermore, the last column
shows the standard deviation of PR of the tested methods
for each problem. For RS-CMSA-ESII, the calculated PR for
each independent run has been provided in the Supplementary
Material S1. For this method, the individual PR values were
identical for εf = 10−1, 10−2, 10−3, 10−4, 10−5. The obtained
results reveal that:

• When MPR is considered, RS-CMSA-ESII outperforms
all the tested methods, including HillVallEA19, which
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was the winner of the competition on MMO in 2019.
The standard error for the MPR of RS-CMSA-ESII is
small. Assuming that the standard error of other methods
is similar to that of RS-CMSA-ESII, any difference
in the mean peak ratio (MPR) greater than 0.002 is
statistically significant. When comparing RS-CMSA-ESII
with HillVallEA19 (given the reported results in the
GECCO’2019 competition), the Friedman test returns a
p-value of 3.26× 10−40.

• The first five and the tenth problems are easy, and almost
all methods can reach a peak ratio close to one. These
problems have at most two variables. Such easy problems
can hardly be used to differentiate between superior and
inferior methods.

• Problems 6 and 8 are the 2-D and 3-D Shubert function
with many local minima, although the global minima
have similar sizes. For this problem, NCjDE-2LSar and
RS-CMSA-ESII obtained the best results, followed by
HillVallEA19.

• When the basins significantly vary in their sizes and
relative distribution (PID = 7, 9), RS-CMSA-ESII out-
performs all other methods, thanks to the additional
termination criteria and the ability to learn the relative
sizes of global minima. The closest competitors of RS-
CMSA-ESII in these two problems are HillVallEA19 and
NMMSO.

• For problems 11 and 12, some of these methods can reach
a peak ratio close to one. These 2-D composite functions
have complex definitions and the resultant landscape does
not have the simplicity of the previous problems.

• Problems 13, 14, 16, and 18 are based on the same
composite function (CF3) [3] with six global minima
when D = 2, 3, 5, 10, respectively. In low dimensions
(PID = 13, 14), there are a few methods that outperform
RS-CMSA-ESII (e.g., FBK-DE, HillVallEA18 and Hill-
VallEA19). However, in higher dimensions, RS-CMSA-
ESII outperforms these methods. This indicates that the
performance of RS-CMSA-ESII scales better with the
problem’s dimensionality.

• The behavior of LBPADE on CF3 is odd since it provides
a higher PR for the 10-D problem (PID = 18) than
the 5-D problem (PID = 16). Furthermore, no other
method could reach a PR greater than 0.667 for PID
= 18. More importantly, analyzing the reported global
minima obtained by HillVallEA19, HillVallEA2018, and
RS-CMSA-ESII reveals that all these methods could find
only four specific global minima for PID = 18 when all
their runs are considered, resulting in PR = 4/6 = 0.667.
Besides, the higher PR of LBPADE is only observed
when εf = 10−3, and for εf = 10−5 and εf = 10−4, PR
is 0.667. A simple explanation for this odd observation
is that LBPADE could find a fifth global minimum in
some runs with low precision. Another possibility, which
can explain a higher PR in a higher dimensions, is that
two or more solutions sharing the same basin have been
counted as approximations of different global minima by
the PR calculator employed in the CEC’2013 competition
package. This redundancy may occur only if εf is not

small enough and/or the defined niche radius for post-
processing [3] is not large enough in comparison with
the basin sizes of the global minima. Data on the reported
global minima are required to discover the actual cause
of this odd observation.

• Problems 15, 17, 19, and 20 have the same fitness func-
tion (CF4) with 3, 5, 10, and 20 variables, respectively
[3]. In the lowest dimension, there are several methods
that tie with RS-CMSA-ES II; however, in higher dimen-
sions, RS-CMSA-ESII outperforms the other methods by
a practically significant margin.

• One remarkable observation is that for PID = 20, RS-
CMSA-ESII is the only method that could reach a PR
greater than 0.5. Since this function has eight global
minima, we speculate that other methods could only find
four specific global minima. To check this, we analyzed
the reported results of RS-CMSA-ES, HillVallEA18, and
HillVallEA19, for which detailed data of each run is
publicly available. Our analysis has supported this spec-
ulation: none of these methods could find any of the four
harder-to-find global minima of this problem in any run.

• Overall, the improvements made to RS-CMSA-ESII have
resulted in an increase of 0.052 in MPR, which is con-
siderable since for some of these problems both variants
could reach PR ≈ 1.

• The standard deviation calculated over the PR of the
tested methods (SDPR) may reveal the usefulness of a
test problem for benchmarking purposes; for example, for
PID = 1, 2, 3, 4, 5, 10, SDPR is almost zero, which means
that all the tested methods have similar performance on
these problems. These problems are too easy; however,
it is not the only case that can result in a small SDPR.
It is also possible that some of the global minima in a
problem are so easy that most methods can find them
and the rest of global minima are so hard to find that
no MMO method can detect them. Such a problem is
not a discriminative test problem either since it cannot
highlight the differences between different methods.

VI. EXTENSION OF RS-CMSA-ESII FOR DYNAMIC
PROBLEMS

RS-CMSA-ES and RS-CMSA-ESII can be extended to
dynamic MMO by employing a prediction method which
provides the initial population after the change. The dynamic
variants of these methods are denoted by DRS-CMSA-ES(II),
which can be DRS-CMSA-ES or DRS-CMSA-ESII. DRS-
CMSA-ES is formed by suppressing five main modifications
proposed in this study (see Table I). The other modifications
that aimed to improve the time efficiency of the method are
kept active to save computation resources.

At the onset of time step t+1, a set of candidate populations
are suggested by the prediction method. These suggested
populations will be used in the subsequent restarts as the initial
population. Let xtAm be the mth archived solution at the end
of time step t. The center and covariance matrix of the initial
population for the (m − 1)th restart at time step t + 1 are
calculated as follows:
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TABLE II
PEAK RATIO FOR EACH PROBLEM OF THE CEC’2013 TEST SUITE FOR MMO [3] OBTAINED USING DIFFERENT METHODS. THE REPORTED PR IS THE

AVERAGE PR FOR THREE FUNCTION TOLERANCES εf = 10−3, 10−4, 10−5 . THE PR OF THE DOMINANT METHODS FOR EACH PROBLEM ARE PROVIDED
IN BOLD FONT UNLESS THERE ARE MORE THAN THREE DOMINANT METHODS FOR THAT PROBLEM. FOR RS-CMSA-ESII, THE STANDARD ERROR IS

ALSO PROVIDED. THE LAST COLUMN SHOWS THE STANDARD DEVIATION OF THE PR OF THE COMPARED METHODS FOR EACH PROBLEM.
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1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ± 0.0000 0.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ± 0.0000 0.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ± 0.0000 0.000
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 ± 0.0000 0.001
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ± 0.0000 0.000
6 1.000 0.985 1.000 0.660 1.000 1.000 1.000 0.636 0.661 0.999 1.000 1.000 1.000 ± 0.0000 0.152
7 0.937 0.886 0.921 0.813 0.916 0.799 0.976 0.914 1.000 0.998 1.000 1.000 1.000 ± 0.0000 0.070
8 0.946 0.624 0.691 0.824 0.971 0.910 1.000 0.240 0.897 0.875 0.920 0.975 0.997 ± 0.0008 0.212
9 0.511 0.510 0.571 0.425 0.463 0.457 0.833 0.581 0.978 0.734 0.945 0.972 0.990 ± 0.0010 0.225

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989 1.000 1.000 1.000 1.000 1.000 ± 0.0000 0.003
11 1.000 0.707 1.000 1.000 1.000 0.980 1.000 0.962 0.990 0.997 1.000 1.000 1.000 ± 0.0000 0.080
12 1.000 0.752 1.000 0.935 1.000 0.998 1.000 0.838 0.993 0.948 1.000 1.000 1.000 ± 0.0000 0.078
13 0.714 0.699 0.977 1.000 0.667 0.693 0.978 0.954 0.983 0.997 1.000 1.000 0.993 ± 0.0046 0.142
14 0.667 0.667 0.761 0.906 0.667 0.667 0.714 0.806 0.721 0.803 0.917 0.923 0.850 ± 0.0071 0.100
15 0.636 0.678 0.748 0.729 0.750 0.518 0.746 0.717 0.635 0.745 0.750 0.750 0.750 ± 0.0000 0.070
16 0.667 0.637 0.667 0.709 0.667 0.667 0.667 0.673 0.660 0.667 0.687 0.723 0.833 ± 0.0000 0.049
17 0.397 0.527 0.591 0.633 0.636 0.453 0.694 0.695 0.466 0.695 0.750 0.750 0.750 ± 0.0000 0.122
18 0.653 0.695 0.667 0.667 0.658 0.667 0.667 0.666 0.650 0.667 0.667 0.667 0.667 ± 0.0000 0.011
19 0.363 0.527 0.538 0.522 0.500 0.505 0.575 0.667 0.448 0.508 0.585 0.593 0.703 ± 0.0086 0.088
20 0.249 0.300 0.352 0.449 0.088 0.293 0.492 0.357 0.172 0.468 0.483 0.480 0.618 ± 0.0042 0.148

MPR 0.787 0.760 0.824 0.814 0.799 0.780 0.867 0.785 0.813 0.855 0.885 0.892 0.907 ± 0.0006

xt+1
meanm−1

← xtAm , Ct+1
m−1 ←

(
xU − xL

) (
xU − xL

)T
,

(11)
in which xU and xL define the search space. The global
step size is calculated based on the change in the mth global
minimum from time step t−1 to time step t. To calculate this
change, the archived solution at time step t−1 that corresponds
to xtAm should be determined first. This solution is denoted by
xt−1Am

and is the one that has the smallest normalized Euclidean
distance to xtAm :

xt−1Am
= argmin

xt−1
Ak

{
d̃
(
xtAm ,x

t−1
Ak

)}
, (12)

in which d̃
(
xtAm ,x

t−1
Ak

)
calculates the normalized Euclidean

distance between xtAm and xt−1Ak
:

d̃
(
xtAm ,x

t−1
Ak

)
=

√√√√ D∑
j=1

(
xtAmj − x

t−1
Akj

xUj − xLj

)2

. (13)

This equation shows that the distances have been normalized
with respect to the search range. Now σt+1

meanm−1
is set as

follows:

σt+1
meanm−1

= min

{
0.3, 0.3

d̃(xtAm ,x
t−1
Am

)
√
D

}
, m = 1, 2, . . . ,

∣∣At∣∣
(14)

For the first |At| restarts at time step t + 1, P is formed
using (11) and (14) to exploit the history of past information.
The benefits of this exploitation depend on how many global

minima have been successfully detected in the previous time
step. Therefore, for the subsequent restarts (restarts |At| on-
ward), this initial solution is determined using the initialization
method of RS-CMSA-ESII to improve exploration for global
minima that were not found in the previous time step.

Dynamic RS-CMSA-ES(II) employs a simple reevaluation-
based change detection mechanism. It generates and evaluates
a set of λ randomly selected solutions in the search space at
the beginning of each time step. Afterwards, max {1, b0.1λc}
of these solutions are selected and reevaluated at each iteration
to detect a potential change.

A. Comparison with Existing Dynamic MMO Methods

The modified moving peak benchmark (MMPB) developed
in [49] is employed to evaluate the performance of DRS-
CMSA-ES(II). MMPB(D,G,L) generates a dynamic multi-
modal function in D-dimensional space which has G global
minima and L local ones. These minima move along a random
direction with a step defined by parameter S. Luo et al.
[49] employed this test suite with different values for the
parameters of the MMPB generator; however, only their most
complex case is considered here (D = L = G = 5) for brevity.
Following their experimental settings, DRS-CMSA-ES and
DRS-CMSA-ESII perform 30 independent runs to optimize
30 instances of MMPB(5, 5, 5). The target function tolerance
is 10−5 and a total of 60 time steps are considered for each
problem. The mean peak ratio (MPR) is then calculated for
each problem, which is the average fraction of global minima
detected at the end of each time step. Table III compares the
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TABLE III
COMPARISON BETWEEN THE PERFORMANCE OF DRS-CMSA AND

DRS-CMSA-ESII ON THE MMPB(5, 5, 5) PROBLEM (MEAN ± SE) WITH
THAT OF THREE OTHER METHODS REPORTED IN [49]

S DMMCSA CSA PSO DRS- DRS-
CMSA-ES CMSA-ESII

0.1 0.341 0.087 0.117 0.981 ± 0.002 0.993 ± 0.001
0.2 0.329 0.083 0.103 0.976 ± 0.004 0.993 ± 0.001
0.3 0.463 0.085 0.092 0.981 ± 0.002 0.992 ± 0.001
0.4 0.587 0.09 0.093 0.981 ± 0.002 0.994 ± 0.001
0.5 0.622 0.096 0.089 0.970 ± 0.003 0.993 ± 0.001

MPR of DRS-CMSA-ES and DRS-CMSA-ESII with that of
three other methods reported in [49]. A comparison of results
reveals that both DRS-CMSA-ES variants outperform the
other methods by a considerable margin. The second variant
shows slightly better results which is statistically significant,
assuming that MPR follows a normal distribution. Both meth-
ods could detect and track almost all global minima in all runs,
indicating that these test problems were too easy for them.

B. Results for more Challenging Dynamic MMO Problems

A more challenging setting for the MMPB generator is
suggested in this study. First, we noticed that the search range
of [−1, 1]D is too small considering the widths of minima,
and consequently, most local minima would be masked by
the global minima. Alternatively, the search range is set to
[−500, 500]D in this subsection. Besides the problem dimen-
sionality, the effects of the number of global minima (G =
5, 10) and the number of global minima (L = 10, 1000) are
studied. Each experiment is repeated 50 times independently
when S = 10. Other settings are similar to those of the
previous experiment. Fig. 10 shows the MPR calculated for
RS-CMSA-ES and RS-CMSA-ESII. Details of the obtained
results are provided in the supplementary material S2. As
observed, RS-CMSA-ESII outperforms the older variant in
most, if not all, of the tested problems. More importantly,
the results of DRS-CMSA-ES(II) is expected to provide a
benchmark for challenging dynamic MMO test problems for
future studies. It should be highlighted that any method would
show a dramatic performance decline when G is high because
the allocated budget per time step does not increase with G;
however, some methods may show an earlier or a more severe
performance decline than others.

VII. SUMMARY AND CONCLUSIONS

This study has introduced a new variant of the covari-
ance matrix self-adaptation evolution strategy with repelling
subpopulations (RS-CMSA-ES), a recent and successful for
multimodal optimization (MMO). The resulting approach,
called RS-CMSA-ESII, has undergone major improvements in
several of its components including: i) the adaptation scheme
of the normalized taboo distances of the archived solutions,
ii) the elite selection scheme for adaptation of the covariance
matrix, iii) the stopping criteria for predicting convergence
to local or already detected minima, iv) handling bounds of
the search space when sampling solutions, v) the initialization
of a subpopulation, and vi) the determination of critical
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Fig. 10. MPR calculated for DRS-CMSA-ES and DRS-CMSA-ESII for the
MMPB problems with different values for the number of global minima (G)
and local minima (L), and problem dimension (D)

taboo points. Controlled numerical simulations have shown
the importance of these improvements.

RS-CMSA-ESII was compared with the most successful
MMO methods on the widely accepted CEC’2013 test suite for
MMO. The comparison of results has shown the superiority
of RS-CMSA-II over the existing methods, including its older
variant (RS-CMSA-ES). RS-CMSA-ESII was also extended
to dynamic MMO by reinforcing it with a prediction method
and a change detection mechanism. Dynamic RS-CMSDA-
ESII outperformed a few recent methods for dynamic MMO
when compared on the modified dynamic moving benchmark
problems.

The CEC’2013 test suite for MMO has made a substantial
contribution to advancing knowledge in this field by providing
a widely accepted experimental setup to facilitate a fair
comparison of MMO methods. However, this test suite has
remained unchanged since 2013. The caveat of specialization
of niching methods for this specific test suite may produce a
negative bias for the research conducted in this field. Strength-
ening this test suite with a more diverse set of benchmark
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functions with known properties can overcome this problem.
The proposed elite selection mechanism provides a new

research direction for elite selection in evolution strategies,
which has been overlooked in favor of the non-elite comma
selection scheme for single-objective optimization. For MMO
and multi-objective optimization, elite selection has been the
most preferred choice. More analyses on the proposed elite
selection scheme may result in a robust selection approach
that can compete with the preferred comma scheme in uncon-
strained single objective optimization as well.
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niche shapes approaches for niching with the CMA-ES,” Evolutionary
Computation, vol. 18, no. 1, pp. 97–126, 2010.

[31] A. Ahrari, K. Deb, and M. Preuss, “Multimodal optimization by covari-
ance matrix self-adaptation evolution strategy with repelling subpopula-
tions,” Evolutionary Computation, vol. 25, no. 3, pp. 439–471, 2017.

[32] H.-G. Beyer and B. Sendhoff, “Covariance matrix adaptation revisited–
the cmsa evolution strategy–,” in International Conference on Parallel
Problem Solving from Nature. Springer, 2008, pp. 123–132.

[33] M. Preuss, “Niching the CMA-ES via nearest-better clustering,” in
Proceedings of the 12th annual conference companion on Genetic and
evolutionary computation. ACM, 2010, pp. 1711–1718.

[34] X. Lin, W. Luo, and P. Xu, “Differential evolution for multimodal opti-
mization with species by nearest-better clustering,” IEEE Transactions
on Cybernetics, 2019.



15

[35] M. Preuss, “Improved topological niching for real-valued global op-
timization,” in Applications of Evolutionary Computation. Springer,
2012, pp. 386–395.

[36] Z.-J. Wang, Z.-H. Zhan, Y. Lin, W.-J. Yu, H. Wang, S. Kwong, and
J. Zhang, “Automatic niching differential evolution with contour predic-
tion approach for multimodal optimization problems,” IEEE Transac-
tions on Evolutionary Computation, vol. 24, no. 1, pp. 114–128, 2019.

[37] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” science, vol. 315, no. 5814, pp. 972–976, 2007.

[38] G. Dominico and R. S. Parpinelli, “Multiple global optima location
using differential evolution, clustering, and local search,” Applied Soft
Computing, p. 107448, 2021.

[39] H. Li, P. Zou, Z. Huang, C. Zeng, and X. Liu, “Multimodal optimization
using whale optimization algorithm enhanced with local search and
niching technique,” Math. Biosci. Eng., vol. 17, no. 1, pp. 1–27, 2020.

[40] X. Wang, M. Sheng, K. Ye, J. Lin, J. Mao, S. Chen, and W. Sheng, “A
multilevel sampling strategy based memetic differential evolution for
multimodal optimization,” Neurocomputing, vol. 334, pp. 79–88, 2019.

[41] J. E. Fieldsend, “Running up those hills: Multi-modal search with the
niching migratory multi-swarm optimiser,” in 2014 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2014, pp. 2593–2600.

[42] S. Maree, T. Alderliesten, D. Thierens, and P. A. Bosman, “Real-valued
evolutionary multi-modal optimization driven by hill-valley clustering,”
in Proceedings of the Genetic and Evolutionary Computation Confer-
ence, 2018, pp. 857–864.

[43] R. K. Ursem, “Multinational evolutionary algorithms,” in Proceedings
of the 1999 congress on evolutionary computation-CEC99 (Cat. No.
99TH8406), vol. 3. IEEE, 1999, pp. 1633–1640.

[44] S. Maree, T. Alderliesten, D. Thierens, and P. A. Bosman, “Bench-
marking the hill-valley evolutionary algorithm for the gecco 2018 com-
petition on niching methods multimodal optimization,” arXiv preprint
arXiv:1807.00188, 2018.

[45] I. Moser and R. Chiong, “Dynamic function optimization: the mov-
ing peaks benchmark,” in Metaheuristics for Dynamic Optimization.
Springer, 2013, pp. 35–59.

[46] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in Proceedings of the 1999 Congress on Evo-
lutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3. IEEE,
1999, pp. 1875–1882.

[47] S. Cheng, H. Lu, Y.-n. Guo, X. Lei, J. Liang, J. Chen, and Y. Shi,
“Dynamic multimodal optimization: A preliminary study,” in 2019 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2019, pp. 279–
285.

[48] S. Cheng, H. Lu, W. Song, J. Chen, and Y. Shi, “Dynamic multimodal
optimization using brain storm optimization algorithms,” in International
Conference on Bio-Inspired Computing: Theories and Applications.
Springer, 2018, pp. 236–245.

[49] W. Luo, X. Lin, T. Zhu, and P. Xu, “A clonal selection algorithm for
dynamic multimodal function optimization,” Swarm and Evolutionary
Computation, vol. 50, p. 100459, 2019.

[50] A. Ahrari and K. Deb, “A novel class of test problems for performance
evaluation of niching methods,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 6, pp. 909–919, 2017.

[51] S. Maree, T. Alderliesten, and P. A. Bosman, “Benchmarking hillvallea
for the gecco 2019 competition on multimodal optimization,” arXiv
preprint arXiv:1907.10988, 2019.

[52] Y.-H. Zhang, Y.-J. Gong, H.-Q. Yuan, and J. Zhang, “A tree-structured
random walking swarm optimizer for multimodal optimization,” Applied
Soft Computing, vol. 78, pp. 94–108, 2019.

Ali Ahrari received his Ph.D. degree in mechanical
engineering from Michigan State University, Michi-
gan, USA. He is now a postdoc research associate at
the University of New South Wales, ACT, Australia.
His research concentrates on evolutionary algorithms
and engineering optimization. He has won GECCO
and CEC competitions on multimodal optimization
in 2016 and 2020, and ISCSO student competition
in structural optimization in 2017 and 2018. He is
now a member of the IEEE CIS Task Force on
Multimodal Optimization.

Saber Elsayed received the Ph.D.degree in Com-
puter Science from the University of New South
Wales Canberra, Australia, in 2012. Currently, Saber
is a Senior Lecturer with the School of Engineer-
ing and Information Technology, University of New
South Wales Canberra. His research interests include
the areas of evolutionary algorithms, constraint-
handling techniques for evolutionary algorithms,
scheduling, big data and cybersecurity using compu-
tational intelligence. Saber won several IEEE-CEC
competitions. Dr. Elsayed is serving as the chair of

the IEEE Computational Intelligence Society (ACT Chapter), and has held
organizational roles in several conferences.

Ruhul Sarker received his Ph.D. in 1992 from Dal-
housie University, Halifax, Canada. He is currently
a Professor in the School of Engineering and IT,
Canberra, Australia. His main research interests are
Evolutionary Optimization, and Applied Operations
Research. He is the lead author of the book Op-
timization Modelling: A Practical Approach. Prof.
Sarker is a member of IEEE and INFORMS.

Daryl Essam received his B.Sc. degree in computer
science from University of New England, Australia
in 1990 and his Ph.D. degree from University of
New South Wales, Australia, in 2000. Since 1994,
he has been with the Canberra campus, UNSW,
where he is currently a Senior Lecturer. His research
interests include genetic algorithms, with a focus
on both evolutionary optimization and large scale
problems.

Carlos A. Coello Coello (M’98-SM’04-F’11) re-
ceived a PhD in computer science from Tulane
University, USA, in 1996. He is currently Professor
with Distinction (CINVESTAV-3F Researcher) at
the Computer Science Department of CINVESTAV-
IPN, in Mexico City, Mexico. Dr. Coello has au-
thored and co-authored over 500 technical papers
and book chapters. He has also co-authored the book
Evolutionary Algorithms for Solving Multi-Objective
Problems (Second Edition, Springer, 2007). His pub-
lications currently report over 58,300 citations in

Google Scholar (his h-index is 96). Currently, he is the Editor-in-Chief of the
IEEE Transactions on Evolutionary Computation and serves in the editorial
board of several other international journals. He received the 2007 National
Research Award from the Mexican Academy of Sciences in the area of Exact
Sciences, the Medal to the Scientific Merit 2009, granted by Mexico City’s
congress and the National Medal of Science and Arts in the area of Physical,
Mathematical and Natural Sciences. He is also a recipient of the 2013 IEEE
Kiyo Tomiyasu Award, of the 2016 The World Academy of Sciences (TWAS)
Award in “Engineering Sciences,” and of the 2021 IEEE Computational
Intelligence Society Evolutionary Computation Pioneer Award. He is a Fellow
of the IEEE, and a member of the ACM and the Mexican Academy of Science.
His major research interests are: evolutionary multi-objective optimization and
constraint-handling techniques for evolutionary algorithms.


