
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Routing and Scheduling in Multigraphs with Time
Constraints - A Memetic Approach for Airport

Ground Movement
Lilla Beke, Lourdes Uribe, Adriana Lara, Carlos A. Coello Coello, Fellow, IEEE, Michal Weiszer, Edmund K.

Burke, Jun Chen

Abstract—Routing and scheduling problems with increasingly
realistic modelling approaches often entail the consideration of
multiple objectives, time constraints, and modelling the system
as a multigraph. This detailed modelling approach has increased
computational complexity and may also lead to violation of the
additivity property of the costs. In the worst scenario, increased
complexity makes the problem intractable for exact algorithms.
Even when the problem is solvable, exact algorithms may not
provide solutions within the given time budget, and the found
solutions are not guaranteed to be optimal due to the additivity
property violation. Approximate solution methods become more
suitable in this case. This paper focuses on one particular
real-world application, the Airport Ground Movement Problem,
where both time constraints and parallel arcs are involved. We
introduce a novel Memetic Algorithm for Routing in Multigraphs
with Time constraints (MARMT) and present a comprehensive
study of its different variants based on diverse genetic representa-
tion methods. We propose a local search operator that enhances
search efficiency and effectiveness. MARMT is tested on real
data based on two airports of different sizes. Our results show
that MARMT does not suffer from the non-additivity property
problem as it outperforms the state-of-the-art exact algorithm
when allowed to converge. When a time budget of 10 seconds is
imposed on MARMT, it is able to provide solutions with quality
comparable (within 1-5% degradation) to the ones given by the
exact algorithm with respect to the aggregated objective values.
MARMT can be adapted for other applications, such as train
operations.

Index Terms—Multiobjective routing and scheduling, Multi-
graphs, Airport ground movement, Memetic algorithm, Time
windows.

I. INTRODUCTION

THE efficiency of transportation systems is essential for
satisfying the rising demand from industry and commerce

while balancing economic cost and environmental impact.
Many transportation problems can be formulated as variations
of the Shortest Path Problem [1]. In these cases, there are

L. Beke, J. Chen and M. Weiszer are with Queen Mary University
of London, London, UK. e-mail: l.beke@qmul.ac.uk, jun.chen@qmul.ac.uk,
m.weiszer@qmul.ac.uk

L. Uribe and A. Lara are with ESFM, Instituto Politécnico Nacional,
Mexico City, Mexico. e-mail: luriber@ipn.mx, alaral@ipn.mx

Carlos A. Coello Coello is with the Department of Computer Science,
CINVESTAV-IPN (Evolutionary Computation Group), México, D.F. 07300,
México. He is also with the Faculty of Excellence, School of Engineering
and Sciences, Tecnologico de Monterrey, Monterrey, N.L., Mexico

E. K. Burke was with the University of Leicester, UK. He is now with
Bangor University, Wales, UK. e-mail: ekb@bangor.ac.uk

Corresponding Author: J. Chen
Manuscript received ..., ...; revised August ..., XXXX.

often conflicting objectives, such as travel time and energy
consumption (including both fossil and sustainable sources),
which means that it is not always possible to find a single
optimal solution. Instead, the aim is to identify a set of solution
paths with non-dominated costs that also meet certain time
constraints.

To solve routing problems, the infrastructure in a transporta-
tion system is often described through a graph [2]. Nodes in
the graph correspond to significant locations in the system,
such as junctions, stations, and starting and ending points. In a
simple graph model, a directed arc between two nodes implies
a direct link between the corresponding places in the system
following the indicated direction. A series of connected arcs
(a path) in the graph corresponds to a route.

Optimising airport ground operations exemplifies the mul-
tiobjective routing and scheduling problems with time con-
straints and can be viewed as a special case of the energy-
efficient driving problem. A taxiing aircraft is more fuel
efficient at certain speeds and on routes with fewer turns.
For this reason, there is a trade-off between taxi time and
fuel consumption [3]. The multigraph modelling approach
was found to produce better solutions than the simple graph
approach in [4]. A similar trade-off is often observed when
routing different vehicles [5], suggesting a wider applicability
for algorithms developed for airport ground movement.

Vehicle speed is a decision variable in many real-world
applications. In the presence of time constraints, the choice of
speed can affect the feasibility of the solutions. Therefore, it is
important to manage routing and scheduling in an integrated
way. The multigraph representation makes this possible by
including the choice of speed profiles as discrete decision
variables. A series of connected arcs in a multigraph can
represent a trajectory, describing the movement of the vehicle
in terms of time (hence scheduling) and space (hence rout-
ing), whereas a route only describes the movement in space.
The need for an integrated routing and scheduling approach
applies to the airport ground movement problem [6], maritime
transportation [7], train operations [8] and the transportation of
hazardous materials [9]. The multigraph modelling approach
has also been employed for the vehicle routing problem [10]
and multimodal transportation [11].

The Multiobjective Shortest Path Problem (MSPP) is NP-
hard even on simple graphs without time constraints [12].
The multigraph approach further increases the size of the
search space and its associated computational complexity.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

Empirical results support the high computational complexity
of the airport ground movement problem. The best performing
algorithm for this problem, AMOA* [4], could not provide
solutions for some aircraft in a reasonable time frame, while
earlier algorithms [3], [13], [14] showed lower solution quality
because of their use of less detailed modelling approaches. In
practical settings, finding a good representation of the Pareto
front in a given time budget is often important. Metaheuristics
are popular for this reason compared to exact approaches.
In addition, as the costs of the same arc can be different
depending on its predecessors, the costs no longer satisfy the
additivity property (detailed in Section III-D). Most exact ap-
proaches rely on such a property to prune dominated solutions
while maintaining optimality. Metaheuristics are able to find
better solutions that exact algorithms are not able to find when
the additivity property does not hold.

Genetic algorithms (GA) are metaheuristics that have been
widely applied to the MSPP [15], [16], [17], [18], and
to multimodal transport problems [19], [11]. Previous work
explored different representation schemes for the multigraph
MSPP in artificial problem instances without time constraints
[20]. Time constraints call for the incorporation of additional
constraint management techniques. When using constraints, it
is widely accepted that GAs require a considerable amount
of resources to calculate a suitable approximation of the
solution. A natural way to improve the convergence properties
of GAs is to include a local search procedure [21], [22], [23].
This procedure explores the search space around a specific
candidate solution. By employing this mechanism, the local
information of the selected solution is exploited, giving a
new and improved solution. Then, this improved solution is
incorporated into the population.

In light of these observations, we propose a Memetic
Algorithm for Routing in Multigraphs with Time constraints
(MARMT) for the Airport Ground Movement problem, and
the family of problems it represents, with variants based on
different solution encoding schemes. All variants of MARMT
are based on non-dominated sorting [24]. Our focus is on the
design of a local search operator and a constraint handling
scheme, in addition to a comparison of the different encoding
schemes used for MSPPs. Our results are also compared to a
state-of-art exact (enumerative) solution approach [4].

The main contributions include the following: (i) MARMT
is developed for the multigraph MSPP with time windows.
Three different genetic representation methods are adapted to
the problem and compared. MARMT is shown to handle a
higher number of parallel arcs and the non-additivity property
of the costs more effectively than the enumerative approach.
(ii) A local search operator is proposed based on single
objective search with a varied weight vector for aggregating
different objectives. Integrating the local search operator into
the metaheuristic significantly improves solution quality as
measured by multiple quality indicators. (iii) MARMT is
tailored to a representative real-world application (the airport
ground movement problem), and is tested on real-world data.
(iv) Constraints related to aircraft movements and time win-
dows are incorporated into the algorithm. A mixed approach
is proposed for constraint-handling based on fitness penalties

and preserving feasibility.
The remainder of this paper is structured as follows. The

background is presented in Section II. The airport ground
movement problem is described in Section III. The proposed
representations, operators and constraint-handling schemes are
described in Section IV. Implementation details are given in
Section V and our results are discussed in Section VI. Finally,
concluding comments are presented in Section VII.

II. BACKGROUND

A. Solution approaches for MSPP

1) Enumerative algorithms: The three main categories of
MSPP algorithms are: ranking methods, two-phase methods
and labeling methods. Ranking methods [25] for the bi-
objective case generate a specified number of shortest paths
in non-decreasing order regarding one of the objectives, and
eliminate dominated solutions. Two-phase methods [26], [27]
first list solutions that can be found by aggregating objectives,
and then explore a restricted search space in the second
phase to find the remaining Pareto optimal solutions. Labeling
methods, including label setting [28] and label correcting [29]
represent a multiobjective generalisation of the single objective
approach inspired by Dijkstra [30]. The efficiency of the above
approaches has been compared empirically in [27], where
labeling methods and two-phase methods were found to be
the best in most cases.

Extensions of labeling algorithms based on the A* algo-
rithm [31] such as The New Approach to Multiobjective A*
(NAMOA*) [32] are able to make use of heuristic information
and accelerate the optimisation process for the MSPP, while
still finding the whole Pareto front, assuming additive costs.

The above approaches are not guaranteed to find optimal
solutions if the costs are non-additive, or if time constraints
are present. In both of these cases, a partial solution that is
dominated by some other partial solutions is discarded, even
though it might have turned out to be part of a global Pareto
optimal solution. In the case of time constraints it might be
impossible to complete the dominating partial path without
violating time constraints, or satisfying the time constraints
might entail additional costs. The case of non-additivity is
explained in Section III-D.

There is a lack of studies of the general case of MSPP with
time constraints. In [33], the four reviewed studies about the
shortest path problem with time windows [34], [35], [36], [37]
are all from the last century. Moreover, these studies are single
objective, and a single finite time window was assigned for
each node in the network, which is a great simplification of the
general problem. Examples of ranking and labeling methods
proposed for the MSPP with time constraints for the airport
ground movement problem are reviewed in Section II-B.

2) Metaheuristic algorithms: Several studies applied GAs
to shortest path problems with various representation methods,
including direct variable length [38], direct fixed length [39],
random keys [40] and integer-valued priority [41] represen-
tations. In general, it is hard to determine which one of
these representations is more favourable than the others, as
echoed in [20] that suitability depends on the instance at

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

hand. The representation scheme determines the search space
to be explored and the available evolutionary operators for
exploration. Therefore, the choice of the representation method
can influence the effectiveness of the search [42].

The direct variable length representation [38] has been
employed for the MSPP by multiple authors [16], [43], [17].
A chromosome based on this representation lists nodes of
a solution path directly. Its greatest advantage is the one-
to-one mapping from solution paths to chromosomes, which
avoids creating unnecessary plateaus in the search space. Its
disadvantage is the possibility of loop formation in crossover
and that for some pairs of parents, the crossover operator might
not be able to produce any novel candidates.

The two priority based representations are the integer-valued
priority representation [44], [41] and random keys [45]. The
random keys representation employs floating-point numbers
as priorities. In both representations, a path is encoded by
assigning a priority value for each of the nodes in the graph.
The path can be decoded from the priority values by starting
at the origin node and each time moving to the neighbouring
node with the highest priority that has not yet been visited.
The main advantage of priority based representations is that
any priority values can be decoded to a path, and that crossover
can be applied to any pair of parents. A disadvantage is that
these representations offer one-to-n mapping, thereby forming
plateaus in the search space. The random keys representation
has a higher ambiguity than the Integer valued priority repre-
sentation, suggesting larger plateaus.

The direct fixed length representation specifies the next node
to visit at every node. The path is decoded by following
the pointers to neighbouring nodes from the origin node.
The length of the chromosomes is equal to the number of
nodes in the graph. Consequently, this is also a one-to-n
mapping, with generally less ambiguity than the priority based
representations.

The above representations have been adapted for the multi-
graph MSPP in our previous work [20], with further adaptation
required for the airport ground movement problem. Without
time constraints, we found that different representations are
best for different artificial problem instances, depending on the
network type. Therefore, it is worthwhile to further investigate
multiple representations for constrained problems.

Constraint handling for multiobjective evolutionary algo-
rithms is an active area of research, with most studies focused
on balancing the search between the feasible and infeasible
regions, and having as the main source of difficulty the
high numbers of objectives and/or constraints [46]. Penalty
functions are the simplest and perhaps the most widely applied
methods. They can be sufficient for multiobjective problems
with fewer constraints [47]. However, they are thought to be
less suitable for handling a high number of constraints, be-
cause tuning the penalty function is difficult. For combinatorial
problems, preserving feasibility and repair mechanisms are
also popular choices to limit the search space. Therefore, a
mixed approach is proposed in this paper.

Memetic algorithms (MAs) complement the evolutionary
process with a local search process [21], [22]. MAs have been
a popular extension of GAs, which aims to avoid premature

convergence and guide the population towards promising areas
of the search space. An MA approach was proposed for
the dynamic shortest path problem in simple graphs in [19].
In local search, all possible alternative partial routes were
enumerated that might replace a single arc in a route, and the
one that dominated the highest number of other alternative
routes was chosen. The disadvantage of this approach is that
it only replaces a single arc, and the number of alternative
routes might be very high, especially in a multigraph.

B. Airport ground movement problem

The airport ground movement problem is concerned with
routing and scheduling aircraft between gates and runways
in an efficient and safe way. Airports are often overloaded.
Multiple departing and arriving aircraft are on the taxiways
at the same time, resulting in a complex and interconnected
transportation system. Airport ground movement efficiency
can be evaluated according to multiple objectives. The two
most important are taxi time and fuel consumption, although
other objectives such as emissions can also be considered [6].

Studies concerning the ground movement problem can be
separated into two main categories: the sequential approach
and the global approach. In the sequential approach, aircraft
are routed in the order of their starting times, where the
trajectory of the already routed aircraft needs to be respected
by later aircraft. The global approach, on the other hand,
considers the order of the aircraft as a decision variable, and
usually assigns routes to aircraft from a predetermined set
of routes in an attempt to ensure that the complexity of the
problem is manageable. In this paper, the sequential approach
is considered.

Earlier studies [13], [14] suffered from multiple limitations,
such as considering only a single objective and assuming a
constant speed for calculating traversal times. Single objective
approaches cannot provide the available trade-offs in a single
run. Realistic calculation of the traversal times is essential to
provide the decision maker with accurate information and to
allow good conformance during the execution stage.

A multiobjective approach (k-QPPTW) was studied in [3].
However, a decomposition method was applied to separate
the routing and scheduling aspects of the problem. Realistic
speed profiles are only considered for the scheduling com-
ponent, while constant speeds are assumed for the routing
component. Thus, only a limited number of routes are being
explored for the scheduling component, which compromises
solution quality compared to an integrated approach. Signif-
icant improvements were achieved regarding both taxi time
and fuel consumption by Chen et. al. with the Active Routing
trajectory-based ground movement operations framework [48],
[6], by managing routing and scheduling in an integrated way,
with realistic speed profiles.

Weiszer et. al. adapted the NAMOA* algorithm [32] for
solving the ground movement problem. The introduced al-
gorithm, AMOA* provided 5-16% improvements for the ob-
jective values on the considered test data compared to other
baseline algorithms. This improvement can be attributed to the
integrated routing and scheduling and using AMOA* instead

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

of the k-shortest path algorithm. However, in some cases,
especially for larger airports and for a higher number of
parallel arcs, the running times of AMOA* can be unaccept-
able. Multigraph reduction was hence proposed [4] to decrease
the search-space, with some compromise on solution quality.
AMOA* also suffers from the problem of non-additivity.

As pointed out in [4], a metaheuristic solution approach can
scale better to a higher number of parallel arcs. Furthermore,
there is no requirement for the costs to satisfy the non-
additivity property [49] (see Section III-D).

C. Other real-world applications

The multigraph MSPP is a relevant problem related to
many real-world transportation systems. Some of these have a
heavier routing component, such as multimodal transportation
problems; others have a heavier scheduling component, such
as urban rail transit. The common features of such problems
are the presence of multiple objectives, the availability of
alternative trajectories between the same two points and the
interactions between different vehicles, such that the optimal
solutions for individual vehicles do not necessarily result in
system level optimality. Interactions can be modelled through
time constraints.

One of the problems where the multigraph model has shown
to be valuable is time-constrained vehicle routing. Using a
multigraph model for an on-demand transportation problem
reduced the associated costs compared to a simple graph model
[10]. A similar approach was followed by multiple authors in
vehicle routing problems [50], [51].

Optimising speed profiles and timetables in an integrated
way in urban rail transit can also be conceptualised through a
multigraph, providing significant energy savings [8]. In urban
rail transit, vehicles interact not only through inflicting time
constraints on each other, but through regenerative braking,
which entails synchronization of the accelerating/braking ac-
tions.

Optimal speed control of individual electric vehicles taking
into account queues at intersections is studied in [52]. It is
pointed out in [52] that optimising for individual vehicles
might compromise system level efficiency. However, this was
not investigated. For the system level study, a multigraph
approach can be used, where alternative speed profiles are
included for each vehicle for each leg of its route.

In marine transportation, the speed of a ship is optimised
concerning fuel price and travel time [53]. It has also been
shown that the optimal route depends on the optimised ob-
jective [54], suggesting that maritime transportation problems
can also be modelled through a multigraph. Routing and
speed decision problems for fleets of ships are a recent
area of research [7], where a similar routing and scheduling
framework such as the one proposed in this paper might be of
great use.

Multimodal transportation problems [11], [55] and ride-
sharing problems [56], [57] concern routing passengers or
goods in a network where multiple modes of transport are
available for the same leg of a route. The multigraph represen-
tation is natural to such problems. Travel time and economic

cost are usually relevant objectives. Time constraints stem
from timetables, which can be adjusted to target system level
optimality (e.g., balancing congestion and customer demands).

Efficiently solving the multigraph MSPP with time windows
is relevant for all the above applications, as there is a benefit
in formulating them as multigraphs. Time constraints are also
often included due to other vehicles moving in the same
transportation system, traffic signals or contracts. Therefore,
MARMT can be adapted to these problems, by specifying
the application specific parts of the problem: the graph that
describes the transportation system, the conditions of feasible
solutions and the objective functions.

III. AIRPORT GROUND MOVEMENT AS A COMBINATORIAL
OPTIMISATION PROBLEM

The ground movement problem is decomposed into a series
of MSPPs on multigraphs by the framework introduced in [6].
Realistic speed profiles are precomputed for certain sections
of taxiways based on their geometry, called segments (defined
in Section III-C). The speed profiles and the corresponding
costs are stored in a database, saving computational time
[58]. Trajectories for each aircraft can then be defined by
consecutive segments with a specified speed profile between
the origin (vO) and destination (vD) nodes, or equivalently, by
specifying a path in the multigraph. The physical constraints
of aircraft manoeuvring such as the maximum speed and
acceleration rate are handled by the speed profile generation
algorithm [58].

A. Sequential routing of aircraft

Aircraft are routed on a first come first served basis se-
quentially, as described in Algorithm 1 [4]. The corresponding
notations are explained in Table I. In Line 3, a set of non-
dominated solutions Θi is found by procedure Route, which
can be based on any MSPP solver algorithm. Here, we
consider AMOA* and MARMT (see Section IV). In Line
5, Aircraft are held at the gate for 1 min before Route is
reattempted if no solutions are found. We do not consider
holding during taxiing.

Algorithm 1 Sequential routing of aircraft
1: Sort AircraftSequence according to ti
2: for all aircrafti ∈ AircraftSequence do
3: Θi ← Route(aircrafti)
4: if Θi is empty then
5: ti ← ti + 60s {1 min postponement}
6: Go to line 3
7: end if
8: θ ← Preferred solution from Θi

9: Reserve route θ and adjust corresponding time constraints
10: end for

Even though only a single trajectory is realised by the
current aircraft, it is important to find the whole Pareto
front or a good approximation of it. This ensures that the
Decision Maker (DM) gets accurate information about the
available trade-offs. In general, the most suitable solution is
identified by the DM through an economic lens, taking into
account conflicting interests among different stakeholders and
the current operational situation [6]. Our primary interest is

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

TABLE I
NOTATIONS.

Notation Description Notation Description
aircrafti The ith aircraft G = (V,A) Speed profile graph (multigraph), V ⊂ V0

ti Start time of aircrafti vO Origin node
θ A trajectory vD Destination node
Θi Set of feasible trajectories with non-dominated

cost vectors found for aircrafti
u Number of considered speed profiles in multigraph

reduction
θ(nodes, indices) The trajectory defined by nodes and indices (v, w)k ∈ A The kth arc between nodes v and w in G
w1, w2 Weights of the first and second objective when

choosing a trajectory for aircrafti from Θi

I(e, (v, w)) The set of indices k, such that speed profile (v, w)k is
a valid continuation of the route r with last edge e

pred((v, vi+1), θ) Predecessor edge of segment (v, vi+1) in θ c(v,w)k=(c1, c2) Cost vector associated with speed profile (v, w)k

Route The routing procedure that finds trajectories c1 Cost component associated with taxi time
G0 = (V0, E) Layout graph (simple graph) c2 Cost component associated with fuel consumption
ei ∈ E An edge in the layout graph C(θ) Sum of cost vectors associated with trajectory θ
Fe =
{(te,i,start, te,i,end) |
0 < i <| Fe |}

Set of time windows assigned to edge e M Priority based chromosome. For node v, M1,v encodes
the priority value and M2,v encodes parallel arc index

to solve the routing problem for each aircraft efficiently. For
this reason, we use a simple strategy to simulate the role of a
DM. Out of Θi, the realised trajectory is chosen according to
a weighted sum of the costs, such that w2 = 1− w1.

The airport ground movement problem for a given aircraft
can be described by two graphs, one depicting the layout of the
airport and the other one depicting all possible speed profiles
for a given aircraft. These two graphs are described below.

B. The layout graph

The layout graph contains the geographical information
about all available taxiways in the airport. The layout graph
is a directed graph G0 = (V0, E), where the set of nodes
V0 represent gates, stands, runway exits, taxiway intersections
and intermediate points. Intermediate points are distributed in
such a way that taxiways between two nodes in the layout
graph are at most as long as the minimum safe separation of
the aircraft. This minimum safe separation is set to 60m [4].

In line with the established terminology for ground move-
ment operations, the sections of taxiways between two nodes
in G0 are called edges E = {e1, e2, ..., e|E|}. To avoid
confusion, in this paper we refer to arcs of graphs when we
use the term in general and reserve the term “edge” only for
the airport layout graph.

Edges are used to govern the scheduling component of the
problem as multiple aircraft move on the airport ground at
the same time. Avoiding conflict between aircraft is ensured
by (1) allowing at most one aircraft at a time on each edge
and (2) allowing no aircraft on edges that are conflicting with
an occupied edge at any time. The set of conflicting edges
with edge e consists of e′, such that the distance of e and
e′ is smaller than the minimum safe separation (as measured
along taxiways). To keep track of the occupation of the edges,
a set of time windows (Fe) are assigned to each edge. Time
windows correspond to time intervals when the edge is not
occupied and not conflicting with occupied edges.

C. The speed profile graph

Before turning, aircraft generally slow down, and then ac-
celerate after turning. Thus, it makes sense to group sequences

of edges depending on their geometry. For this reason, speed
profiles are modelled as straight and turning segments as
defined in [59], [3]. An edge belongs to a turning segment if
its angle with the previous edge in the trajectory (predecessor
edge) is above 30 degrees. Otherwise, it belongs to a straight
segment. Sequential edges of the same type are grouped
together. The segments are generated in such a way as to cover
all possible edge sequences in the layout graph [58].

The speed profile graph G = (V,A) stores information
about the pre-computed efficient speed profiles for all seg-
ments. For the same segment, multiple alternative speed pro-
files are possible. Therefore, G is a multigraph . The nodes of
G are the endpoints of segments, V ⊂ V0, V = {1, 2, ...|V |}.
Arcs in G are associated with a sequence of edges in G0. The
arcs (v, w)k ∈ A are defined by their endpoints v, w ∈ V
and a parallel arc index 1 ≤ k ≤ |A(v,w)|. Arcs imply speed
profiles, and thus the predecessor edge to the segment (v, w)
in a given trajectory θ affects which speed profiles out of
{(v, w)1, ...(v, w)|A(v,w)|} are available in θ. The set of indices
of speed profiles between nodes v and w that can follow a
given predecessor edge, e, are denoted by I(e, (v, w)).

There is a cost-vector associated with each speed profile
c(v,w)k = (c1, c2), which describes the taxi time (c1) and fuel
consumption (c2). Speed profiles of the same type (straight
or turning) for the same segment can be thought of as a cost
matrix, which includes non-dominated cost-vectors as its rows.

The number of alternative speed profiles considered for each
segment greatly influences the size of the search space. For this
reason, multigraph reduction techniques are introduced in [4]
to reduce the number of speed profiles from the database. In
this paper, we employ the multigraph reduction technique that
keeps the first u speed profiles. It is important to note that the
number of parallel arcs in G can sometimes be different than
u for some pairs of nodes. This is because, in rare cases, two
segments might connect the same two nodes, but use different
edges. An example of this is shown in Figure 1. In this case,
there will be u speed profiles for each straight (angles below
30 degrees) segment between the same nodes. All of those
speed profiles show up in G, which leads to 2u parallel arcs
between some pairs of nodes.

The speed profiles and costs also depend on the weight

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

Fig. 1. Source of inhomogeneous numbers of parallel arcs in G.

Fig. 2. An illustration of the non-additivity. The segment 4-5 is a turning
segment, when approached via segment 3-4, and is a straight segment when
approached via segment 2-4. Depending on the direction, the cost-vector of
segment 4-5 is different; a turning segment is more costly. It is possible that
up to node 4, the trajectory via node 3 dominates the trajectory via node 2,
while up to node 5, the trajectory via node 2 dominates.

category of aircraft. If a segment is the first or last one in a
trajectory, it implies greater acceleration or deceleration than
if it is in the middle. Therefore, speed profile graphs differ
based on the weight category of the aircraft. However, within
the same weight category, the difference is small and can be
quickly modified before routing each aircraft.

D. Non-additivity of costs

Straight or turning speed profiles can be associated with
the same segment. Which speed profiles are appropriate is
determined by the predecessor edges of partial trajectories.
This leads to costs being non-additive. Labelling approaches
for the MSPP only find all possible solutions when the costs
satisfy the additivity property because they eliminate domi-
nated partial solutions. Metaheuristic approaches can easily
overcome this challenge. Figure 2 shows a detailed example.
It was found that 1.72% of parallel arc pairs exhibit the non-
additivity property [4].

E. Problem description for a single aircraft

The focus of this paper is solving the multigraph MSPP
with time windows for a single aircraft. The description of
this problem is provided next.

The inputs to the multigraph MSPP with time windows are:
(1) the airport instance (G, G0, including pred, I , vO, vD, c),
(2) the current state of the time windows (F), (3) the aircraft
being routed (aircrafti), and (4) the number of speed profiles
(u) considered in multigraph reduction.

A solution, trajectory θ ∈ Θi for aircrafti can be specified
as a path in G (multigraph). In general, θ has the form:

(v1, v2)
k1 , (v2, v3)

k2 , . . . , (v|θ|−1, v|θ|)
k|θ|−1 , (1)

s.t. (vj , vj+1)
kj ∈ A, ∀j ∈ (1, 2, . . . , |θ| − 1) (2)

The cost-vector of a feasible trajectory θ can be calculated
according to Equation (3).

C(θ) =
∑

(vj ,vj+1)k∈θ

c(vj ,vj+1)
kj . (3)

We are looking for a set of feasible trajectories Θi with Pareto
optimal costs. A solution θ1 is said to be Pareto-optimal if
another solution θ2 does not exist, such that θ2 is at least as
good as θ1 according to both objectives and better according
to at least one objective.

However, not all paths in the multigraph correspond to
a feasible trajectory. The following constraints need to be
satisfied:

1) Satisfy predecessor edges. kj ∈ I(e, (vj , vj+1)), ∀j ∈
(1, 2, . . . , |θ| − 1), where e = pred((vj , vj+1), θ)

2) Satisfy time windows. For each edge e in trajectory θ,
there exists a time window tw ∈ Fe, such that the
traversal period of edge e according to θ falls into tw.

3) Not containing any loops in the layout graph. vi ̸= vj
if vi, vj ∈ θ for all vi, vj ∈ G0.

4) Comply with the origin node and the destination node.
vO = v1 and vD = v|θ| .

Constraint 1 ensures that the trajectory describes a realistic
speed profile in terms of acceleration and deceleration. Con-
straint 2 ensures the trajectory complies with the time windows
of each edge. Constraint 3 prohibits routes with loops in G0,
as a practical consideration. Although loops could be a way
of achieving compliance with time windows, holding before
taxiing or during taxiing is generally a better choice. Note that
this is a stronger statement than v1, v2, v3 . . . , v|θ|−1, v|θ| being
all distinct, which only concerns the end nodes of segments.
Constraint 4 ensures that the end points of the trajectory are as
required. Constraints 1 and 2 are highly specific to the ground
movement problem. In other applications, time constraints
might be defined for nodes or for arcs of the multigraph.

IV. OUR PROPOSED MEMETIC ALGORITHM: MARMT

MARMT is presented in this section with three variants
based on one direct and two indirect representation methods.
MARMT is based on non-dominated sorting and binary tour-
nament selection with crowded-comparison [24]. However, it
can be easily modified to use other multiobjective evolutionary
strategies [60], [61]. The operators are performed in the
following order: mutation, crossover and local search. Thus,
the diversity of the population is increased before crossover
and the results of local search always reach evaluation without
further modification. We do not investigate the direct fixed
length representation. The specified next node, in general,
cannot be guaranteed to be a valid continuation of the trajec-
tory. Therefore, evolutionary operators are expected to often
lead to invalid offspring. In comparison, in priority based
representations, the priorities specify an order between the
neighbours of any given node. If the neighbour with the
highest priority is not a valid continuation, the neighbour with
the second highest priority can be used, and so on.

A. Search based on direct variable length representation

The direct variable length representation specifies a trajec-
tory by listing node IDs (v) to form a path in the speed profile
graph (G) and the corresponding parallel arc indices (ki) in
the following form: [v1, k1, v2, k2, ...v|θ|].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

Fig. 3. Direct crossover in multigraphs. Example I. shows an ideal crossover
akin to the simple graph case, with novel node sequences in the offspring.
Example II. shows the lack of an ideal crossing site with distinct parent node
sequences. Example III. shows parents with identical node sequences.

1) Decoding: Decoding a candidate to a trajectory in G
is straightforward, with the exception of handling Constraint
3. Once the decoding reaches a speed profile that includes
an edge with an end node already in the decoded part of
the trajectory, the decoding is stopped to avoid a loop. The
already decoded part is returned, which will be penalised for
not reaching the destination node in fitness evaluation (see
Section IV-D). Repair in general would be difficult, because
the search process operates at the level of segments (G), while
repeated nodes appear at the level of edges (G0).

2) Mutation: A node in the candidate path is chosen at
random. Then, part of the chromosome is regenerated by a
random walk starting from the chosen node, taking predecessor
edges into account.

3) Crossover: A modified one point crossover is adopted
[38], which is illustrated in Figure 3. The crossover operator
is based on finding crossing sites between two parents. A
crossing site is one node or a list of sequential nodes that
appear in both parents other than vO or vD. If there are
differences in the node sequences of the parents both before
and after a given crossing site, the node sequences of the
offspring can be different from both parents. We call these
crossing sites ideal crossing sites.

In simple graph problems, crossover can only be conducted
if there are ideal crossing sites. Figure 3 (I) shows an example
of an ideal crossing site, which does not appear in (II) and
(III). In multigraph problems, the offspring may be different
from the parents, as long as the parents have differences in
ki (see Figure 3 (III)). Algorithm 2 describes the different
cases for the crossover process. The cases are based on the
comparison of the two parents, which determines how the
crossing site is chosen. When the parents are identical, a
crossover is not possible. If only the node sequences are
identical, a crossover can be performed at a randomly chosen
site (Line 3), as shown in Figure 3 (III). If the node sequence
of the parents differs, ideal crossing sites are tried first (Line
7). If none of the ideal crossing sites produced offspring
satisfying Constraint 1, other crossing sites are considered.

Algorithm 2 CrossoverOutline(parent1, parent2)
Input: P1 := parent1,P2 := parent2
Output: ch1, ch2 := Offspring
1: if node sequences of P1, P2 are identical then
2: site← randomly chosen node from P1

3: ch1, ch2← Recombine(P1, P2, site)
4: else
5: sites← crossing sites
6: idealSites← ideal crossing sites out of sites
7: for all site in idealSites do
8: ch1, ch2← Recombine(P1, P2, site)
9: if at least one child is feasible then

10: break
11: end if
12: end for
13: if there is a crossing site adjacent to vD then
14: site← crossing site adjacent to vD

15: ch1, ch2← Recombine(P1, P2, site)
16: else if there is a crossing site adjacent to vO then
17: site← crossing site adjacent to vO

18: ch1, ch2← Recombine(P1, P2, site)
19: else
20: ch1, ch2← P1, P2

21: end if
22: end if
23: return ch1, ch2

There can be at most two of these, one adjacent to vO and
one to vD (Lines 18 and 15. respectively). In this application,
a repair mechanism aimed at eliminating loops is not enough
to ensure feasibility of the offspring, as Constraint (1) can
still be violated. Therefore, when a potential crossing site is
found in Algorithm 2, the next step is to execute the modified
one-point crossover according to Algorithm 3 to remove any
loops from the offspring and check for violation of Constraint
1. If a violation occurs, the part up to the violation site is
returned as a new candidate (Line 6 of Algorithm 3), which
will be penalised in its fitness assignment accordingly. Note
that in applications without Constraint 1, removing loops is
sufficient.

Algorithm 3 Recombine(parent1, parent2, site)
Input: P1 := parent1,P2 := parent2, site
Output: ch1, ch2 := Offspring
1: ch1← P1 up to site, and P2 from site
2: ch2← P2 up to site, and P1 from site
3: Remove loops from ch1, ch2 {regarding speed profile graph}
4: for all speed profile in chi for i = 1, 2 do
5: if speed profile violates predecessor edges then
6: Remove nodes from the chi starting from the end node of the speed profile
7: end if
8: end for
9: return ch1, ch2

4) Local search procedure: Local search operators in
memetic algorithms improve some candidate solutions in
the population with some probability in each iteration. The
improved candidates can give a jump start to the evolutionary
process through crossover with other individuals. Local search
is costly in terms of computational resources and running time,
and might lead to premature convergence. Therefore, it should
be employed infrequently. The local search operator employed
in this work is based on Dijkstra’s algorithm [30], as single
objective shortest path problems can be solved efficiently by
exact algorithms. The complexity of Dijkstra’s algorithm is
O(E ∗ log(n)), where n is the number of nodes and E is
the number of arcs. In the local search, the objective values
are aggregated to a single objective with a random weight.
A single objective shortest path respecting time windows is

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

found between two randomly chosen nodes in a candidate, and
the newly found partial solution replaces the part between the
two nodes of the original candidate. The part of the trajectory
being overwritten cannot be longer than a certain percentage
lrel of the whole length measured in hopcounts. We also avoid
local search in the case of trajectories shorter than a certain
minimum length lmin. If no solution is found by the local
search, the initial part of the candidate is returned, up to the
node from where the local search is started. The solution will
be highly penalised for not reaching the destination in the
fitness evaluation, as explained in Section IV-D. The above
local search process can be easily incorporated into the direct
representation but not into other representations, as explained
in Section IV-B.

B. Search based on priority based representations

Priority based representations encode paths indirectly as
a priority value assigned to each node. For integer-valued
priority representation, chromosomes are permutations of the
first n integers. For random keys representation, priority values
are floating-point numbers. The priorities only encode paths,
to encode trajectories, parallel arc indices are also needed. As
seen in Section III-C, |I(e, (v, w)| depends on nodes v and w
and the predecessor edge. Unlike the direct representation, the
offspring might include segments that are not in any of the
parents. The parallel arc index inherited from a parent may be
higher than the number of available parallel arcs for a given
segment, and thus the solution would be infeasible. For this
reason, we use an indirect way of encoding parallel arcs so
that the decoded parallel arc indices will always be feasible
[20]. A chromosome for the priority based representations for
multigraph problems can be conceptualised as a 2 by n matrix
M . M1,v is the priority value for node v. M2,v is a real number
between 0 and 1 that determines the parallel arc to be used
when leaving node v. The index of the parallel arc to be used
when leaving node v towards node w with predecessor edge
e, can be calculated as ⌊M2,v ∗ |I(e, (v, w)|⌋+ 1.

1) Decoding: The decoding process iteratively finds the
neighbour with the highest priority among the ones satisfying
Constraints 1 and 3, and adds them to the decoded trajectory.
The process is detailed in Algorithm 4. The loop in Lines 4-
15 first identifies the allowed neighbour list (Line 6) that
consists of the nodes that are (1) directly reachable from
the last node of the already decoded part of the trajectory,
(2) do not introduce loops in G0 and (3) satisfy predecessor
edges. If there are no such nodes, the already decoded part
is returned (Line 8). Otherwise, the node with the highest
priority is identified, and the lists nodes and indices defining
the trajectory are updated (Lines 12 and 15).

2) Mutation: Insertion mutation is employed for both prior-
ity based representations. A randomly picked gene (a random
column in M) is removed from the chromosome and inserted
back at a new random locus. The loci of genes between
the place of removal and insertion change accordingly. The
process is illustrated in Figure 4.

3) Crossover: For the Integer priority representation,
Weight Mapping Crossover (WMX) [41] is adopted, which has

Algorithm 4 DecodingPriorityBased(M)
Input: M := priority based chromosome
Output: nodes, indices
1: nodes← list with a single element: vO
2: indices← empty list
3: predEdge← None
4: while Last element of nodes ̸= vD do
5: neighbours← Set of nodes reachable from last element in nodes in G
6: allowed← Set of nodes in neighbours /∈ nodes, {fulfill the predEdge,

and do not introduce loops in G0}
7: if allowed = ∅ then
8: return nodes, indices
9: else

10: prevNode← Last element of nodes
11: nextNode← Node with maximum priority in allowed according to M
12: nodes = nodes ∪ nextNode
13: x←| I(predEdge, prevNode, nextNode) |
14: currentIndex← ⌊M2,prevNode ∗ x⌋+ 1
15: indices = indices ∪ currentIndex
16: predEdge = pred((prevNode, nextNode), θ(nodes, indices))
17: end if
18: end while
19: return nodes, indices

Fig. 4. Illustration of insertion mutation.

Fig. 5. Illustration of WMX for the matrix chromosome.

been proposed specifically for the MSPP. In the integer priority
representation, chromosomes are always a permutation of the
first n integers. Therefore, the original one point crossover
cannot be used. WMX reorders part of the priorities in a
chromosome according to the order of the corresponding
priority values in another chromosome. For the random keys
representation, 2-point crossover is used, as it was found to
be the most efficient in [62]. WMX and 2-point crossover
operates on priority values, the first row of M . We perform
2-point crossover on the columns of M , so that the priority
value and the parallel arc for a given node is derived from the
same parent. In WMX, if the priority of a node changes, the
parallel arc indicator also changes as illustrated in Figure 5.

4) Integrating local search to priority based representation:
Dijkstra’s algorithm operates on a direct representation of
the graph. It cannot be used directly with priority based
representations. Therefore, priority-based chromosomes are
decoded before local search, and converted back afterwards.
Algorithm 5 takes the node sequence (nodes) and the index
sequence (indices) as its input, both of which define the
trajectory. It returns a priority-based chromosome, a 2 by n
matrix, M , that encodes the trajectory specified in the input.
In Lines 3-8, the priorities of the nodes that appear in the
trajectory are set. These priorities are increasing from the
destination node towards the origin node. This ensures that in
the decoding process, the neighbour with the highest priority
is the next node in the trajectory for each node, as all other

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

unvisited nodes in the graph have lower priorities. In Lines 9-
13, the remainder of the genes use the lower priority values,
and random parallel indices. Converting to random keys is
similar, apart from the priority values being floating point
numbers.

Algorithm 5 directToPriority(nodes, indices)
Input: nodes, indices
Output: M := priority based chromosome
1: n← number of nodes in G
2: priority ← n
3: for i← 1 to | nodes | do
4: M1,nodes[i] ← priority
5: predEdge← predecessor edge for segment nodes[i], nodes[i + 1]

6: M2,nodes[i] ←
indices[i]

|I(predEdge,(nodes[i],nodes[i+1])|
7: priority ← priority − 1
8: end for
9: for j ← 1 to n do

10: if M1,j is not yet specified then
11: M1,j ← priority
12: M2,j ← Random floating-point number ∈ [0, 1]
13: priority ← priority − 1
14: end if
15: end for
16: return M

C. Initialisation

Heuristic initialisation is used from our previous work [62].
Initial solutions are generated semi-randomly through priority
values that specify a random walk with a bias to get closer to
vD. The process starts from the random keys representation, as
a chromosome from this representation is readily convertible
to the other two. M2,v are initialised randomly between 0 and
1. Each node v ∈ G is assigned a priority value according to:

M1,v = −h(v, vD, G) + τ, τ ∈ (0, τmax). (4)

M1,v depends on the hopcount (the minimum number of
edges in a path) from the destination node and a parameter
τmax. The hopcount between nodes v and vD in G is denoted
by h(v, vD, G), and τmax represents the maximum value of
the randomisation coefficient τ . The likelihood of detours
appearing in the decoded paths is controlled by the parameter
τmax. The greater the value of τmax, the more random
the priorities are, and the less prominent the effect of the
heuristic initialisation is compared to random initialisation.
The hopcount information can be calculated beforehand, as it
uses a simple graph and does not rely on the cost vectors and
time constraints. Therefore, it does not increase computational
time.

D. Fitness function and constraint handling

For any valid solution, fitness is defined over the objective
functions to minimise. For invalid solutions, trajectories that
do not reach vD, or violate time windows, we apply static
penalties [63]. The severity of the penalty, and how much
the violation of each constraint contributes to it, is controlled
through weights. The fitness assignment including penalties
is described in Algorithm 6. The cost vector of trajectory
θ is calculated according to Equation (3) (Line 1). To get
the fitness value of θ, the penalties need to be added for
violation of Constraints 2 and 4. The maximum value of any

cost component in any speed profiles in G, maxCost is used
to establish the magnitude of the penalties (Line 2). When
not reaching vD, the level of violation is measured as the
minimum distance of θ and vD (Line 3). When violating time
windows, the level of violation is measured as the number
of time-windows violated (Line 4). The level of constraint
violation and maxCost are multiplied to give the base penalty,
p0.

We set up four weights respectively for the two objectives
and two constraints, α1, α2, α3, α4. These weights for the
penalty function were tuned by irace [64], and their values
are set to be 1, 7, 5, 3 respectively. The weights are applied in
Lines 7 and 11. One possible advantage of this weight set-up
is that the first objective value is penalised more for violating
time windows and the second for not reaching the destination.
Therefore, the population can be expected to not be biased
towards any of the two constraints.

Algorithm 6 FitnessAssignment(θ)
Input: θ := trajectory to be evaluated
Output: fitness := fitness value
1: fitness← C(θ)
2: maxCost← Maximum value of any cost component in G.
3: minHop← Hopcount between θ and vD
4: conflicts← The number of time window violations
5: if vD ̸= v|θ| then
6: p0 ← maxCost ∗minHop
7: fitness← fitness + (p0 ∗ α1, p0 ∗ α2)
8: end if
9: if conflicts > 0 then

10: p0 ← maxCost ∗ conflicts
11: fitness← fitness + (p0 ∗ α3, p0 ∗ α4)
12: end if
13: return fitness

V. IMPLEMENTATION DETAILS

All numerical tests are performed on Queen Mary’s Apoc-
rita HPC facility [65]. The methods are implemented in Python
3, and the inspyred package [66] was used for the evolutionary
computation. Parallelisation has not been utilised. The variants
of MARMT are the following: Direct (D), Integer Priority
(IP) and Random Keys (RK), as discussed in Section IV.
For parameter tuning, the irace package [64] was used. The
minimum and maximum length of candidate trajectories for
local search was set to lmin = 3 and lrel = 80% in all
experiments, as tuned by irace. The value of τmax controlling
the randomisation of the initial population (see Section IV-C)
is also constant in all experiments, so that all variants start
with approximately the same quality of their initial population.
Tuning was carried out respectively for the different represen-
tations for values of crossover and mutation rates. Population
size is kept the same across all variants, in order to ensure
that the same local search rate will lead to an approximately
an equal number of local search operations to be performed
per generation. The tuned parameters are shown in Table II.
The value of the local search rate is examined in Section VI.

All algorithms are tested using real data of operations
at the Hong Kong International Airport (HKG) (7.1.2017,
0:00–24:00) and the Beijing Capital International Airport
(PEK) (9.7.2014, 9:00–12:00). The taxiway layout of HKG
and PEK can be categorised as medium and high complexity

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE II
PARAMETER VALUES

Variants Pop. s. Cross. r. Mut. r. τmax lmin lrel
D 120 0.90 0.19 4.5 3 0.8
IP 120 0.95 0.29 4.5 3 0.8
RK 120 0.83 0.13 4.5 3 0.8

respectively, with 1309 nodes, 1491 edges, 160 gates and
38 runway exits for HKG and 3194 nodes, 3928 edges, 286
gates and 53 runway exits for PEK. There are 506 aircraft
routed for HKG and 200 for PEK. Aircraft will be routed
sequentially using Algorithm 1, with time windows inflicted
on later aircraft due to already routed aircraft. The most
straightforward way of comparison is the overall travel time
and fuel consumption realised for the whole day of operation.
This is an important practical measure of efficiency for longer
intervals of airport operations. Apart from the overall taxi time,
it is also important to report how often there were no solutions
found and a one minute postponement was applied until a
solution became available. For this reason, we use adjusted
taxi time, to account for the total postponements. For trajectory
θ, the adjusted taxi time C1,θ,adj in seconds can be calculated
from the taxi time of the trajectory (C1,θ), and the number of
postponements P for the given aircraft according to

C1,θ,adj = C1,θ + 60 ∗ P. (5)

The weights (w1, w2) for choosing the reserved trajectory
from Θi for each aircraft are used as the surrogates of the
operational cost coefficients to aggregate the two objectives
for showing insights in a more concise form. This aggregate
represents the real operational cost of the airport after a
decision is made by air traffic controllers. Note that using any
other weights could skew the results. The weighted aggregate
(Caggr,θ) of a trajectory θ is calculated according to

Caggr,θ = C1,θ,adj ∗ w1 + C2,θ,adj ∗ w2. (6)

To compare with AMOA* in a concise way, relative
weighted aggregate (RWA) is introduced to characterise how
MARMT performs compared to AMOA* regarding the re-
served trajectories. For the ith aircraft, RWA is calculated as

Caggr,i,rel =
Caggr,θi,MARMT

Caggr,θi,AMOA∗

. (7)

from the weighted aggregate of the trajectory reserved by
MARMT (Caggr,θi,MARMT

) and by AMOA* (Caggr,θi,AMOA∗).
We are not only interested in the reserved trajectories, but

also in finding a close approximation of the real Pareto front
for each aircraft. The real Pareto front is not known, because
the existing enumerative solution approaches cannot guarantee
to find all solutions. The unimpeded Pareto fronts - obtained
by AMOA* by ignoring any time windows - are used as
reference fronts. Thus, detours caused by the time windows
are avoided and the resulting reference fronts are the same for
the same aircraft, regardless of the previously routed aircraft.
Note that these reference fronts contain solutions that my not
be possible to achieve in reality. The ε quality indicator is
used for assessing proximity to a reference Pareto front [67]. It

TABLE III
RUNNING TIMES OF AMOA* (U=3) ROUTING A SINGLE AIRCRAFT.

w1 mean [s] median [s] min [s] max [s] std [s]
HKG 1 80.1 41.4 0.9 602.1 106.3

0.5 45.3 22.9 0.4 338.8 61.6
0 40.9 20.1 0.4 322.8 56.1

PEK 1 374.6 96.9 3.4 4747.1 715.2
0.5 482.6 135.7 5.0 5787.4 863.2
0 419.6 107.2 3.4 5426.2 789.5

signals higher quality by lower values. When the approximate
front is the same as the reference front, ε equals 1. Another
relevant metric is the size of the Pareto front. It is preferred
to have more and uniformly distributed solutions [16], so that
the trade-offs between the objectives can be assessed by air
traffic controllers. Also, with more solutions, the chance for
at least one of them to comply with time windows is better.
However, it is easier to find many low-quality solutions than
many high-quality ones. Therefore, both metrics are important.

VI. RESULTS

First, the results obtained by the state-of-the-art enumerative
solution approach, AMOA* are described as a baseline. Then,
results using MARMT are presented. AMOA* was chosen as
the basis for comparison, as it provides the best solution qual-
ity among the previously proposed algorithms. As mentioned
in Section II-B, AMOA* found 5-16% better solutions than the
other approaches including k-QPPTW [4], when tested on the
same airports as in the current study. MARMT is introduced
with the aim of finding a solution faster than AMOA* with
only a small compromise in solution quality. Two different
termination criteria are explored for MARMT: (1) 10 gener-
ations without change in the Pareto optimal solutions found
so far, to evaluate convergence properties and (2) 10 seconds
time budget, to evaluate the potential use for real-time decision
support. In the following, 10 independent runs of MARMT
were performed for each parameter setting, where all aircraft
are routed sequentially in each run. The Wilcoxon signed rank
test was used to decide statistical significance.

A. Results based on the enumerative solution approach

AMOA* with u = 3 is used to route the aircraft, because
3 is the highest number of speed profiles per segment that
can be solved in a reasonable time [4]. Table III describes the
distribution of the running times for the aircraft. We can see
that the running times of AMOA* range from 0.4 seconds to
602 seconds for HKG and from 3.4 seconds to 5787 seconds
for PEK. The mean of the running times is much higher than
the median, with most aircraft being routed in shorter times.
However, a smaller number of them take significantly longer.
Even for the smaller airport instance, the average running time
is much higher than 10 seconds, which is the limit that is
acceptable for on-line decision support [68].

B. Results based on convergence based termination

The case when the algorithm is allowed to run until con-
vergence is considered first. Convergence is assumed when

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

Fig. 6. Decreasing marginal improvement in mean RWA as local search rate
is increased (annotated values) with MARMT-D. Experiments with different
w1 values are grouped together. Airport instance: HKG.

there is no improvement in the Pareto front for 10 consecutive
generations. For the purpose of comparing to AMOA*, u = 3
is used. The case of u = 10 is also considered to investigate
how MARMT scales to higher numbers of parallel arcs.

1) Quality of reserved trajectories: In Table IV, we show
the quality of the solutions found through the mean RWA for
the two instances. Statistical significances between the best re-
sult (in boldface) and the others in each sub-row are indicated
as (*) : p < 0.05, (**): p < 0.005, (***): p < 0.0005. We can
see that, in almost all cases for HKG, MARMT-D outperforms
the priority based approaches, and random keys representation
is the worst of the three. There are only a few cases where
the statistical significance of the difference between MARMT-
IP and MARMT-D cannot be established. For the larger PEK
instance, the priority based representations perform better, with
the priority based representation reaching the best values of
RWA. It can also be seen from Table IV that with the local
search rate value of 0.02, some variants of MARMT is able to
reach the same or slightly better results as AMOA*, as can be
seen from the values of RWA that are below 1. This is possible
because of the non-additivity property and the presence of time
windows. In fact, the difference between MARMT-D with a
local search rate of 0.02 and AMOA* is statistically significant
at p = 0.05 for all three values of w1 for HKG in terms
of RWA. For PEK, all three variants (MARMT-D, MARMT-
IP, MARMT-RK) with a local search rate of 0.02 outperform
AMOA* at a statistical significance level p = 0.005.

Increasing the local search rate brings decreasing marginal
improvement in solution quality, while increasing running
time. In Figure 6, we see a sharp improvement in RWA until
the local search rate reaches 0.02. Note, that the improvement
upon the highest previous local search rate is statistically
significant with p = 0.005 until the local search rate 0.06.

2) Quality of Pareto fronts found: Table V, shows results
regarding the ε indicator, which quantifies the quality of the
Pareto fronts found for individual aircraft by MARMT com-
pared to the reference front. Similarly to Table IV, MARMT-
D is the best for the HKG instance and MARMT-RK and
MARMT-IP are the best for PEK. The ε values are close to
1, suggesting a good representation of the reference front.

We have seen that when the computational time of MARMT

(a) HKG

(b) PEK
Fig. 7. Difference between MARMT (with and without local search) and
AMOA*. Three different weights are used for reserving trajectories for
individual aircraft. Each marker represents the average of 10 data points.

is not limited, MARMT is able to find Pareto fronts close to
or better than those of AMOA*, when given enough time.

3) The contribution of operators: To demonstrate the im-
portance of the local search for all variants and the modified
crossover for MARMT-D, we compare the results of the
algorithms to variants without local search and a version of
MARMT-D that uses a naive version of crossover (not adjusted
to the multigraph case), “MARMT-D-nX.” MARMT-D-nX is
the representation widely applied in simple graph problems
[38], [16]. The results are shown in Figure 7. Some variants
of MARMT dominate the results achieved by AMOA*, as
also suggested by Table IV. The variants of MARMT without
local search perform worse according to both objectives, which
highlights the importance of local search. The role of the
adjusted crossover for MARMT-D is less clear. MARMT-D-
nX performs similar to MARMT-D for PEK, while for HKG,
MARMT-D-nX performs much worse than any other variants.
Therefore, it seems that the importance of the crossover being
adjusted for the multigraph case depends on the characteristics
of the airport layout, but our adjusted crossover produced
better or no worse results across all instances of different types.

4) Higher numbers of parallel arcs: AMOA* is unable to
handle higher numbers of parallel arcs. As it was reported in
[69], AMOA* could not solve the HKG instance with u = 10,
and the PEK instance with u = 5 within 10 days. MARMT on
the other hand is able to handle a higher number of parallel

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

TABLE IV
MEAN RWA OF THE AIRCRAFT IN EACH OF THE TWO INSTANCES WITH VARIED LOCAL SEARCH RATES AND u = 3.

w1 = 0.0 w1 = 0.5 w1 = 1.0
RK D IP RK D IP RK D IP

local search r.
HKG 0.005 1.0136 ** 1.0029 1.0083 ** 1.0054 ** 1.0013 1.0032 ** 1.0056 ** 1.0034 1.0031

0.010 1.0092 ** 1.0002 1.0026 ** 1.0026 ** 0.9991 1.0000 ** 1.0025 ** 1.0007 1.0016
0.020 1.0055 ** 0.9983 0.9993 ** 1.0004 ** 0.9982 0.9986 ** 1.0012 ** 0.9998 1.0001 *
0.040 1.0033 ** 0.9979 0.9983 * 0.9995 ** 0.9979 0.9982 * 1.0005 ** 0.9994 0.9996
0.060 1.0023 ** 0.9977 0.9981 ** 0.9994 ** 0.9978 0.9981 * 1.0002 ** 0.9992 0.9994 *

PEK 0.005 1.0034 1.0060 * 1.0063 ** 1.0009 1.0030 * 1.0031 ** 1.0013 1.0035 * 1.0059 **
0.010 1.0004 1.0017 * 1.0002 0.9977 0.9975 0.9977 0.9990 0.9981 0.9998 **
0.020 0.9974 ** 0.9993 ** 0.9963 0.9957 0.9959 * 0.9956 0.9976 0.9969 0.9969
0.040 0.9962 ** 0.9983 ** 0.9948 0.9953 ** 0.9954 ** 0.9950 0.9971 ** 0.9964 0.9968 *
0.060 0.9957 * 0.9979 ** 0.9942 0.9952 ** 0.9954 ** 0.9950 0.9970 * 0.9965 0.9968 **

TABLE V
MEAN ε INDICATOR FOR SEQUENTIAL ROUTING OF AIRCRAFT IN EACH OF THE TWO INSTANCES WITH VARIED LOCAL SEARCH RATES AND u = 3.

w1 = 0.0 w1 = 0.5 w1 = 1.0
RK D IP RK D IP RK D IP

local search r.
HKG 0.005 1.0236 ** 1.0155 1.0188 ** 1.0213 ** 1.0147 1.0165 * 1.0213 ** 1.0153 1.0158

0.010 1.0198 ** 1.0127 1.0138 * 1.0174 ** 1.0108 1.0120 * 1.0176 ** 1.0109 1.0123 *
0.020 1.0162 ** 1.0105 1.0109 1.0144 ** 1.0090 1.0094 * 1.0150 ** 1.0093 1.0100 **
0.040 1.0145 ** 1.0098 1.0100 1.0129 ** 1.0082 1.0087 ** 1.0131 ** 1.0086 1.0089 *
0.060 1.0135 ** 1.0095 1.0098 * 1.0122 ** 1.0081 1.0084 * 1.0122 ** 1.0084 1.0085

PEK 0.005 1.0177 1.0212 ** 1.0218 ** 1.0162 1.0198 ** 1.0196 ** 1.0157 1.0193 * 1.0197 **
0.010 1.0142 1.0148 1.0138 1.0117 1.0124 1.0113 1.0122 1.0130 1.0125
0.020 1.0104 ** 1.0119 ** 1.0096 1.0083 ** 1.0095 ** 1.0077 1.0096 * 1.0107 ** 1.0082
0.040 1.0093 ** 1.0107 ** 1.0076 1.0068 ** 1.0085 ** 1.0061 1.0081 ** 1.0097 ** 1.0069
0.060 1.0086 ** 1.0104 ** 1.0072 1.0065 ** 1.0082 ** 1.0057 1.0077 ** 1.0094 ** 1.0065

TABLE VI
MEAN RWA OF THE AIRCRAFT IN EACH OF THE TWO INSTANCES WITH A LOCAL SEARCH RATE OF 0.02 AND u = 10.

w1 = 0.0 w1 = 0.5 w1 = 1.0
RK D IP RK D IP RK D IP

u
HKG u=10 0.9957 ** 0.9834 0.9867 ** 1.0007 ** 0.9961 0.9969 ** 1.0031 ** 0.9993 1.0001 **

u=3 1.0055 ** 0.9983 0.9993 ** 1.0004 ** 0.9982 0.9986 ** 1.0012 ** 0.9998 1.0001 *
PEK u=10 0.9637 * 0.9708 ** 0.9619 0.9959 ** 0.9944 ** 0.9938 1.0002 ** 0.9965 0.9975 *

u=3 0.9974 ** 0.9993 ** 0.9963 0.9957 0.9959 * 0.9956 0.9976 0.9969 0.9969

arcs. The results regarding RWA with u = 10 are shown in
Table VI. The results have been obtained in less than 25 hours
even for the PEK instance with u = 10, and less than 8 hours
for the HKG instance with u = 10, which demonstrates the
scalability of MARMT for higher numbers of parallel arcs. It
can be seen from Table VI, that the best results in the u = 10
case are better than in the u = 3 case, thereby the solution
quality is not worse even with the increased search space.

C. Potential for real-time decision support

The promptness of routing decisions can be crucial in real-
world problems. In the airport ground movement problem, a
trajectory needs to be found for each aircraft under 10 seconds
for on-line decision support [68]. This time budget is used
as the termination criteria in the following experiments. We
can expect compromised solution quality with this low time
budget, especially for the PEK instance. where AMOA* took
374-482 seconds on average to route a single aircraft for PEK,
and 40-80 seconds for HKG. The results regarding RWA are
shown in Table VII for the 10 second time budget. In the
case of HKG, the RWA of MARMT-D is within 1 % of

AMOA*, for both u = 3 and u = 10, which is remarkable
considering the high running time of AMOA*. In the more
challenging case of PEK, the RWA of MARMT is within
1-4 % of AMOA*. Considering that AMOA* was found to
be 5-16 % better than the previous state-of-the-art [69], the
performance can be judged as good. Without local search, the
RWA values are consistently higher: within 1-5 % of AMOA*
for HKG and 2-6 % for PEK, supporting the importance of
local search in the case of having tight time budgets.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, a metaheuristic approach was proposed for
the airport ground movement problem, as a representative of
transportation problems that are best modelled as multigraphs.
The adaptation to the specific problem includes modifying
existing operators, incorporating time window constraints,
constraint handling and proposing a local search operator
for the problem. The proposed algorithms were evaluated
using real data from two international airports of different
sizes: HKG (medium) and PEK (complex). Three genetic
representations were compared, including the direct, integer

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

TABLE VII
MEAN RWA OF THE AIRCRAFT IN EACH OF THE TWO INSTANCES WITH A TIME BUDGET OF 10 SECONDS.

w1 = 0.0 w1 = 0.5 w1 = 1.0
RK D IP RK D IP RK D IP

local search r. instance u
0.02 HKG 3 1.0206 ** 1.0096 1.0151 * 1.0091 ** 1.0031 1.0068 ** 1.0071 ** 1.0034 1.0071 **
0.02 HKG 10 1.0116 ** 0.9948 1.0049 ** 1.0103 ** 1.0025 1.0068 ** 1.0118 ** 1.0045 1.0079 **
0.02 PEK 3 1.0309 * 1.0254 1.0294 1.0255 1.0243 1.0268 1.0247 1.0241 1.0290 *
0.02 PEK 10 1.0031 1.0061 * 1.0022 1.0363 ** 1.0282 1.0323 1.0441 ** 1.0355 1.0388 *
0.0 HKG 3 1.0299 ** 1.0239 1.0290 ** 1.0215 ** 1.0182 1.0219 ** 1.0201 * 1.0180 1.0190
0.0 HKG 10 1.0190 ** 1.0096 1.0213 ** 1.0220 ** 1.0155 1.0208 ** 1.0224 ** 1.0163 1.0222 **
0.0 PEK 3 1.0539 1.0518 1.0542 1.0590 ** 1.0531 1.0565 1.0622 * 1.0574 1.0598
0.0 PEK 10 1.0184 1.0241 ** 1.0238 1.0603 ** 1.0528 1.0611 ** 1.0692 ** 1.0587 1.0723 **

priority based and random keys representations. Although, we
cannot expect one representation to perform the best in all
cases, the results were highly consistent for the same airport
instance with the same termination criteria. With convergence
based termination, MARMT-D performed the best on the
HKG instance and MARMT-IP on the PEK instance. The
performance of MARMT is very close to a state-of-the-art
enumerative solution approach even with a 10 seconds time
budget for HKG and is close enough for PEK. When allowed
to converge, MARMT outperformed the said enumerative
approach for both airports. The local search operator enhances
the search capability of MARMT by introducing new high
quality candidates to the population based on single objective
search. We observed significant improvements in solution
quality with the use of the local search operator for both the
convergence based termination and the termination based on
10 second time budget.

It is also worth noticing that similar results were obtained
using different weight values to choose a single trajectory,
suggesting a good generalization to different preferences of
the DM, that might stem from different operational situations.
Including more speed profiles slightly improved solution qual-
ity in most cases, one exception is PEK with the 10 second
time budget, where the increase in search space might be too
large for a small time budget. It is possible in general that
the flexibility allowed by more speed profiles cannot be fully
capitalised, because the order of aircraft is fixed beforehand,
as explained in [69]. The question of optimising trajectories of
individual aircraft together with the sequence of aircraft - the
global formulation of the problem - remains to be explored
in future research. This might be tackled by a metaheuristic
algorithm, or a reinforcement learning approach. An inter-
esting method based on multiagent reinforcement learning
is proposed in [70] for routing in packet networks, where
the problem is modelled as a partially observable Markov
decision process. The global formulation of the problem is of
much higher complexity. Therefore, including one agent for
each aircraft can be the right approach for managing a more
dynamic environment. The meta-learning strategy is expected
to be advantageous in adapting to changing conditions, such
as varied levels of traffic.

This study based on both medium and large airports consid-
ering two objectives shows great potential for reaching real-
time decision support with MARMT. Being able to achieve
high-quality approximate solutions for the multigraph MSPP

in a short time opens a way to investigating different airports,
scenarios with denser traffic, including emissions as a third
objective and considering intermediate holding of aircraft [71].
There is a high interest in many-objective shortest path prob-
lems, in line with the more realistic and detailed modelling
of routing problems. A recent benchmark suite is provided
in [18] for simple graph problems. The multigraph modelling
approach investigated in this paper can be readily extended
to many-objectives and the proposed solution approaches
pave the first step to solving such problems effectively. The
improvement of operators for priority based representations
might become a fruitful area of further research. Often, the
changes introduced in the chromosome are not sufficient to
modify the encoded solution, limiting the exploration capa-
bilities of these algorithms and leading to slow convergence.
Strategies aimed at ensuring a modification of the encoded
solution might mitigate some of the disadvantages of the
ambiguity associated with the priority based representations.

ACKNOWLEDGEMENTS

This work is supported in part by the Engineering and
Physical Sciences Research Council (EP/N029496/1,
EP/N029496/2, EP/N029356/1, EP/N029577/1,
EP/N029577/2). Adriana Lara acknowledges support from
project no. IPN-SIP 20221938. Lourdes Uribe acknowledges
support from project no. IPN-SIP 20232208. Carlos A. Coello
Coello gratefully acknowledges support from CONACyT
grant no. 2016-01-1920 (Investigación en Fronteras de la
Ciencia 2016).

REFERENCES

[1] S. Zajac and S. Huber, “Objectives and methods in multi-objective
routing problems: a survey and classification scheme,” European Journal
of Operational Research, 2020.

[2] M. Kurant and P. Thiran, “Extraction and analysis of traffic and
topologies of transportation networks,” Physical Review E, vol. 74, no. 3,
p. 036114, 2006.

[3] S. Ravizza, J. Chen, J. A. Atkin, E. K. Burke, and P. Stewart, “The
trade-off between taxi time and fuel consumption in airport ground
movement,” Public Transport, vol. 5, no. 1-2, pp. 25–40, 2013.

[4] M. Weiszer, E. K. Burke, and J. Chen, “Multi-objective routing and
scheduling for airport ground movement,” Transportation Research Part
C: Emerging Technologies, vol. 119, p. 102734, 2020.

[5] M. Gallet, T. Massier, and T. Hamacher, “Estimation of the energy
demand of electric buses based on real-world data for large-scale public
transport networks,” Applied energy, vol. 230, pp. 344–356, 2018.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

[6] J. Chen, M. Weiszer, G. Locatelli, S. Ravizza, J. A. Atkin, P. Stewart,
and E. K. Burke, “Toward a more realistic, cost-effective, and greener
ground movement through active routing: A multiobjective shortest path
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 12, pp. 3524–3540, 2016.

[7] M. Wen, D. Pacino, C. Kontovas, and H. Psaraftis, “A multiple ship
routing and speed optimization problem under time, cost and envi-
ronmental objectives,” Transportation Research Part D: Transport and
Environment, vol. 52, pp. 303–321, 2017.

[8] X. Yang, X. Li, B. Ning, and T. Tang, “A survey on energy-efficient
train operation for urban rail transit,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 1, pp. 2–13, 2016.

[9] Q. Meng, D.-H. Lee, and R. L. Cheu, “Multiobjective vehicle routing and
scheduling problem with time window constraints in hazardous material
transportation,” Journal of transportation engineering, vol. 131, no. 9,
pp. 699–707, 2005.

[10] T. Garaix, C. Artigues, D. Feillet, and D. Josselin, “Vehicle routing prob-
lems with alternative paths: An application to on-demand transportation,”
European Journal of Operational Research, vol. 204, no. 1, pp. 62–75,
2010.

[11] G. Xiong and Y. Wang, “Best routes selection in multimodal networks
using multi-objective genetic algorithm,” Journal of Combinatorial
Optimization, vol. 28, no. 3, pp. 655–673, 2014.

[12] P. Serafini, “Some considerations about computational complexity for
multi objective combinatorial problems,” in Recent advances and histor-
ical development of vector optimization. Springer, 1987, pp. 222–232.

[13] S. Ravizza, J. A. Atkin, and E. K. Burke, “A more realistic approach
for airport ground movement optimisation with stand holding,” Journal
of Scheduling, vol. 17, no. 5, pp. 507–520, 2014.

[14] C. Lesire, “An iterative a* algorithm for planning of airport ground
movements.” in ECAI, vol. 2010, 2010, pp. 413–418.

[15] J. M. A. Pangilinan and G. K. Janssens, “Evolutionary algorithms
for the multiobjective shortest path problem,” International Journal of
Mathematical and Computational Sciences, vol. 1, no. 1, pp. 7–12, 2007.

[16] C. Chitra and P. Subbaraj, “A nondominated sorting genetic algorithm
solution for shortest path routing problem in computer networks,” Expert
Systems with Applications, vol. 39, no. 1, pp. 1518–1525, 2012.

[17] R. Li, Y. Leung, B. Huang, and H. Lin, “A genetic algorithm for
multiobjective dangerous goods route planning,” International Journal
of Geographical Information Science, vol. 27, no. 6, pp. 1073–1089,
2013.

[18] J. Weise and S. Mostaghim, “A scalable many-objective pathfinding
benchmark suite,” IEEE Transactions on Evolutionary Computation,
2021.

[19] O. Dib, M. Dib, and A. Caminada, “Computing multicriteria shortest
paths in stochastic multimodal networks using a memetic algorithm,”
International Journal on Artificial Intelligence Tools, vol. 27, no. 07, p.
1860012, 2018.

[20] L. Beke, M. Weiszer, and J. Chen, “A comparison of genetic represen-
tations and initialisation methods for the multi-objective shortest path
problem on multigraphs,” SN Computer Science, vol. 2, no. 3, pp. 1–22,
2021.

[21] P. Moscato and M. G. Norman, “A memetic approach for the traveling
salesman problem implementation of a computational ecology for com-
binatorial optimization on message-passing systems,” Parallel computing
and transputer applications, vol. 1, pp. 177–186, 1992.

[22] F. Neri and C. Cotta, “Memetic algorithms and memetic computing op-
timization: A literature review,” Swarm and Evolutionary Computation,
vol. 2, pp. 1–14, 2012.

[23] C.-K. Goh, Y.-S. Ong, and K. C. Tan, Multi-objective memetic algo-
rithms. Springer, 2008, vol. 171.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[25] J. C. N. Climaco and E. Q. V. Martins, “A bicriterion shortest path
algorithm,” European Journal of Operational Research, vol. 11, no. 4,
pp. 399–404, 1982.

[26] J. Mote, I. Murthy, and D. L. Olson, “A parametric approach to solving
bicriterion shortest path problems,” European Journal of Operational
Research, vol. 53, no. 1, pp. 81–92, 1991.

[27] A. Raith and M. Ehrgott, “A comparison of solution strategies for
biobjective shortest path problems,” Computers & Operations Research,
vol. 36, no. 4, pp. 1299–1331, 2009.

[28] E. Q. V. Martins, “On a multicriteria shortest path problem,” European
Journal of Operational Research, vol. 16, no. 2, pp. 236–245, 1984.

[29] A. J. Skriver and K. A. Andersen, “A label correcting approach for
solving bicriterion shortest-path problems,” Computers & Operations
Research, vol. 27, no. 6, pp. 507–524, 2000.

[30] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[31] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[32] L. Mandow, J. P. De la Cruz et al., “A new approach to multiobjective
a* search.” in IJCAI, vol. 8. Citeseer, 2005.

[33] L. D. P. Pugliese and F. Guerriero, “A survey of resource constrained
shortest path problems: Exact solution approaches,” Networks, vol. 62,
no. 3, pp. 183–200, 2013.

[34] J. Desrosiers, P. Pelletier, and F. Soumis, “Plus court chemin avec
contraintes d’horaires,” RAIRO-Operations Research, vol. 17, no. 4, pp.
357–377, 1983.

[35] M. Desrochers and F. Soumis, “A generalized permanent labelling
algorithm for the shortest path problem with time windows,” INFOR:
Information Systems and Operational Research, vol. 26, no. 3, pp. 191–
212, 1988.

[36] I. Ioachim, S. Gelinas, F. Soumis, and J. Desrosiers, “A dynamic
programming algorithm for the shortest path problem with time windows
and linear node costs,” Networks: An International Journal, vol. 31,
no. 3, pp. 193–204, 1998.

[37] W. B. Powell and Z.-L. Chen, “A generalized threshold algorithm for
the shortest path problem with time windows.” in Network Design:
Connectivity and Facilities Location, 1997, pp. 303–318.

[38] C. W. Ahn and R. S. Ramakrishna, “A genetic algorithm for shortest
path routing problem and the sizing of populations,” IEEE transactions
on evolutionary computation, vol. 6, no. 6, pp. 566–579, 2002.

[39] J. Inagaki, M. Haseyama, and H. Kitajima, “A genetic algorithm for
determining multiple routes and its applications,” in ISCAS’99. Proceed-
ings of the 1999 IEEE International Symposium on Circuits and Systems
VLSI (Cat. No. 99CH36349), vol. 6. IEEE, 1999, pp. 137–140.

[40] M. Gen, F. Altiparmak, and L. Lin, “A genetic algorithm for two-stage
transportation problem using priority-based encoding,” OR spectrum,
vol. 28, no. 3, pp. 337–354, 2006.

[41] L. Lin and M. Gen, “An effective evolutionary approach for bicriteria
shortest path routing problems,” IEEJ Transactions on Electronics,
Information and Systems, vol. 128, no. 3, pp. 416–423, 2008.

[42] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM computing surveys
(CSUR), vol. 35, no. 3, pp. 268–308, 2003.

[43] Z. Ji, Y. S. Kim, and A. Chen, “Multi-objective α-reliable path finding
in stochastic networks with correlated link costs: A simulation-based
multi-objective genetic algorithm approach (smoga),” Expert Systems
with Applications, vol. 38, no. 3, pp. 1515–1528, 2011.

[44] M. Gen, R. Cheng, and D. Wang, “Genetic algorithms for solving
shortest path problems,” in Proceedings of 1997 IEEE International
Conference on Evolutionary Computation (ICEC’97). IEEE, 1997, pp.
401–406.

[45] M. Gen and L. Lin, “A new approach for shortest path routing problem
by random key-based ga,” in Proceedings of the 8th annual conference
on genetic and evolutionary computation. ACM, 2006, pp. 1411–1412.

[46] C. A. C. Coello, “Constraint-handling techniques used with evolutionary
algorithms,” in Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, 2021, pp. 692–714.

[47] D. M. Miranda, J. Branke, and S. V. Conceição, “Algorithms for the
multi-objective vehicle routing problem with hard time windows and
stochastic travel time and service time,” Applied Soft Computing, vol. 70,
pp. 66–79, 2018.

[48] J. Chen, M. Weiszer, P. Stewart, and M. Shabani, “Toward a more
realistic, cost-effective, and greener ground movement through active
routing—part i: Optimal speed profile generation,” IEEE Transactions
on Intelligent Transportation Systems, 2016.

[49] R. L. Carraway, T. L. Morin, and H. Moskowitz, “Generalized dynamic
programming for multicriteria optimization,” European journal of oper-
ational research, vol. 44, no. 1, pp. 95–104, 1990.

[50] D. S. Lai, O. C. Demirag, and J. M. Leung, “A tabu search heuristic
for the heterogeneous vehicle routing problem on a multigraph,” Trans-
portation Research Part E: Logistics and Transportation Review, vol. 86,
pp. 32–52, 2016.

[51] H. B. Ticha, N. Absi, D. Feillet, and A. Quilliot, “Empirical analysis
for the vrptw with a multigraph representation for the road network,”
Computers & Operations Research, vol. 88, pp. 103–116, 2017.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

[52] X. Wu, X. He, G. Yu, A. Harmandayan, and Y. Wang, “Energy-
optimal speed control for electric vehicles on signalized arterials,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp.
2786–2796, 2015.

[53] H. N. Psaraftis and C. A. Kontovas, “Speed models for energy-efficient
maritime transportation: A taxonomy and survey,” Transportation Re-
search Part C: Emerging Technologies, vol. 26, pp. 331–351, 2013.

[54] ——, “Ship speed optimization: Concepts, models and combined speed-
routing scenarios,” Transportation Research Part C: Emerging Technolo-
gies, vol. 44, pp. 52–69, 2014.

[55] D. Li, M. Yang, C.-J. Jin, G. Ren, X. Liu, and H. Liu, “Multi-
modal combined route choice modeling in the maas age considering
generalized path overlapping problem,” IEEE Transactions on Intelligent
Transportation Systems, 2020.

[56] M. Enzi, S. N. Parragh, and J. Puchinger, “The bi-objective multimodal
car-sharing problem,” arXiv preprint arXiv:2010.10344, 2020.

[57] J. Hrnčı́ř, M. Rovatsos, and M. Jakob, “Ridesharing on timetabled trans-
port services: A multiagent planning approach,” Journal of Intelligent
Transportation Systems, vol. 19, no. 1, pp. 89–105, 2015.

[58] M. Weiszer, J. Chen, and P. Stewart, “A real-time active routing approach
via a database for airport surface movement,” Transportation Research
Part C: Emerging Technologies, vol. 58, pp. 127–145, 2015.

[59] H. Khadilkar and H. Balakrishnan, “Estimation of aircraft taxi fuel burn
using flight data recorder archives,” Transportation Research Part D:
Transport and Environment, vol. 17, no. 7, pp. 532–537, 2012.

[60] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on evolutionary computa-
tion, vol. 11, no. 6, pp. 712–731, 2007.

[61] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: solving problems with box constraints,” IEEE transactions on
evolutionary computation, vol. 18, no. 4, pp. 577–601, 2013.

[62] L. Beke, M. Weiszer, and J. Chen, “A comparison of genetic represen-
tations for multi-objective shortest path problems on multigraphs,” in
European Conference on Evolutionary Computation in Combinatorial
Optimization (Part of EvoStar). Springer, 2020, pp. 35–50.

[63] A. Homaifar, C. X. Qi, and S. H. Lai, “Constrained optimization via
genetic algorithms,” Simulation, vol. 62, no. 4, pp. 242–253, 1994.

[64] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and
M. Birattari, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43–58,
2016.

[65] “This research utilised queen mary’s apocrita hpc facility, supported by
qmul research-it.” http://doi.org/10.5281/zenodo.438045.

[66] “Inspyred: Bio-inspired algorithms in python,”
https://pythonhosted.org/inspyred/, accessed: 2019-10-30.

[67] A. Liefooghe and B. Derbel, “A correlation analysis of set quality
indicator values in multiobjective optimization,” in Proceedings of the
Genetic and Evolutionary Computation Conference 2016, 2016, pp.
581–588.

[68] “Icao, 2004. advanced surface movement guidance and control sys-
tems (a-smgcs) manual. international civil aviation organization,”
http://www.icao.int/Meetings/anconf12/Document.

[69] M. Weiszer, E. K. Burke, and J. Chen, “Search graph structure and
its implications for multi-graph constrained routing and scheduling
problems,” Scientific Reports, vol. 12, no. 1, pp. 1–13, 2022.

[70] L. Chen, B. Hu, Z.-H. Guan, L. Zhao, and X. Shen, “Multiagent meta-
reinforcement learning for adaptive multipath routing optimization,”
IEEE Transactions on Neural Networks and Learning Systems, 2021.

[71] T. Zhang, L. Beke, S. Liu, M. Weiszer, and J. Chen, “An extended
memetic algorithm for multiobjective routing and scheduling of airport
ground movements with intermediate holding,” in 2022 IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2022, pp. 1–8.

Lilla Beke is currently a PhD candidate at the
Queen Mary University of London. She received the
master’s degree in Applicable Mathematics in 2017
from the London School of Economics and Political
Science and the bachelor’s degree in Energy En-
gineering from Budapest University of Technology
and Economics in 2016. Her interests include multi-
objective combinatorial optimisation and machine
learning.

Lourdes Uribe received a PhD (Cum Laude)
in physical-mathematical sciences from ESFM-
Instituto Politécnico Nacional, México, in 2020.
She is currently Professor at the Mathematical De-
partment of ESFM-IPN, in Mexico City, Mexico.
Her major research interests are: hybrid algorithms,
multi-objective optimization and constraint-handling
techniques.

Adriana Lara is a Full-Time Professor with the
Physics and Mathematics School (ESFM) at the
IPN in México City. Her research interests in-
clude Multi-objective Optimization, Bio-inspired Al-
gorithms, Memetic Techniques, and Data Science.
Her research has received the IEEE Transactions on
Evolutionary Computation Outstanding Paper Award
for 2010 and 2012. She also received the 2010 En-
gineering Award granted by Mexico City’s Science
and Technology Institute (ICyTDF) and the Ph.D.
dissertation award by SMIA and ANIEI in 2013. She

received a B.Sc. in Physics and Mathematics from the National Polytechnic
Institute of Mexico (IPN) and an M.Sc. and Ph.D. in Computer Sciences from
Centro de Investigación y Estudios Avanzados (CINVESTAV-IPN), in Mexico
City, Mexico.

Carlos Artemio Coello Coello (M’98-SM’04-F’11)
received a PhD in computer science from Tulane
University, USA, in 1996. He is currently Professor
(CINVESTAV-3F Researcher) at the Computer Sci-
ence Department of CINVESTAV-IPN, in Mexico
City, Mexico. He has authored and co-authored over
550 technical papers and book chapters. His publica-
tions report over 66,060 citations in Google Scholar.
His major research interests are: evolutionary multi-
objective optimization and constraint-handling tech-
niques for evolutionary algorithms.

Dr. Michal Weiszer is a Research Assistant and
Teaching Fellow at School of Engineering and Ma-
terials Science, Queen Mary University of London.
His research interests span computer science and
operational research with systems engineering ap-
proach. He has applied simulation models of systems
in diverse areas from supply chain, air traffic man-
agement and utility networks. In order to balance
different objectives within a system, Dr Weiszer has
used multi-objective optimisation techniques with
application in transportation networks (freight and

passenger). His research often relies on Data-Centric approach to successfully
model systems.

Edmund K. Burke is Vice-Chancellor at Bangor
University. His research interests are in intelligent
decision support methodologies in complex envi-
ronments. His inter-disciplinary work in Operational
Research lies at the interface of Computer Science
and Mathematics. He is a Fellow of the Royal
Academy of Engineering and Past- President of the
Operational Research Society.

Jun Chen received the Ph.D. degree in control
and systems engineering from the University of
Sheffield, Sheffield, U.K., in 2010. He is now a
Reader in Intelligent Systems Engineering at Queen
Mary University of London, London, U.K. He has
published widely in areas of multi-objective opti-
misation, interpretable fuzzy systems, data-driven
modelling, and intelligent transportation systems.
From 2020, he serves as a full member of the EPSRC
Peer Review College. From 2018, he have been
Turing Fellow with the national artificial intelligence

research institute – the Alan Turing Institute.

