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Abstract: 

Our world is moving fast towards the era of the Internet of Things (IoT), which connects all kinds of 

devices to digital services and brings significant convenience to our lives. With the rapid increase in the 

number of devices connected to the IoT, there may exist more network vulnerabilities, resulting in more 

network attacks. Under this dynamic IoT environment, an effective intrusion detection system (IDS) is 

urgently needed to detect attacks with low-latency and high accuracy. A number of promising IDSs have 

been proposed based on deep learning (DL) techniques, but they need to do parameter tuning under different 

environments, which is very time-consuming. To alleviate this problem, this paper proposes a multi-objective 

evolutionary convolutional neural network for intrusion detection system, called MECNN, which is run on 

the fog nodes of Fog computing on IoT. In this approach, convolutional neural network (CNN) is used as the 

classifier to detect intrusions and the multi-objective evolutionary algorithm based on decomposition 

(MOEA/D) algorithm is modified to evolve the CNN model, which greatly simplifies the parameter tuning 

process of DL. To be specific, a novel encoding scheme is first proposed to transform the topological 

architecture of CNN into a chromosome of MOEA/D and then the two conflicting objectives, i.e., detection 

performance and model complexity of the CNN model, are simultaneously optimized by MOEA/D, which 

can obtain a number of IDSs with various detection performance and model complexities. Then, the most 

suitable MECNN model can be deployed in different fog nodes of Fog computing, providing low-latency and 

high-accuracy intrusion detection for IoT. Finally, the experimental studies are conducted on two popular 

datasets (AWID and CIC-IDS2107), which have validated that our MECNN model can improve detection 

performance and robustness to better protect the IoT when compared to other state-of-the-art IDSs. 

Keywords: Intrusion detection system, Internet of Things, Multi-objective optimization, Fog computing, 

Convolutional neural network, Neuroevolution. 

 

1. Introduction 

Internet of Things (IoT) technology is considered to be the fourth industrial revolution [1]. It is a system 

including interrelated computing devices, mechanical and digital machines, sensors, software, and other 

technologies, which can connect and exchange data with various devices and systems over the Internet 

without human-to-human or human-to-computer interaction [2]. With IoT, our daily life becomes more 



convenient and well organized, which has been widely used in many application fields such as manufacturing, 

smart home, medical care, transportation, and so on [3]. As IoT plays an increasingly significant role in our 

daily life and production work, it is essential to ensure the security of the network and information protection 

in IoT applications [4]. Otherwise, it may lead to a significant disaster or even casualties. 

Identifying unknown intrusions is a challenging task for IoT as it usually connects a wide range of 

devices with different computational powers, battery capacities, network protocols, and operating systems 

(OS) [5]. This heterogeneity poses a challenge to the deployment of security schemes. Most of the existing 

security approaches are passive security defense [6], including security gateway, firewall, code signature, and 

encryption technology, which cannot detect and respond proactively [7]. An intrusion detection system for 

IoT (called IoT-IDS) will capture and analyze IoT data traffic records, which then detects network attacks or 

abnormal behaviors. When the attack occurs, IoT-IDS will respond in time to intercept the attack. This 

method can proactively defend against attacks, which is suitable as a security precaution for IoT networks 

[8]. 

To improve the performance of IoT-IDS, machine learning (ML) approaches have been employed to 

design IDS, such as decision tree (DT) [9], naïve bayes (NB) [10], and support vector machine (SVM) [11]. 

The ML methods have shown promising performance to recognize the important features in IoT traffic, as 

they can proficiently identify network intrusions and attacks. However, when handling large-scale or 

high-dimensional traffic data, their detection performance will be degraded dramatically and their required 

time for detection will be increased significantly [12]. Therefore, the ML methods may not be so effective for 

the modern Internet environment due to the increasing traffic and bandwidth. 

On the other hand, deep learning (DL) techniques seem more effective in handling the increasingly 

complex intrusion detection problems of IoT [13]. Some DL methods have been used to build IoT-IDS, such 

as auto-encoder (AE) [14], generative adversarial network (GAN) [12], and deep neural network (DNN) [15]. 

Nevertheless, the design of neural networks is a tricky process, as they usually consist of thousands and 

thousands of parameters, requiring a lot of computational resources and much time for training [16]. 

Moreover, their practical performance will be highly impacted by their architectures and the settings of 

hyperparameters [17]. In most references [18-20], the network topological architecture and its 

hyperparameters are manually set by using a trial-and-error method, which is a tedious and time-consuming 

task often requiring the participation of specialists in this field. 

Recently, the Neuroevolution technique [21, 22] is suggested to automatically design a neural network, 

which can find suitable network topologies and weights for neural networks with evolutionary algorithm (EA) 

for solving various application problems. Some promising methods have been developed in the field of 

Neuroevolution, such as neuroevolution of augmenting topologies (NEAT) [23], evolutionary programming 

Net (EPNet) [24], and evolutionary algorithm that constructs recurrent neural networks (GNARL) [25]. 

However, they can only be used to optimize simple neural networks with few neuron units and hidden 



networks. In [26], a Neuroevolution model is proposed to encode and evolve some parameters of the 

networks, but the network topologies in convolutional neural network (CNN) and recurrent neural network 

(RNN) are fixed, which are not encoded. In [17], different modules of CNN are first constructed and encoded. 

Then, EA is used to optimize the order of their combination to find a competitive CNN network. Also, in 

deep neuroevolution of augmenting topologies (DeepNEAT) [27], both the topological architecture and 

hyperparameters of the DNN are encoded and then optimized by EA, which can automatically construct the 

DNN model with satisfactory performance. 

Moreover, the detection latency is also a challenge for intrusion detection in IoT. Most of the traditional 

IDSs are deployed on the cloud servers. Thus, the traffic packets from millions of IoT devices must be 

transmitted to the cloud servers for detecting anomalies via the network, resulting in high detection latency 

and network load, and consuming more battery of devices [4]. The recently proposed Fog computing [28] 

solves this problem well. The fog layer is deployed between the cloud layer and the edge layer, which is 

physically closer to the edge devices, and the number of fog layer nodes is much larger than the cloud layer 

nodes. The fog layer can help to reduce the workload of the cloud and network. More importantly, this layer 

can provide low-latency services for devices. Thus, the detection latency of fog-based IDS is significantly 

lower than that of cloud-based IDS, which can secure the IoT networks in a more timely manner. 

To the best of our knowledge, most existing IoT-IDSs use the DL methods that have to manually set 

their parameters to find the suitable architectures gradually, requiring a huge training time for trial-and-error. 

Moreover, this manual method highly depends on the experiences of experts in the specific fields, which also 

cannot guarantee that their setup parameters are optimal. To alleviate the above problem, this paper proposes 

a multi-objective evolutionary convolutional neural network for intrusion detection system, called MECNN, 

which is used to detect network intrusions in IoT. A number of IDSs with low latencies and low-resource 

costs are suggested for IoT, which use CNNs as the classifier and can be deployed on the fog nodes of the 

Fog computing environment. To overcome the disadvantages of traditional DL methods that have to tune 

many parameters manually, this paper extends the idea of DeepNEAT [27] from DNN networks to CNN 

networks. The topological architecture of the CNN is transformed into a chromosome of multi-objective 

evolutionary algorithm (MOEA). Then, one competitive MOEA (MOEA/D [29]) is modified to optimize the 

detection performance (measured by classification error rate) and the model complexities (measured by the 

number of parameter) of CNN networks, simultaneously. In this way, our method can obtain a set of 

IoT-IDSs with various detection accuracies and model complexities through evolution, which can be 

deployed in different fog nodes according to their hardware configurations. 

In summary, the main contributions of this paper are given as follows. 

1) A novel multi-objective evolutionary convolutional neural network for IDS, called MECNN, is 

proposed for IoT under Fog computing, which evolves CNN by using MOEA. This approach can 

find suitable CNN models deployed on fog nodes of Fog computing to provide low-latency and 



high-accuracy intrusion detection for IoT. 

2) The model complexity of CNN (i.e., the number of parameters of CNN) and the detection 

performance (i.e., the classification error rate) are considered as two objectives of MOEA to be 

optimized. Then, MOEA/D [29] is modified to evolve the two objectives with a novel encoding 

scheme, which can finally obtain a set of IDSs with various detection accuracies and model 

complexities. 

3) An accuracy emphasis (AE) mechanism is introduced to modify the population update method of 

MOEA/D, which can be more able to select new solutions with higher accuracy for the next 

evolution. 

In addition, a series of extensive experiments are conducted on two popular datasets (AWID [30] and 

CIC-IDS2017 [31]) and the experimental results validate the advantages of the proposed MECNN in 

providing suitable IDSs with high detection accuracies and low model complexities for fog nodes in IoT 

when compared to other state-of-the-art methods. 

The remainder of this paper is organized as follows. Section 2 gives an overview of the technologies 

used in IDSs. Section 3 describes the details of the proposed MECNN for intrusion detection in IoT networks. 

Section 4 presents the experimental configuration, while Section 5 provides the experimental results and 

discussions. Finally, conclusions and future work are presented in Section 6. 

2. Background and Related Work 

This paper aims to build a robust IoT-IDS with low computation costs for detecting attack activities to 

secure IoT networks. Some background and previous studies related to this paper are introduced below. 

IoT plays a significant role in our daily life, but if the IoT networks do not provide sufficient security 

protection, they may suffer from a series of network attacks and lead to data leakage, property loss, and 

hardware damage, causing system downtime and even casualties [3]. Imagine the following scenarios: when 

you go out, burglars crack the smart lock of your home through the network to enter and steal things; when 

you are driving at high speed on the road, hackers remotely hack your car through the network to make you 

lose control of the steering wheel; when the urban traffic light system is maliciously tampered, the entire 

urban traffic condition will fall into chaos. These behaviors threaten our lives and property security. 

Therefore, it is essential to develop and deploy reliable IDSs for IoT. There have been a lot of research 

studies in the field of intrusion detection. 

Many researchers employed ensemble techniques [32] in order to enhance the performance of IDS. In 

[33], an AdaBoost ensemble intrusion detection method is proposed to combine three ML techniques (DT, 

NB, and DNN). Then, a protocols-based method is used to analyze the properties of the attacks, which can 

generate new statistical flow features. This method can mitigate malicious events, particularly some botnet 

attacks against the domain name server (DNS), hyper text transfer protocol (HTTP), and message queuing 

telemetry transport (MQTT) protocols in IoT networks. In [34], a novel ensemble classifier, called RFAODE, 



is suggested for IDS, which is built by using random forest (RF), average one-dependence estimator (AODE), 

and NB. The RF is introduced to improve the detection accuracy, while AODE is used to resolve the attribute 

dependency of NB. In [12], a fog-based unsupervised intrusion detection method, called FID-GAN, is 

proposed for cyber-physical systems using GANs, which can detect unknown attacks and conquer the 

challenge of acquiring labels. This FID-GAN can be placed in fog architecture with the computing resources 

closer to the edge devices, which can provide a low-latency detection service. In [6], a stacked de-noising AE 

(SDAE) and SVM are combined to propose a hierarchical intrusion detection model, called SDAE-SVM. 

This model uses SDAE to reduce the dimensions of traffic samples and then uses SVM for classification. 

However, the authors do not provide any detail on how the IDSs can be deployed on the IoT network. In [35], 

a lightweight IDS using supervised SVM is also suggested for IoT to detect network attacks. The authors 

point out that the use of a single attribute (packet arrival rate) is more efficient in detecting DDoS attacks 

than that of complex attributes. In [36], a novel representation learning method is proposed to describe the 

unknown attacks better. Then, three novel AE-based IDS models are developed to learn the latent 

representation from the raw data, which significantly improves the performance of the supervised learning 

methods for detecting unknown IoT attacks. In [13], a forensics-based DL model, called Deep-IFS, is 

suggested to detect intrude behaviors in industrial IoT traffic, which is composed of local gated recurrent 

(GRU) layer, multi-head attention (MHA) layer, and full-connected layer. Here, GRU is used to obtain local 

dependencies, while MHA is used to learn global representation. In [18], a bidirectional Long-Short-Term 

Memory (BiDLSTM) based IDS is proposed to reduce the high false alarm rate and improve the 

classification effect in the case of multi-class classification scenario. 

In the above approaches with ML or DL techniques to build IDS, some research studies [37, 38] point 

out that it is equally important to perform feature selection on traffic data, which attempts to use MOEAs to 

improve the performance of ML for establishing more reliable IDSs. In [39], the traditional IDS is improved 

as smart, evolutionary, and multi-objective IoT-IDS. A modified multi-objective particle swarm optimization, 

called MOPSO-Lévy, is used for feature selection on the dataset and an ML method, i.e., K-nearest neighbor 

(KNN), is adopted to classify the traffic data. In [40], an IDS method called I-NSGA-III is designed, which 

uses an improved non-dominant sorting genetic algorithm-III (I-NSGA-III) for feature selection and a neural 

network growing hierarchical self-organizing map with probabilistic relabeling  (GHSOM-pr) [41] for 

classification. In this approach, a novel niche preservation procedure is introduced, which consists of a 

bias-selection process to select the individual with the fewer selected features and higher objective values. In 

[42], an IDS using a modified multi-objective immune algorithm is suggested to reduce the feature 

dimension, which aims to find out the optimal feature subset. In this approach, due to the use of the immune 

algorithm, the convergence speed can be accelerated, and the reference vectors are used to guarantee the 

diversity in high-dimensional objective space. 

To the best of our knowledge, the above existing IDSs usually use MOEAs for feature selection on 



datasets, but rarely use MOEAs for optimizing their DL or ML models. To fill this research gap, this paper 

proposes a multi-objective evolutionary convolutional neural network to build IDSs for IoT. However, the 

manual setting of the parameters of CNNs is troublesome, which is not always optimal. As motivated by the 

idea of DeepNEAT, the topological architectures and hypermeters of CNN are transformed into the 

chromosome of MOEAs. Then, the model complexity and detection performance of CNN are regarded as the 

two objectives to be optimized by MOEAs. These two objectives conflict with each other and can be 

modeled as a multi-objective optimization problem. An increased model complexity with more parameters 

used in CNN usually leads to an increased detection accuracy, which also indicates that more computing 

resources and memory should be required for CNN. A simple model complexity with a small number of 

parameters will also result in a reduction in detection accuracy. In this paper, a competitive MOEA 

(MOEA/D [29]) is modified to optimize these two objectives simultaneously. Finally, a set of IDSs for IoT 

with different detection accuracies and model complexities can be attained and deployed on different nodes 

of Fog computing. 

3. The Proposed Algorithm 

In this section, the structure of CNN and how it works is first briefly described. Moreover, the encoding 

scheme used in the proposed method is described. Next, the general framework of MECNN is described. 

Finally, the Fog computing architecture is presented to show how the proposed method can be deployed on 

Fog computing and how it responds to intrusion behaviors. 

3.1. Convolutional Neural Network 

This subsection aims to introduce some key concepts of the CNN models to better understand the 

motivations of this paper and how the CNN models are encoded. CNNs are first proposed by LeCun et al. in 

[43, 44], which are now the most widely used algorithm in the field of DL. The main idea of CNN is to 

combine a feature extraction module and a classifier module. CNNs are good at classifying different types of 

documents or information, such as text, speech, or images. 

The CNN model includes five types of layers: input layer, convolutional layers, pooling layers, 

full-connected layers, and output layer [45]. When these layers are stacked in a specific order, a CNN model 

is built. A typical CNN model is shown in Fig. 1. Some of these layers are described in detail. 
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Fig. 1 A typical structure of the CNN model. 

 

• Convolutional layer: a CNN model usually includes one or more convolutional layers. Convolution is 



a special linear operation for feature extraction. Each convolutional layer contains an array of numbers 

called the convolutional kernels, also known as the filters. The kernel size can be set freely, which is 

defined as a parameter of the CNN network architecture. The kernel convolves the input data, called the 

tensor, in a certain order and then outputs data called the feature map. The feature map will be used as 

the input for the following layer. This process will continue until there are no more convolutional layers. 

Simply, the convolutional layers are responsible for extracting significant features from the raw data and 

using the features as input to the next layer. 

• Pooling layer: the pooling layers perform the down-sampling operation to reduce the dimensions of the 

input data, which replace features in a region with some calculated features by specific methods, such as 

average pooling, max pooling, and overlapping pooling. Max pooling is the most common method, 

which divides the input data into several rectangular areas and uses the maximum value in the area to 

represent this area. The pooling operations are usually employed after the convolution operation. 

• Full-connected layer: the full-connected layer, occasionally called dense layer, generally includes 

several layers, each of which has numerous neurons. Each neuron is connected to all the neurons of the 

previous layer, and they will receive input from neurons of the last layer by means of the specified 

weights. The model adjusts the weight between neurons by each epoch to continuously improve the 

classification effect of the model. The parameters associated with the full-connected layer include the 

number of full-connected layers, the number of neurons in a full-connected layer, and the activation 

function. 

In addition to the parameters mentioned above directly related to the network topological architecture, 

there are some other parameters, often called hyperparameters, which are related to the training process of 

CNNs: 

• Learning rule: also called optimizer, is a mathematical logic method repeatedly applied in the network, 

which can improve the neural network performance. The rule updates the weight and bias levels of the 

network when handling a task. 

• Leaning rate: the learning rule determines the method of updating the weights and bias levels, and the 

learning rate determines how many weights are updated in each epoch. 

• Batch size: batch size is the number of samples selected in an iteration, which affects the degree of 

optimization and the training speed of the model. 

• Dropout rate: dropout rate is a recently proposed method [46], which is presented to prevent 

overfitting problems by randomly dropping some neurons during the training process. 

• Activation function: the activation function performs a nonlinear transformation to the input, making 

the neural network enable learning and performing more complex tasks. 

3.2. Encoding Scheme of MECNN 

As described above, the design of a CNN model is complicated and involves plenty of parameters. 



However, the search for optimal topological architectures and hyperparameters of CNN is still a challenging 

task, as it requires professional knowledge and practical experience. For example, theoretically, deepening 

the network depths of the full-connected layer and enlarging the number of neurons will generally improve 

the performance of the model. However, when the number of depths in CNN reaches a certain level, the 

performance of the model will not be improved significantly and even be decreased. Especially with the 

continual increase of the depths, this may lead to over-fitting, resulting in vanishing gradient, increasing 

more training time, and occupying more computing resources. This high computational cost makes the model 

unsuitable for deployment on the fog nodes that typically have limited resources. When the numbers of layers 

and neurons are too few, the classification effect of the model may be poor, which may not effectively detect 

the network intrusion activities. 

Since it is complex to build an appropriate CNN model, a competitive MOEA (MOEA/D [29]) is 

modified to optimize and build the CNN model automatically. These related parameters are transformed into 

a chromosome of MOEAs, which are then optimized by MOEA/D. For convenience, in our encoding scheme, 

these parameters are divided into three groups according to their different roles: convolution group, 

full-connected group, and hyperparameters group. 

The convolution group includes the number of convolutional layers, the number of kernels, the kernel 

size, whether to perform pool operations (indicated by 0 or 1), and the pooling size. 

The full-connected group includes the number of full-connected layers, the number of neurons of each 

full-connected layer, and the dropout rate. 

The hypermeters group includes the batch size, the learning rule, and the learning rate. 

For the activation function, it is not considered as an optimization objective and the ReLu activation is 

used in the convolutional layers and the intermediate of the full-connected layer. For the output layer of the 

full-connected layer, the Sigmoid activation function is used for the binary-class scenario, while the Softmax 

activation function is used for the multi-class scenario. 

In addition, real numbers are used in the model encoding of our method and a real-number sequence 

with 13 genes is used as a chromosome to represent a CNN model. The first 11 numbers represent a CNN 

entity model, and the last two numbers indicate the two objective values of the model. The definition of the 

chromosome is shown in Fig. 2. The range of available values for each gene and the meaning of the symbols 

used in this paper are expressed as follows: 
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Fig. 2 Definition of the chromosome of MECNN. 

 

• lC : the number of convolutional layers and [1, 2,3]lC  . 



• nK : the number of kernels in each convolutional layer and [2,4,8,16,32,64,128,256]nK  . 

• sK : the number of kernel sizes in each convolutional layer and [2,3,4,5,6,7,8,9]sK  . 

• wP : whether to perform pooling operation and [0,1]wP   (0 indicates not to perform pooling operation 

while 1 is yes). 

• sP : the pooling size and [2,3, 4,5, 6,7,8,9]sP  . 

• clF : the number of full-connected layers and [1, 2,3]clF  . 

• nN : the number of neurons in each full-connected layer and [8,16,32,64,128, 256,512,1024]nN  . 

• rD : the dropout rate and [0,0.25,0.5]rD  . 

• sB : the batch size and [32,64,128, 256]sB  . 

• rlL : the learning rule and three learning rules used in our method, i.e., [0,1, 2]rlL  , where the values of 

0, 1 and 2, indicate to use Adam, stochastic gradient descent (SGD), and Adamax, respectively. 

• rtL : the learning rate and [0.5,0.1,0.05,0.01,0.001,0.0001]rtL  . 

• 1f : the first objective to be optimized, which is the model complexity of CNN as measured by the 

number of parameters in the CNN model. 

• 2f : the second objective to be optimized, which is the detection performance of CNN as measured by 

the detection error rate of CNN. 

The summary of the ranges of these parameters is given in Table 1. 

 
Table 1 

Range of parameters of CNN 

Parameters Range 

Number of convolutional layers, lC  1,2,3 
Number of kernels, nK  2,4,8,16,32,64,128,256 
Kernel size, sK  2,3,4,5,6,7,8,9 
Weather to pooling, wP  0,1 
Pooling size, sP  2,3,4,5,6,7,8,9 
Dropout rate, rD  0,0.25,0.5 
Number of full-connected layer, clF  1,2,3 
Number of neurons, nN  8,16,32,64,128,256,512,1024 
Batch size, sB  32,64,128,256 
Learning rule, rlL  Adam, SGD, Adamax 
Learning rate, rtL  0.5,0.1,0.05,0.01,0.001,0.0001 

 

3.3. General Framework of MECNN 

As explained above, the first objective 1f  is the model complexity as measured by the number of 

parameters of CNN and the second objective 2f  is the detection performance as measured by the detection 

error rate of CNN. Those two objectives are generally conflicting with each other. A decrease in 1f  

generally leads to an increase in 2f , while a reduction in 2f  may lead to an increase in 1f . In this paper, the 

state-of-the-art MOEA is modified to optimize these two objectives simultaneously. For the decomposition 

approach of MOEA/D, a popular decomposition method, i.e., Tchebycheff [47], is used, as defined by 



* *

1
( | , ) max{ | ( ) }te

j i
i m

g x z f x Z 
 

  ,                         (1) 

where m is the number of objectives, 1( ,... )T
m    is an m-dimensional weight vector with 

1
1(

m

i ii
 


  0) , and 1* { *,...., *}mZ z z  is an ideal point with * {min ( ) | }iZ f x x   for 1, ...,i m . 

The pseudo-code of MECNN is given in Algorithm 1. In line 1, the neighborhood index ( )B i  of T  

closest subproblems is initialized. In line 2, the initial population P  with N  individuals is generated. In 

line 3, for each individual in P , a CNN model is built according to its genotype, the training set is used to 

train the model, and then the testing set is adopted to evaluate its two objective values. In line 4, the ideal 

point Z*  is initialized by using * {min ( ) | }iZ f x x  . Next, the algorithm enters the main evolutionary 

loop. In line 7, two indexes k  and l  are randomly selected from ( )B j , and two individuals kx  and lx  

are then selected using the two indexes from the population P . Then, crossover and mutation operators are 

run on kx  and lx  to generate two new individuals 1y  and 2y . Here, the two-point crossover method [48] 

is used for crossover as shown in Fig. 3 (a), while the bit-wise mutation method is used for mutation as 

shown in Fig. 3 (b). Please note that the mutation in our algorithm will be activated for each gene of the 

individual by a predefined mutation probability, which is randomly selected from the preset range as shown 

in Tabel 1 for the new parameter. In line 8, for each newly generated individual 1y  or 2y , the CNN model 

is built according to the genotype, which is to be trained by using the training set and evaluated by using the 

testing set to get the objective values. Then, their Tchebycheff values 1( | , )te jg y z  and 2( | , )te jg y z  are 

calculated, and the individual with a small Tchebycheff value is selected as the new solution y . In line 9, the 

ideal point is updated. 

 
Algorithm 1: MECNN 
Inputs: 
 N : number of Population 
 T : neighborhood size 
 maxG : maximum generation
 A uniform spread of N  weight vectors: 1,..., N 
 Training sets and testing sets
Output: 
 The final population P  
1. Identify the neighborhood ( )B i of T closest subproblems
2. Generate an initial population 1{ ,..., }NP x x
3. For each individual in P , build a CNN model and evaluate objective values 
4. Initialize the ideal point 1* ( *,...., *)mZ z z
5. for i =1 to maxG ,do 
6. for j=1 to N , do 
7.      Reproduction: randomly select two indexes ,k l from ( )B j , and then 
      generate a new solution 1y , 2y from kx and lx by Crossover and Mutation 
8.      Evaluation: build CNN model by 1y , 2y and evaluate their objective values
9.      Update of *Z : for each 1,...,k m , if ( )k kz f y , set ( )k kZ f y  
10.      Update of Neighboring solutions
11. end for 
12. end for 
13. Return  

 



f1 f2A B C D E F G H I J K

f1 f2A X C D E Y G H I Z K

(b) Bit-wise Mutation

Direction

Mutation point Mutation point Mutation point

f1 f21 2 3 D E F G 8 9 α β

f1 f2A B C 4 5 6 7 H I J K

f1 f21 2 3 4 5 6 7 8 9 α β

f1 f2A B C D E F G H I J K

(a) Two-point Crossover

Crossover point 1 Crossover point 2

 
Fig. 3. Reproduction: (a) Crossover and (b) Mutation 

 

Finally, in line 10, the update of neighboring solutions is run, which is introduced in detail in Algorithm 

2. Here, an accuracy emphasis (AE) mechanism is proposed in this process, which lets a new solution with a 

low detection error rate have more opportunities to update the population without sacrificing diversity [49]. 

In detail, the Tchebycheff values ( | , )te jg y z  of y  and ( | , )te j jg x z  of jx  are calculated in line 2 of 

Algorithm 2. Next, their Tchebycheff values are compared. If ( | , )te jg y z  is smaller than ( | , )te j jg x z , 

their detection error rates are compared. Then if the detection error rate of y  is still smaller than that of jx , 
jx  is updated and replaced by y  in line 5. Otherwise, if the detection error rate of y  is greater than that 

of jx , a random number is generated in [0, 1] to compare with the AE rate  . If this random number is 

greater than  , jx  is updated and replaced by y . Otherwise, the algorithm executes the next loop. The 

flowchart of MECNN is illustrated in Fig. 4, with the evolutionary process on the left side and the training 

and evaluation process on the right side. 

 
Algorithm 2: Update of Neighboring solutions
Input: 
  : accuracy emphasis rate
1. for each index j in ( )B i , do
2.    Compute the Tchebycheff value ( | , )te jg y z and ( | , )te j jg x z  
3.    if ( | , ) ( | , )te j te j jg y z g x z  then
4.      if 2 2( )f j y  then
5.         set jx y
6.      else if (0,1)rand  then
7.         set jx y
8.      end if 
9.    end if 
10. end for 
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                        (a) Evolutionary process.                          (b) Training and evaluation process. 

Fig. 4 The flowchart of MECNN.  

 

3.4. Fog Computing Architecture and IoT-IDS Deployment 

This subsection first briefly describes the composition of the Fog computing and describes how our 

MECNN is trained and how it is deployed to provide intrusion detection for IoT. Fog computing is a 

paradigm developed by Cisco that transfers the data and services to the edge of the network in the cloud, 

which is seen as an extension of the concept of Cloud computing paradigm [28]. It is a highly virtual 

platform that provides compute, storage, and network services between end devices and traditional cloud 

servers. Fog computing has several unique features that distinguish it from other computing architectures, the 

most important of which is its closer distance to end-users, thus leading to lower latency service [50]. As 

shown in Fig. 5, the Fog computing-based IoT architecture consists of three layers: cloud layer, fog layer, and 

edge layer. 
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Fig.5 Fog computing-based IoT architecture 

 

The cloud layer usually consists of high-performance servers, high-capacity storage platforms, and some 

network communication components, which have powerful computing resources. The fog layer is not made 

up of powerful servers but of less powerful and more distributed computers with various functions. Devices 

in this layer put more emphasis on quantity than on performance, extending computing resources from the 

cloud server to the edge of the network, and closer to the edge devices, so that the fog layer can provide 

low-latency-aware services for the edge devices. Finally, a variety of edge devices and edge nodes (i.e., 

smartphones, laptops, smart home devices, smart wearable devices, etc.) are connected to the corresponding 

fog nodes, forming the edge layer, bringing various conveniences to our lives. 

If MECNN is deployed on the cloud node as other traditional methods to detect network anomalies, the 

network transmission load and bandwidth requirements will increase dramatically [12], which cannot meet 

the demand of low-latency. Therefore, in order to take full advantage of the features of the Fog computing 

platform, like other existing methods in [12] [51] and [52], the training process of MECNN that requires a lot 

of computing resources and does not have real-time requirements is conducted on the cloud nodes which are 

usually powerful and resourceful. Then, the trained MECNN models are deployed as virtual machines on fog 

nodes to monitor network traffic, which provide low-latency intrusion detection services for the Fog 

computing platform, as fog nodes are inherently closer to edge devices than cloud nodes. 
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Fig. 6 Flowchart of MECNN for network intrusion detection 

 

Fig.6 shows the process of how MECNN detects network intrusion in Fog computing. It can be seen 

that each fog node consists of four main components, i.e., traffic capture module, traffic preprocessing 

module, traffic detection module, and countermeasure model. Each node monitors the relevant area under its 

responsibility. The traffic capture module is responsible for capturing and receiving network traffic from the 

edge devices and then transforming them into batch samples for the next module. Next, the traffic 

preprocessing module is accountable for converting traffic into the standard format. Then the traffic detection 

module uses the MECNN model deployed on it to classify the traffic records, and it is worth noting that this 

process does not need to interact with the cloud, thus avoiding any latency. Finally, the countermeasure 

module is used to perform countermeasure actions (such as blocking, removing and alerting). Also, when the 

classified result is anomalous, this module will send the processing result to the cloud to store in logs storage. 

4. Experimental Configuration 

In this section, the information of the platform and environment used in the experiments are first briefly 

introduced. Next, the datasets used in the experiments and how to pre-process them are presented. Finally, 

some performance metrics are introduced to evaluate the performance of MECNN. 

4.1. Experimental Setup 

The overall experiments of this study were performed on a server with an Intel(R) Xeon(R) CPU 

E5-2630 v4 @ 2.2GHz processor, RAM of 256 GB size, running 64-bit Ubuntu 16.04 operating system, and 

accelerated with Nvidia GeForce GTX 1080Ti with 11GB memory graphics card. The implementation of 

MECNN was carried out using Python 3.8.5 programing language, Keras Library [53], and TensorFlow API 

[54]. The fog node is a personal computer with an Intel(R) Core(TM) i5-4590 CPU @ 3.3GHz processor and 



RAM of 4 GB size, running 64-bit Windows 10 operating system. Other parameters of MECNN are shown in 

Table 2. 

 
Table 2 

Parameters setting of MECNN 

Parameter types Value 

Number of population N 30 
Neighborhood size T T=N/10 
Probability of crossover 1 
Probability of mutation 0.4 
Number of generations 20 
Epoch of the evolutionary process 8 
Epoch of the final population 100 
Accuracy emphasis rate 0.8 

 

4.2. Datasets Description 

 
Table 3 

Summary of AWID and CIC-IDS2017 datasets characteristics 

Dataset No. of samples 
No. of 

dimensions 
No. of 
classes 

Types of 
Attacks 

Data Distribution 

AWID [30] 

AWID-CLS-R-Trn: 
1,339,406 

 
AWID-CLS-R-Tst: 

389,185 

Category: 
1 

Feature:74 

4 
classes 

- Classes Train Val Test 

Normal Normal 941,617 235,404 346,285 

Flooding  Flooding 38,788 9,696 6,139 

Injection Injection 52,304 13,075 16,682 

Impersonation Impersonation 38,818 9,704 20,079 

CIC-IDS2017 
[31] 

Original:2,830,743 
 

Removed:2,867 
 

Cleaned:2,827,876 

Category: 
1 

Feature:77 

15 
classes, 
mapped 

to 7 
classes 

Benign Normal 1,362,866 454,227 454,227 

Bot Botnet 1133 412 411 

FTP-Patator, 
SSH-Patator 

Brute Force 8,363 2,734 2,735 

DDoS, DoS 
GoldenEye, 
DoS Hulk, 
DoS Slow 

httptest, DoS 
slowloris, 
Heartbleed 

Dos/DDos 227,472 76138 76,138 

Infiltration Infiltration 25 6 5 

PortScan PortScan 95,535 31,635 31,634 

Web Attack – 
Brute Force, 
Web Attack – 
Sql Injection, 
Web Attack – 

XSS 

Web Attack 1,331 424 425 

 

There are various public intrusion detection datasets that can be obtained on the Internet. Two of the 

most popular datasets are chosen to evaluate the performance of our MECNN, which are AWID [30] and 

CIC-IDS2017 [31]. 

(1) AWID dataset 



Aegean WIFI Intrusion Dataset (AWID) is a freely accessible dataset that relies on IEEE 802.11 

networks. The developer collected WIFI traffic records in a packet-based format to develop this dataset, 

representing the real-world wireless network which is a critical feature for modern IoT environments. The 

AWID dataset comprises two equal sets, i.e., AWID-CLS and AWID-ATK, and their difference is only the 

labeling method. The former is labeled as four classes: Normal, Flooding, Impersonation, and Injection, and 

the latter is labeled with more details, which has sixteen classes. Each of the two sets consists of a full subset 

(AWID-CLS-F and AWID-ATK-F) and a reduced one (AWID-CLS-R and AWID-ATK-R). The reduced 

subsets are more suitable for the experiments because of their smaller classes. Thus, in this paper, the reduced 

set (AWID-CLS-R-Trn and AWID-CLS-R-Tst) are used for experiments. There are 1,339,406 traffic records 

in AWID-CLS-R-Trn and 389,185 traffic records in AWID-CLS-R-Tst. 

(2) CIC-IDS2017 dataset 

The Canadian Institute for Cybersecurity intrusion detection system dataset 2017 (CIC-IDS2017) has 

2,830,743 traffic records and contains benign and the most up-to-date common attacks, which resembles the 

true real-world IoT network traffic. According to the author [31] of CIC-IDS2017, the dataset spanned over 

eight different files stored in comma-separated value (CSV) files containing five days of normal and attack 

traffic records of the Canadian Institute of Cybersecurity. This dataset comprises 78 dimensions of features 

and one class feature, including benign class and other fourteen classes of attacks. 

Compared with the datasets generated by simulation software, those two datasets, AWID and 

CIC-IDS2017, have higher reliability and authenticity, thus they can reflect the real IoT network traffic to a 

certain extent. Moreover, those datasets are also adopted by other state-of-the-art IoT-IDSs to evaluate the 

performance of the model. Therefore, these two datasets are well suitable for evaluating the performance of 

the proposed MECNN. The details of those two datasets and their corresponding data distribution are shown 

in Table 3. 

4.3. Dataset Pre-processing 

Next, the pre-processing operations are conducted on those two datasets. Firstly, there is some illegal 

information in CIC-IDS2017, such as null and non-numeric characters, which may influence the training 

process, so they should be removed. As shown in Table 3, a total of 2,867 illegal records were eliminated. 

Secondly, there is a total of fifteen types of classes in CIC-IDS2017, but some of them are remarkably similar. 

Inspired by [55], similar classes are combined into one class in this paper, as shown in Table 3. The one-hot 

encoding operation was conducted on these two datasets to convert the categories into numeric 

representations to facilitate neural network recognition. Moreover, each dataset was divided into three groups 

(training set, testing set, and validation set). The AWID dataset has already been divided into the training set 

(AWID-CLS-R-Trn) and the testing set (AWID-CLS-R-Tst), but there has no validation set, so 

AWID-CLS-R-Trn is further divided in experiments (80% of data are divided into the training set and 20% of 

data are divided into the validation set), and AWID-CLS-R-Tst is still regarded as testing set. For the 



CIC-IDS2017 dataset, 60% of data are regarded as the training set, 20% of data are used for the testing set, 

and the rest 20% are used as the validation set. 
4.4. Evaluation Metrics 

To evaluate the performance of the proposed method, evaluation metrics, such as False Negative (FN), 

False Positive (FP), True Positive (TP), and True Negative (TN), are used in performance evaluation. Those 

metrics are computed through the confusion matrix. Furthermore, four extra evaluation measures, such as 

Accuracy, Precision, Recall, and F1-measure, which can be obtained according to Eqs. (2), (3), (4), and (5), 

respectively, are also used to evaluate the performance of the compared approaches in this paper. 

( )
TP+TN

Accuracy ACC =
TP+TN +FP+FN

                           (2) 

( )
TP

Precision PRC =
TP+FP

                              (3) 

( )
TP

Recall RCL =
TP+FN

                                 (4) 

( ) 2
Precision Recall

F1 measure F1 =
Precision+Recall

                           (5) 

5. Experimental Results and Discussions 

5.1. Experimental Results of MECNN 

In this subsection, the changes of objective values during the evolution of individuals (network models) 

in MECNN are first described, which can show how our model can dynamically evolve the CNN with 

promising performance. Then, the best-performing individuals obtained by MECNN on the AWID and 

CIC-IDS2017datasets are introduced and discussed. 

5.1.1. Population Analysis 

This subsection analyzes the changes of individuals in the population before and after the evolution of 

MECNN on the AWID and CIC-IDS2017 datasets. 

 

 

           (a)                         (b)                          (c)                          (d) 

Fig. 7 The distributions of all the individuals in the initial and final generations on the AWID dataset. 

 



 

           (a)                         (b)                          (c)                          (d) 

Fig. 8 The distributions of all the individuals in the initial and final generations on the CIC-IDS2017 dataset. 

 

 
Table 4 

The extreme value of each objective obtained in the initial and the final generations on the AWID dataset 

  Initial generation Final generation 

 Individual Parameters Error rate (%) Parameters Error rate (%) 

Two- 
class 

Least parameters 636 12.13 284 0.62 

Lowest error rate 1,415,176 0.14 1,178 0.04 

Average 619,080 7.40 771 1.47 

Four- 
class 

Least parameters 3,534 12.13 454 0.38 

Lowest error rate 297,038 0.18 35,968 0.04 

Average 1,031,585 5.19 2,938 2.17 

 
Table 5 

The extreme value of each objective obtained in the initial and the final generations on the CIC-IDS2017 dataset 

  Initial generation Final generation 

 Individual parameters Error rate (%) parameters Error rate (%) 

Two- 
class 

Least parameters 1,100 20.14 460 20.14 

Lowest error rate 9,574 3.07 8,118 0.16 

Average 634,292 12.55 2,013 4.92 

Seven- 
class 

Least parameters 1,045 14.92 1,317 11.58 

Lowest error rate 61,119 2.19 19,523 0.27 

Average 1,119,336 9.49 13,353 5.56 

 

For the AWID dataset, Figs. 7(a) and 7(b) show the distributions of individuals in the initial and final 

generations on the binary-class scenario. Fig. 7(c) and 7(d) show the distributions of individuals in the initial 

and final generations on the four-class scenario. In Figs. 7(a) and 7(c), it can be observed that the 

distributions of individuals are irregular, and most individuals have high model complexity and high 

detection error rate, which is mainly because the individuals in the initial population are generated randomly. 

Since optimizing the CNN model is a practical problem, the real Pareto-optimal curve cannot be obtained in 

advance. However, in Figs. 7(b) and 7(d), after running 20 generations, it is apparent that the model 

complexities and the detection error rates of all the individuals are reduced significantly, and the curve is 

basically converged. The details of the extreme value of each objective obtained in the initial and final 

generations and the average change of individuals are collected in Table 4. For the binary-class scenario, in 

the initial generation, the average number of parameters in the individuals is 619,080, and the average 



detection error rate is 7.40%. Whereas in the final generation, the average value of these objectives has been 

reduced significantly, i.e., the average number of parameters is 771, and the average detection error rate is 

1.47%. For the four-class scenario, in the initial population, the average number of parameters of the 

individuals is 1,031,585, and the average detection error rate is 5.19%. After evolution, in the last generation, 

the average number of parameters is 2,938, and the average detection error rate is 2.17%. No matter whether 

it is a binary-scenario or four-class scenario, after the evolution of MECNN, the number of parameters and 

the detection error rates in the population have been reduced significantly. That is to say, after evolution, both 

the two objective values in individuals become smaller, which means that the corresponding CNN models are 

simpler, but the detection effect becomes better. 

For the CIC-IDS2017 dataset, the comparison results are similar to that for the AWID dataset, Figs. 8(a) 

and 8(b) show the distributions of individuals in the initial and final generations on the binary-class scenario, 

while Figs. 8(c) and 8(d) show their distributions on the seven-class scenario. The individuals in Figs. 8(a) 

and 8(c) are also distributed irregularly, which have high complexities and high detection error rates, while in 

Figs. 8(b) and 8(d), nearly all individuals have significantly reduced their complexities and detection error 

rates. The details of the extreme value of each objective in the initial and final generations, and the average 

change of the individuals are shown in Table 5. For the binary-class scenario, it can be observed that the 

average number of parameters of the individuals in the initial population is 634,292, with an average 

detection error rate of 12.55%. However, in the final generation, the average number of parameters and the 

average detection error rate drastically drop to 2,013 and 4.92%, respectively. For the seven-class scenario, 

the average number of parameters and the average detection error rate are 1,119,336 and 9.49% in the initial 

population, i.e., both the two objective values are extremely large. Whereas in the final population after 

evolution, those two objective values drop significantly to 13,353 and 5.56%, respectively, which means that 

most individuals in the final population can build the corresponding CNN models with simpler model 

complexities and better detection performance. 

After the evolution of MOEA, the complexities and detection performance of the CNN models are 

improved significantly. These experiments demonstrate that the proposed MECNN can indeed simplify the 

design and training of CNN models that require complex manual tuning of parameters to find the suitable 

architecture, which can evolve to obtain simple and efficient CNN models. 

5.1.2. More Detailed Experimental Results 

In this subsection, the best-performing individuals in the population are selected, and their detailed 

results on the binary-class and multi-class scenarios are discussed. 

For the AWID dataset, the confusion matrix of our MECNN on the binary-class scenario and the 

four-class scenario are presented in Table 6 and Table 7, respectively. For the binary-class scenario, it can be 

clearly observed that although the difference in the number of Attack and Normal samples is large, our 

method still obtains satisfactory results with Precision, Recall, and F1-measure all above 99% and near to 



100%. For the four-class scenario, it could be observed that detecting the Flooding class shows the worst 

performance with Precision of 99.17%, Recall of 99.92%, and F1-measure of 99.54%. However, despite the 

relatively weak performance on this class, other results are generally desirable.  

 
Table 6 

Confusion matrix of MECNN on the AWID dataset in case of binary-class scenario 

  Predicted values  
A

ct
ua

l 
va

lu
es

 Classes Attack Normal RCL (%) F1 (%) 

Attack 162,354 31 99.98 99.83 

Normal 528 1,176,493 99.96 99.98 

PRC (%) 99.68 100.00 - - 

 

 

 

 

 

 
Table 7 

Confusion matrix of MECNN on the AWID datasets in case of four-class scenario 

  Predicted values   

 Classes Flooding Impersonation Injection Normal PRC（%） RCL (%) F1 (%) 

A
ct

ua
l v

al
ue

s 

Flooding 48,443 2 0 39 99.17 99.92 99.54 

Impersonation 5 48,468 2 47 99.97 99.89 99.93 

Injection 0 0 65,379 0 99.87 100.00 99.94 

Normal 400 13 81 1,176,527 99.99 99.96 99.98 

 
Table 8 

Confusion matrix of MECNN on the CIC-IDS2017 dataset in case of binary-class scenario 

  Predicted values  

A
ct

ua
l 

va
lu

es
 Classes Attack Benign RCL (%) F1 (%) 

Attack 111,395 431 99.62 99.59 

Benign 496 453,827 99.89 99.90 

 PRC (%) 99.56 99.97 - - 

 
Table 9 

Confusion matrix of MECNN on the CIC-IDS2017 datasets in case of seven-class scenario 

  Predicted values  

 Classes Botnet Brute Force Dos/DDos Infiltration Normal PortScan 
Web 

Attack 
PRC (%) RCL (%) F1 (%) 

A
ct

ua
l v

al
ue

s 

Botnet 151 0 0 0 260 0 0 98.05 36.74 53.45 

BruteForce 0 2,717 4 0 11 3 0 99.60 99.34 99.47 

Dos/DDos 0 0 75,968 0 167 0 3 98.91 99.78 99.34 

Infiltration 0 0 0 1 4 0 0 100.00 20.00 33.33 

Normal 3 11 814 0 453,183 213 3 99.90 99.77 99.84 

PortScan 0 0 16 0 7 31,608 3 99.32 99.92 99.62 

WebAttack 0 0 3 0 4 0 418 97.89 98.35 98.12 

 

For the CIC-IDS2017 dataset, the confusion matrixes of the binary-class scenario and the seven-class 



scenario are shown in Table 8 and Table 9, respectively. For the binary-class scenario, the overall results are 

promising, with incredibly high values above 99% on three metrics (Precision, Recall, F1-measure). For the 

seven-class scenario, it is observed that detecting the Infiltration class shows the worst performance with 

Precision of 100%, Recall of 20%, and F1-measure of 33.33%, followed by the Botnet class with Precision of 

98.05%, Recall of 36.74%, and F1-measure of 53.45%, and followed by Web Attack class with Precision of 

97.89%, Recall of 98.35% and F1-measure of 98.12%. The reason for the poor effect of these classes is that 

the number of samples in these classes is very small, which causes a serious data imbalance problem. 

Although the proposed MECNN performs relatively poorly on these classes with small sample sizes, it still 

shows significantly improved performance on other cases, which can distinguish different types of network 

traffic well and secure the IoT network. 

5.2. Comparative Analysis 

In this subsection, to validate the reliability of the proposed MECNN, the best-performing individual is 

selected to compare with some conventional ML approaches, i.e., logistic regression (LR) [56], NB [10], 

AdaBoost [57] and SVM [11], and some recent state-of-the-art DL approaches, i.e., GRU [19], long 

short-term memory (LSTM) [58], BiDLSTM [18], artificial neural network (ANN) [59], AE-ANN [59], deep 

belief network-ANN (DBN-ANN) [59], SAE-DNN [20] and SDAE-SVM [6]. To ensure a fair comparison, 

these DL approaches are implemented according to the parameters and configurations mentioned in the 

corresponding references. In addition, the same pre-processing and division methods are used on the datasets 

to run the experiments and obtain the final experimental results. 

Table 10 shows the comparative results of the AWID dataset. For the binary-class scenario, NB [10] 

performs worst regarding all metrics. On the other hand, in all ML approaches, AdaBoost is the best with 

Accuracy of 99.60%, Precision of 99.06%, Recall of 99.05%, and F1-measure of 99.05%, and its results are 

similar to that of the state-of-the-art DLs, which seems that it is a reliable approach. Concerning the recent 

DL approaches, SDAE-SVM [6] obtains the worst results with Accuracy of 95.05%, Precision of 87.79%, 

Recall of 89.61%, and F1-measure of 88.67%, which is similar to the results of LR [56] but is far inferior to 

AdaBoost [57]. Except for SDAE-SVM, the results of other DL methods all exceed 99% in all metrics. It’s 

worth noting that, the results of the BiDLSTM [18] are similar to our method with Accuracy of 99.95%, 

Precision of 99.99%, Recall of 99.95%, and F1-measure of 99.97%. More importantly, our MECNN achieves 

the best performance with Accuracy of 99.96%, Precision of 99.99%, Recall of 99.95%, and F1-measure of 

99.97%. For the four-class scenario, it can be noticed that the results are similar to that in the binary-class 

scenario, but the performance of most models is slightly degraded, which is because the multi-class scenario 

is more complicated and involves more classes to process. In addition, the Recall of LSTM [58] is somewhat 

higher than that of our MECNN (LSTM is 99.95%, while MECNN is 99.94%). However, MECNN is better 

than LSTM on the other three metrics, and F1-measure has considered Recall in the calculation process. 

Therefore, it can be said that MECNN performs best among all methods. 



 
Table 10 

The results of comparative experiments on the AWID dataset 

 Binary-class scenario Four-class scenario 

Method ACC (%) PRC (%) RCL (%) F1 (%) ACC (%) PRC (%) RCL (%) F1(%) 

 Machine Learning Approaches 

LR [56] 95.02 87.70 89.52 88.58 97.48 90.63 89.45 89.98 

NB [10] 87.87 74.86 92.36 79.44 85.34 72.97 93.94 76.67 

AdaBoost [57] 99.60 99.06 99.05 99.05 95.46 90.40 73.54 74.31 

SVM [11] 94.87 87.25 89.50 88.33 96.56 87.12 86.65 86.82 

 Deep Learning Approaches 

GRU [19] 99.89 99.74 99.76 99.75 99.91 99.65 99.74 99.70 

LSTM [58] 99.91 99.66 99.92 99.79 99.94 99.60 99.95 99.77 

BiDLSTM [18] 99.95 99.99 99.95 99.97 99.95 99.74 99.92 99.83 

ANN [59] 99.94 99.82 99.94 99.88 99.95 99.71 99.93 99.82 

AE-ANN [59] 99.79 99.56 99.46 99.51 99.78 99.56 98.85 99.20 

DBN-ANN [59] 99.94 99.80 99.93 99.86 99.93 99.67 99.87 99.77 

SAE-DNN [20] 99.90 99.75 99.76 99.76 99.87 99.52 99.52 99.52 

SDAE-SVM [6] 95.05 87.79 89.61 88.67 96.52 87.03 86.53 86.73 

Proposed 99.96 99.99 99.95 99.97 99.96 99.75 99.94 99.85 

 

Table 11 shows the comparative results on the CIC-IDS2017 dataset. For the binary-class scenario, it 

can be seen that NB [10] still obtains the worst results with Accuracy of 45.30%, Precision of 62.43%, Recall 

of 65.20%, and F1-measure of 45.07%, and SDAE-SVM [6] still performs worse than AdaBoost [57]. Except 

for NB and SDAE-SVM, the results of the other methods are generally satisfactory. Further, LSTM [58] 

shows better results with Accuracy of 99.76%, Precision of 99.15%, Recall of 99.6%, and F1-measure of 

99.40%. Most importantly, our MECNN performs better than other methods regarding all measures. In 

addition, for the seven-class scenario, the performance of all approaches is deteriorated significantly, which is 

because the CIC-IDS2017 dataset has a large amount of data. However, the number of samples in some 

classes is exceedingly small, such as Botnet, Infiltration, etc., which causes a serious data imbalance problem. 

These four ML methods perform even worse, as they fail to deal with the high-dimensional and large-scale 

data. Although all these methods perform very competitively, MECNN still has the best results with 

Accuracy of 99.73%, Precision of 99.10%, Recall of 79.13%, and F1-measure of 83.31%. 

These two experiments conducted on the UNSW-NB15 and CIC-IDS2017 datasets have demonstrated 

the superiority of our proposed MECNN in terms of detection performance of anomalous packets when 

compared to other state-of-the-art intrusion detection methods. 

 
Table 11 

The results of comparative experiments on the CIC-IDS2017 dataset 

 Binary-class scenario Seven-class scenario 

Method ACC (%) PRC (%) RCL (%) F1 (%) ACC (%) PRC (%) RCL (%) F1 (%) 

 Machine Learning Approaches 

LR [56] 93.45 89.55 89.87 89.71 94.74 37.85 40.12 38.64 

NB [10] 45.30 62.43 65.20 45.07 31.00 36.53 75.19 32.23 

AdaBoost [57] 99.37 98.90 99.13 99.01 88.86 26.75 23.41 24.47 

SVM [11] 93.85 90.02 90.78 90.39 95.87 53.41 44.46 45.90 



 Deep Learning Approaches 

GRU [19] 98.93 97.67 99.02 98.33 98.53 77.59 74.23 75.66 

LSTM [58] 99.76 99.15 99.66 99.40 98.89 89.22 74.79 77.05 

BiDLSTM [18] 98.89 99.56 99.06 99.30 98.89 83.10 74.98 77.03 

ANN [59] 98.81 96.40 97.64 97.01 98.77 83.48 74.46 76.91 

AE-ANN [59] 98.24 93.30 98.11 95.66 98.13 54.20 53.31 54.74 

DBN-ANN [59] 98.78 96.18 97.69 96.93 98.60 82.49 61.77 64.51 

SAE-DNN [20] 98.35 96.85 98.05 97.43 97.66 68.85 59.96 60.65 

SDAE-SVM [6] 93.42 89.53 89.79 89.66 95.38 52.01 44.43 45.25 

Proposed 99.84 99.73 99.75 99.74 99.73 99.10 79.13 83.31 

 

5.3. Performance Analysis 

In this subsection, the difference in response time of MECNN on cloud node and on fog node is first 

described and then the usage of hardware of MECNN on fog node when handling intrusion detection is 

analyzed. 

5.3.1. Response Time 

Since the response time is a critical metric for any IoT network, the length of response time determines 

whether the IoT network can provide timely services to the users. Therefore, it is necessary to evaluate the 

difference in the response time of the proposed MECNN deployed on the fog node and cloud node. Fig. 9 

shows the difference in response time using MECNN on different numbers of packets (from UNSW-NB15 

dataset) under these two environments. It is worth noting that the fog-based model achieves a shorter 

response time of 30%-45% when compared to the cloud-based model. The shortened response time is due to 

the fact that the fog nodes are closer to the edge nodes in terms of distance than the cloud nodes, which 

naturally results in lower network latency. In addition, the longer response time of the cloud-based model is 

caused by communication delay. When handling network intrusions, the cloud nodes first need to receive 

traffic records from edge devices through fog nodes and then process them. As a result, the processing time 

of cloud-based model is always larger than that of the fog-based model, regardless of the size of the data. 

Therefore, as expected, it is more recommended to perform the MECNN training process, which requires a 

lot of computing resources, on the cloud nodes and then deploys the trained MECNN models on the fog 

nodes to detect network intrusions for IoT. 

 

 
Fig. 9 Average response time for fog-based and cloud-based environments using MECNN. 
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Fig. 10 CPU and memory overhead using MECNN on the fog node. 

 

5.3.2. CPU and Memory Analysis 

As described earlier, cloud nodes usually have powerful computing resources. However, the fog nodes 

do not have this ability. Therefore, it is an indispensable part to study the hardware load of the fog node when 

handling intrusions or anomalies. For this purpose, some experiments are conducted to study the resource 

load of the fog node. Fig. 10 shows the CPU and memory usage within 30 seconds of running MECNN on 

the fog node. The CPU overhead is about 0% at the beginning of the experiment, which is increased to about 

22% and then fluctuated between 25% and 30% during the running of the experiment. For the memory 

overhead, the fog node initially only has 3% of memory usage at the beginning of the experiment. Then, the 

memory usage is increased to 7%-8% when the experiment is run. These experiments prove that although the 

fog node does not have as powerful computing power as the cloud nodes, it is still sufficient to meet the 

hardware requirements of running MECNN to detect network intrusions. Moreover, deploying MECNN on 

fog nodes rather than on cloud nodes can provide lower latency service. 

5.4. Ablation Studies 

In MECNN, an accuracy emphasis (AE) module is proposed, which modifies MOEA/D to retain a new 

solution with a lower detection error rate while preserving the diversity of the population. In this subsection, 

an ablation experiment is performed to evaluate the effectiveness of AE. This experiment is conducted on the 

two-class scenario on the CIC-IDS2017, and the same initial population is used for our algorithm with and 

without the AE module. The average number of parameters and the average error rates obtained by the initial 

and final populations are shown in Table 12. In the initial population, it can be observed that the average 

detection error rate is 12.55%. In the final population, the detection error rate is 4.92% when using the AE 

module, while it will increase to 5.34% without using the AE module, which means that the AE module has 

about 0.42% improvement to reduce the average detection error rates of the population, validating the 

effectiveness of the AE module. 

 

Table 12 
The ablation study about the AE module 
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- Using AE module Without AE module 

Initial generation Final generation Final generation 

Parameters 
Error 
rate 

Parameters 
Eror 
rate 

Parameters 
Error 
rate  

634,292 12.55 2,013 4.92 1,088 5.34 

 

6. Conclusions and Future Work 

This paper proposes a new multi-objective evolutionary convolutional neural network for intrusion 

detection system, called MECNN, which can be deployed on the fog nodes of Fog computing to detect 

network intrusions in the IoT environment. The CNN model is first employed to distinguish different types 

of IoT traffic records, and an encoding scheme is proposed to transform the architecture of CNN into a 

chromosome of MOEA/D, which is used to solve the difficulty of parameter tunning for DL. Then, the 

detection performance and the model complexity of CNN are considered as two objectives, which are 

optimized by a modified MOEA/D. Additionally, an accuracy emphasis (AE) module is embedded into 

MOEA/D to enhance its performance, which can retain better-performing individuals without sacrificing the 

population’s diversity. After the evolution of MOEA/D, a set of MECNN models with different model 

complexities and detection performance can be obtained, and the most suitable MECNN model can be 

deployed on different fog nodes of fog computing based on their hardware configuration, to provide intrusion 

detection for IoT. When compared with other state-of-the-art IDSs also based on DL techniques, MECNN 

significantly simplifies the parameter tuning process for DL model and can provide low-latency and 

high-accuracy intrusion detection in IoT. 

Although the proposed MECNN shows very promising performance, the parameters in the CNN model 

still need to be manually set in a wide range in advance. Thus, a fully automated method to build the CNN 

models will be studied in our future work. Moreover, the proposed MECNN shows slightly poor performance 

when the training data are severely unbalanced. Thus, some effective methods to deal with this imbalance 

data problem will be investigated in our future work. 
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