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1 Introdu
tionThe geneti
 algorithm (GA) has been widely used for optimization tasks (Goldberg1989) and is known to be a very powerful tool in 
ertain domains. In our 
ur-rent work we wish to �nd a way to use the GA as a design tool, with parti
ularemphasis in the design of digital 
ombinational 
ir
uits.As it is known, there are several standard graphi
al design aids su
h as theKarnaughMaps (Karnaugh 1953, Veit
h 1952), whi
h are widely used by humandesigners. There are also other tools more suitable for 
omputer implemen-tation su
h as the Quine-M
Cluskey Method (Quine 1955, M
Cluskey 1956),Espresso (Brayton, Ha
htel, M
Mullen & Sangiovanni-Vin
entelli 1984) andMisII (Brayton, Rudell, Sangiovanni-Vin
entelli & Wang 1987).Despite the drawba
ks of 
lassi
al 
ir
uit design te
hniques, some of them
an handle truth tables with hundreds of inputs, whereas evolutionary algo-rithms are restri
ted to relatively small truth tables (Miller, Job & Vassilev2000). However, the most interesting aspe
t of evolutionary design is the possi-bility of studying its emergent patterns (Miller et al. 2000, Coello Coello, Chris-tiansen & Hern�andez Aguirre 2000). The goals are, therefore, di�erent when wedesign 
ir
uits using evolutionary algorithms. First, we aim to optimize 
ir
uits(using a 
ertain metri
) in a di�erent way, and intuitively, we 
an think of pro-du
ing novel designs (sin
e there is no human intervention). Su
h novel designshave been shown in the past (Miller et al. 2000, Miller, Kalganova, Lipnitskaya& Job 1999, Coello Coello et al. 2000). Se
ond, it would be extremely useful toextra
t design patterns from su
h evolutionary-generated solutions. This 
ouldlead to a pra
ti
al design pro
ess in whi
h a small (optimal) 
ir
uit is used as abuilding blo
k to produ
e 
omplex 
ir
uits. Su
h a divide-and-
onquer approa
hhas also been suggested in the past (Torresen 1998, Miller et al. 2000).However, in the previous work on evolutionary design of 
ombinational 
ir-
uits, eÆ
ien
y has been an important issue. The main approa
hes reported sofar in the literature require a signi�
ant amount of �tness fun
tion evaluations.The motivation of this work was pre
isely to 
on
eive an approa
h that 
ouldredu
e the amount of �tness fun
tion evaluations, while keeping the 
apabilitiesof a GA to generate novel (and 
ompa
t) designs. This does not mean that we
laim that our approa
h will solve the s
alability problem that has 
hara
terizedevolvable hardware (Thompson, Layzell & Zebulum 1999, Miller et al. 2000).Nevertheless, we believe that approa
hes su
h as the one presented in this paper,may 
ontribute to the development of alternative te
hniques that 
ould improvethe performan
e of a GA at least when solving relatively small 
ir
uits (underthe assumption that they 
ould be used as building blo
ks to produ
e larger
ir
uits).In the past, we have approa
hed this problem using a GA with a matrix en-
oding s
heme, and an n-
ardinality alphabet (after a series of experiments, wefound this n-
ardinality representation s
heme to be more robust than the tra-ditional binary representation (Coello Coello 1996, Coello Coello, Christiansen& Hern�andez Aguirre 1997, Coello Coello et al. 2000)).Our original GA-based approa
h presents great resemblan
e with the one2



proposed by Miller (1997) and further developed by Miller and his 
olleagues(2000, 1999, 1998). The two main di�eren
es between the two approa
hes arethe en
oding s
heme and the �tness fun
tion as we will explain later in thispaper. However, Miller's initial work emphasized generation of fun
tional 
ir-
uits, rather than optimization. It was until re
ently, that Kalganova & Miller(1999) experimented with a two-stage (or multiobje
tive, as they 
all it) �tnessfun
tion. We adopted that sort of �tness fun
tion sin
e the beginning of our re-sear
h in this area (Coello Coello 1996, Coello Coello et al. 1997). However, theuse of truly multiobje
tive optimization te
hniques (e.g., based on the 
on
eptof Pareto optimality (Coello Coello 1999)) remained as an open area of resear
hin 
ombinational 
ir
uit design, as indi
ated by Kalganova & Miller (1999).In this paper, we propose the use of an evolutionary multiobje
tive opti-mization te
hnique (rather than just a multiobje
tive �tness fun
tion) to design
ombinational 
ir
uits. There is some (relatively s
ar
e) previous work on us-ing multiobje
tive te
hniques to handle 
onstraints. This work, however, has
on
entrated on numeri
al optimization only.Our approa
h is probably the �rst attempt to use this kind of te
hnique inthe design of 
ir
uits, and it seems to 
onsiderably redu
e the amount of �tnessfun
tion evaluations required by a GA (at least 
ompared to our previous GA(Coello Coello et al. 2000) and to Miller et al.'s approa
h (1997)).Our proposal is to handle ea
h of the mat
hes between a solution generatedby a GA and the values spe
i�ed by the truth table as equality 
onstraints.This, however, introdu
es some dimensionality problems for 
onventional mul-tiobje
tive optimization te
hniques (this is be
ause 
he
king for dominan
e isan O(n2) pro
ess), and therefore the idea of using a (more eÆ
ient) population-based approa
h similar to the Ve
tor Evaluated Geneti
 Algorithm (VEGA)(S
ha�er 1985).The remainder of this paper is organized as follows: �rst, we give some basi
de�nitions related to multiobje
tive optimization. Then, we des
ribe some of theprevious related work on using multiobje
tive optimization te
hniques to handle
onstraints. After that, we state the problem of interest to us, and introdu
eour approa
h, giving some examples of its performan
e. Results are 
omparedagainst those produ
ed by our previous approa
h (a GA with an n-
ardinalityalphabet and a two-stage �tness fun
tion that we will simply denote as NGA)and against designs produ
ed by humans (using Karnaugh Maps (Karnaugh1953), the Quine-M
Cluskey Pro
edure (Quine 1955, M
Cluskey 1956)) andanother GA (Miller, Thomson & Fogarty 1997). Then, we present a shortdis
ussion of our results, our 
on
lusions and some of the possible paths offuture resear
h.2 Multiobje
tive OptimizationMultiobje
tive optimization (also 
alled multi
riteria optimization, multiper-forman
e or ve
tor optimization) 
an be de�ned as the problem of �nding(Osy
zka 1985): 3



a ve
tor of de
ision variables whi
h satis�es 
onstraints and opti-mizes a ve
tor fun
tion whose elements represent the obje
tive fun
-tions. These fun
tions form a mathemati
al des
ription of perfor-man
e 
riteria whi
h are usually in 
on
i
t with ea
h other. Hen
e,the term \optimize" means �nding su
h a solution whi
h would givethe values of all the obje
tive fun
tions a

eptable to the designer.Formally, we 
an state the general multiobje
tive optimization problem(MOP) as follows:De�nition 1 (General MOP): Find the ve
tor ~x� = [x�1; x�2; : : : ; x�n℄T whi
hwill satisfy the m inequality 
onstraints:gi(~x) � 0 i = 1; 2; : : : ;m (1)the p equality 
onstraintshi(~x) = 0 i = 1; 2; : : : ; p (2)and optimizes the ve
tor fun
tion~f(~x) = [f1(~x); f2(~x); : : : ; fk(~x)℄T (3)where ~x = [x1; x2; : : : ; xn℄T is the ve
tor of de
ision variables. 2In other words, we wish to determine from among the set F of all num-bers whi
h satisfy (1) and (2) the parti
ular set x�1; x�2; : : : ; x�n whi
h yields theoptimum values of all the k obje
tive fun
tions of the problem.Another important 
on
ept is that of Pareto optimality, whi
h was statedby Vilfredo Pareto in the XIX 
entury (Pareto 1896), and 
onstitutes by itselfthe origin of resear
h in multiobje
tive optimization:De�nition 2 (Pareto Optimality:): We say that ~x� 2 F , is Paretooptimal if for every ~x 2 
 and I = f1; 2; : : : ; kg either,^i 2 I (fi(~x) = fi(~x�)) (4)or, there is at least one i 2 I su
h that (assuming maximization)fi(~x) � fi(~x�) (5)2In words, this de�nition says that ~x� is Pareto optimal if there exists no feasi-ble ve
tor ~x whi
h would in
rease some 
riterion without 
ausing a simultaneousde
rement in at least one other 
riterion.Pareto optimal solutions are also termed non-inferior, admissible, or eÆ-
ient solutions (Horn 1997); their 
orresponding ve
tors are termed nondomi-nated. These solutions may have no 
learly apparent relationship besides theirmembership in the Pareto optimal set. This is the set of all solutions whose4




orresponding ve
tors are nondominated with respe
t to all other 
omparisonve
tors. When plotted in obje
tive spa
e, the nondominated ve
tors are 
olle
-tively known as the Pareto front.In this paper, we will be referring to these 
on
epts, although our approa
hdoes not ne
essarily produ
e Pareto optimal solutions. The Ve
tor EvaluatedGeneti
 Algorithm (VEGA) in whi
h our approa
h is inspired, is known tobe biased towards the generation of individuals that ex
el in one dimensionof performan
e (i.e., in one obje
tive fun
tion rather than generating good\trade-o�s", whi
h is what other approa
hes su
h as Pareto ranking (Fonse
a& Fleming 1993) tend to do). However, we argue that in the 
ontext of 
ir
uitdesign (as well as other design areas), the 
ooperative me
hanism impli
it in apopulation-based approa
h su
h as VEGA 
an be exploited to perform a moreeÆ
ient sear
h. Therefore, we do not really aim to generate Pareto optimal de-signs, but instead, we aim to approa
h eÆ
iently (i.e., at a low 
omputational
ost) the feasible region of 
ir
uit design problems (a task that normally 
on-sumes a lot of CPU time). Thus, the reason why the previous 
on
epts werein
luded is for 
ompleteness, so that some of the related work and related 
on-
epts mentioned in this paper 
an be fully understood and, therefore, the paper
an be self-
ontained.3 Handling 
onstraintsThe idea of using multiobje
tive optimization te
hniques to handle 
onstraintsis not new. Some resear
hers have proposed to rede�ne the single-obje
tive opti-mization of f(~x) as a multiobje
tive optimization problem in whi
h we will havem+1 obje
tives, where m is the number of 
onstraints. Then, we 
an apply anymultiobje
tive optimization te
hnique (Fonse
a & Fleming 1995, Coello Coello1999) to the new ve
tor ~v = (f(~x); f1(~x); : : : ; fm(~x)), where f1(~x); : : : ; fm(~x)are the original 
onstraints of the problem. An ideal solution ~x would thus havefi(~x)=0 for 1 � i � m and f(~x) � f(~y) for all feasible ~y (assuming maximiza-tion).Surry et al. (1995, 1997) proposed the use of Pareto ranking (Fonse
a &Fleming 1993) and VEGA (S
ha�er 1985) to handle 
onstraints using this te
h-nique. In their approa
h, 
alled COMOGA, the population was ranked basedon 
onstraint violations (
ounting the number of individuals dominated by ea
hsolution). Then, one portion of the population was sele
ted based on 
onstraintranking, and the rest based on real 
ost (�tness) of the individuals.Parmee and Pur
hase (1994) implemented a version of VEGA (S
ha�er 1985)that handled the 
onstraints of a gas turbine problem as obje
tives to allow ageneti
 algorithm to lo
ate a feasible region within the highly 
onstrained sear
hspa
e of this appli
ation. However, VEGA was not used to further explore thefeasible region, and instead Parmee and Pur
hase (1994) opted to use spe
ializedoperators that would 
reate a variable-size hyper
ube around ea
h feasible pointto help the geneti
 algorithm to remain within the feasible region at all times.Camponogara & Talukdar (1997) proposed the use of a pro
edure based on5



an evolutionary multiobje
tive optimization te
hnique. Their proposal was torestate a single obje
tive optimization problem in su
h a way that two obje
-tives would be 
onsidered: the �rst would be to optimize the original obje
tivefun
tion and the se
ond would be to minimize the total amount of 
onstraintviolation of an individual.On
e the problem is rede�ned, non-dominated solutions with respe
t to thetwo new obje
tives were generated. The solutions found de�ned a sear
h di-re
tion d = (xi � xj)=jxi � xjj, where xi 2 Si, xj 2 Sj , and Si and Sj arePareto sets. The dire
tion sear
h d is intended to simultaneously minimize allthe obje
tives (Camponogara & Talukdar 1997). Line sear
h is performed inthis dire
tion so that a solution x 
an be found su
h that x dominates xi andxj (i.e., x is a better 
ompromise than the two previous solutions found). Linesear
h takes the pla
e of 
rossover in this approa
h, and mutation is essentiallythe same, where the dire
tion d is proje
ted onto the axis of one variable j inthe solution spa
e (Camponogara & Talukdar 1997). Additionally, a pro
ess ofeliminating half of the population is applied at regular intervals (only the less�tted solutions are repla
ed by randomly generated points).Jim�enez and Verdegay (1999) proposed the use of a min-max approa
h(Chankong & Haimes 1983) to handle 
onstraints. The main idea of this ap-proa
h is to apply a set of simple rules based on 
onstraint violation to de
idethe sele
tion pro
ess (individuals with the lowest amount of 
onstraint violationwould be preferred in a binary tournament).In the 
ontext of 
ombinational logi
 
ir
uits design, we are not aware ofany work in whi
h the dire
t use of a multiobje
tive optimization te
hnique hadbeen proposed, ex
ept for the single 
ir
uit solved in (Coello Coello 2000). Theidea was, however, suggested by Kalganova and Miller (1999). Nevertheless,evolutionary multiobje
tive optimization approa
hes have been used by severalresear
hers to solve some other related problems. For example, Wilson andMa
leod (1993) used Pareto ranking (Goldberg 1989) to design multiplierlessIIR �lters; Zebulum et al. (1998) used a GA with a target ve
tor approa
h (withadaptive weights) for the synthesis of low-power operational ampli�ers; Harrisand Ifea
hor (1996) used Pareto ranking to design nonlinear Finite ImpulseResponse (FIR) �lters; et
.4 Statement of the ProblemThe problem of interest to us 
onsists of designing a 
ir
uit that performs adesired fun
tion (spe
i�ed by a truth table), given a 
ertain spe
i�ed set ofavailable logi
 gates.In 
ir
uit design, one 
an use various 
riteria to de�ne minimal-
ost expres-sions. For example, from a mathemati
al perspe
tive, one 
ould minimize thetotal number of literals or the total number of binary operations or the totalnumber of symbols in an expression. The minimization problem is diÆ
ult forall su
h 
ost 
riteria. In gate networks one 
ould minimize the total numberof gates subje
t to su
h restri
tions as fan-in, fan-out, number of levels, or the6



total number of SSI pa
kages. In general, it is very diÆ
ult to �nd su
h min-imal networks or to prove the minimality of a given network (Brzozowski &Yoeli 1976). In spite of this, it is possible to solve a number of minimizationproblems using systemati
 te
hniques, provided that we are satis�ed with lessgeneral solutions.The 
omplexity of a logi
 
ir
uit is a fun
tion of the number of gates inthe 
ir
uit. The 
omplexity of a gate generally is a fun
tion of the numberof inputs to it. Be
ause a logi
 
ir
uit is a realization (implementation) of aBoolean fun
tion in hardware, redu
ing the number of literals in the fun
tionshould redu
e the number of inputs to ea
h gate and the number of gates in the
ir
uit|thus redu
ing the 
omplexity of the 
ir
uit.In this work, we propose a GA that uses a population-based approa
h todesign 
ir
uits. The results produ
ed are 
ompared against those produ
ed byanother GA (
alled n-
ardinality GA or NGA (Coello Coello et al. 2000)). Wealso 
ompare our results against with those generated by a human designerusing Karnaugh maps and another one using the Quine-M
Cluskey Pro
edure(unless indi
ated otherwise in the examples). The 
omparison against humandesigners is in many ways unfair be
ause of di�ering 
apabilities of man andma
hine. For example, a human designer tends to use only the gates NOT,AND, OR and has more diÆ
ulties using XOR be
ause the Karnaugh Map andthe Quine-M
Cluskey Pro
edure do not support the identi�
ation of XOR termsas well as they support \seeing" simple produ
t terms. The 
omputer, usinga GA-based approa
h, and not being restri
ted by human pattern re
ognitionabilities, uses many XOR gates, often disregarding the NOT gate.Our overall measure of 
ir
uit optimality is the total number of gates used,regardless of their kind. This is approximately proportional to the total part
ost of the 
ir
uit. Obviously, we perform this analysis for only fully fun
tional
ir
uits.An interesting aspe
t of this work relates to the analysis of the type ofsolutions that the GA generates. We have found in the past (Coello Coelloet al. 2000) (and again in the work 
urrently reported) that the GA tends to�nd 
ertain design patterns that, through repli
ation, 
an produ
e very 
ompa
tdesigns. In fa
t, through a 
areful analysis of the solutions generated by a GA,we have been able to extra
t some of its design patterns and to use them both toimprove 
onvergen
e of the GA itself and to enri
h the set of simpli�
ation rulesnormally used by human designers (see (Islas P�erez, Coello Coello & Hern�andezAguirre 2001) for details). Some of these design aspe
ts will be brie
y dis
ussedin Se
tion 8.5 The Geneti
 Algorithm UsedWe used a matrix to represent a 
ir
uit also adopted in previous work (CoelloCoello et al. 2000, Coello Coello et al. 1997), as shown in Figure 1. This matrixis en
oded as a �xed-length string of integers from 0 to N � 1, where N refersto the number of rows allowed in the matrix (we 
all it n-
ardinality alphabet).7



AND

OR

NOT

XOR

WIRE

INPUT 2INPUT 1
GATE

 I 1

 I 2

TYPE OF

OUTPUTSINPUTS

  I 1    I 2

Figure 1: Matrix used to represent a 
ir
uit. Ea
h gate gets its inputs fromeither of the gates in the previous 
olumn. Note the en
oding adopted for ea
helement of the matrix as well as the set of available gates used.More formally, we 
an say that any 
ir
uit 
an be represented as a bidimen-sional array of gates Si;j , where j indi
ates the level of a gate, so that those gates
loser to the inputs have lower values of j. (Level values are in
remented fromleft to right in Figure 1). For a �xed j, the index i varies with respe
t to thegates that are \next" to ea
h other in the 
ir
uit, but without being ne
essarily
onne
ted. Ea
h matrix element is a gate (there are 5 types of gates: AND,NOT, OR, XOR and WIRE1.) that re
eives its 2 inputs from any gate at theprevious 
olumn as shown in Figure 1. Although our GA implementation allowsgates with more inputs and these inputs might 
ome from any previous level ofthe 
ir
uit, we limited ourselves to 2-input gates and restri
ted the inputs to
ome only from the previous level. This restri
tion 
ould, of 
ourse, be relaxed,but we adopted it to allow a fair 
omparison with our previous GA-based ap-proa
h (it should be kept in mind that the main motivation of this work was toimprove the eÆ
ien
y of our previous GA).A 
hromosomi
 string en
odes the matrix shown in Figure 1 by using tripletsin whi
h the 2 �rst elements refer to ea
h of the inputs used, and the third isthe 
orresponding gate from the available set.The matrix representation adopted in this work was originally proposed byLouis (1991, 1993, 1993). He applied his approa
h to a 2-bit adder and to the n-parity 
he
k problem (for n = 4; 5; 6). This representation has also been adoptedby Miller et al. (1997, 2000) with some di�eren
es. For example, the restri
tionsregarding the sour
e of a 
ertain input to be fed in a matrix element varies inea
h of the three approa
hes: Louis (1993) has strong restri
tions, Miller etal. (1997) have no restri
tions and we have relatively light restri
tions. The1WIRE basi
ally indi
ates a null operation, or in other words, the absen
e of gate, andit is used just to keep regularity in the representation used by the GA that otherwise wouldhave to use variable-length strings. 8



en
oding is also di�erent in all 
ases. Louis (1993) only en
oded informationregarding one input and the type of gate to be used at ea
h matrix position. Healso used binary representation. In our 
ase, we used an n-
ardinality alphabetand de
ided to en
ode the gate to be pla
ed at ea
h matrix lo
ation plus itstwo inputs. Miller et al. (1997) en
ode a full Boolean operation using a singleinteger. This representation is more 
ompa
t, but it has the problem of requiringthat mutation takes the pla
e of 
rossover to introdu
e enough diversity inthe population, so that the evolutionary algorithm 
an approa
h the feasibleregion. That is the reason why Miller et al. (2000) have adopted an evolutionarystrategy in their re
ent work.Finally, the last di�eren
e among the three approa
hes previously mentionedis regarding the �tness fun
tion. Louis (1993) simply maximizes the number ofmat
hes between the outputs produ
ed by the 
ir
uit and those indi
ated in thetruth table. We have used a �tness fun
tion that works in two stages: �rst, itmaximizes the number of mat
hes (as in Louis' 
ase). However, on
e feasiblesolutions are found, we maximize the number of WIREs in the 
ir
uit. By doingthis, we a
tually optimize the 
ir
uit in terms of the number of gates that ituses. Miller et al. (1997) did something similar to Louis until re
ently (theyhave re
ently introdu
ed a two-stage �tness fun
tion like the one adopted by us(Kalganova & Miller 1999)).Thus, we 
an say that our goal was to produ
e a fully fun
tional design(i.e., one that produ
es all the expe
ted outputs for any 
ombination of inputsa

ording to the truth table given for the problem) whi
h maximizes the numberof WIREs. We also aimed to redu
e the 
omputational 
ost of our previous GA-based approa
h.6 Des
ription of the approa
hThe main idea behind our proposed approa
h is to use a population-based mul-tiobje
tive optimization te
hnique su
h as VEGA (S
ha�er 1985) to handle ea
hof the outputs of a 
ir
uit as an obje
tive. In other words, we would have anoptimization problem with m equality 
onstraints, where m is the number ofvalues (i.e., outputs) of the truth table that we aim to mat
h. So, for example,a 
ir
uit with 3 inputs and a single output, would have m = 23 = 8 values tomat
h.The te
hnique may be better illustrated by Figure 2. At ea
h generation,the population is split into m + 1 subpopulations, where m is de�ned as indi-
ated before (we have to add one to 
onsider also the obje
tive fun
tion). Ea
hsubpopulation is on 
harge of optimizing a 
onstraint of the problem (in this
ase, an output of the 
ir
uit) and an additional subpopulation will optimize theoriginal obje
tive fun
tion (un
onstrained). Therefore, the main goal of ea
hsubpopulation is to mat
h its 
orresponding output with the value indi
ated bythe user in the truth table. Although the size of ea
h subpopulation may bevariable, it was de
ided to allo
ate the same size to ea
h of them in the experi-ments reported in this paper, but the use of di�erent subpopulation sizes is also9
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Individual 1

Individual 2

Individual 3

Individual NFigure 2: Graphi
al representation of the approa
h proposed in this paper. Notethat although individuals are sele
ted using di�erent 
riteria depending on thesubpopulation in whi
h they are pla
ed, 
rossover is allowed between individualsof di�erent subpopulations. The new population is generated after shu�ing theold population and applying to it 
rossover and mutation.possible.The obje
tive fun
tion in our 
ase is de�ned as in previous work (CoelloCoello et al. 1997, Coello Coello et al. 2000): it is the total number of mat
hes(between the outputs produ
ed by an en
oded 
ir
uit and the intented valuesde�ned in the truth table de�ned by the user). For ea
h mat
h, we in
rease thevalue of the obje
tive fun
tion by one. If the en
oded 
ir
uit is feasible (i.e., itmat
hes the truth table 
ompletely), then we add one (the so-
alled \bonus")for ea
h WIRE present in the solution.Using the proposed s
heme, a fra
tion of the population will be sele
tedusing the obje
tive fun
tion as its �tness (i.e., it will try to maximize the totalnumber of mat
hes); another fra
tion will use the mat
h of the �rst output as its�tness and so on (sin
e they are all binary values, we only 
he
k if it mat
hes ornot, without 
omputing any extra values as required in numeri
al optimization).The main issue here is how to handle the di�erent situations that 
ould arise.Fitness within ea
h subpopulation is 
omputed using the following s
heme:if oj(~x) 6= tj then �tness(~x) = 0else if v 6= 0 then �tness(~x) = �velse �tness(~x) = f(~x)where oj(~x) refers to the value of output j for the en
oded 
ir
uit ~x; tj is thevalue spe
i�ed for output j in the truth table; and v is the number of outputsthat are not mat
hed by the 
ir
uit ~x (� m). Finally, f(~x) is the �tness fun
tiondes
ribed before:f(~x) = h(~x) +� 0 if f(~x) is infeasiblew(~x) otherwise (6)10



In this equation, h(~x) refers to the number of mat
hes between the 
ir
uit ~xand the values de�ned in the truth table, and w(~x) is the number of WIREs inthe 
ir
uit ~x. Therefore, sele
tion is performed using di�erent rules within ea
hsubpopulation. However, 
rossover and mutation are applied to the entire pop-ulation (i.e., no \spe
iation" me
hanism is used). This intends to re
ombine the
hromosomi
 material 
orresponding to di�erent partially fun
tional 
ir
uits, asto allow 
onvergen
e towards fully feasible 
ir
uits.The algorithm of our approa
h is the following:1. Generate randomly a population of size P .2. Split the population into m+ 1 subpopulations (m = number of outputsto mat
h).3. Compute �tness values a

ording to the goals of ea
h individual withinea
h subpopulation:� If the target output is not mat
hed, �tness is zero.� Else, if the target output is mat
hed, but the 
ir
uit is not fun
tional,then �tness is the number of outputs not mat
hed multipled by (-1).� Else, if the target output is mat
hed AND the 
ir
uit is fun
tional,then �tness is given by the addition of the number of outputs mat
hedplus the number of wires of the 
ir
uit.4. Shu�e the entire population and sele
t parents from ea
h subpopulationbased on the (previously 
omputed) �tness value of ea
h individual.5. Apply 
rossover and mutation to the entire population. Individuals of anygiven subpopulation are allowed to breed with individuals of any othersubpopulation. This will generate the new population P 0.6. If 
onvergen
e 
riterion rea
hed, then stop.7. Otherwise, return to step 2.There are a few interesting things that 
an be observed from this pro
edure.First, ea
h subpopulation asso
iated with an output of the 
ir
uit will try tomat
h it with the value de�ned in the truth table. On
e this is a
hieved, thenthe �tness fun
tion will try to maximize the number of mat
hes of the rest ofthe outputs. In other words, this subpopulation will 
ooperate with the othersthat are having diÆ
ulties to mat
h their outputs. If the 
ir
uit is feasible, thenall the subpopulations will join e�orts to maximize the number of WIREs in the
ir
uit.It is important to 
larify that the 
urrent approa
h does not use dominan
eto impose an order on the 
onstraints based on their violation (like in the 
ase ofCOMOGA (Surry, Rad
li�e & Boyd 1995)) whi
h is a more expensive pro
ess(in terms of CPU time) that also requires additional parameters. In fa
t, the
urrent approa
h does not rank individuals, but it uses instead di�erent �tness11



fun
tions for ea
h of the subpopulation allo
ated (whose number depends onthe number of outputs in a 
ir
uit) depending on the feasibility of the indi-viduals 
ontained within ea
h of them. This is easier to implement, does notrequire spe
ial operators to preserve feasiblity (like in the 
ase of Parmee andPur
hase's approa
h (1994)), makes unne
essary the use of a sharing fun
tion topreserve diversity (Deb & Goldberg 1989) (like with traditional multiobje
tiveoptimization te
hniques (Fonse
a & Fleming 1995)), and does not require extraparameters to 
ontrol the mixture of feasible and infeasible individuals (like inthe 
ase of COMOGA (Surry et al. 1995)).VEGA is known to have diÆ
ulties in multiobje
tive optimization problemsdue to the fa
t that it tries to �nd individuals that ex
el only in one dimensionregardless of the others (the so-
alled \middling" problem (S
ha�er 1985, Fon-se
a & Fleming 1995, Coello Coello 1999)). However, that drawba
k turns outto be an advantage in this 
ontext, be
ause what we want to �nd are pre
isely
ir
uits that are fully fun
tional, instead of good 
ompromises that may notsatisfy one of the outputs (whi
h are the kinds of solutions that a Pareto rank-ing strategy would normally produ
e) (Coello Coello 1999). Also, the use ofsubpopulations is mu
h more eÆ
ient than using Pareto dominan
e, be
ause ofthe potentially high number of obje
tives involved (this will be illustrated inthe examples shown in this paper).7 Comparison of ResultsWe have used several 
ir
uits of di�erent degrees of 
omplexity to test ourapproa
h. For the purposes of this paper, 5 examples were 
hosen to illustrateour approa
h (
alled multiobje
tive geneti
 algorithm, or MGA for short), andthe results produ
ed were 
ompared with those generated by human designersand by our previous n-
ardinality GA (
alled NGA) (Coello Coello et al. 1997,Coello Coello et al. 2000).In ea
h 
ase, the size of the matrix used to �t the 
ir
uit was determinedusing the following pro
edure:1. Start with a square matrix of size 5.2. If no feasible solution is found using this matrix, then in
rease the numberof 
olumns by one.3. If no feasible solution is found using this matrix, then in
rease the numberof rows by one.4. Repeat steps 2 and 3 until a suitable matrix is produ
ed.As we will see in the following examples, it was normally the 
ase that forsmall 
ir
uits a matrix of 5� 5 was suÆ
ient. However, in one of the examples,it was ne
essary to rea
h a matrix size of 6 � 7. This made ne
essary to runthe GA for more generations, performing, in 
onsequen
e, more �tness fun
tionevaluations. This situation normally arises with 
ir
uits having several outputs,12



Table 1: Truth table for the 
ir
uit of the �rst example.X Y Z F0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 0although in some 
ases, su
h as in the 2-bit multiplier of our fourth example,even a 5� 5 matrix may be enough to �nd the best known 
ir
uit.To 
hoose the size of ea
h subpopulation in the MGA, we started with 10,and performed 20 runs. If we did not �nd feasible solutions in at least one fourthof our runs, we would in
rease the subpopulation size by 10 and would perform20 more runs. This pro
ess was repeated until a suitable subpopulation size wasfound.The other issue is regarding the 
rossover and mutation rates. After a seriesof experiments, we de
ided to use a 
rossover rate of 50% and a mutation ratesu
h that ea
h string had a 50% probability of being mutated at a 
ertainposition. Sin
e mutation was applied on a single-gene basis, we used as ourprobability of mutation the result of dividing this 50% by the length of the string.For example, when a 5�5 matrix was used, the length of the 
hromosomi
 stringwas 75. Therefore, the probability of mutation would be 0.006667.7.1 Example 1Our �rst example is a 3-even parity problem, whose truth table with 3 inputsand one output is shown in Table 1. In this 
ase, the matrix used was of size 5�5,and the length of ea
h string representing a 
ir
uit was then 3 � 5 � 5 = 75.The 
ardinality 
 used for this problem was max(r; g), where r refers to thenumber of rows in the matrix and g to the number of allowable gates in the
ir
uit (sin
e only the inputs from the previous level are 
onsidered, the numberof 
olumns does not a�e
t the 
ardinality used). Sin
e g = 5, and 
 = 5 forthis example, then the size of the intrinsi
 sear
h spa
e for this problem is
l = 575 � 2:6 � 1052. Fitness is 
omputed in the following way: 8 (numberof outputs that we must mat
h to have a feasible 
ir
uit) + 5 � 5 (size of thematrix) - number of gates used (i.e., di�erent of WIRE)). Therefore, a �tnessof 29 (the best value produ
ed for this 
ir
uit) means that the 
ir
uit is feasible(otherwise, its �tness 
ould not possibly be above 8), and it has 4 gates (i.e., 21WIREs), be
ause 8 + (25-4) = 8 + 21 = 29.Results are 
ompared in Table 2. Human Designer 1 used Karnaugh Maps13



X

Y

F

ZFigure 3: Graphi
al representation of the best 
ir
uit found by the MGA andthe NGA for the �rst example.MGA NGA HD 1 HD 2F = (X + Y )Z F = Z(X + Y ) F = Z(X � Y ) F = X 0Y Z�(XY ) �(XY ) +Y (X � Z) +X(Y � Z)4 gates 4 gates 5 gates 6 gates2 ANDs, 1 OR, 2 ANDs, 1 OR, 2 ANDs, 1 OR, 3 ANDs, 1 OR,1 XOR, 1 NOT 1 XOR 2 XORs 1 XOR, 1 NOTTable 2: Comparison of the best solutions found by the n-
ardinality GA(NGA), our multiobje
tive geneti
 algorithm (MGA), and two human de-signers (HD 1 and HD 2) for the 
ir
uit of the �rst example. A populationsize of 90 was used with both GAs.plus Boolean algebra identities to simplify the 
ir
uit, whereas Human Designer2 used the Quine-M
Cluskey Pro
edure. In both 
ases, they produ
ed solutionswith more gates than the MGA or the NGA.A subpopulation size of 10 was enough for the MGA. Sin
e the 
ir
uit has8 outputs, there were 9 obje
tives. Therefore, the total population size was setto 90. We set the maximum number of generations to 300.To make a fair 
omparison, the same representation s
heme and the samegeneti
 operators (two-point 
rossover with a probability of 0.5, and uniformmutation with a probability of 0.006667) were used for both the MGA and theNGA (for more details on the NGA, refer to (Coello Coello et al. 2000)).The MGA 
onsistently found a solution with a �tness value of 29 (75% of thetime), and it produ
ed feasible 
ir
uits 100% of the time. The average �tness ofthe 20 runs performed was 28.75, with a standard deviation of 0.433012. Thegraphi
al representation of this solution is depi
ted in Figure 3.On the other hand, the best solution that the NGA 
ould �nd using thesame population size had also a �tness of 29 (i.e., a 
ir
uit with 4 gates), but itappeared only 10% of the time. Also, 20% of the time, the best solution foundwas infeasible. The average �tness of these 20 runs was 21.4, with a standarddeviation of 8.438009244. 14



Z W X Y F0 0 0 0 10 0 0 1 10 0 1 0 00 0 1 1 10 1 0 0 00 1 0 1 00 1 1 0 10 1 1 1 11 0 0 0 11 0 0 1 01 0 1 0 11 0 1 1 01 1 0 0 01 1 0 1 11 1 1 0 01 1 1 1 0Table 3: Truth table for the 
ir
uit of the se
ond example.7.2 Example 2Our se
ond example has 4 inputs and one output, as shown in Table 3. A matrixof the same size as before was used (i.e., 5� 5).The 
omparison of the results produ
ed by the MGA, the NGA, a humandesigner using Karnaugh Maps, and Sasao's approa
h (1993) are shown in Ta-ble 4. Sasao (1993) has used this 
ir
uit to illustrate his 
ir
uit simpli�
ationte
hnique based on the use of ANDs & XORs. His solution uses, however, moregates than the 
ir
uit produ
ed by the NGA or the MGA.Sin
e this example has 16 outputs, there are 17 obje
tives for the MGA. Apopulation size of 170 was enough to solve this 
ir
uit. The maximum numberof generations in this 
ase (for both the MGA and the NGA) was set to 400.The MGA found a solution with a �tness value of 34 (i.e., a 
ir
uit with 7gates) 15% of the time, and solutions with 8 gates were found 25% of the time.The MGA produ
ed feasible 
ir
uits 100% of the time. The average �tness ofthe 20 runs performed was 32.1, with a standard deviation of 1.252366. Thegraphi
al representation of the best solution found is depi
ted in Figure 4.The best solution that the NGA 
ould �nd using the same population sizehad a �tness of 31 (i.e., a 
ir
uit with 10 gates), and it appeared only on
ein the 20 runs performed. Also, 95% of the time, the best solution found wasinfeasible. The average �tness of these 20 runs was 15.55, with a standarddeviation of 3.677456.
15



Z

Y

W

X

F

Figure 4: Cir
uit produ
ed by our MGA for the se
ond example.
MGA NGA HD 1 SasaoF = ((W +XY ) F = (WYX 0 F = ((Z 0X) F = X 0 � Y 0W 0�((X + Y ) �((W + Y ) �(Y 0W 0)) �XY 0Z 0(X � Z)))0 �Z � (X +((X 0Y ) �X 0Y 0W+Y + Z)))0 (Z �W 0))7 gates 10 gates 11 gates 12 gates2 ANDs, 2 ORs, 2 ANDs, 3 ORs, 4 ANDs, 1 OR, 3 XORs,2 XORs, 1 NOT 3 XORs, 2 NOTs 2 XORs, 4 NOTs 5 ANDs,4 NOTsTable 4: Comparison of the best solutions found by the n-
ardinality GA(NGA), our multiobje
tive geneti
 algorithm (MGA), a human designer usingKarnaugh Maps (HD 1), and Sasao for the 
ir
uit of the se
ond example. Apopulation size of 170 was used with both GAs.

16



A1 A0 B1 B0 C3 C2 C1 C00 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 1 1 0 0 0 00 1 0 0 0 0 0 00 1 0 1 0 0 0 10 1 1 0 0 0 1 00 1 1 1 0 0 1 11 0 0 0 0 0 0 01 0 0 1 0 0 1 01 0 1 0 0 1 0 01 0 1 1 0 1 1 01 1 0 0 0 0 0 01 1 0 1 0 0 1 11 1 1 0 0 1 1 01 1 1 1 1 0 0 1Table 5: Truth table for the 2-bit multiplier of the third example.7.3 Example 3Our third example has 4 inputs and 4 outputs, as shown in Table 5. A matrixof the same size as before was used (i.e., 5� 5).Sin
e this example has 64 outputs, there are 65 obje
tives for the MGA. Asubpopulation size of 10 (i.e., total population size of 650), was suÆ
ient for theMGA. The maximum number of generations in this 
ase (for both the MGAand the NGA) was set to 500.The MGA found a solution with a �tness value of 82 (i.e., a 
ir
uit with 7gates) 15% of the time, and it produ
ed feasible 
ir
uits 100% of the time. Theaverage �tness of the 20 runs performed was 80.4, with a standard deviationof 1.142481141. The graphi
al representation of the best solution found by theMGA is depi
ted in Figure 5.On the other hand, the best solution that the NGA 
ould �nd using thesame population size of 650 had a �tness of 80 (i.e., a 
ir
uit with 9 gates). Thissolution appeared only twi
e in the 20 runs performed. In most 
ases (70% ofthe runs performed), the best solution found was infeasible. The average �tnessof these 20 runs was 66.65, with a standard deviation of 7.638372657.The 
omparison of the results produ
ed by the MGA, the NGA, two humandesigners, and Miller et al. (1997) are shown in Table 6. It should be mentionedthat Miller et al. (1997) 
onsidered their solution to 
ontain only 7 gates be
auseof the way in whi
h they en
oded their Boolean fun
tions (the reason is that theyen
oded NAND gates in their representation). However, sin
e we 
onsideredea
h gate as a separate 
hromosomi
 element, we 
ount ea
h of them, in
luding17
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Figure 5: Cir
uit produ
ed by our MGA for the third example.
MGA NGA HD 1 HD 2 MILC0 = A0B0 C0 = A0B0 C0 = A0B0 C0 = A0B0 C0 = A0B0C1 = A0B1 C1 = A1A0 C1 = A0B1 C1 = (B1 +B0) C1 = A1B0�A1B0 B0B1 �A1B0 (A1 +A0) �A0B1�(A0B1 ((A1A0)+A1B0) �(B1B0))C2 = A1B1 C2 = (A0B0 C2 = A1B1 C2 = A1B1 C2 = (A0B0)0�(A0B0 +A1B1) (A0B0)0 (A0B0)0 (A1B1)A1B1) �A0B0C3 = A0B0 C3 = A1B1 C3 = A1A0 C3 = A1B1 C3 = (A1B0A1B1 A0B0 B1B0 A0B0 �A0B1)0(A1B0)7 gates 9 gates 8 gates 12 gates 9 gates5 ANDs, 5 ANDs, 6 ANDs, 8 ANDs, 6 ANDs,2 XORs 2 ORs, 1 XOR, 1 XOR, 1 XOR,2 XORs 1 NOT 2 ORs, 1 NOT 2 NOTsTable 6: Comparison of the best solutions found by the n-
ardinality GA(NGA), our multiobje
tive geneti
 algorithm (MGA), two human designers (HD1 & HD 2), and Miller et al. (MIL) for the 
ir
uit of the third example. Apopulation size of 650 was used with both the MGA and the NGA.18



A B C D F1 F2 F30 0 0 0 1 0 00 0 0 1 0 1 00 0 1 0 0 1 00 0 1 1 0 1 00 1 0 0 0 0 10 1 0 1 1 0 00 1 1 0 0 1 00 1 1 1 0 1 01 0 0 0 0 0 11 0 0 1 0 0 11 0 1 0 1 0 01 0 1 1 0 1 01 1 0 0 0 0 11 1 0 1 0 0 11 1 1 0 0 0 11 1 1 1 1 0 0Table 7: Truth table for the 
ir
uit of the fourth example.NOTs that are asso
iated with AND & OR gates. Regardless of that fa
t, itis more important to point out that Miller et al. (1997) found their solutionwith runs of 3,000,000 �tness fun
tion evaluations ea
h, whereas in our 
ase, weperformed runs of only 325,000 evaluations ea
h.7.4 Example 4Our fourth example has 4 inputs and 3 outputs, as shown in Table 7. In this
ase, the matrix used was of size 6 � 7, and the 
hromosomi
 length was 126(r = 6; q = 7; t = 6�7 = 42; l = 3� t = 126). The 
ardinality 
 = max(r; g) = 6The size of the intrinsi
 sear
h spa
e for this problem is 
l = 6126 � 1:1� 1098.The 
omparison of the results produ
ed by the MGA, the NGA, and twohuman designers are shown in Table 8.Sin
e this example has 48 outputs, there are 49 obje
tives for the MGA. Asubpopulation size of 10 (i.e., total population size of 490), was suÆ
ient for theMGA. The maximum number of generations in this 
ase (for both the MGAand the NGA) was set to 2000.The MGA found a solution with a �tness value of 81 (i.e., a 
ir
uit with 9gates) 15% of the time, and it produ
ed feasible 
ir
uits 100% of the time (55%of the time, the MGA found better solution than the best found by the NGA).The average �tness of the 20 runs performed was 78.9, with a standard deviationof 1.020835571. The graphi
al representation of the best solution found by theMGA is depi
ted in Figure 6.On the other hand, the best solution that the NGA 
ould �nd using the19
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D Figure 6: Cir
uit produ
ed by our MGA for the fourth example.same population size of 490 individuals had a �tness of 78 (i.e., a 
ir
uit with12 gates). This solution appeared only on
e in the 20 runs performed. Inmost 
ases (80% of the runs performed), the best solution found was infeasible.The average �tness of these 20 runs was 52.15, with a standard deviation of11.92641915.8 Dis
ussion of ResultsWe will start by summarizing the results obtained from our experiments. Table 9
ontains of summary of the best results produ
ed by the MGA, the NGA andthe best human designer in ea
h of the 
ir
uits analyzed. We 
an see that theMGA 
onsistently outperformed its 
ompetitors, produ
ing the lowest numberof gates in ea
h 
ase.Sin
e one of the main aspe
ts of the approa
h proposed in this paper is its
apability to improve the eÆ
ien
y of the GA to design 
ombinational 
ir
uits,we de
ided to perform another 
omparison in whi
h we analyzed the 
ompu-tational 
ost required by our original NGA and our proposed MGA to obtainequivalent results (in terms of optimality). The analysis was 
ondu
ted on the�ve examples presented in this paper, and 
onsidering only the minimum num-ber of �tness fun
tion evaluations required (\minimum" in this 
ase refers tothe 
ombination of population size and maximum number of generations thatprodu
ed the lowest result when multiplied). Sin
e the best results in all 
ases
orrespond to the MGA, we established a methodology to try di�erent parame-ters for the NGA, so that we 
ould rea
h similar results (our methodology wassimilar to the one des
ribed in previous work (Coello Coello 2000)).The 
omparison of 
omputational 
osts for the MGA and the NGA (rea
hingthe best results reported in this paper for ea
h of the �ve examples 
hose) ispresented in Table 10. In all 
ases, the number of �tness fun
tion evaluationsindi
ated 
orrespond to the 
omplete run of the GA (even if, like in most 
ases,
onvergen
e to the best result obtained was a
hieved before rea
hing the lastgeneration). It 
an be 
learly appre
iated that the MGA outperforms the NGA20



MGA NGA HD 1 HD 2F1 = ((B �D) F1 = ((B �D) F1 = (A� C)0 F1 = (A� C)0+(A� C))0 +(A� C))0 (B �D)0 (B �D)0F3 = ((B �D) F3 = ((B �D) F3 = BD0(A F3 = (F1 + F2)0+(A� C)) +(A� C)) + C 0)(((A � C) ((D + (A� +AC 0+(A�B)) C))0�C)) + (A0 + C)0)F2 = F3� F2 = ((B �D) F2 = B0D F2 = A0C((B �D) +(A� C)) (A0 + C) +(A� C)0+(A� C)) �((B �D) +A0C (B0D)+(A� C))((D + (A�C))0+(A0 + C)0)9 gates 12 gates 19 gates 13 gates3 XORs, 3 ORs, 3 XORs, 4 ORs, 2 XORs, 4 ORs, 2 XORs, 2 ORs,2 ANDs, 2 NOTs 1 AND, 4 NOTs 7 ANDs, 6 NOTs 4 ANDs, 5 NOTsTable 8: Comparison of the best solutions found by the n-
ardinality GA(NGA), our multiobje
tive geneti
 algorithm (MGA), and two human de-signers (HD 1 and HD 2) for the 
ir
uit of the fourth example. A populationsize of 490 was used with both GAs.Example No. MGA NGA BHD1 4 4 52 7 10 113 7 9 84 9 12 13Table 9: Comparison of the number of gates 
ontained in the best solutionsprodu
ed by: our multiobje
tive geneti
 algorithm (MGA), the N -
ardinalitygeneti
 algorithm (NGA), and the best human designer (BHD) for ea
h of theexamples analyzed in this paper.Example No. MGA NGA1 27,000 27,0002 68,000 500,0003 325,000 600,0004 980,000 5,600,000Table 10: Comparison of the number of �tness fun
tion evaluations required torea
h the optimum by ea
h of the two GA-based approa
hes 
ompared in thispaper. 21



in most 
ases. The di�eren
e in terms of performan
e, be
omes more signi�
antas we attempt to solve more 
omplex 
ir
uits.We believe that the good performan
e obtained with this algorithm is mainlydue to an emergent behavior obtained from the 
ooperation of the di�erent sub-populations aiming to satisfy a simple goal. This line of thought is 
onsistentwith the re
ent work by Potter & DeJong (2000), a

ording to whi
h the reso-lution of 
omplex problems with evolutionary algorithms requires a 
ooperativee�ort.Additionally, the 
urrent te
hnique 
an also be 
onsidered a variation ofthe divide-and-
onquer approa
h to evolvable hardware suggested by Torresen(1998). In this approa
h, a system is evolved through its smaller 
omponents.Only that in our 
ase, these smaller 
omponents happen to be individual out-puts of a 
ir
uit. Torresen (1998) also showed that a s
heme of this sort 
ouldsubstantially redu
e the 
omputational power required to evolve a system. Thesavings that this sort of population-based approa
h 
an produ
e 
ould be veryuseful in other design domains su
h as stru
tural optimization. We are in fa
t
urrently exploring the use of this type of approa
h in that domain.Another interesting aspe
t of this work is the analysis of the design patternsused by the GA. It is important to mention that the GA does not really possesany spe
i�
 domain information that 
ould help it to bias the sear
h. In fa
t, itdoes not even \know" anything about the simplest simpli�
ation rules existing(e.g., NOT (NOT A) = A). Nevertheless, it is able to emulate both simple and
omplex simpli�
ation rules used in Boolean algebra, and even produ
e othersthat tend to es
ape human 
reativity. Some of the un
ommon design patternsused by the GA 
an be hinted by 
omparing its solutions against those generatedby a human designer. For instan
e, in Example # 4 from the previous se
tion,the Boolean expression of one of the outputs is identi
al to the expression gen-erated by the MGA. The two others, in 
ontrast, are more 
omplex in the 
aseof the MGA. Then, why is the total number of gates of this 
ir
uit smaller?The answer is simple: if the solution of the MGA is 
arefully analyzed, it 
anbe seen that its apparent 
omplexity is due to the fa
t that it is reusing thesame blo
k to produ
e the three outputs. This is 
ounterintuitive for a humanusing a visual aid te
hnique su
h as the Karnaugh maps, but it is an emergingproperty of the appli
ation of natural sele
tion to the 
ir
uit design pro
ess.In some of our re
ent work, we have fo
used our attention to the dis
overyof these design patterns (other resear
hers su
h as (Miller et al. 1999, Thomson2000) have done similar work). To our surprise, besides redis
overing someof the most 
ommon simpli�
ation rules of Boolean algebra, and others notso simple su
h as a DeMorgan theorem applied to XOR gates: (X � Y 0)0 =X � Y = X 0 � Y 0. We also dis
overed some more 
omplex simpli�
ations,su
h as (A+ (A�B))� (A�B) = AB, whi
h are not intuitive to any humandesigner. Through the use of 
ase-based reasoning, we have been able to storethis \knowledge" generated by the GA for further reuse. The interested readeris referred to (Islas P�erez et al. 2001) for further details.We believe that our approa
h 
an be of great help in problems that arede
omposable. There are examples in the literature of 
ooperative sear
h ap-22



proa
hes designed for su
h problems (e.g., (Murthy, Akkiraju, Goodwin, Ke-skino
ak, Ra
hlin, Wu, Kumaran & Daigle 1999, Parmee & Watson 1999)).Sin
e our approa
h is based on su
h a 
ooperative (emergent) behavior, it ishighly likely that it will perform very well (and at a low 
omputational 
ost) inproblems that 
an be solved using su
h 
ooperative te
hniques.It is worth mentioning one last issue that may be related to the work pre-sented in this paper. Re
ently, Knowles et al. (2001) suggested that transform-ing 
ertain single-obje
tive optimization problems into multiobje
tive (a pro
essthat they 
all \multi-obje
tivizing") 
an remove lo
al optima and therefore, be-
ome easier to solve by a heuristi
. Their hypothesis was validated with a
ertain instan
e of the traveling salesperson problem. In this problem, the ap-pli
ation of the \multi-obje
tivizing" pro
ess previously mentioned allowed touse a simple hill
limber to solve it.It is therefore possible that the pro
ess des
ribed in this paper is anotherform of \multi-obje
tivizing" single-obje
tive 
ir
uit design problems. Thistransformation of the �tness lands
ape (produ
ed by the pro
ess of \multi-obje
tizing" the problem) may transform a diÆ
ult sear
h spa
e into anothermore amenable for the appli
ation of a geneti
 algorithm. This allows to �ndnot only very good results but also in a relatively redu
ed amount of time.9 Con
lusions and Future WorkWe have proposed a multiobje
tive optimization te
hnique to design 
ombina-tional logi
 
ir
uits. The proposed approa
h uses a population-based te
hniqueto split the sear
h task among several (small) subpopulations. The approa
h
ompared well with respe
t to two human designers, and a previous GA de-veloped by us whi
h uses and n-
ardinality alphabet and a two-stage �tnessfun
tion. Our approa
h, 
alled MGA, 
onsistently found better solutions thanthe human designers, and was able to �nd the same or even better solutionsthan our previous GA (
alled NGA), using a lower number of �tness fun
tionevaluations.The proposed approa
h seems very suitable for parallelization, and that willprobably be a path of resear
h that we will explore in the near future. Also, weare interested in 
oupling this approa
h with another system based on geneti
programming that is 
urrently under development. We aim to bene�t from amore powerful 
hromosomi
 representation while keeping an eÆ
ient sele
tionme
hanism.10 A
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