Design of Combinational Logic Circuits through
an Evolutionary Multiobjective Optimization
Approach

Carlos A. Coello Coello*
CINVESTAV-IPN
Depto. de Ingenieria Eléctrica
Seccién de Computaciéon
Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco
México, D. F. 07300
ccoello@cs.cinvestav.mx

Arturo Herndndez Aguirre
Department of Electrical
Engineering and Computer Science
Tulane University
New Orleans, LA 70118, USA
hernanda@eecs.tulane.edu

August 14, 2001

Abstract

In this paper, we propose a population-based evolutionary multiobjec-
tive optimization approach to design combinational circuits. Our results
indicate that the proposed approach can significantly reduce the compu-
tational effort required by a genetic algorithm (GA) to design circuits at
a gate level while generating equivalent or even better solutions (i.e., cir-
cuits with a lower number of gates) than a human designer or even other
GAs. Several examples taken from the literature are used to evaluate the
performance of the proposed approach.

Keywords: circuit design, evolutionary multiobjective optimization, genetic
algorithms, evolvable hardware, multiobjective optimization.

*Corresponding author.

1 Introduction

The genetic algorithm (GA) has been widely used for optimization tasks (Goldberg
1989) and is known to be a very powerful tool in certain domains. In our cur-
rent work we wish to find a way to use the GA as a design tool, with particular
emphasis in the design of digital combinational circuits.

As it is known, there are several standard graphical design aids such as the
Karnaugh Maps (Karnaugh 1953, Veitch 1952), which are widely used by human
designers. There are also other tools more suitable for computer implemen-
tation such as the Quine-McCluskey Method (Quine 1955, McCluskey 1956),
Espresso (Brayton, Hachtel, McMullen & Sangiovanni-Vincentelli 1984) and
MislI (Brayton, Rudell, Sangiovanni-Vincentelli & Wang 1987).

Despite the drawbacks of classical circuit design techniques, some of them
can handle truth tables with hundreds of inputs, whereas evolutionary algo-
rithms are restricted to relatively small truth tables (Miller, Job & Vassilev
2000). However, the most interesting aspect of evolutionary design is the possi-
bility of studying its emergent patterns (Miller et al. 2000, Coello Coello, Chris-
tiansen & Herndndez Aguirre 2000). The goals are, therefore, different when we
design circuits using evolutionary algorithms. First, we aim to optimize circuits
(using a certain metric) in a different way, and intuitively, we can think of pro-
ducing novel desiguns (since there is no human intervention). Such novel designs
have been shown in the past (Miller et al. 2000, Miller, Kalganova, Lipnitskaya
& Job 1999, Coello Coello et al. 2000). Second, it would be extremely useful to
extract design patterns from such evolutionary-generated solutions. This could
lead to a practical design process in which a small (optimal) circuit is used as a
building block to produce complex circuits. Such a divide-and-conquer approach
has also been suggested in the past (Torresen 1998, Miller et al. 2000).

However, in the previous work on evolutionary design of combinational cir-
cuits, efficiency has been an important issue. The main approaches reported so
far in the literature require a significant amount of fitness function evaluations.
The motivation of this work was precisely to conceive an approach that could
reduce the amount of fitness function evaluations, while keeping the capabilities
of a GA to generate novel (and compact) designs. This does not mean that we
claim that our approach will solve the scalability problem that has characterized
evolvable hardware (Thompson, Layzell & Zebulum 1999, Miller et al. 2000).
Nevertheless, we believe that approaches such as the one presented in this paper,
may contribute to the development of alternative techniques that could improve
the performance of a GA at least when solving relatively small circuits (under
the assumption that they could be used as building blocks to produce larger
circuits).

In the past, we have approached this problem using a GA with a matrix en-
coding scheme, and an n-cardinality alphabet (after a series of experiments, we
found this n-cardinality representation scheme to be more robust than the tra-
ditional binary representation (Coello Coello 1996, Coello Coello, Christiansen
& Herndndez Aguirre 1997, Coello Coello et al. 2000)).

Our original GA-based approach presents great resemblance with the one

proposed by Miller (1997) and further developed by Miller and his colleagues
(2000, 1999, 1998). The two main differences between the two approaches are
the encoding scheme and the fitness function as we will explain later in this
paper. However, Miller’s initial work emphasized generation of functional cir-
cuits, rather than optimization. It was until recently, that Kalganova & Miller
(1999) experimented with a two-stage (or multiobjective, as they call it) fitness
function. We adopted that sort of fitness function since the beginning of our re-
search in this area (Coello Coello 1996, Coello Coello et al. 1997). However, the
use of truly multiobjective optimization techniques (e.g., based on the concept
of Pareto optimality (Coello Coello 1999)) remained as an open area of research
in combinational circuit design, as indicated by Kalganova & Miller (1999).

In this paper, we propose the use of an evolutionary multiobjective opti-
mization technique (rather than just a multiobjective fitness function) to design
combinational circuits. There is some (relatively scarce) previous work on us-
ing multiobjective techniques to handle constraints. This work, however, has
concentrated on numerical optimization only.

Our approach is probably the first attempt to use this kind of technique in
the design of circuits, and it seems to considerably reduce the amount of fitness
function evaluations required by a GA (at least compared to our previous GA
(Coello Coello et al. 2000) and to Miller et al.’s approach (1997)).

Our proposal is to handle each of the matches between a solution generated
by a GA and the values specified by the truth table as equality constraints.
This, however, introduces some dimensionality problems for conventional mul-
tiobjective optimization techniques (this is because checking for dominance is
an O(n?) process), and therefore the idea of using a (more efficient) population-
based approach similar to the Vector Evaluated Genetic Algorithm (VEGA)
(Schaffer 1985).

The remainder of this paper is organized as follows: first, we give some basic
definitions related to multiobjective optimization. Then, we describe some of the
previous related work on using multiobjective optimization techniques to handle
constraints. After that, we state the problem of interest to us, and introduce
our approach, giving some examples of its performance. Results are compared
against those produced by our previous approach (a GA with an n-cardinality
alphabet and a two-stage fitness function that we will simply denote as NGA)
and against designs produced by humans (using Karnaugh Maps (Karnaugh
1953), the Quine-McCluskey Procedure (Quine 1955, McCluskey 1956)) and
another GA (Miller, Thomson & Fogarty 1997). Then, we present a short
discussion of our results, our conclusions and some of the possible paths of
future research.

2 Multiobjective Optimization

Multiobjective optimization (also called multicriteria optimization, multiper-
formance or vector optimization) can be defined as the problem of finding
(Osyczka 1985):

a vector of decision variables which satisfies constraints and opti-
mizes a vector function whose elements represent the objective func-
tions. These functions form a mathematical description of perfor-
mance criteria which are usually in conflict with each other. Hence,
the term “optimize” means finding such a solution which would give
the values of all the objective functions acceptable to the designer.

Formally, we can state the general multiobjective optimization problem
(MOP) as follows:

Definition 1 (General MOP): Find the vector & = [z%,a3,...,2%]" which
will satisfy the m inequality constraints:

the p equality constraints

hi(@) =0 i=12,...,p 2)

and optimizes the vector function

F@) = [L(@), fo(@), ..., (@] (3)

where & = [z1,Zo, . .. ,a:n]T is the vector of decision variables. O

In other words, we wish to determine from among the set F of all num-
bers which satisfy (1) and (2) the particular set x}, 3, ...,z which yields the
optimum values of all the k£ objective functions of the problem.

Another important concept is that of Pareto optimality, which was stated
by Vilfredo Pareto in the XIX century (Pareto 1896), and constitutes by itself
the origin of research in multiobjective optimization:

Definition 2 (Pareto Optimality:): We say that &* € F, is Pareto
optimal if for every £ € Q and I = {1,2,...,k} either,

D, (@) = [i(7) (4)

or, there is at least one i € I such that (assuming maximization)
fil@) < fi(Z") (5)
O

In words, this definition says that £* is Pareto optimal if there exists no feasi-
ble vector Z which would increase some criterion without causing a simultaneous
decrement in at least one other criterion.

Pareto optimal solutions are also termed non-inferior, admissible, or effi-
cient solutions (Horn 1997); their corresponding vectors are termed nondomi-
nated. These solutions may have no clearly apparent relationship besides their
membership in the Pareto optimal set. This is the set of all solutions whose

corresponding vectors are nondominated with respect to all other comparison
vectors. When plotted in objective space, the nondominated vectors are collec-
tively known as the Pareto front.

In this paper, we will be referring to these concepts, although our approach
does not necessarily produce Pareto optimal solutions. The Vector Evaluated
Genetic Algorithm (VEGA) in which our approach is inspired, is known to
be biased towards the generation of individuals that excel in one dimension
of performance (i.e., in one objective function rather than generating good
“trade-offs”, which is what other approaches such as Pareto ranking (Fonseca
& Fleming 1993) tend to do). However, we argue that in the context of circuit
design (as well as other design areas), the cooperative mechanism implicit in a
population-based approach such as VEGA can be exploited to perform a more
efficient search. Therefore, we do not really aim to generate Pareto optimal de-
signs, but instead, we aim to approach efficiently (i.e., at a low computational
cost) the feasible region of circuit design problems (a task that normally con-
sumes a lot of CPU time). Thus, the reason why the previous concepts were
included is for completeness, so that some of the related work and related con-
cepts mentioned in this paper can be fully understood and, therefore, the paper
can be self-contained.

3 Handling constraints

The idea of using multiobjective optimization techniques to handle constraints
is not new. Some researchers have proposed to redefine the single-objective opti-
mization of f(Z) as a multiobjective optimization problem in which we will have
m+ 1 objectives, where m is the number of constraints. Then, we can apply any
multiobjective optimization technique (Fonseca & Fleming 1995, Coello Coello
1999) to the new vector ¥ = (f(Z), f1(Z),..., fm(Z)), where fi1(Z),..., fm ()
are the original constraints of the problem. An ideal solution & would thus have
fi(@)=0for 1 <i < m and f(Z) > f(y) for all feasible ¥ (assuming maximiza-
tion).

Surry et al. (1995, 1997) proposed the use of Pareto ranking (Fonseca &
Fleming 1993) and VEGA (Schaffer 1985) to handle constraints using this tech-
nique. In their approach, called COMOGA, the population was ranked based
on constraint violations (counting the number of individuals dominated by each
solution). Then, one portion of the population was selected based on constraint
ranking, and the rest based on real cost (fitness) of the individuals.

Parmee and Purchase (1994) implemented a version of VEGA (Schaffer 1985)
that handled the constraints of a gas turbine problem as objectives to allow a
genetic algorithm to locate a feasible region within the highly constrained search
space of this application. However, VEGA was not used to further explore the
feasible region, and instead Parmee and Purchase (1994) opted to use specialized
operators that would create a variable-size hypercube around each feasible point
to help the genetic algorithm to remain within the feasible region at all times.

Camponogara & Talukdar (1997) proposed the use of a procedure based on

an evolutionary multiobjective optimization technique. Their proposal was to
restate a single objective optimization problem in such a way that two objec-
tives would be considered: the first would be to optimize the original objective
function and the second would be to minimize the total amount of constraint
violation of an individual.

Once the problem is redefined, non-dominated solutions with respect to the
two new objectives were generated. The solutions found defined a search di-
rection d = (z; — z;)/|z; — xj|, where x; € S;, ¢; € Sj, and S; and S; are
Pareto sets. The direction search d is intended to simultaneously minimize all
the objectives (Camponogara & Talukdar 1997). Line search is performed in
this direction so that a solution z can be found such that z dominates z; and
z; (Le., z is a better compromise than the two previous solutions found). Line
search takes the place of crossover in this approach, and mutation is essentially
the same, where the direction d is projected onto the axis of one variable j in
the solution space (Camponogara & Talukdar 1997). Additionally, a process of
eliminating half of the population is applied at regular intervals (only the less
fitted solutions are replaced by randomly generated points).

Jiménez and Verdegay (1999) proposed the use of a min-max approach
(Chankong & Haimes 1983) to handle constraints. The main idea of this ap-
proach is to apply a set of simple rules based on constraint violation to decide
the selection process (individuals with the lowest amount of constraint violation
would be preferred in a binary tournament).

In the context of combinational logic circuits design, we are not aware of
any work in which the direct use of a multiobjective optimization technique had
been proposed, except for the single circuit solved in (Coello Coello 2000). The
idea was, however, suggested by Kalganova and Miller (1999). Nevertheless,
evolutionary multiobjective optimization approaches have been used by several
researchers to solve some other related problems. For example, Wilson and
Macleod (1993) used Pareto ranking (Goldberg 1989) to design multiplierless
IIR filters; Zebulum et al. (1998) used a GA with a target vector approach (with
adaptive weights) for the synthesis of low-power operational amplifiers; Harris
and Ifeachor (1996) used Pareto ranking to design nonlinear Finite Impulse
Response (FIR) filters; etc.

4 Statement of the Problem

The problem of interest to us consists of designing a circuit that performs a
desired function (specified by a truth table), given a certain specified set of
available logic gates.

In circuit design, one can use various criteria to define minimal-cost expres-
sions. For example, from a mathematical perspective, one could minimize the
total number of literals or the total number of binary operations or the total
number of symbols in an expression. The minimization problem is difficult for
all such cost criteria. In gate networks one could minimize the total number
of gates subject to such restrictions as fan-in, fan-out, number of levels, or the

total number of SSI packages. In general, it is very difficult to find such min-
imal networks or to prove the minimality of a given network (Brzozowski &
Yoeli 1976). In spite of this, it is possible to solve a number of minimization
problems using systematic techniques, provided that we are satisfied with less
general solutions.

The complexity of a logic circuit is a function of the number of gates in
the circuit. The complexity of a gate generally is a function of the number
of inputs to it. Because a logic circuit is a realization (implementation) of a
Boolean function in hardware, reducing the number of literals in the function
should reduce the number of inputs to each gate and the number of gates in the
circuit—thus reducing the complexity of the circuit.

In this work, we propose a GA that uses a population-based approach to
design circuits. The results produced are compared against those produced by
another GA (called n-cardinality GA or NGA (Coello Coello et al. 2000)). We
also compare our results against with those generated by a human designer
using Karnaugh maps and another one using the Quine-McCluskey Procedure
(unless indicated otherwise in the examples). The comparison against human
designers is in many ways unfair because of differing capabilities of man and
machine. For example, a human designer tends to use only the gates NOT,
AND, OR and has more difficulties using XOR because the Karnaugh Map and
the Quine-McCluskey Procedure do not support the identification of XOR terms
as well as they support “seeing” simple product terms. The computer, using
a GA-based approach, and not being restricted by human pattern recognition
abilities, uses many XOR gates, often disregarding the NOT gate.

Our overall measure of circuit optimality is the total number of gates used,
regardless of their kind. This is approximately proportional to the total part
cost of the circuit. Obviously, we perform this analysis for only fully functional
circuits.

An interesting aspect of this work relates to the analysis of the type of
solutions that the GA generates. We have found in the past (Coello Coello
et al. 2000) (and again in the work currently reported) that the GA tends to
find certain design patterns that, through replication, can produce very compact
designs. In fact, through a careful analysis of the solutions generated by a GA,
we have been able to extract some of its design patterns and to use them both to
improve convergence of the GA itself and to enrich the set of simplification rules
normally used by human designers (see (Islas Pérez, Coello Coello & Herndndez
Aguirre 2001) for details). Some of these design aspects will be briefly discussed
in Section 8.

5 The Genetic Algorithm Used

We used a matrix to represent a circuit also adopted in previous work (Coello
Coello et al. 2000, Coello Coello et al. 1997), as shown in Figure 1. This matrix
is encoded as a fixed-length string of integers from 0 to N — 1, where N refers
to the number of rows allowed in the matrix (we call it n-cardinality alphabet).

INPUT 1 INPUT 2 TYPEOF
11 12 GATE @

INPUTS. OUTPUTS

Figure 1: Matrix used to represent a circuit. Each gate gets its inputs from
either of the gates in the previous column. Note the encoding adopted for each
element of the matrix as well as the set of available gates used.

More formally, we can say that any circuit can be represented as a bidimen-
sional array of gates S; ;, where j indicates the level of a gate, so that those gates
closer to the inputs have lower values of j. (Level values are incremented from
left to right in Figure 1). For a fixed j, the index i varies with respect to the
gates that are “next” to each other in the circuit, but without being necessarily
connected. Each matrix element is a gate (there are 5 types of gates: AND,
NOT, OR, XOR and WIRE!.) that receives its 2 inputs from any gate at the
previous column as shown in Figure 1. Although our GA implementation allows
gates with more inputs and these inputs might come from any previous level of
the circuit, we limited ourselves to 2-input gates and restricted the inputs to
come only from the previous level. This restriction could, of course, be relaxed,
but we adopted it to allow a fair comparison with our previous GA-based ap-
proach (it should be kept in mind that the main motivation of this work was to
improve the efficiency of our previous GA).

A chromosomic string encodes the matrix shown in Figure 1 by using triplets
in which the 2 first elements refer to each of the inputs used, and the third is
the corresponding gate from the available set.

The matrix representation adopted in this work was originally proposed by
Louis (1991, 1993, 1993). He applied his approach to a 2-bit adder and to the n-
parity check problem (for n = 4,5,6). This representation has also been adopted
by Miller et al. (1997, 2000) with some differences. For example, the restrictions
regarding the source of a certain input to be fed in a matrix element varies in
each of the three approaches: Louis (1993) has strong restrictions, Miller et
al. (1997) have no restrictions and we have relatively light restrictions. The

LWIRE basically indicates a null operation, or in other words, the absence of gate, and
it is used just to keep regularity in the representation used by the GA that otherwise would
have to use variable-length strings.

encoding is also different in all cases. Louis (1993) only encoded information
regarding one input and the type of gate to be used at each matrix position. He
also used binary representation. In our case, we used an n-cardinality alphabet
and decided to encode the gate to be placed at each matrix location plus its
two inputs. Miller et al. (1997) encode a full Boolean operation using a single
integer. This representation is more compact, but it has the problem of requiring
that mutation takes the place of crossover to introduce enough diversity in
the population, so that the evolutionary algorithm can approach the feasible
region. That is the reason why Miller et al. (2000) have adopted an evolutionary
strategy in their recent work.

Finally, the last difference among the three approaches previously mentioned
is regarding the fitness function. Louis (1993) simply maximizes the number of
matches between the outputs produced by the circuit and those indicated in the
truth table. We have used a fitness function that works in two stages: first, it
maximizes the number of matches (as in Louis’ case). However, once feasible
solutions are found, we maximize the number of WIRES in the circuit. By doing
this, we actually optimize the circuit in terms of the number of gates that it
uses. Miller et al. (1997) did something similar to Louis until recently (they
have recently introduced a two-stage fitness function like the one adopted by us
(Kalganova & Miller 1999)).

Thus, we can say that our goal was to produce a fully functional design
(i.e., one that produces all the expected outputs for any combination of inputs
according to the truth table given for the problem) which maximizes the number
of WIREs. We also aimed to reduce the computational cost of our previous GA-
based approach.

6 Description of the approach

The main idea behind our proposed approach is to use a population-based mul-
tiobjective optimization technique such as VEGA (Schaffer 1985) to handle each
of the outputs of a circuit as an objective. In other words, we would have an
optimization problem with m equality constraints, where m is the number of
values (i.e., outputs) of the truth table that we aim to match. So, for example,
a circuit with 3 inputs and a single output, would have m = 23 = 8 values to
match.

The technique may be better illustrated by Figure 2. At each generation,
the population is split into m + 1 subpopulations, where m is defined as indi-
cated before (we have to add one to consider also the objective function). Each
subpopulation is on charge of optimizing a constraint of the problem (in this
case, an output of the circuit) and an additional subpopulation will optimize the
original objective function (unconstrained). Therefore, the main goal of each
subpopulation is to match its corresponding output with the value indicated by
the user in the truth table. Although the size of each subpopulation may be
variable, it was decided to allocate the same size to each of them in the experi-
ments reported in this paper, but the use of different subpopulation sizes is also

Generation (t) Generation (t+1)

Individual 1 Sub-popu- Individual 1 Individual 1
lation 1
Individual 2 Individual 2 Individual 2
Sub-popu-

Individual 3 lation 2 Individual 3 Individual 3
. Create Sub—popu- | ghyffie . Apply .
e lation 3 e —_—

* Sub-popu-— entire * genetic ¢

. lations . population - operators
. ° . .
Sub-popu-
Individual N lation M+1 Individual N Individual N
Initial Population M+1 sub—populations Individuals are now Start all over again
Size N are created mixed

Figure 2: Graphical representation of the approach proposed in this paper. Note
that although individuals are selected using different criteria depending on the
subpopulation in which they are placed, crossover is allowed between individuals
of different subpopulations. The new population is generated after shuffling the
old population and applying to it crossover and mutation.

possible.

The objective function in our case is defined as in previous work (Coello
Coello et al. 1997, Coello Coello et al. 2000): it is the total number of matches
(between the outputs produced by an encoded circuit and the intented values
defined in the truth table defined by the user). For each match, we increase the
value of the objective function by one. If the encoded circuit is feasible (i.e., it
matches the truth table completely), then we add one (the so-called “bonus”)
for each WIRE present in the solution.

Using the proposed scheme, a fraction of the population will be selected
using the objective function as its fitness (i.e., it will try to maximize the total
number of matches); another fraction will use the match of the first output as its
fitness and so on (since they are all binary values, we only check if it matches or
not, without computing any extra values as required in numerical optimization).
The main issue here is how to handle the different situations that could arise.
Fitness within each subpopulation is computed using the following scheme:

if 0;(¥) #¢t; then fitness(&) =0
elseifv#0 then fitness(Z) = —v
else fitness(%) = f(Z)

where 0; (%) refers to the value of output j for the encoded circuit &; t; is the
value specified for output j in the truth table; and v is the number of outputs
that are not matched by the circuit Z (< m). Finally, f(Z) is the fitness function
described before:

0 if f(Z) is infeasible

(@) = (@) + { w(Z) otherwise (6)

10

In this equation, h(ZF) refers to the number of matches between the circuit #
and the values defined in the truth table, and w(Z) is the number of WIREs in
the circuit #. Therefore, selection is performed using different rules within each
subpopulation. However, crossover and mutation are applied to the entire pop-
ulation (i.e., no “speciation” mechanism is used). This intends to recombine the
chromosomic material corresponding to different partially functional circuits, as
to allow convergence towards fully feasible circuits.

The algorithm of our approach is the following;:

1. Generate randomly a population of size P.

2. Split the population into m + 1 subpopulations (m = number of outputs
to match).

3. Compute fitness values according to the goals of each individual within
each subpopulation:

e If the target output is not matched, fitness is zero.

e Else, if the target output is matched, but the circuit is not functional,
then fitness is the number of outputs not matched multipled by (-1).

e Else, if the target output is matched AND the circuit is functional,
then fitness is given by the addition of the number of outputs matched
plus the number of wires of the circuit.

4. Shuffle the entire population and select parents from each subpopulation
based on the (previously computed) fitness value of each individual.

5. Apply crossover and mutation to the entire population. Individuals of any
given subpopulation are allowed to breed with individuals of any other
subpopulation. This will generate the new population P'.

6. If convergence criterion reached, then stop.

7. Otherwise, return to step 2.

There are a few interesting things that can be observed from this procedure.
First, each subpopulation associated with an output of the circuit will try to
match it with the value defined in the truth table. Once this is achieved, then
the fitness function will try to maximize the number of matches of the rest of
the outputs. In other words, this subpopulation will cooperate with the others
that are having difficulties to match their outputs. If the circuit is feasible, then
all the subpopulations will join efforts to maximize the number of WIREs in the
circuit.

It is important to clarify that the current approach does not use dominance
to impose an order on the constraints based on their violation (like in the case of
COMOGA (Surry, Radcliffe & Boyd 1995)) which is a more expensive process
(in terms of CPU time) that also requires additional parameters. In fact, the
current approach does not rank individuals, but it uses instead different fitness

11

functions for each of the subpopulation allocated (whose number depends on
the number of outputs in a circuit) depending on the feasibility of the indi-
viduals contained within each of them. This is easier to implement, does not
require special operators to preserve feasiblity (like in the case of Parmee and
Purchase’s approach (1994)), makes unnecessary the use of a sharing function to
preserve diversity (Deb & Goldberg 1989) (like with traditional multiobjective
optimization techniques (Fonseca & Fleming 1995)), and does not require extra
parameters to control the mixture of feasible and infeasible individuals (like in
the case of COMOGA (Surry et al. 1995)).

VEGA is known to have difficulties in multiobjective optimization problems
due to the fact that it tries to find individuals that excel only in one dimension
regardless of the others (the so-called “middling” problem (Schaffer 1985, Fon-
seca & Fleming 1995, Coello Coello 1999)). However, that drawback turns out
to be an advantage in this context, because what we want to find are precisely
circuits that are fully functional, instead of good compromises that may not
satisfy one of the outputs (which are the kinds of solutions that a Pareto rank-
ing strategy would normally produce) (Coello Coello 1999). Also, the use of
subpopulations is much more efficient than using Pareto dominance, because of
the potentially high number of objectives involved (this will be illustrated in
the examples shown in this paper).

7 Comparison of Results

We have used several circuits of different degrees of complexity to test our
approach. For the purposes of this paper, 5 examples were chosen to illustrate
our approach (called multiobjective genetic algorithm, or MGA for short), and
the results produced were compared with those generated by human designers
and by our previous n-cardinality GA (called NGA) (Coello Coello et al. 1997,
Coello Coello et al. 2000).

In each case, the size of the matrix used to fit the circuit was determined
using the following procedure:

1. Start with a square matrix of size 5.

2. If no feasible solution is found using this matrix, then increase the number
of columns by one.

3. If no feasible solution is found using this matrix, then increase the number
of rows by one.

4. Repeat steps 2 and 3 until a suitable matrix is produced.

As we will see in the following examples, it was normally the case that for
small circuits a matrix of 5 x 5 was sufficient. However, in one of the examples,
it was necessary to reach a matrix size of 6 x 7. This made necessary to run
the GA for more generations, performing, in consequence, more fitness function
evaluations. This situation normally arises with circuits having several outputs,

12

Table 1: Truth table for the circuit of the first example.

X 'Y Z|F
0 0 0710
0 0 1]0
0O 1 010
0 1 1)1
1 0 070
1 0 1|1
1 1 0|1
1 1 1|0

although in some cases, such as in the 2-bit multiplier of our fourth example,
even a 5 X 5 matrix may be enough to find the best known circuit.

To choose the size of each subpopulation in the MGA, we started with 10,
and performed 20 runs. If we did not find feasible solutions in at least one fourth
of our runs, we would increase the subpopulation size by 10 and would perform
20 more runs. This process was repeated until a suitable subpopulation size was
found.

The other issue is regarding the crossover and mutation rates. After a series
of experiments, we decided to use a crossover rate of 50% and a mutation rate
such that each string had a 50% probability of being mutated at a certain
position. Since mutation was applied on a single-gene basis, we used as our
probability of mutation the result of dividing this 50% by the length of the string.
For example, when a 5 x 5 matrix was used, the length of the chromosomic string
was 75. Therefore, the probability of mutation would be 0.006667.

7.1 Example 1

Our first example is a 3-even parity problem, whose truth table with 3 inputs
and one output is shown in Table 1. In this case, the matrix used was of size 5 x5,
and the length of each string representing a circuit was then 3 x 5 x 5 = 75.
The cardinality ¢ used for this problem was maz(r,g), where r refers to the
number of rows in the matrix and g to the number of allowable gates in the
circuit (since only the inputs from the previous level are considered, the number
of columns does not affect the cardinality used). Since g = 5, and ¢ = 5 for
this example, then the size of the intrinsic search space for this problem is
¢ =57 = 2.6 x 10°2. Fitness is computed in the following way: 8 (number
of outputs that we must match to have a feasible circuit) + 5 x 5 (size of the
matrix) - number of gates used (i.e., different of WIRE)). Therefore, a fitness
of 29 (the best value produced for this circuit) means that the circuit is feasible
(otherwise, its fitness could not possibly be above 8), and it has 4 gates (i.e., 21
WIRESs), because 8 + (25-4) = 8 + 21 = 29.

Results are compared in Table 2. Human Designer 1 used Karnaugh Maps

13

Lo/
R e N ey Ry

L
/)

2 [>—

Figure 3: Graphical representation of the best circuit found by the MGA and
the NGA for the first example.

MGA NGA HD 1 HD 2
F=(X+Y)Z | F=Z(X+Y) | F=Z(Xa®Y) F=X'YZ
B(XY) B(XY) +Y (X @ 2) +X(Y @ 2)
4 gates 4 gates o gates 6 gates
2 ANDs, 1 OR, | 2 ANDs, 1 OR, | 2 ANDs, 1 OR, | 3 ANDs, 1 OR,
1 XOR, 1 NOT 1 XOR 2 XORs 1 XOR, 1 NOT

Table 2: Comparison of the best solutions found by the n-cardinality GA
(NGA), our multiobjective genetic algorithm (MGA), and two human de-
signers (HD 1 and HD 2) for the circuit of the first example. A population
size of 90 was used with both GAs.

plus Boolean algebra identities to simplify the circuit, whereas Human Designer
2 used the Quine-McCluskey Procedure. In both cases, they produced solutions
with more gates than the MGA or the NGA.

A subpopulation size of 10 was enough for the MGA. Since the circuit has
8 outputs, there were 9 objectives. Therefore, the total population size was set
to 90. We set the maximum number of generations to 300.

To make a fair comparison, the same representation scheme and the same
genetic operators (two-point crossover with a probability of 0.5, and uniform
mutation with a probability of 0.006667) were used for both the MGA and the
NGA (for more details on the NGA, refer to (Coello Coello et al. 2000)).

The MGA consistently found a solution with a fitness value of 29 (75% of the
time), and it produced feasible circuits 100% of the time. The average fitness of
the 20 runs performed was 28.75, with a standard deviation of 0.433012. The
graphical representation of this solution is depicted in Figure 3.

On the other hand, the best solution that the NGA could find using the
same population size had also a fitness of 29 (i.e., a circuit with 4 gates), but it
appeared only 10% of the time. Also, 20% of the time, the best solution found
was infeasible. The average fitness of these 20 runs was 21.4, with a standard
deviation of 8.438009244.

14

= = = = = == ool o|lo|lololo| o N
b—‘l—\b—‘l—‘OOOOI—‘b—‘I—\b—‘OOOOS
»—w—\oo»—w—\oo»—w—too»—w—toox
~lo|—olr|lolrlolrlolrlol~lolro|l
o|lo| ool o rlIrlololr o~ e

Table 3: Truth table for the circuit of the second example.

7.2 Example 2

Our second example has 4 inputs and one output, as shown in Table 3. A matrix
of the same size as before was used (i.e., 5 x 5).

The comparison of the results produced by the MGA, the NGA, a human
designer using Karnaugh Maps, and Sasao’s approach (1993) are shown in Ta-
ble 4. Sasao (1993) has used this circuit to illustrate his circuit simplification
technique based on the use of ANDs & XORs. His solution uses, however, more
gates than the circuit produced by the NGA or the MGA.

Since this example has 16 outputs, there are 17 objectives for the MGA. A
population size of 170 was enough to solve this circuit. The maximum number
of generations in this case (for both the MGA and the NGA) was set to 400.

The MGA found a solution with a fitness value of 34 (i.e., a circuit with 7
gates) 15% of the time, and solutions with 8 gates were found 25% of the time.
The MGA produced feasible circuits 100% of the time. The average fitness of
the 20 runs performed was 32.1, with a standard deviation of 1.252366. The
graphical representation of the best solution found is depicted in Figure 4.

The best solution that the NGA could find using the same population size
had a fitness of 31 (i.e., a circuit with 10 gates), and it appeared only once
in the 20 runs performed. Also, 95% of the time, the best solution found was
infeasible. The average fitness of these 20 runs was 15.55, with a standard
deviation of 3.677456.

15

— L

e >

Figure 4: Circuit produced by our MGA for the second example.

T
-

MGA NGA HD 1 Sasao
F=((W+XY) F=WYX' F=((Z'X) F=X"9oY'W
B(X +Y) B(W+Y) eY'W") eXY'Z’
(X8 2)) ®Z ® (X +((X'Y) eX'Y'W
+Y + 2))) (ZaoW'))

7 gates 10 gates 11 gates 12 gates
2 ANDs, 2 ORs, | 2 ANDs, 3 ORs, 4 ANDs, 1 OR, 3 XORs,
2 XORs, 1 NOT | 3 XORs, 2 NOTs | 2 XORs, 4 NOTs 5 ANDs,

4 NOTs

Table 4: Comparison of the best solutions found by the n-cardinality GA
(NGA), our multiobjective genetic algorithm (MIGA), a human designer using
Karnaugh Maps (HD 1), and Sasao for the circuit of the second example. A
population size of 170 was used with both GAs.

16

Ay Ay By By

w

[el) Ml Bl Rl R B K==l =] K] Hen] Neol Henl Hen] Nean)
=== = olo|lo|lo| R =lr—lolololo
=R OO RO OR OO R = OO
—|o|l—lolrlol~lol ool ~—lol~lo
~lololololo|lo|lololololo o olool
OHOOHHOOOOOOOOOOQ
OHHOHOI—‘OI—‘HOOOOOOQ
»—lO»—lOOOOO»—\O»—\OOOOOQ

Table 5: Truth table for the 2-bit multiplier of the third example.

7.3 Example 3

Our third example has 4 inputs and 4 outputs, as shown in Table 5. A matrix
of the same size as before was used (i.e., 5 x 5).

Since this example has 64 outputs, there are 65 objectives for the MGA. A
subpopulation size of 10 (i.e., total population size of 650), was sufficient for the
MGA. The maximum number of generations in this case (for both the MGA
and the NGA) was set to 500.

The MGA found a solution with a fitness value of 82 (i.e., a circuit with 7
gates) 15% of the time, and it produced feasible circuits 100% of the time. The
average fitness of the 20 runs performed was 80.4, with a standard deviation
of 1.142481141. The graphical representation of the best solution found by the
MGA is depicted in Figure 5.

On the other hand, the best solution that the NGA could find using the
same population size of 650 had a fitness of 80 (i.e., a circuit with 9 gates). This
solution appeared only twice in the 20 runs performed. In most cases (70% of
the runs performed), the best solution found was infeasible. The average fitness
of these 20 runs was 66.65, with a standard deviation of 7.638372657.

The comparison of the results produced by the MGA, the NGA, two human
designers, and Miller et al. (1997) are shown in Table 6. It should be mentioned
that Miller et al. (1997) considered their solution to contain only 7 gates because
of the way in which they encoded their Boolean functions (the reason is that they
encoded NAND gates in their representation). However, since we considered
each gate as a separate chromosomic element, we count each of them, including

17

Al >—

A0l >

Co

a1

BO| >

C1

e

c2

C3

]

Figure 5: Circuit produced by our MGA for the third example.

MGA NGA HD 1 HD 2 MIL
Co=ApBy | Co=AgBy | Cy = AgBy Co = Ao By Co = Ao By
Ci = AyB; Ci = A1 Ay Ci =AyB, | C1 = (B1 + Bo) Ci = A1 By

©A1 By ByB; ®A1 By (A1 + Ao) ©®AoBy

®(AoBy ((A14o)
+A,By) ®(B1By))
Co=A1B, | Cy =(AoBy | C2 = A1 By Cyy =A1B, Cy = (AoBo)'
®(A40Bo +A4,By) (AoBy)' (AoBo)' (A1 By)

A, By) ®AoBo
Cs=ApBy | C3=A41B; | C3 = A1 4 Cs = A1 B, Cs = (A1 By

A1 By AgBy B, By Ay By DAy By)

(A1Bo)

7 gates 9 gates 8 gates 12 gates 9 gates

5 ANDs, 5 ANDs, 6 ANDs, 8 ANDs, 6 ANDs,
2 XORs 2 ORs, 1 XOR, 1 XOR, 1 XOR,
2 XORs 1 NOT 2 ORs, 1 NOT 2 NOTs

Table 6: Comparison of the best solutions found by the n-cardinality GA
(NGA), our multiobjective genetic algorithm (MGA), two human designers (HD
1 & HD 2), and Miller et al. (MIL) for the circuit of the third example. A
population size of 650 was used with both the MGA and the NGA.

18

=
o
=
[
=
(2]

e R = === k=] k=l k=R ==
== ololo|lorm=~loloolo®@
== o|lolm-lololr~lololr~lolol
—lo|l=lolrlol~lol—lolrlol~lo~old
—olooo~ooloolrolo oo~
ololoo|~loloo|rl~lolol~l—|l~lo
ol —lolo~l~loloo ~loolcla

Table 7: Truth table for the circuit of the fourth example.

NOTs that are associated with AND & OR gates. Regardless of that fact, it
is more important to point out that Miller et al. (1997) found their solution
with runs of 3,000,000 fitness function evaluations each, whereas in our case, we
performed runs of only 325,000 evaluations each.

7.4 Example 4

Our fourth example has 4 inputs and 3 outputs, as shown in Table 7. In this
case, the matrix used was of size 6 x 7, and the chromosomic length was 126
(r=6,q="T,t=6x7=42,1 =3 xt=126). The cardinality ¢ = maxz(r,g) =6
The size of the intrinsic search space for this problem is ¢! = 6126 ~ 1.1 x 10%8.

The comparison of the results produced by the MGA, the NGA, and two
human designers are shown in Table 8.

Since this example has 48 outputs, there are 49 objectives for the MGA. A
subpopulation size of 10 (i.e., total population size of 490), was sufficient for the
MGA. The maximum number of generations in this case (for both the MGA
and the NGA) was set to 2000.

The MGA found a solution with a fitness value of 81 (i.e., a circuit with 9
gates) 15% of the time, and it produced feasible circuits 100% of the time (55%
of the time, the MGA found better solution than the best found by the NGA).
The average fitness of the 20 runs performed was 78.9, with a standard deviation
of 1.020835571. The graphical representation of the best solution found by the
MGA is depicted in Figure 6.

On the other hand, the best solution that the NGA could find using the

19

= L r>—ar

>t >

Figure 6: Circuit produced by our MGA for the fourth example.

same population size of 490 individuals had a fitness of 78 (i.e., a circuit with
12 gates). This solution appeared only once in the 20 runs performed. In
most cases (80% of the runs performed), the best solution found was infeasible.
The average fitness of these 20 runs was 52.15, with a standard deviation of
11.92641915.

8 Discussion of Results

We will start by summarizing the results obtained from our experiments. Table 9
contains of summary of the best results produced by the MGA, the NGA and
the best human designer in each of the circuits analyzed. We can see that the
MGA consistently outperformed its competitors, producing the lowest number
of gates in each case.

Since one of the main aspects of the approach proposed in this paper is its
capability to improve the efficiency of the GA to design combinational circuits,
we decided to perform another comparison in which we analyzed the compu-
tational cost required by our original NGA and our proposed MGA to obtain
equivalent results (in terms of optimality). The analysis was conducted on the
five examples presented in this paper, and considering only the minimum num-
ber of fitness function evaluations required (“minimum” in this case refers to
the combination of population size and maximum number of generations that
produced the lowest result when multiplied). Since the best results in all cases
correspond to the MGA, we established a methodology to try different parame-
ters for the NGA, so that we could reach similar results (our methodology was
similar to the one described in previous work (Coello Coello 2000)).

The comparison of computational costs for the MGA and the NGA (reaching
the best results reported in this paper for each of the five examples chose) is
presented in Table 10. In all cases, the number of fitness function evaluations
indicated correspond to the complete run of the GA (even if, like in most cases,
convergence to the best result obtained was achieved before reaching the last
generation). It can be clearly appreciated that the MGA outperforms the NGA

20

MGA NGA HD 1 HD 2
Fl=((BaD) Fl=((BaD) Fl=(AaC) Fl=(AaC)
+(A s C)) +(As Q) (B® D)’ (B® D)
F3=((BaD) F3=((BaD) F3=BD'(A F3=(F1+ F2)

+(Aa () +(Aa () + ')
(A C) ((D+ (A& +AC’
+(A® B)) C))
oC)) + 4"+ C)')
F2=F3® F2=((BaD) F2=DB'D F2=AC
((B® D) +(Aa () (A'+C) +(AaC)
+(A e (C)) ®e(Ba D) +A'C (B'D)
+(Aa(C))
(D+ (A
aC))
+(A"+C)")
9 gates 12 gates 19 gates 13 gates
3 XORs, 3 ORs, | 3 XORs, 4 ORs, | 2 XORs, 4 ORs, 2 XORs, 2 ORs,
2 ANDs, 2 NOTs | 1 AND, 4 NOTs | 7 ANDs, 6 NOTs | 4 ANDs, 5 NOTs

Table 8: Comparison of the best solutions found by the n-cardinality GA
(NGA), our multiobjective genetic algorithm (MGA), and two human de-
signers (HD 1 and HD 2) for the circuit of the fourth example. A population
size of 490 was used with both GAs.

Example No. | MGA | NGA | BHD
1 4 4 5
2 7 10 11
3 7 9 8
4 9 12 13

Table 9: Comparison of the number of gates contained in the best solutions
produced by: our multiobjective genetic algorithm (MGA), the N-cardinality
genetic algorithm (NGA), and the best human designer (BHD) for each of the
examples analyzed in this paper.

Example No. | MGA NGA
1 27,000 27,000
2 68,000 500,000
3 325,000 | 600,000
4 980,000 | 5,600,000

Table 10: Comparison of the number of fitness function evaluations required to
reach the optimum by each of the two GA-based approaches compared in this

paper.

21

in most cases. The difference in terms of performance, becomes more significant
as we attempt to solve more complex circuits.

We believe that the good performance obtained with this algorithm is mainly
due to an emergent behavior obtained from the cooperation of the different sub-
populations aiming to satisfy a simple goal. This line of thought is consistent
with the recent work by Potter & DeJong (2000), according to which the reso-
lution of complex problems with evolutionary algorithms requires a cooperative
effort.

Additionally, the current technique can also be considered a variation of
the divide-and-conquer approach to evolvable hardware suggested by Torresen
(1998). In this approach, a system is evolved through its smaller components.
Only that in our case, these smaller components happen to be individual out-
puts of a circuit. Torresen (1998) also showed that a scheme of this sort could
substantially reduce the computational power required to evolve a system. The
savings that this sort of population-based approach can produce could be very
useful in other design domains such as structural optimization. We are in fact
currently exploring the use of this type of approach in that domain.

Another interesting aspect of this work is the analysis of the design patterns
used by the GA. It is important to mention that the GA does not really posses
any specific domain information that could help it to bias the search. In fact, it
does not even “know” anything about the simplest simplification rules existing
(e.g., NOT (NOT A) = A). Nevertheless, it is able to emulate both simple and
complex simplification rules used in Boolean algebra, and even produce others
that tend to escape human creativity. Some of the uncommon design patterns
used by the GA can be hinted by comparing its solutions against those generated
by a human designer. For instance, in Example # 4 from the previous section,
the Boolean expression of one of the outputs is identical to the expression gen-
erated by the MGA. The two others, in contrast, are more complez in the case
of the MGA. Then, why is the total number of gates of this circuit smaller?
The answer is simple: if the solution of the MGA is carefully analyzed, it can
be seen that its apparent complexity is due to the fact that it is reusing the
same block to produce the three outputs. This is counterintuitive for a human
using a visual aid technique such as the Karnaugh maps, but it is an emerging
property of the application of natural selection to the circuit design process.

In some of our recent work, we have focused our attention to the discovery
of these design patterns (other researchers such as (Miller et al. 1999, Thomson
2000) have done similar work). To our surprise, besides rediscovering some
of the most common simplification rules of Boolean algebra, and others not
so simple such as a DeMorgan theorem applied to XOR gates: (X & Y') =
XY = X'®Y'. We also discovered some more complex simplifications,
such as (A+ (A ® B)) ® (A @ B) = AB, which are not intuitive to any human
designer. Through the use of case-based reasoning, we have been able to store
this “knowledge” generated by the GA for further reuse. The interested reader
is referred to (Islas Pérez et al. 2001) for further details.

We believe that our approach can be of great help in problems that are
decomposable. There are examples in the literature of cooperative search ap-

22

proaches designed for such problems (e.g., (Murthy, Akkiraju, Goodwin, Ke-
skinocak, Rachlin, Wu, Kumaran & Daigle 1999, Parmee & Watson 1999)).
Since our approach is based on such a cooperative (emergent) behavior, it is
highly likely that it will perform very well (and at a low computational cost) in
problems that can be solved using such cooperative techniques.

It is worth mentioning one last issue that may be related to the work pre-
sented in this paper. Recently, Knowles et al. (2001) suggested that transform-
ing certain single-objective optimization problems into multiobjective (a process
that they call “multi-objectivizing”) can remove local optima and therefore, be-
come easier to solve by a heuristic. Their hypothesis was validated with a
certain instance of the traveling salesperson problem. In this problem, the ap-
plication of the “multi-objectivizing” process previously mentioned allowed to
use a simple hillclimber to solve it.

It is therefore possible that the process described in this paper is another
form of “multi-objectivizing” single-objective circuit design problems. This
transformation of the fitness landscape (produced by the process of “multi-
objectizing” the problem) may transform a difficult search space into another
more amenable for the application of a genetic algorithm. This allows to find
not only very good results but also in a relatively reduced amount of time.

9 Conclusions and Future Work

We have proposed a multiobjective optimization technique to design combina-
tional logic circuits. The proposed approach uses a population-based technique
to split the search task among several (small) subpopulations. The approach
compared well with respect to two human designers, and a previous GA de-
veloped by us which uses and n-cardinality alphabet and a two-stage fitness
function. Our approach, called MGA, consistently found better solutions than
the human designers, and was able to find the same or even better solutions
than our previous GA (called NGA), using a lower number of fitness function
evaluations.

The proposed approach seems very suitable for parallelization, and that will
probably be a path of research that we will explore in the near future. Also, we
are interested in coupling this approach with another system based on genetic
programming that is currently under development. We aim to benefit from a
more powerful chromosomic representation while keeping an efficient selection
mechanism.

10 Acknowledgements
The first author acknowledges partial support from CINVESTAYV through project

JIRA’2001/08, and from the Mexican Consejo Nacional de Ciencia y Tecnologia
through CONACyT project No. 34201-A.

23

The second author acknowledges support for this work in part by DoD EP-
SCoR and the Board of Regents of the State of Louisiana under grant F49620-
98-1-0351, and from the NASA Jet Propulsion Laboratory, under contract No.
1230282.

References

Brayton, R. K., Hachtel, G. D., McMullen, C. T. & Sangiovanni-Vincentelli,
A. L. (1984), Logic Minimization Algorithms for VLSI Synthesis, Kluwer
Academic Publishers, Dordrecht, The Netherlands.

Brayton, R. K., Rudell, R., Sangiovanni-Vincentelli, A. & Wang, A. R. (1987),
‘MIS: A multiple-level logic optimization system’, IEEE Transactions on
Computer-Aided Design CAD-6 (6), 1062-1081.

Brzozowski, J. A. & Yoeli, M. (1976), Digital Networks, Prentice Hall, Engle-
wood Cliffs, New Jersey.

Camponogara, E. & Talukdar, S. N. (1997), A Genetic Algorithm for
Constrained and Multiobjective Optimization, in J. T. Alander, ed.,
‘3rd Nordic Workshop on Genetic Algorithms and Their Applications
(3NWGA)’, University of Vaasa, Vaasa, Finland, pp. 49-62.

Chankong, V. & Haimes, Y. Y. (1983), Multiobjective Decision Making: Theory
and Methodology, Systems Science and Engineering, North-Holland.

Coello Coello, C. A. (1996), An Empirical Study of Evolutionary Techniques for
Multiobjective Optimization in Engineering Design, PhD thesis, Depart-
ment of Computer Science, Tulane University, New Orleans, Louisiana.

Coello Coello, C. A. (1999), ‘A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques’, Knowledge and Information Sys-
tems. An International Journal 1(3), 269-308.

Coello Coello, C. A. (2000), ‘Treating Constraints as Objectives for
Single-Objective Evolutionary Optimization’, Engineering Optimization
32(3), 275-308.

Coello Coello, C. A., Christiansen, A. D. & Hernandez Aguirre, A. (1997), Au-
tomated Design of Combinational Logic Circuits using Genetic Algorithms,
in D. G. Smith, N. C. Steele & R. F. Albrecht, eds, ‘Proceedings of the In-
ternational Conference on Artificial Neural Nets and Genetic Algorithms’,
Springer-Verlag, University of East Anglia, England, pp. 335-338.

Coello Coello, C. A., Christiansen, A. D. & Herndndez Aguirre, A. (2000),
‘Use of Evolutionary Techniques to Automate the Design of Combina-
tional Circuits’, International Journal of Smart Engineering System Design
2(4), 299-314.

24

Deb, K. & Goldberg, D. E. (1989), An Investigation of Niche and Species For-
mation in Genetic Function Optimization, in J. D. Schaffer, ed., ‘Proceed-
ings of the Third International Conference on Genetic Algorithms’, George
Mason University, Morgan Kaufmann Publishers, San Mateo, California,
pp- 42-50.

Fonseca, C. M. & Fleming, P. J. (1993), Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization, in S. Forrest,
ed., ‘Proceedings of the Fifth International Conference on Genetic Algo-
rithms’, University of Illinois at Urbana-Champaign, Morgan Kauffman
Publishers, San Mateo, California, pp. 416-423.

Fonseca, C. M. & Fleming, P. J. (1995), ‘An Overview of Evolutionary Algo-
rithms in Multiobjective Optimization’, Evolutionary Computation 3(1), 1-
16.

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Addison-Wesley Publishing, Reading, Massachusetts.

Harris, S. P. & Ifeachor, E. C. (1996), Nonlinear FIR Filter Design by Genetic
Algorithm, in ‘1st Online Conference on Soft Computing’.

Horn, J. (1997), Multicriterion Decision making, in T. Bick, D. Fogel &
Z. Michalewicz, eds, ‘Handbook of Evolutionary Computation’; Vol. 1, IOP
Publishing Ltd. and Oxford University Press, pp. F1.9:1 — F1.9:15.

Islas Pérez, E., Coello Coello, C. A. & Hernandez Aguirre, A. (2001), Extrac-
tion of Design Patterns from Evolutionary Algorithms using Case-Based
Reasoning, in ‘Evolvable Systems: From Biology to Hardware’, Springer-
Verlag, Tokyo, Japan.

Jiménez, F. & Verdegay, J. L. (1999), Evolutionary techniques for constrained
optimization problems, in ‘7th European Congress on Intelligent Tech-
niques and Soft Computing (EUFIT’99)’, Springer-Verlag, Aachen, Ger-
many.

Kalganova, T. & Miller, J. (1999), Evolving more efficient digital circuits
by allowing circuit layout and multi-objective fitness, in A. Stoica,
D. Keymeulen & J. Lohn, eds, ‘Proceedings of the First NASA /DoD Work-
shop on Evolvable Hardware’, IEEE Computer Society Press, Los Alamitos,
California, pp. 54-63.

Kalganova, T., Miller, J. & Fogarty, T. (1998), Some Aspects of an Evolvable
Hardware for Multiple-Valued Combinational Circuit Design, in M. Sipper,
D. Mange & A. Pérez-Uribe, eds, ‘Proceedings of the Second International
Conference on Evolvable Systems (ICES’98)’, Springer-Verlag, Lausanne,
Switzerland, pp. 78-89.

25

Karnaugh, M. (1953), ‘A Map Method for Synthesis of Combinational Logic
Circuits’, Transactions of the AIEE, Communications and Electronics 72
(I), 593-599.

Knowles, J. D., Watson, R. A. & Corne, D. W. (2001), Reducing Local Op-
tima in Single-Objective Problems by Multi-objectivization, in E. Zit-
zler, K. Deb, L. Thiele, C. A. C. Coello & D. Corne, eds, ‘First In-
ternational Conference on Evolutionary Multi-Criterion Optimization’,
Springer-Verlag. Lecture Notes in Computer Science No. 1993, pp. 268—
282.

Louis, S. J. (1993), Genetic Algorithms as a Computational Tool for Design,
PhD thesis, Department of Computer Science, Indiana University.

Louis, S. J. & Rawlins, G. J. (1991), Using Genetic Algorithms to Design Struc-
tures, Technical Report 326, Computer Science Department, Indiana Uni-
versity, Bloomington, Indiana.

Louis, S. J. & Rawlins, G. J. E. (1993), Pareto Optimality, GA-easiness and
Deception, in S. Forrest, ed., ‘Proceedings of the Fifth International Con-
ference on Genetic Algorithms’, Morgan Kaufmann Publishers, University
of Illinois at Urbana-Champaign, pp. 118-123.

McCluskey, E. J. (1956), ‘Minimization of Boolean Functions’, Bell Systems
Technical Journal 35 (5), 1417-1444.

Miller, J. F., Job, D. & Vassilev, V. K. (2000), ‘Principles in the Evolutionary
Design of Digital Circuits—Part I’, Genetic Programming and Evolvable
Machines 1(1/2), 7-35.

Miller, J. F., Thomson, P. & Fogarty, T. (1997), Designing Electronic Cir-
cuits Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study,
in D. Quagliarella, J. Périaux, C. Poloni & G. Winter, eds, ‘Genetic Al-
gorithms and Evolution Strategy in Engineering and Computer Science’,
Wiley, Chichester, England, pp. 105-131.

Miller, J., Kalganova, T., Lipnitskaya, N. & Job, D. (1999), The Genetic Al-
gorithm as a Discovery Engine: Strange Circuits and New Principles, in
‘Proceedings of the AISB Symposium on Creative Evolutionary Systems
(CES’99)’, Edinburgh, UK.

Murthy, S., Akkiraju, R., Goodwin, R., Keskinocak, P., Rachlin, J., Wu, F.,
Kumaran, S. & Daigle, R. (1999), ‘Enhancing the Decision-Making Process
for Paper Mill Schedulers’, Tappi Journal 82(7), 42-47.

Osyczka, A. (1985), Multicriteria optimization for engineering design, in J. S.
Gero, ed., ‘Design Optimization’, Academic Press, pp. 193-227.

Pareto, V. (1896), Cours D’Economie Politique, Vol. I and II, F. Rouge, Lau-
sanne.

26

Parmee, I. C. & Purchase, G. (1994), The development of a directed genetic
search technique for heavily constrained design spaces, in 1. C. Parmee, ed.,
‘Adaptive Computing in Engineering Design and Control-’94’, University
of Plymouth, Plymouth, UK, pp. 97-102.

Parmee, I. C. & Watson, A. H. (1999), Preliminary Airframe Design Using Co-
Evolutionary Multiobjective Genetic Algorithms, in W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela & R. E. Smith,
eds, ‘Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO’99)’, Vol. 2, Morgan Kaufmann, San Francisco, California,
pp- 1657-1665.

Potter, M. & DeJong, K. (2000), ‘Cooperative coevolution: An architecture for
evolving coadapted subcomponents’, Evolutionary Computation 8(1), 1-29.

Quine, W. V. (1955), ‘A Way to Simplify Truth Functions’, American Mathe-
matical Monthly 62 (9), 627-631.

Sasao, T., ed. (1993), Logic Synthesis and Optimization, Kluwer Academic
Press.

Schaffer, J. D. (1985), Multiple Objective Optimization with Vector Evalu-
ated Genetic Algorithms, in ‘Genetic Algorithms and their Applications:
Proceedings of the First International Conference on Genetic Algorithms’,
Lawrence Erlbaum, pp. 93-100.

Surry, P. D. & Radcliffe, N. J. (1997), ‘The COMOGA Method: Constrained
Optimisation by Multiobjective Genetic Algorithms’, Control and Cyber-
netics 26(3).

Surry, P. D., Radcliffe, N. J. & Boyd, I. D. (1995), A Multi-Objective Ap-
proach to Constrained Optimisation of Gas Supply Networks : The CO-
MOGA Method, in T. C. Fogarty, ed., ‘Evolutionary Computing. AISB
Workshop. Selected Papers’, Lecture Notes in Computer Science, Springer-
Verlag, Sheffield, U.K., pp. 166-180.

Thompson, A., Layzell, P. & Zebulum, R. S. (1999), ‘Explorations in Design
Space: Unconventional Electronics Design Through Artificial Evolution’,
IEEFE Transactions on Evolutionary Computation 3(3), 167-196.

Thomson, P. (2000), Circuit Evolution and Visualisation, in J. Miller,
A. Thompson, P. Thomson & T. C. Fogarty, eds, ‘Evolvable Systems: From
Biology to Hardware’, Springer-Verlag, Edinburgh, Scotland, pp. 229-240.

Torresen, J. (1998), A Divide-and-Conquer Approach to Evolvable Hardware, in
M. Sipper, D. Mange & A. Pérez-Uribe, eds, ‘Proceedings of the Second In-
ternational Conference on Evolvable Systems (ICES’98)’, Springer-Verlag,
Lausanne, Switzerland, pp. 57-65.

27

Veitch, E. W. (1952), ‘A Chart Method for Simplifying Boolean Functions’,
Proceedings of the ACM pp. 127-133.

Wilson, P. B. & Macleod, M. D. (1993), Low implementation cost IIR digital
filter design using genetic algorithms, in ‘IEE/IEEE Workshop on Natural
Algorithms in Signal Processing’, Chelmsford, U.K., pp. 4/1-4/8.

Zebulum, R. S.; Pacheco, M. A. & Vellasco, M. (1998), A multi-objective op-
timisation methodology applied to the synthesis of low-power operational
amplifiers, in [. J. Cheuri & C. A. dos Reis Filho, eds, ‘Proceedings of the
XIII International Conference in Microelectronics and Packaging’, Vol. 1,
Curitiba, Brazil, pp. 264-271.

28

