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1 IntrodutionThe geneti algorithm (GA) has been widely used for optimization tasks (Goldberg1989) and is known to be a very powerful tool in ertain domains. In our ur-rent work we wish to �nd a way to use the GA as a design tool, with partiularemphasis in the design of digital ombinational iruits.As it is known, there are several standard graphial design aids suh as theKarnaughMaps (Karnaugh 1953, Veith 1952), whih are widely used by humandesigners. There are also other tools more suitable for omputer implemen-tation suh as the Quine-MCluskey Method (Quine 1955, MCluskey 1956),Espresso (Brayton, Hahtel, MMullen & Sangiovanni-Vinentelli 1984) andMisII (Brayton, Rudell, Sangiovanni-Vinentelli & Wang 1987).Despite the drawbaks of lassial iruit design tehniques, some of theman handle truth tables with hundreds of inputs, whereas evolutionary algo-rithms are restrited to relatively small truth tables (Miller, Job & Vassilev2000). However, the most interesting aspet of evolutionary design is the possi-bility of studying its emergent patterns (Miller et al. 2000, Coello Coello, Chris-tiansen & Hern�andez Aguirre 2000). The goals are, therefore, di�erent when wedesign iruits using evolutionary algorithms. First, we aim to optimize iruits(using a ertain metri) in a di�erent way, and intuitively, we an think of pro-duing novel designs (sine there is no human intervention). Suh novel designshave been shown in the past (Miller et al. 2000, Miller, Kalganova, Lipnitskaya& Job 1999, Coello Coello et al. 2000). Seond, it would be extremely useful toextrat design patterns from suh evolutionary-generated solutions. This ouldlead to a pratial design proess in whih a small (optimal) iruit is used as abuilding blok to produe omplex iruits. Suh a divide-and-onquer approahhas also been suggested in the past (Torresen 1998, Miller et al. 2000).However, in the previous work on evolutionary design of ombinational ir-uits, eÆieny has been an important issue. The main approahes reported sofar in the literature require a signi�ant amount of �tness funtion evaluations.The motivation of this work was preisely to oneive an approah that ouldredue the amount of �tness funtion evaluations, while keeping the apabilitiesof a GA to generate novel (and ompat) designs. This does not mean that welaim that our approah will solve the salability problem that has haraterizedevolvable hardware (Thompson, Layzell & Zebulum 1999, Miller et al. 2000).Nevertheless, we believe that approahes suh as the one presented in this paper,may ontribute to the development of alternative tehniques that ould improvethe performane of a GA at least when solving relatively small iruits (underthe assumption that they ould be used as building bloks to produe largeriruits).In the past, we have approahed this problem using a GA with a matrix en-oding sheme, and an n-ardinality alphabet (after a series of experiments, wefound this n-ardinality representation sheme to be more robust than the tra-ditional binary representation (Coello Coello 1996, Coello Coello, Christiansen& Hern�andez Aguirre 1997, Coello Coello et al. 2000)).Our original GA-based approah presents great resemblane with the one2



proposed by Miller (1997) and further developed by Miller and his olleagues(2000, 1999, 1998). The two main di�erenes between the two approahes arethe enoding sheme and the �tness funtion as we will explain later in thispaper. However, Miller's initial work emphasized generation of funtional ir-uits, rather than optimization. It was until reently, that Kalganova & Miller(1999) experimented with a two-stage (or multiobjetive, as they all it) �tnessfuntion. We adopted that sort of �tness funtion sine the beginning of our re-searh in this area (Coello Coello 1996, Coello Coello et al. 1997). However, theuse of truly multiobjetive optimization tehniques (e.g., based on the oneptof Pareto optimality (Coello Coello 1999)) remained as an open area of researhin ombinational iruit design, as indiated by Kalganova & Miller (1999).In this paper, we propose the use of an evolutionary multiobjetive opti-mization tehnique (rather than just a multiobjetive �tness funtion) to designombinational iruits. There is some (relatively sare) previous work on us-ing multiobjetive tehniques to handle onstraints. This work, however, hasonentrated on numerial optimization only.Our approah is probably the �rst attempt to use this kind of tehnique inthe design of iruits, and it seems to onsiderably redue the amount of �tnessfuntion evaluations required by a GA (at least ompared to our previous GA(Coello Coello et al. 2000) and to Miller et al.'s approah (1997)).Our proposal is to handle eah of the mathes between a solution generatedby a GA and the values spei�ed by the truth table as equality onstraints.This, however, introdues some dimensionality problems for onventional mul-tiobjetive optimization tehniques (this is beause heking for dominane isan O(n2) proess), and therefore the idea of using a (more eÆient) population-based approah similar to the Vetor Evaluated Geneti Algorithm (VEGA)(Sha�er 1985).The remainder of this paper is organized as follows: �rst, we give some baside�nitions related to multiobjetive optimization. Then, we desribe some of theprevious related work on using multiobjetive optimization tehniques to handleonstraints. After that, we state the problem of interest to us, and introdueour approah, giving some examples of its performane. Results are omparedagainst those produed by our previous approah (a GA with an n-ardinalityalphabet and a two-stage �tness funtion that we will simply denote as NGA)and against designs produed by humans (using Karnaugh Maps (Karnaugh1953), the Quine-MCluskey Proedure (Quine 1955, MCluskey 1956)) andanother GA (Miller, Thomson & Fogarty 1997). Then, we present a shortdisussion of our results, our onlusions and some of the possible paths offuture researh.2 Multiobjetive OptimizationMultiobjetive optimization (also alled multiriteria optimization, multiper-formane or vetor optimization) an be de�ned as the problem of �nding(Osyzka 1985): 3



a vetor of deision variables whih satis�es onstraints and opti-mizes a vetor funtion whose elements represent the objetive fun-tions. These funtions form a mathematial desription of perfor-mane riteria whih are usually in onit with eah other. Hene,the term \optimize" means �nding suh a solution whih would givethe values of all the objetive funtions aeptable to the designer.Formally, we an state the general multiobjetive optimization problem(MOP) as follows:De�nition 1 (General MOP): Find the vetor ~x� = [x�1; x�2; : : : ; x�n℄T whihwill satisfy the m inequality onstraints:gi(~x) � 0 i = 1; 2; : : : ;m (1)the p equality onstraintshi(~x) = 0 i = 1; 2; : : : ; p (2)and optimizes the vetor funtion~f(~x) = [f1(~x); f2(~x); : : : ; fk(~x)℄T (3)where ~x = [x1; x2; : : : ; xn℄T is the vetor of deision variables. 2In other words, we wish to determine from among the set F of all num-bers whih satisfy (1) and (2) the partiular set x�1; x�2; : : : ; x�n whih yields theoptimum values of all the k objetive funtions of the problem.Another important onept is that of Pareto optimality, whih was statedby Vilfredo Pareto in the XIX entury (Pareto 1896), and onstitutes by itselfthe origin of researh in multiobjetive optimization:De�nition 2 (Pareto Optimality:): We say that ~x� 2 F , is Paretooptimal if for every ~x 2 
 and I = f1; 2; : : : ; kg either,^i 2 I (fi(~x) = fi(~x�)) (4)or, there is at least one i 2 I suh that (assuming maximization)fi(~x) � fi(~x�) (5)2In words, this de�nition says that ~x� is Pareto optimal if there exists no feasi-ble vetor ~x whih would inrease some riterion without ausing a simultaneousderement in at least one other riterion.Pareto optimal solutions are also termed non-inferior, admissible, or eÆ-ient solutions (Horn 1997); their orresponding vetors are termed nondomi-nated. These solutions may have no learly apparent relationship besides theirmembership in the Pareto optimal set. This is the set of all solutions whose4



orresponding vetors are nondominated with respet to all other omparisonvetors. When plotted in objetive spae, the nondominated vetors are olle-tively known as the Pareto front.In this paper, we will be referring to these onepts, although our approahdoes not neessarily produe Pareto optimal solutions. The Vetor EvaluatedGeneti Algorithm (VEGA) in whih our approah is inspired, is known tobe biased towards the generation of individuals that exel in one dimensionof performane (i.e., in one objetive funtion rather than generating good\trade-o�s", whih is what other approahes suh as Pareto ranking (Fonsea& Fleming 1993) tend to do). However, we argue that in the ontext of iruitdesign (as well as other design areas), the ooperative mehanism impliit in apopulation-based approah suh as VEGA an be exploited to perform a moreeÆient searh. Therefore, we do not really aim to generate Pareto optimal de-signs, but instead, we aim to approah eÆiently (i.e., at a low omputationalost) the feasible region of iruit design problems (a task that normally on-sumes a lot of CPU time). Thus, the reason why the previous onepts wereinluded is for ompleteness, so that some of the related work and related on-epts mentioned in this paper an be fully understood and, therefore, the paperan be self-ontained.3 Handling onstraintsThe idea of using multiobjetive optimization tehniques to handle onstraintsis not new. Some researhers have proposed to rede�ne the single-objetive opti-mization of f(~x) as a multiobjetive optimization problem in whih we will havem+1 objetives, where m is the number of onstraints. Then, we an apply anymultiobjetive optimization tehnique (Fonsea & Fleming 1995, Coello Coello1999) to the new vetor ~v = (f(~x); f1(~x); : : : ; fm(~x)), where f1(~x); : : : ; fm(~x)are the original onstraints of the problem. An ideal solution ~x would thus havefi(~x)=0 for 1 � i � m and f(~x) � f(~y) for all feasible ~y (assuming maximiza-tion).Surry et al. (1995, 1997) proposed the use of Pareto ranking (Fonsea &Fleming 1993) and VEGA (Sha�er 1985) to handle onstraints using this teh-nique. In their approah, alled COMOGA, the population was ranked basedon onstraint violations (ounting the number of individuals dominated by eahsolution). Then, one portion of the population was seleted based on onstraintranking, and the rest based on real ost (�tness) of the individuals.Parmee and Purhase (1994) implemented a version of VEGA (Sha�er 1985)that handled the onstraints of a gas turbine problem as objetives to allow ageneti algorithm to loate a feasible region within the highly onstrained searhspae of this appliation. However, VEGA was not used to further explore thefeasible region, and instead Parmee and Purhase (1994) opted to use speializedoperators that would reate a variable-size hyperube around eah feasible pointto help the geneti algorithm to remain within the feasible region at all times.Camponogara & Talukdar (1997) proposed the use of a proedure based on5



an evolutionary multiobjetive optimization tehnique. Their proposal was torestate a single objetive optimization problem in suh a way that two obje-tives would be onsidered: the �rst would be to optimize the original objetivefuntion and the seond would be to minimize the total amount of onstraintviolation of an individual.One the problem is rede�ned, non-dominated solutions with respet to thetwo new objetives were generated. The solutions found de�ned a searh di-retion d = (xi � xj)=jxi � xjj, where xi 2 Si, xj 2 Sj , and Si and Sj arePareto sets. The diretion searh d is intended to simultaneously minimize allthe objetives (Camponogara & Talukdar 1997). Line searh is performed inthis diretion so that a solution x an be found suh that x dominates xi andxj (i.e., x is a better ompromise than the two previous solutions found). Linesearh takes the plae of rossover in this approah, and mutation is essentiallythe same, where the diretion d is projeted onto the axis of one variable j inthe solution spae (Camponogara & Talukdar 1997). Additionally, a proess ofeliminating half of the population is applied at regular intervals (only the less�tted solutions are replaed by randomly generated points).Jim�enez and Verdegay (1999) proposed the use of a min-max approah(Chankong & Haimes 1983) to handle onstraints. The main idea of this ap-proah is to apply a set of simple rules based on onstraint violation to deidethe seletion proess (individuals with the lowest amount of onstraint violationwould be preferred in a binary tournament).In the ontext of ombinational logi iruits design, we are not aware ofany work in whih the diret use of a multiobjetive optimization tehnique hadbeen proposed, exept for the single iruit solved in (Coello Coello 2000). Theidea was, however, suggested by Kalganova and Miller (1999). Nevertheless,evolutionary multiobjetive optimization approahes have been used by severalresearhers to solve some other related problems. For example, Wilson andMaleod (1993) used Pareto ranking (Goldberg 1989) to design multiplierlessIIR �lters; Zebulum et al. (1998) used a GA with a target vetor approah (withadaptive weights) for the synthesis of low-power operational ampli�ers; Harrisand Ifeahor (1996) used Pareto ranking to design nonlinear Finite ImpulseResponse (FIR) �lters; et.4 Statement of the ProblemThe problem of interest to us onsists of designing a iruit that performs adesired funtion (spei�ed by a truth table), given a ertain spei�ed set ofavailable logi gates.In iruit design, one an use various riteria to de�ne minimal-ost expres-sions. For example, from a mathematial perspetive, one ould minimize thetotal number of literals or the total number of binary operations or the totalnumber of symbols in an expression. The minimization problem is diÆult forall suh ost riteria. In gate networks one ould minimize the total numberof gates subjet to suh restritions as fan-in, fan-out, number of levels, or the6



total number of SSI pakages. In general, it is very diÆult to �nd suh min-imal networks or to prove the minimality of a given network (Brzozowski &Yoeli 1976). In spite of this, it is possible to solve a number of minimizationproblems using systemati tehniques, provided that we are satis�ed with lessgeneral solutions.The omplexity of a logi iruit is a funtion of the number of gates inthe iruit. The omplexity of a gate generally is a funtion of the numberof inputs to it. Beause a logi iruit is a realization (implementation) of aBoolean funtion in hardware, reduing the number of literals in the funtionshould redue the number of inputs to eah gate and the number of gates in theiruit|thus reduing the omplexity of the iruit.In this work, we propose a GA that uses a population-based approah todesign iruits. The results produed are ompared against those produed byanother GA (alled n-ardinality GA or NGA (Coello Coello et al. 2000)). Wealso ompare our results against with those generated by a human designerusing Karnaugh maps and another one using the Quine-MCluskey Proedure(unless indiated otherwise in the examples). The omparison against humandesigners is in many ways unfair beause of di�ering apabilities of man andmahine. For example, a human designer tends to use only the gates NOT,AND, OR and has more diÆulties using XOR beause the Karnaugh Map andthe Quine-MCluskey Proedure do not support the identi�ation of XOR termsas well as they support \seeing" simple produt terms. The omputer, usinga GA-based approah, and not being restrited by human pattern reognitionabilities, uses many XOR gates, often disregarding the NOT gate.Our overall measure of iruit optimality is the total number of gates used,regardless of their kind. This is approximately proportional to the total partost of the iruit. Obviously, we perform this analysis for only fully funtionaliruits.An interesting aspet of this work relates to the analysis of the type ofsolutions that the GA generates. We have found in the past (Coello Coelloet al. 2000) (and again in the work urrently reported) that the GA tends to�nd ertain design patterns that, through repliation, an produe very ompatdesigns. In fat, through a areful analysis of the solutions generated by a GA,we have been able to extrat some of its design patterns and to use them both toimprove onvergene of the GA itself and to enrih the set of simpli�ation rulesnormally used by human designers (see (Islas P�erez, Coello Coello & Hern�andezAguirre 2001) for details). Some of these design aspets will be briey disussedin Setion 8.5 The Geneti Algorithm UsedWe used a matrix to represent a iruit also adopted in previous work (CoelloCoello et al. 2000, Coello Coello et al. 1997), as shown in Figure 1. This matrixis enoded as a �xed-length string of integers from 0 to N � 1, where N refersto the number of rows allowed in the matrix (we all it n-ardinality alphabet).7
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Figure 1: Matrix used to represent a iruit. Eah gate gets its inputs fromeither of the gates in the previous olumn. Note the enoding adopted for eahelement of the matrix as well as the set of available gates used.More formally, we an say that any iruit an be represented as a bidimen-sional array of gates Si;j , where j indiates the level of a gate, so that those gatesloser to the inputs have lower values of j. (Level values are inremented fromleft to right in Figure 1). For a �xed j, the index i varies with respet to thegates that are \next" to eah other in the iruit, but without being neessarilyonneted. Eah matrix element is a gate (there are 5 types of gates: AND,NOT, OR, XOR and WIRE1.) that reeives its 2 inputs from any gate at theprevious olumn as shown in Figure 1. Although our GA implementation allowsgates with more inputs and these inputs might ome from any previous level ofthe iruit, we limited ourselves to 2-input gates and restrited the inputs toome only from the previous level. This restrition ould, of ourse, be relaxed,but we adopted it to allow a fair omparison with our previous GA-based ap-proah (it should be kept in mind that the main motivation of this work was toimprove the eÆieny of our previous GA).A hromosomi string enodes the matrix shown in Figure 1 by using tripletsin whih the 2 �rst elements refer to eah of the inputs used, and the third isthe orresponding gate from the available set.The matrix representation adopted in this work was originally proposed byLouis (1991, 1993, 1993). He applied his approah to a 2-bit adder and to the n-parity hek problem (for n = 4; 5; 6). This representation has also been adoptedby Miller et al. (1997, 2000) with some di�erenes. For example, the restritionsregarding the soure of a ertain input to be fed in a matrix element varies ineah of the three approahes: Louis (1993) has strong restritions, Miller etal. (1997) have no restritions and we have relatively light restritions. The1WIRE basially indiates a null operation, or in other words, the absene of gate, andit is used just to keep regularity in the representation used by the GA that otherwise wouldhave to use variable-length strings. 8



enoding is also di�erent in all ases. Louis (1993) only enoded informationregarding one input and the type of gate to be used at eah matrix position. Healso used binary representation. In our ase, we used an n-ardinality alphabetand deided to enode the gate to be plaed at eah matrix loation plus itstwo inputs. Miller et al. (1997) enode a full Boolean operation using a singleinteger. This representation is more ompat, but it has the problem of requiringthat mutation takes the plae of rossover to introdue enough diversity inthe population, so that the evolutionary algorithm an approah the feasibleregion. That is the reason why Miller et al. (2000) have adopted an evolutionarystrategy in their reent work.Finally, the last di�erene among the three approahes previously mentionedis regarding the �tness funtion. Louis (1993) simply maximizes the number ofmathes between the outputs produed by the iruit and those indiated in thetruth table. We have used a �tness funtion that works in two stages: �rst, itmaximizes the number of mathes (as in Louis' ase). However, one feasiblesolutions are found, we maximize the number of WIREs in the iruit. By doingthis, we atually optimize the iruit in terms of the number of gates that ituses. Miller et al. (1997) did something similar to Louis until reently (theyhave reently introdued a two-stage �tness funtion like the one adopted by us(Kalganova & Miller 1999)).Thus, we an say that our goal was to produe a fully funtional design(i.e., one that produes all the expeted outputs for any ombination of inputsaording to the truth table given for the problem) whih maximizes the numberof WIREs. We also aimed to redue the omputational ost of our previous GA-based approah.6 Desription of the approahThe main idea behind our proposed approah is to use a population-based mul-tiobjetive optimization tehnique suh as VEGA (Sha�er 1985) to handle eahof the outputs of a iruit as an objetive. In other words, we would have anoptimization problem with m equality onstraints, where m is the number ofvalues (i.e., outputs) of the truth table that we aim to math. So, for example,a iruit with 3 inputs and a single output, would have m = 23 = 8 values tomath.The tehnique may be better illustrated by Figure 2. At eah generation,the population is split into m + 1 subpopulations, where m is de�ned as indi-ated before (we have to add one to onsider also the objetive funtion). Eahsubpopulation is on harge of optimizing a onstraint of the problem (in thisase, an output of the iruit) and an additional subpopulation will optimize theoriginal objetive funtion (unonstrained). Therefore, the main goal of eahsubpopulation is to math its orresponding output with the value indiated bythe user in the truth table. Although the size of eah subpopulation may bevariable, it was deided to alloate the same size to eah of them in the experi-ments reported in this paper, but the use of di�erent subpopulation sizes is also9
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In this equation, h(~x) refers to the number of mathes between the iruit ~xand the values de�ned in the truth table, and w(~x) is the number of WIREs inthe iruit ~x. Therefore, seletion is performed using di�erent rules within eahsubpopulation. However, rossover and mutation are applied to the entire pop-ulation (i.e., no \speiation" mehanism is used). This intends to reombine thehromosomi material orresponding to di�erent partially funtional iruits, asto allow onvergene towards fully feasible iruits.The algorithm of our approah is the following:1. Generate randomly a population of size P .2. Split the population into m+ 1 subpopulations (m = number of outputsto math).3. Compute �tness values aording to the goals of eah individual withineah subpopulation:� If the target output is not mathed, �tness is zero.� Else, if the target output is mathed, but the iruit is not funtional,then �tness is the number of outputs not mathed multipled by (-1).� Else, if the target output is mathed AND the iruit is funtional,then �tness is given by the addition of the number of outputs mathedplus the number of wires of the iruit.4. Shu�e the entire population and selet parents from eah subpopulationbased on the (previously omputed) �tness value of eah individual.5. Apply rossover and mutation to the entire population. Individuals of anygiven subpopulation are allowed to breed with individuals of any othersubpopulation. This will generate the new population P 0.6. If onvergene riterion reahed, then stop.7. Otherwise, return to step 2.There are a few interesting things that an be observed from this proedure.First, eah subpopulation assoiated with an output of the iruit will try tomath it with the value de�ned in the truth table. One this is ahieved, thenthe �tness funtion will try to maximize the number of mathes of the rest ofthe outputs. In other words, this subpopulation will ooperate with the othersthat are having diÆulties to math their outputs. If the iruit is feasible, thenall the subpopulations will join e�orts to maximize the number of WIREs in theiruit.It is important to larify that the urrent approah does not use dominaneto impose an order on the onstraints based on their violation (like in the ase ofCOMOGA (Surry, Radli�e & Boyd 1995)) whih is a more expensive proess(in terms of CPU time) that also requires additional parameters. In fat, theurrent approah does not rank individuals, but it uses instead di�erent �tness11



funtions for eah of the subpopulation alloated (whose number depends onthe number of outputs in a iruit) depending on the feasibility of the indi-viduals ontained within eah of them. This is easier to implement, does notrequire speial operators to preserve feasiblity (like in the ase of Parmee andPurhase's approah (1994)), makes unneessary the use of a sharing funtion topreserve diversity (Deb & Goldberg 1989) (like with traditional multiobjetiveoptimization tehniques (Fonsea & Fleming 1995)), and does not require extraparameters to ontrol the mixture of feasible and infeasible individuals (like inthe ase of COMOGA (Surry et al. 1995)).VEGA is known to have diÆulties in multiobjetive optimization problemsdue to the fat that it tries to �nd individuals that exel only in one dimensionregardless of the others (the so-alled \middling" problem (Sha�er 1985, Fon-sea & Fleming 1995, Coello Coello 1999)). However, that drawbak turns outto be an advantage in this ontext, beause what we want to �nd are preiselyiruits that are fully funtional, instead of good ompromises that may notsatisfy one of the outputs (whih are the kinds of solutions that a Pareto rank-ing strategy would normally produe) (Coello Coello 1999). Also, the use ofsubpopulations is muh more eÆient than using Pareto dominane, beause ofthe potentially high number of objetives involved (this will be illustrated inthe examples shown in this paper).7 Comparison of ResultsWe have used several iruits of di�erent degrees of omplexity to test ourapproah. For the purposes of this paper, 5 examples were hosen to illustrateour approah (alled multiobjetive geneti algorithm, or MGA for short), andthe results produed were ompared with those generated by human designersand by our previous n-ardinality GA (alled NGA) (Coello Coello et al. 1997,Coello Coello et al. 2000).In eah ase, the size of the matrix used to �t the iruit was determinedusing the following proedure:1. Start with a square matrix of size 5.2. If no feasible solution is found using this matrix, then inrease the numberof olumns by one.3. If no feasible solution is found using this matrix, then inrease the numberof rows by one.4. Repeat steps 2 and 3 until a suitable matrix is produed.As we will see in the following examples, it was normally the ase that forsmall iruits a matrix of 5� 5 was suÆient. However, in one of the examples,it was neessary to reah a matrix size of 6 � 7. This made neessary to runthe GA for more generations, performing, in onsequene, more �tness funtionevaluations. This situation normally arises with iruits having several outputs,12



Table 1: Truth table for the iruit of the �rst example.X Y Z F0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 0although in some ases, suh as in the 2-bit multiplier of our fourth example,even a 5� 5 matrix may be enough to �nd the best known iruit.To hoose the size of eah subpopulation in the MGA, we started with 10,and performed 20 runs. If we did not �nd feasible solutions in at least one fourthof our runs, we would inrease the subpopulation size by 10 and would perform20 more runs. This proess was repeated until a suitable subpopulation size wasfound.The other issue is regarding the rossover and mutation rates. After a seriesof experiments, we deided to use a rossover rate of 50% and a mutation ratesuh that eah string had a 50% probability of being mutated at a ertainposition. Sine mutation was applied on a single-gene basis, we used as ourprobability of mutation the result of dividing this 50% by the length of the string.For example, when a 5�5 matrix was used, the length of the hromosomi stringwas 75. Therefore, the probability of mutation would be 0.006667.7.1 Example 1Our �rst example is a 3-even parity problem, whose truth table with 3 inputsand one output is shown in Table 1. In this ase, the matrix used was of size 5�5,and the length of eah string representing a iruit was then 3 � 5 � 5 = 75.The ardinality  used for this problem was max(r; g), where r refers to thenumber of rows in the matrix and g to the number of allowable gates in theiruit (sine only the inputs from the previous level are onsidered, the numberof olumns does not a�et the ardinality used). Sine g = 5, and  = 5 forthis example, then the size of the intrinsi searh spae for this problem isl = 575 � 2:6 � 1052. Fitness is omputed in the following way: 8 (numberof outputs that we must math to have a feasible iruit) + 5 � 5 (size of thematrix) - number of gates used (i.e., di�erent of WIRE)). Therefore, a �tnessof 29 (the best value produed for this iruit) means that the iruit is feasible(otherwise, its �tness ould not possibly be above 8), and it has 4 gates (i.e., 21WIREs), beause 8 + (25-4) = 8 + 21 = 29.Results are ompared in Table 2. Human Designer 1 used Karnaugh Maps13
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ZFigure 3: Graphial representation of the best iruit found by the MGA andthe NGA for the �rst example.MGA NGA HD 1 HD 2F = (X + Y )Z F = Z(X + Y ) F = Z(X � Y ) F = X 0Y Z�(XY ) �(XY ) +Y (X � Z) +X(Y � Z)4 gates 4 gates 5 gates 6 gates2 ANDs, 1 OR, 2 ANDs, 1 OR, 2 ANDs, 1 OR, 3 ANDs, 1 OR,1 XOR, 1 NOT 1 XOR 2 XORs 1 XOR, 1 NOTTable 2: Comparison of the best solutions found by the n-ardinality GA(NGA), our multiobjetive geneti algorithm (MGA), and two human de-signers (HD 1 and HD 2) for the iruit of the �rst example. A populationsize of 90 was used with both GAs.plus Boolean algebra identities to simplify the iruit, whereas Human Designer2 used the Quine-MCluskey Proedure. In both ases, they produed solutionswith more gates than the MGA or the NGA.A subpopulation size of 10 was enough for the MGA. Sine the iruit has8 outputs, there were 9 objetives. Therefore, the total population size was setto 90. We set the maximum number of generations to 300.To make a fair omparison, the same representation sheme and the samegeneti operators (two-point rossover with a probability of 0.5, and uniformmutation with a probability of 0.006667) were used for both the MGA and theNGA (for more details on the NGA, refer to (Coello Coello et al. 2000)).The MGA onsistently found a solution with a �tness value of 29 (75% of thetime), and it produed feasible iruits 100% of the time. The average �tness ofthe 20 runs performed was 28.75, with a standard deviation of 0.433012. Thegraphial representation of this solution is depited in Figure 3.On the other hand, the best solution that the NGA ould �nd using thesame population size had also a �tness of 29 (i.e., a iruit with 4 gates), but itappeared only 10% of the time. Also, 20% of the time, the best solution foundwas infeasible. The average �tness of these 20 runs was 21.4, with a standarddeviation of 8.438009244. 14



Z W X Y F0 0 0 0 10 0 0 1 10 0 1 0 00 0 1 1 10 1 0 0 00 1 0 1 00 1 1 0 10 1 1 1 11 0 0 0 11 0 0 1 01 0 1 0 11 0 1 1 01 1 0 0 01 1 0 1 11 1 1 0 01 1 1 1 0Table 3: Truth table for the iruit of the seond example.7.2 Example 2Our seond example has 4 inputs and one output, as shown in Table 3. A matrixof the same size as before was used (i.e., 5� 5).The omparison of the results produed by the MGA, the NGA, a humandesigner using Karnaugh Maps, and Sasao's approah (1993) are shown in Ta-ble 4. Sasao (1993) has used this iruit to illustrate his iruit simpli�ationtehnique based on the use of ANDs & XORs. His solution uses, however, moregates than the iruit produed by the NGA or the MGA.Sine this example has 16 outputs, there are 17 objetives for the MGA. Apopulation size of 170 was enough to solve this iruit. The maximum numberof generations in this ase (for both the MGA and the NGA) was set to 400.The MGA found a solution with a �tness value of 34 (i.e., a iruit with 7gates) 15% of the time, and solutions with 8 gates were found 25% of the time.The MGA produed feasible iruits 100% of the time. The average �tness ofthe 20 runs performed was 32.1, with a standard deviation of 1.252366. Thegraphial representation of the best solution found is depited in Figure 4.The best solution that the NGA ould �nd using the same population sizehad a �tness of 31 (i.e., a iruit with 10 gates), and it appeared only onein the 20 runs performed. Also, 95% of the time, the best solution found wasinfeasible. The average �tness of these 20 runs was 15.55, with a standarddeviation of 3.677456.
15
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Figure 4: Ciruit produed by our MGA for the seond example.
MGA NGA HD 1 SasaoF = ((W +XY ) F = (WYX 0 F = ((Z 0X) F = X 0 � Y 0W 0�((X + Y ) �((W + Y ) �(Y 0W 0)) �XY 0Z 0(X � Z)))0 �Z � (X +((X 0Y ) �X 0Y 0W+Y + Z)))0 (Z �W 0))7 gates 10 gates 11 gates 12 gates2 ANDs, 2 ORs, 2 ANDs, 3 ORs, 4 ANDs, 1 OR, 3 XORs,2 XORs, 1 NOT 3 XORs, 2 NOTs 2 XORs, 4 NOTs 5 ANDs,4 NOTsTable 4: Comparison of the best solutions found by the n-ardinality GA(NGA), our multiobjetive geneti algorithm (MGA), a human designer usingKarnaugh Maps (HD 1), and Sasao for the iruit of the seond example. Apopulation size of 170 was used with both GAs.
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A1 A0 B1 B0 C3 C2 C1 C00 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 1 1 0 0 0 00 1 0 0 0 0 0 00 1 0 1 0 0 0 10 1 1 0 0 0 1 00 1 1 1 0 0 1 11 0 0 0 0 0 0 01 0 0 1 0 0 1 01 0 1 0 0 1 0 01 0 1 1 0 1 1 01 1 0 0 0 0 0 01 1 0 1 0 0 1 11 1 1 0 0 1 1 01 1 1 1 1 0 0 1Table 5: Truth table for the 2-bit multiplier of the third example.7.3 Example 3Our third example has 4 inputs and 4 outputs, as shown in Table 5. A matrixof the same size as before was used (i.e., 5� 5).Sine this example has 64 outputs, there are 65 objetives for the MGA. Asubpopulation size of 10 (i.e., total population size of 650), was suÆient for theMGA. The maximum number of generations in this ase (for both the MGAand the NGA) was set to 500.The MGA found a solution with a �tness value of 82 (i.e., a iruit with 7gates) 15% of the time, and it produed feasible iruits 100% of the time. Theaverage �tness of the 20 runs performed was 80.4, with a standard deviationof 1.142481141. The graphial representation of the best solution found by theMGA is depited in Figure 5.On the other hand, the best solution that the NGA ould �nd using thesame population size of 650 had a �tness of 80 (i.e., a iruit with 9 gates). Thissolution appeared only twie in the 20 runs performed. In most ases (70% ofthe runs performed), the best solution found was infeasible. The average �tnessof these 20 runs was 66.65, with a standard deviation of 7.638372657.The omparison of the results produed by the MGA, the NGA, two humandesigners, and Miller et al. (1997) are shown in Table 6. It should be mentionedthat Miller et al. (1997) onsidered their solution to ontain only 7 gates beauseof the way in whih they enoded their Boolean funtions (the reason is that theyenoded NAND gates in their representation). However, sine we onsideredeah gate as a separate hromosomi element, we ount eah of them, inluding17
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Figure 5: Ciruit produed by our MGA for the third example.
MGA NGA HD 1 HD 2 MILC0 = A0B0 C0 = A0B0 C0 = A0B0 C0 = A0B0 C0 = A0B0C1 = A0B1 C1 = A1A0 C1 = A0B1 C1 = (B1 +B0) C1 = A1B0�A1B0 B0B1 �A1B0 (A1 +A0) �A0B1�(A0B1 ((A1A0)+A1B0) �(B1B0))C2 = A1B1 C2 = (A0B0 C2 = A1B1 C2 = A1B1 C2 = (A0B0)0�(A0B0 +A1B1) (A0B0)0 (A0B0)0 (A1B1)A1B1) �A0B0C3 = A0B0 C3 = A1B1 C3 = A1A0 C3 = A1B1 C3 = (A1B0A1B1 A0B0 B1B0 A0B0 �A0B1)0(A1B0)7 gates 9 gates 8 gates 12 gates 9 gates5 ANDs, 5 ANDs, 6 ANDs, 8 ANDs, 6 ANDs,2 XORs 2 ORs, 1 XOR, 1 XOR, 1 XOR,2 XORs 1 NOT 2 ORs, 1 NOT 2 NOTsTable 6: Comparison of the best solutions found by the n-ardinality GA(NGA), our multiobjetive geneti algorithm (MGA), two human designers (HD1 & HD 2), and Miller et al. (MIL) for the iruit of the third example. Apopulation size of 650 was used with both the MGA and the NGA.18



A B C D F1 F2 F30 0 0 0 1 0 00 0 0 1 0 1 00 0 1 0 0 1 00 0 1 1 0 1 00 1 0 0 0 0 10 1 0 1 1 0 00 1 1 0 0 1 00 1 1 1 0 1 01 0 0 0 0 0 11 0 0 1 0 0 11 0 1 0 1 0 01 0 1 1 0 1 01 1 0 0 0 0 11 1 0 1 0 0 11 1 1 0 0 0 11 1 1 1 1 0 0Table 7: Truth table for the iruit of the fourth example.NOTs that are assoiated with AND & OR gates. Regardless of that fat, itis more important to point out that Miller et al. (1997) found their solutionwith runs of 3,000,000 �tness funtion evaluations eah, whereas in our ase, weperformed runs of only 325,000 evaluations eah.7.4 Example 4Our fourth example has 4 inputs and 3 outputs, as shown in Table 7. In thisase, the matrix used was of size 6 � 7, and the hromosomi length was 126(r = 6; q = 7; t = 6�7 = 42; l = 3� t = 126). The ardinality  = max(r; g) = 6The size of the intrinsi searh spae for this problem is l = 6126 � 1:1� 1098.The omparison of the results produed by the MGA, the NGA, and twohuman designers are shown in Table 8.Sine this example has 48 outputs, there are 49 objetives for the MGA. Asubpopulation size of 10 (i.e., total population size of 490), was suÆient for theMGA. The maximum number of generations in this ase (for both the MGAand the NGA) was set to 2000.The MGA found a solution with a �tness value of 81 (i.e., a iruit with 9gates) 15% of the time, and it produed feasible iruits 100% of the time (55%of the time, the MGA found better solution than the best found by the NGA).The average �tness of the 20 runs performed was 78.9, with a standard deviationof 1.020835571. The graphial representation of the best solution found by theMGA is depited in Figure 6.On the other hand, the best solution that the NGA ould �nd using the19
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D Figure 6: Ciruit produed by our MGA for the fourth example.same population size of 490 individuals had a �tness of 78 (i.e., a iruit with12 gates). This solution appeared only one in the 20 runs performed. Inmost ases (80% of the runs performed), the best solution found was infeasible.The average �tness of these 20 runs was 52.15, with a standard deviation of11.92641915.8 Disussion of ResultsWe will start by summarizing the results obtained from our experiments. Table 9ontains of summary of the best results produed by the MGA, the NGA andthe best human designer in eah of the iruits analyzed. We an see that theMGA onsistently outperformed its ompetitors, produing the lowest numberof gates in eah ase.Sine one of the main aspets of the approah proposed in this paper is itsapability to improve the eÆieny of the GA to design ombinational iruits,we deided to perform another omparison in whih we analyzed the ompu-tational ost required by our original NGA and our proposed MGA to obtainequivalent results (in terms of optimality). The analysis was onduted on the�ve examples presented in this paper, and onsidering only the minimum num-ber of �tness funtion evaluations required (\minimum" in this ase refers tothe ombination of population size and maximum number of generations thatprodued the lowest result when multiplied). Sine the best results in all asesorrespond to the MGA, we established a methodology to try di�erent parame-ters for the NGA, so that we ould reah similar results (our methodology wassimilar to the one desribed in previous work (Coello Coello 2000)).The omparison of omputational osts for the MGA and the NGA (reahingthe best results reported in this paper for eah of the �ve examples hose) ispresented in Table 10. In all ases, the number of �tness funtion evaluationsindiated orrespond to the omplete run of the GA (even if, like in most ases,onvergene to the best result obtained was ahieved before reahing the lastgeneration). It an be learly appreiated that the MGA outperforms the NGA20



MGA NGA HD 1 HD 2F1 = ((B �D) F1 = ((B �D) F1 = (A� C)0 F1 = (A� C)0+(A� C))0 +(A� C))0 (B �D)0 (B �D)0F3 = ((B �D) F3 = ((B �D) F3 = BD0(A F3 = (F1 + F2)0+(A� C)) +(A� C)) + C 0)(((A � C) ((D + (A� +AC 0+(A�B)) C))0�C)) + (A0 + C)0)F2 = F3� F2 = ((B �D) F2 = B0D F2 = A0C((B �D) +(A� C)) (A0 + C) +(A� C)0+(A� C)) �((B �D) +A0C (B0D)+(A� C))((D + (A�C))0+(A0 + C)0)9 gates 12 gates 19 gates 13 gates3 XORs, 3 ORs, 3 XORs, 4 ORs, 2 XORs, 4 ORs, 2 XORs, 2 ORs,2 ANDs, 2 NOTs 1 AND, 4 NOTs 7 ANDs, 6 NOTs 4 ANDs, 5 NOTsTable 8: Comparison of the best solutions found by the n-ardinality GA(NGA), our multiobjetive geneti algorithm (MGA), and two human de-signers (HD 1 and HD 2) for the iruit of the fourth example. A populationsize of 490 was used with both GAs.Example No. MGA NGA BHD1 4 4 52 7 10 113 7 9 84 9 12 13Table 9: Comparison of the number of gates ontained in the best solutionsprodued by: our multiobjetive geneti algorithm (MGA), the N -ardinalitygeneti algorithm (NGA), and the best human designer (BHD) for eah of theexamples analyzed in this paper.Example No. MGA NGA1 27,000 27,0002 68,000 500,0003 325,000 600,0004 980,000 5,600,000Table 10: Comparison of the number of �tness funtion evaluations required toreah the optimum by eah of the two GA-based approahes ompared in thispaper. 21



in most ases. The di�erene in terms of performane, beomes more signi�antas we attempt to solve more omplex iruits.We believe that the good performane obtained with this algorithm is mainlydue to an emergent behavior obtained from the ooperation of the di�erent sub-populations aiming to satisfy a simple goal. This line of thought is onsistentwith the reent work by Potter & DeJong (2000), aording to whih the reso-lution of omplex problems with evolutionary algorithms requires a ooperativee�ort.Additionally, the urrent tehnique an also be onsidered a variation ofthe divide-and-onquer approah to evolvable hardware suggested by Torresen(1998). In this approah, a system is evolved through its smaller omponents.Only that in our ase, these smaller omponents happen to be individual out-puts of a iruit. Torresen (1998) also showed that a sheme of this sort ouldsubstantially redue the omputational power required to evolve a system. Thesavings that this sort of population-based approah an produe ould be veryuseful in other design domains suh as strutural optimization. We are in faturrently exploring the use of this type of approah in that domain.Another interesting aspet of this work is the analysis of the design patternsused by the GA. It is important to mention that the GA does not really possesany spei� domain information that ould help it to bias the searh. In fat, itdoes not even \know" anything about the simplest simpli�ation rules existing(e.g., NOT (NOT A) = A). Nevertheless, it is able to emulate both simple andomplex simpli�ation rules used in Boolean algebra, and even produe othersthat tend to esape human reativity. Some of the unommon design patternsused by the GA an be hinted by omparing its solutions against those generatedby a human designer. For instane, in Example # 4 from the previous setion,the Boolean expression of one of the outputs is idential to the expression gen-erated by the MGA. The two others, in ontrast, are more omplex in the aseof the MGA. Then, why is the total number of gates of this iruit smaller?The answer is simple: if the solution of the MGA is arefully analyzed, it anbe seen that its apparent omplexity is due to the fat that it is reusing thesame blok to produe the three outputs. This is ounterintuitive for a humanusing a visual aid tehnique suh as the Karnaugh maps, but it is an emergingproperty of the appliation of natural seletion to the iruit design proess.In some of our reent work, we have foused our attention to the disoveryof these design patterns (other researhers suh as (Miller et al. 1999, Thomson2000) have done similar work). To our surprise, besides redisovering someof the most ommon simpli�ation rules of Boolean algebra, and others notso simple suh as a DeMorgan theorem applied to XOR gates: (X � Y 0)0 =X � Y = X 0 � Y 0. We also disovered some more omplex simpli�ations,suh as (A+ (A�B))� (A�B) = AB, whih are not intuitive to any humandesigner. Through the use of ase-based reasoning, we have been able to storethis \knowledge" generated by the GA for further reuse. The interested readeris referred to (Islas P�erez et al. 2001) for further details.We believe that our approah an be of great help in problems that aredeomposable. There are examples in the literature of ooperative searh ap-22



proahes designed for suh problems (e.g., (Murthy, Akkiraju, Goodwin, Ke-skinoak, Rahlin, Wu, Kumaran & Daigle 1999, Parmee & Watson 1999)).Sine our approah is based on suh a ooperative (emergent) behavior, it ishighly likely that it will perform very well (and at a low omputational ost) inproblems that an be solved using suh ooperative tehniques.It is worth mentioning one last issue that may be related to the work pre-sented in this paper. Reently, Knowles et al. (2001) suggested that transform-ing ertain single-objetive optimization problems into multiobjetive (a proessthat they all \multi-objetivizing") an remove loal optima and therefore, be-ome easier to solve by a heuristi. Their hypothesis was validated with aertain instane of the traveling salesperson problem. In this problem, the ap-pliation of the \multi-objetivizing" proess previously mentioned allowed touse a simple hilllimber to solve it.It is therefore possible that the proess desribed in this paper is anotherform of \multi-objetivizing" single-objetive iruit design problems. Thistransformation of the �tness landsape (produed by the proess of \multi-objetizing" the problem) may transform a diÆult searh spae into anothermore amenable for the appliation of a geneti algorithm. This allows to �ndnot only very good results but also in a relatively redued amount of time.9 Conlusions and Future WorkWe have proposed a multiobjetive optimization tehnique to design ombina-tional logi iruits. The proposed approah uses a population-based tehniqueto split the searh task among several (small) subpopulations. The approahompared well with respet to two human designers, and a previous GA de-veloped by us whih uses and n-ardinality alphabet and a two-stage �tnessfuntion. Our approah, alled MGA, onsistently found better solutions thanthe human designers, and was able to �nd the same or even better solutionsthan our previous GA (alled NGA), using a lower number of �tness funtionevaluations.The proposed approah seems very suitable for parallelization, and that willprobably be a path of researh that we will explore in the near future. Also, weare interested in oupling this approah with another system based on genetiprogramming that is urrently under development. We aim to bene�t from amore powerful hromosomi representation while keeping an eÆient seletionmehanism.10 AknowledgementsThe �rst author aknowledges partial support from CINVESTAV through projetJIRA'2001/08, and from the Mexian Consejo Naional de Cienia y Tenolog��athrough CONACyT projet No. 34201-A.23
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