
Automated Design of CombinationalLogi
 Cir
uits using the Ant SystemCarlos A. Coello Coello�CINVESTAV-IPNDepto. de Ingenier��a El�e
tri
aSe

i�on de Computa
i�onAv. Instituto Polit�e
ni
o Na
ional No. 2508Col. San Pedro Za
aten
oM�exi
o, D. F. 07300, MEXICO

oello�
s.
investav.mxRosa Laura Zavala Guti�errez & Benito Mendoza Gar
��aMIA, LANIA-UVSebasti�an Cama
ho 5Xalapa, Vera
ruz 91090, MEXICOfrzavala,bmendozag�mia.uv.mxArturo Hern�andez AguirreEECS DepartmentTulane UniversityNew Orleans, LA 70118, USAhernanda�ee
s.tulane.eduMar
h 20, 2001Abstra
tIn this paper we propose an appli
ation of the Ant System (AS) to opti-mize 
ombinational logi
 
ir
uits at the gate level. We de�ne a measure ofquality improvement in partially built 
ir
uits to 
ompute the distan
esrequired by the AS and we 
onsider as optimal those solutions that repre-sent fun
tional 
ir
uits with a minimum amount of gates. The proposedmethodology is des
ribed together with some examples taken from theliterature that illustrate the feasibility of the approa
h.Keywords: 
ir
uit design, ant 
olony system, evolvable hardware, 
ir
uit op-timization.�Most of this work was performed while the �rst author was at the Laboratorio Na
ionalde Inform�ati
a Avanzada (LANIA), in Xalapa, Vera
ruz, M�exi
o.1



1 Introdu
tionThe design of digital 
ir
uits is a diÆ
ult task that is normally asso
iated with
ertain human attributes (i.e., 
reativity). Its automation is therefore a 
hal-lenging problem.There are several standard graphi
al design aids for 
ombinational 
ir
uitsynthesis (e.g., Karnaugh Maps and the Quine-M
Cluskey method). Althoughsome of these te
hniques are fairly limited, others 
an handle truth tables withhundreds of inputs. In 
omparison, heuristi
s su
h as the geneti
 algorithm(GA) are normally restri
ted to relatively small truth tables [19℄. Su
h restri
-tions also apply to other heuristi
s su
h as the ant system (whi
h is the subje
tof this paper).But evolutionary design has triggered the study of other aspe
ts of designthat have been normally disregarded, for example, emergent design patterns[19, 3℄. It is therefore 
lear that when using heuristi
s, we aim not only tosynthesize a 
ir
uit (using a 
ertain metri
), but also to produ
e novel designsthat do not 
orrespond to the solutions that a human designer would typi
allyprodu
e [19, 17, 3℄. Additionally, the existen
e of te
hniques (su
h as the onedis
ussed in this paper) that allow us to produ
e 
ompa
t 
ir
uits (i.e., withfew gates) for relatively small truth tables 
ould be of great use for fun
tion-level design (where these 
ompa
t 
ir
uits would be used as building blo
ks fordesigning more 
omplex 
ir
uits). Su
h a divide-and-
onquer approa
h to 
ir
uitdesign has been suggested in the past [20, 19℄ and we believe that it 
onstitutesa viable alternative to deal with s
alability issues related to evolvable hardware(i.e., 
ir
uit design using heuristi
s).The remainder of this paper is organized as follows: �rst, we provide a shortdes
ription of the ant system. Then, we des
ribe some of the previous relatedwork on automated 
ombinational 
ir
uit design. After that, we introdu
e ourapproa
h, giving several examples of its performan
e. Results are 
omparedagainst those produ
ed by a GA and a human designer. Then, we present ashort dis
ussion of our results, our 
on
lusions and some of the possible pathsof future resear
h.2 The Ant SystemThe ant system (AS) is a meta-heuristi
 inspired by 
olonies of real ants, whi
hdeposit a 
hemi
al substan
e on the ground 
alled pheromone [8℄. This substan
ein
uen
es the behavior of the ants: they will tend to take those paths wherethere is a larger amount of pheromone. Pheromone trails 
an be seen as anindire
t 
ommuni
ation me
hanism among ants. From the 
omputer s
ien
eperspe
tive, the AS is a multi-agent system where low level intera
tions betweensingle agents (i.e., arti�
ial ants) result in a 
omplex behavior of the whole ant
olony. Figure 1 shows graphi
ally an example of the typi
al behavior of a
olony of real ants. When the ants leave initially the nest, (1) they followrandom patterns. (2) Over time, they start following a 
ommon path. (3,4)2



Figure 1: Behavior of a 
olony of real ants.When fa
ed with an obsta
le, some 
hoose to go around it through the left sideof the obsta
le and others avoid it going through the right. (5) Over time, thewhole 
olony will follow a 
ommon path (the shortest way) due to the pheromonetrials.There are three main ideas from 
olonies of real ants that have been adoptedin the AS:1. The indire
t 
ommuni
ation through pheromone trials.2. Shortest paths tend to have a higher growth rate of pheromone values.3. Ants have a higher preferen
e (with a 
ertain probability) for paths thathave a higher amount of pheromone.Additionally, the AS has 
ertain 
apabilities nonexistent in 
olonies of realants. For example:1. Ea
h ant is 
apable of estimating how far it is from a 
ertain state.2. Ants have information about the environment and use it to make de
isions.Therefore, their behavior is not only adaptive, but also exhaustive.3. Ants have memory, sin
e this is ne
essary to make sure that only feasiblesolutions are generated at ea
h step of the algorithm.The AS was originally proposed for the traveling salesman problem (TSP),and a

ording to Dorigo [9℄, to apply eÆ
iently the AS, it is ne
essary to refor-mulate our problem as one in whi
h we want to �nd the optimal path of a graphand to identify a way to measure the distan
es between nodes. This might notbe an easy or obvious task in 
ertain appli
ations like the one presented in thispaper. 3



In fa
t, the main 
ontribution of this paper is pre
isely our proposal regard-ing how to reformulate the 
ir
uit optimization problem so as to allow the useof the AS. We will use several examples to 
ompare the solutions generated byour approa
h against those produ
ed by a human designer and by a GA withbinary representation previously developed by us for this problem [4℄.3 Related WorkWe 
ould not �nd any previous work on the design of 
ir
uits using the antsystem. Therefore, we will brie
y dis
uss some related work using evolutionaryte
hniques (geneti
 algorithms and geneti
 programming).In the 
ontemporary literature, the attempt to use evolutionary-based te
h-niques to design ele
tri
al 
ir
uits has been 
alled \evolvable hardware" [15, 6℄.Within evolvable hardware, we 
an distinguish three types of evolutionary pro-
esses [13℄: extrinsi
 evolution (we use software models of the 
ir
uit and eval-uations are performed with a simulator), intrinsi
 evolution (we use a physi
almodel of the 
ir
uit and evaluations are performed with test equipment), andmixtrinsi
 evolution (a mixture of the two previous types). Our work uses ex-trinsi
 evolution.There are also several levels at whi
h evolution 
an be performed. In thiswork, we are only 
onsidering the lowest, whi
h is 
alled gate-level evolvablehardware, be
ause the primitives used to design 
ir
uits are gates su
h as AND,OR and NOT. It is known that gate-level evolution is only suitable for small
ir
uits [13℄. However, our belief is that if these small 
ir
uits 
an be highlyoptimized, they will be more useful at the following level of evolvable hardware(the so-
alled \fun
tion-level"), at whi
h these small 
ir
uits will be used asprimitives to design more 
omplex 
ir
uits. In fa
t, similar me
hanisms asthose adopted in this work 
an be used for fun
tion-level evolvable hardware,although su
h design is beyond the s
ope of this paper.Despite the limitations of gate-level design, several resear
hers have workedin this area [16, 18, 11, 13℄. Furthermore, besides the normal use of gate-leveldesign (e.g., two-bit adders, two- and three-bit multipliers, de
oders, et
.), therehave been a few more 
omplex appli
ations reported in the spe
ialized literature(see for example [12, 14℄).Our goal in this paper is to show the feasibility of using the ant systemfor gate-level design of 
ir
uits. We will des
ribe how to adapt the ant systemalgorithm to design 
ombinational 
ir
uits, and we will show how the resultingapproa
h is 
ompetitive with a traditional GA in terms of performan
e andquality of the solutions produ
ed. The approa
h des
ribed in this paper is anextension of an approa
h previously reported [5℄ in whi
h the main limitationwas the fa
t that only 
ir
uits with one output 
ould be designed by the sys-tem. Our 
urrent approa
h also shows a signi�
ant improvement in terms ofperforman
e with respe
t to our previous version.4



Input OutputFigure 2: Matrix used to represent a 
ir
uit to be pro
essed by an agent (i.e., anant). Ea
h gate gets its inputs from either of the gates at the previous 
olumn.4 Des
ription of the Approa
hIn this se
tion, we will des
ribe the way in whi
h the 
ir
uit design problemhad to be reformulated in order to be able to use the AS to solve it. Themain problem that we fa
ed was how to make an analogy (as mu
h as possible)between 
ir
uit design and the TSP. The main issues are: the representation tobe adopted, the notion of state in that representation, the way in whi
h a pathwould be built, and the way of updating the trails of ea
h ant. Ea
h of theseissues will be dis
ussed in this se
tion4.1 RepresentationSin
e we need to view the 
ir
uit optimization problem as one in whi
h we wantto �nd the optimal path of a graph, we will use a matrix representation for the
ir
uit as shown in Figure 2. This matrix is en
oded as a �xed-length string ofintegers from 0 to N � 1, where N refers to the number of rows allowed in thematrix.More formally, we 
an say that any 
ir
uit 
an be represented as a bidimen-sional array of gates Si;j , where j indi
ates the level of a gate, so that thosegates 
loser to the inputs have lower values of j. (Level values are in
rementedfrom left to right in Figure 2). For a �xed j, the index i varies with respe
tto the gates that are \next" to ea
h other in the 
ir
uit, but without beingne
essarily 
onne
ted. Ea
h matrix element is a gate (�ve types of gates were
onsidered in our work: AND, NOT, OR, XOR and WIRE1) that re
eives its2 inputs from any gate at the previous 
olumn as shown in Figure 2. We haveused this representation before with a GA [2, 4℄.A 
hromosomi
 string en
odes the matrix shown in Figure 2 by using tripletsin whi
h the 2 �rst elements refer to ea
h of the inputs used, and the third isthe 
orresponding gate as shown in Figure 3 (only 2-input gates were used inthis work).1WIRE basi
ally indi
ates a null operation, or in other words, the absen
e of gate.5



Input 1 Input 2 Gate TypeFigure 3: En
oding used for ea
h of the matrix elements that represent a 
ir
uit.4.2 Building a pathThe path of an ant in our 
ase is a full 
ir
uit. In other words, ea
h anttraverses a path and, in the pro
ess, it builds a 
ir
uit. In the TSP, the antsalso traverse a path and try to �nd the shortest way to the goal. In our 
ase,\shortest" relates to \less gates". However, in the TSP, any permutation is avalid solution, whereas in our 
ase, an arbitrary string en
odes a 
ir
uit thatmay or may not be feasible. We only try to minimize the number of gates offeasible 
ir
uits.The aim is to maximize a 
ertain payo� fun
tion. Sin
e our 
ode was builtupon our previous GA implementation, we adopted the use of �xed matrix sizesfor all the agents, but this need not be the 
ase (in fa
t, we 
ould represent theBoolean expressions dire
tly rather than using a matrix, and other represen-tations are 
urrently a matter of further resear
h). The matrix 
ontaining thesolution to the problem is built in a 
olumn-order fashion as indi
ated next.Ea
h state is, in our 
ase, a 
olumn of the matrix, whi
h is 
omposed ofseveral elements. A 
ertain state is sele
ted element by element (gate by gate).Ea
h of these 
olumn elements is 
alled a substate. A substate is a triplet inwhi
h the �rst two elements refer to ea
h of the inputs used (taken from theprevious level or 
olumn of the matrix) and the third is the 
orresponding gate(
hosen from AND, OR, NOT, XOR, WIRE) as shown in Figure 3. For thegates at the �rst level (or 
olumn), the possible inputs for ea
h gate were thosede�ned by the truth table given by the user (a modulo fun
tion was implementedto allow more rows than available inputs). The gate and inputs to be used forea
h element of the matrix are 
hosen randomly from the set of possible gatesand inputs (a modulo fun
tion is used when the relationship between inputsand matrix rows is not one-to-one).The distan
e (between 
ities or states), whi
h we denote by h, is measuredin our 
ase as the in
rement or de
rement in the �tness value of the 
ir
uit whenwe move from one level to the next. By level, we refer to a 
olumn in the matrix.Sin
e our algorithm builds the 
ir
uit progressively (starting from the leftmost
olumn), as we move to the right, levels in
rease and �tness values 
hange.Fitness in this domain is measured a

ording to the amount of hits a
hieved(i.e., mat
hes between the outputs of the 
ir
uit and the outputs de�ned in thetruth table). Feasible 
ir
uits get an extra in
rease in their �tness measuredas the amount of WIREs that they 
ontain. This allows us to perform a fair
omparison between feasible and infeasible designs (i.e., feasible designs alwaysget a higher reward than infeasible designs).One important di�eren
e between the statement of this problem and theTSP is that in our 
ase not all the states within the path have to be visited,6



but both problems share the property that the same state is not to be visitedmore than on
e (this property is also present in some routing appli
ations [7℄).When we move from one substate to another in the path, a value is assignedto all the substates that have not been visited yet and the next substate (i.e.,the next triplet) is randomly sele
ted using a 
ertain sele
tion fa
tor pk. Thissele
tion fa
tor determines the 
han
e of going from state i to state j at theiteration t, and is 
omputed using the following formula that 
ombines thepheromone trail with the heuristi
 information used by the algorithm:pki;j;l = fj;l � hi;j;l (1)where k refers to the ant whose pheromone we are evaluating (the ant thatis building the path), fj;l is the amount of pheromone at state j at row l (thisvalue is initialized to zero), and hi;j;l is the s
ore in
rement between substatei and substate j for row l (ea
h row is asso
iated with an output in the truthtable). This s
ore is measured a

ording to the number of mat
hes between theoutput produ
ed by the 
urrent 
ir
uit and the output desired a

ording to thetruth table given by the user. The value of hi;j;l is given by the amount of hitsthat the partially-built 
ir
uit produ
es so far with respe
t to the l output ofthe truth table provided by the user. This value is therefore a s
ore in
rementanalogous to the distan
e between nodes used in the TSP.On
e every 
ombination has been assigned a sele
tion fa
tor, we 
hoose oneof them. At this point, we apply roulette-wheel sele
tion2. We do this for everysubstate that belongs to one of the rows representing an output of the 
ir
uit.The other substates are randomly 
hosen.The previous pro
ess is repeated until we �nish a path (i.e., until we rea
hthe last state of the 
ir
uit, or the last 
olumn of the matrix).4.3 Updating the trailsThe amount of pheromone is updated ea
h time an agent builds an entire path(i.e., on
e the whole 
ir
uit is built). This is done in two steps:1. First, we simulate the evaporation of the pheromone trails in all substates,su
h as they o

ur with real ants (over time). For the simulation, we adoptthe following formula: fi;l = (1� �)� fi;l (2)where 0 < � < 1 (� = 0:5 was used in all the experiments reported in thispaper) is the trail persisten
e and its use avoids the unlimited a

umula-tion of pheromone in any path, and fi;l is the amount of pheromone atstate i at row l.2Roulette-wheel sele
tion belongs to the so-
alled \proportional sele
tion methods". Inthese methods, the probability of sele
ting an individual is proportional to its �tness 
ontri-bution (with respe
t to the total �tness of the population) [10℄. Normally, the probability ofsele
ting option i is given by fi=(Pmj=1 fj), where m is the amount of options under 
onsid-eration and fj is the �tness of individual j. 7



2. Then, we deposit the pheromone in the substates through whi
h the antspassed, using the following formula:fi;l = fi;l + mXk=1 fki;l (3)where m refers to the number of agents (or ants), fki;l 
orresponds to theamount of pheromone deposited by ant k at state i at row l. This valueis obtained in the following way:� If the 
ir
uit is not feasible (i.e., if not all of its outputs mat
h thetruth table), then: fki;l = payo� (4)� If the 
ir
uit is feasible (i.e., all of its outputs mat
h the truth table),then: fki;l = payo�� 2 (5)� If it is the 
ir
uit with the highest �tness (i.e., the best path found):fki;l = payo�� 3 (6)� If the ant k did not pass through substate i of row l:fki;l = 0 (7)The value of payo� is given by the following expression:payo� = hits+ ((Cols�Rows)� TotCir
) (8)where: hits is the number of mat
hes produ
ed between the outputs gen-erated by the 
ir
uit produ
ed by the AS and the truth table given by theuser; Cols is the amount of 
olumns in the matrix; Rows is the numberof rows in the matrix, and TotCir
 is the amount of gates used by the
ir
uit generated by the AS.To build a 
ir
uit, we start by pla
ing a gate (randomly 
hosen) at a 
ertainmatrix position and we �ll up the rest of the matrix using WIREs. This tries to
ompute the e�e
t produ
ed by a gate used at a 
ertain position (we 
omputethe s
ore 
orresponding to any partially built 
ir
uit). The distan
e is 
omputedby subtra
ting the hits obtained at the 
urrent level (with respe
t to the truthtable) minus the hits obtained up to the previous level (or 
olumn). When weare at the �rst level, we assume a value of zero for the previous level.The pseudo-
ode of our approa
h is the following:8



Program Ant System for Cir
uit DesignOpen input and output �lesInitialize random numbers seedRead input dataFor i = 1 to Max Ci
== Loop until rea
hing maximum number of iterationsFor j = 1 to popsize== For ea
h ant doBuild Solution(j)Evaluate Solution(j)EndUpdate TrailsPrint ReportEndPrint Global BestClose FilesEnd5 Comparison of ResultsWe used several examples taken from the literature to test our AS implementa-tion. Our results were 
ompared to those obtained by a human designer (usingKarnaugh maps plus simpli�
ation using Boolean rules) and by a geneti
 al-gorithm using binary representation (BGA). In all the examples presented, thematrix used was of size 5�5, and the length of ea
h string representing a 
ir
uitwas 75. Sin
e 5 gates were allowed in ea
h matrix position, then the size of theintrinsi
 sear
h spa
e (i.e., the maximum size allowed as a 
onsequen
e of therepresentation used) for all of the examples is 5l, where l refers to the lengthrequired to represent a 
ir
uit (l = 75 in our 
ase). Thefore, the size of theintrinsi
 sear
h spa
e is 575 � 2:6�1052. Also, the parameters of the BGA were
hosen so that they approximated the total number of �tness fun
tion evalua-tions required by the AS3. For ea
h of the following examples, we performed 20runs with ea
h te
hnique.The experiments des
ribed next were performed on a PC with a PentiumIII pro
essor (running at 550 Mhz), with 128 Mbytes in RAM and a 13 Gbyteshard disk. The 
ode was implemented using Borland C++ Builder 4. To allow afair 
omparison, the binary geneti
 algorithm was tested under Red Hat Linux(version 7) and ran on the same 
omputer. We prefer to use the amount of�tness fun
tion evaluations required by ea
h approa
h to perform a 
omparisonof performan
e, sin
e di�erent ar
hite
tures and software platforms 
an providedi�erent running times for the same program. However, for 
ompleteness, wewill mention the CPU required for a single run in ea
h of the following examples3In this work, the term \�tness fun
tion evaluation" refers to a unit used to 
omparethe performan
e of our algorithm against others. In terms of 
omputational e�ort, a �tnessfun
tion evaluation is the amount of time required to evaluate a solution (i.e., a 
ir
uit).9



Table 1: Truth table for the 
ir
uit of the �rst example.X Y Z F0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 0Table 2: Comparison of the Boolean expressions produ
ed by the AS, a GAwith binary representation (BGA), and a human designer for the 
ir
uit of the�rst example. Human DesignerF = Z(X � Y ) + Y (X � Z)5 gates2 ANDs, 1 OR, 2 XORsBGAF = (XZ)0 � ((X + Z)Y )6 gates2 ANDs, 1 OR, 1 XOR, 2 NOTsAnt SystemF = (Z �XY )(X + Y )4 gates2 ANDs, 1 OR, 1 XOR(and using the hardware and software platforms previously mentioned).5.1 Example 1Our �rst example has 3 inputs and 1 output as shown in Table 1.The parameters used by the Ant System and the BGA are shown in Table 3(� is the evaporation fa
tor). In this 
ase, the BGA performed 25,000 �tnessfun
tion evaluations per run, and the AS performed 20,600 �tness fun
tionevaluations per run.The summary of the results produ
ed is shown in Table 4. The AS was ableto �nd a solution with a �tness of 29 (4 gates) 85% of the time, and in all 
asesit 
onverged to a feasible solution. The graphi
al representation of this 
ir
uitis shown in Figure 4. 10



X

Y

Z

F

Figure 4: Cir
uit produ
ed by the AS for the �rst example.Table 3: Parameters used by the AS and the BGA for the �rst example.AS BGANo. of ants 10 Pop. size 100Max. iters. 10 Max. gen. 250� 0.5 Cross. rate 0.5Mut. rate 0.5/LChrom. length 225The best solution that the BGA 
ould �nd had a �tness of 26 (this 
ir
uitreally had only 6 gates, but the BGA 
ould not eliminate a gate that did nothave any impa
t on the solution) and it appeared only on
e in the 20 runsperformed. For 30% of the runs, the BGA 
onverged to an infeasible solution.The 
omparison of the Boolean expressions produ
ed by the AS, a geneti
algorithm with binary representation (BGA), and a human designer are shownin Table 2. The solution produ
ed by the AS is better (i.e., it uses less gates)than those produ
ed by the human designer and the BGA.Table 4: Summary of results produ
ed by the Ant System (AS) and a Geneti
Algorithm with binary representation (BGA) for the �rst example.AS BGABest �tness 29 26Average 28.85 18.25Std. dev. 0.366347549 7.663138013Mode 29 7Lowest �tness 28 7CPU time 0.1 se
s. 9 se
s.
11



Table 5: Truth table for the 
ir
uit of the se
ond example.A B W X Y Z0 0 0 0 0 10 1 0 0 1 01 0 0 1 0 01 1 1 0 0 0

Table 6: Comparison of the Boolean expressions produ
ed by the AS, a GAwith binary representation (BGA), and a human designer for the 
ir
uit of these
ond example. Human DesignerX = A0B0, Y = A0B, Z = AB0, W = AB6 gates4 ANDs, 2 NOTsBGAW = (AB)A, X = A� (AB), Y = ((A �B) +A)� A, Z = ((A�B) +A)07 gates3 XORs, 1 OR, 2 ANDs, 1 NOTAnt SystemX = AB � A, Y = BA0, Z = A0 �BA0, W = AB5 gates2 XORs, 2 ANDs, 1 NOT
12



Table 7: Parameters used by the AS and the BGA for the se
ond and thirdexamples. AS BGANo. of ants 30 Pop. size 200Max. iters. 30 Max. gen. 1000� 0.5 Cross. rate 0.5Mut. rate 0.5/LChrom. length 225
A

B
Z

Y

X

W

Figure 5: Cir
uit produ
ed by the AS for the se
ond example.5.2 Example 2Our se
ond example has 2 inputs and 4 outputs (it is a de
oder 2-4) as shownin Table 5.The parameters used by the Ant System and the BGA are shown in Table 7.In this 
ase, the BGA performed 200,000 �tness fun
tion evaluations per run,and the AS performed 185,400 �tness fun
tion evaluations per run.The summary of the results produ
ed is shown in Table 8. The AS was ableto �nd a solution with a �tness of 36 (i.e., a 
ir
uit with 5 gates) in all the runsperformed. The graphi
al representation of this 
ir
uit is shown in Figure 5.The best solution that the BGA 
ould �nd had a �tness of 34 (i.e., a feasible
ir
uit with 7 gates). In 10% of the runs, the BGA 
onverged to an infeasiblesolution.The 
omparison of the Boolean expressions produ
ed by the AS, a geneti
algorithm with binary representation (BGA), and a human designer are shownin Table 6. It 
an be 
learly seen that the AS produ
ed better solutions thanboth the human designer and the BGA for this example. However, note inTable 6, that some of the Boolean expressions generated by the BGA 
an beeasily simpli�ed (e.g., W = (AB)A = AB). Nevertheless, we were interested in13



Table 8: Summary of results produ
ed by the Ant System (AS) and a Geneti
Algorithm with binary representation (BGA) for the se
ond example.AS BGABest �tness 36 34Average 36 28.45Std. dev. 0.0 5.072889761Mode 36 30Lowest �tness 36 15CPU time 13 se
s. 30 se
s.
A

B

C

D

F

Figure 6: Cir
uit produ
ed by the AS for the third example.
omparing the solutions generated by the AS and the BGA without any extrahuman intervention.5.3 Example 3Our third example has 4 inputs and 1 output, as shown in Table 9. The parame-ters used by the Ant System and the BGA are the same shown in Table 7. As inthe previous example, the BGA performed 200,000 �tness fun
tion evaluationsper run, and the AS performed 185,400 �tness fun
tion evaluations per run.The summary of the results produ
ed is shown in Table 11. The best solutionthat the AS 
ould �nd had a �tness of 34 (i.e., a 
ir
uit with 7 gates). Thegraphi
al representation of this 
ir
uit is shown in Figure 6. In all 
ases, theAS 
onverged to a feasible 
ir
uit and 25% of the time a �tness value of 34 wasa
hieved.The best solution that the BGA 
ould �nd had a �tness of 34 (i.e., a feasible
ir
uit with 7 gates), but it appeared only on
e in the 20 runs performed. TheBGA 
onverged to an infeasible solution 60% of the time.The 
omparison of the Boolean expressions produ
ed by the AS, a geneti
algorithm with binary representation (BGA), and a human designer are shown14



Table 9: Truth table for the 
ir
uit of the third example.A B C D F0 0 0 0 10 0 0 1 00 0 1 0 10 0 1 1 00 1 0 0 10 1 0 1 10 1 1 0 10 1 1 1 11 0 0 0 11 0 0 1 11 0 1 0 01 0 1 1 11 1 0 0 11 1 0 1 01 1 1 0 11 1 1 1 0
Table 10: Comparison of the Boolean expressions produ
ed by the AS, a GAwith binary representation (BGA), and a human designer for the 
ir
uit of thethird example. Human DesignerF = (D0 + (A�B))((AC)0 + (B �D))8 gates2 XORs, 2 ANDs, 2 ORs, 2 NOTsBGAF = (AC + (B +D))0 + (AD �B)7 gates2 ANDs, 3 ORs, 1 XOR, 1 NOTAnt SystemF = (AC +D)0 + (A�B)�D07 gates2 XORs, 1 AND, 2 ORs, 2 NOTs

15



Table 11: Summary of results produ
ed by the Ant System (AS) and a Geneti
Algorithm with binary representation (BGA) for the third example.AS BGABest �tness 34 34Average 33.15 21.3Std. dev. 0.587142949 8.398621441Mode 33 15Lowest �tness 32 13CPU time 13 se
s. 30 se
s.
F

A0

A1

A2

A3 Figure 7: Cir
uit produ
ed by the AS for the fourth example.in Table 10.5.4 Example 4Our fourth example is an even 4-parity problem. The 
ir
uit has 4 inputs and1 output, as shown in Table 12.The parameters used by the Ant System and the BGA are shown in Table 13.In this 
ase, the BGA performed 100,000 �tness fun
tion evaluations per run,and the AS performed 82,400 �tness fun
tion evaluations per run.The summary of the results produ
ed is shown in Table 15. The AS wasable to �nd a solution with a �tness of 37 (i.e., a feasible 
ir
uit with 4 gates)in all the runs performed. The graphi
al representation of this 
ir
uit is shownin Figure 7.The best solution that the BGA 
ould �nd had a �tness of 37 (i.e., a feasible
ir
uit with 4 gates), but it appeared only four times in the 20 runs performed(i.e., 20% of the time). For 20% of the runs, the BGA 
onverged to an infeasiblesolution.The 
omparison of the Boolean expressions produ
ed by the AS, a geneti
16



Table 12: Truth table for the 
ir
uit of the fourth example.A0 A1 A2 A3 F0 0 0 0 10 0 0 1 00 0 1 0 00 0 1 1 10 1 0 0 00 1 0 1 10 1 1 0 10 1 1 1 01 0 0 0 01 0 0 1 11 0 1 0 11 0 1 1 01 1 0 0 11 1 0 1 01 1 1 0 01 1 1 1 1
Table 13: Parameters used by the AS and the BGA for the fourth example.AS BGANo. of ants 20 Pop. size 100Max. iters. 20 Max. gen. 1000� 0.5 Cross. rate 0.5Mut. rate 0.5/LChrom. length 225

17



Table 14: Comparison of the Boolean expressions produ
ed by the AS, a GAwith binary representation (BGA), and a human designer for the 
ir
uit of thefourth example (an even 4-parity problem).Human DesignerF = ((A0 �A1)0 � (A2 �A3)0)06 gates3 XORs, 3 NOTsBGAF = ((A1 �A2)� (A0 �A3))04 gates3 XORs, 1 NOTAnt SystemF = (A0 �A2)0 � (A1 �A3)4 gates3 XORs, 1 NOT
Table 15: Summary of results produ
ed by the Ant System (AS) and a Geneti
Algorithm with binary representation (BGA) for the fourth example.AS BGABest �tness 37 37Average 37 29.90Std. dev. 0.0 9.181789758Mode 37 15Lowest �tness 37 15CPU time 6 se
s. 68 se
s.

18



Table 16: Truth table for the 2-bit multiplier of the �fth example.A1 A0 B1 B0 C3 C2 C1 C00 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 1 1 0 0 0 00 1 0 0 0 0 0 00 1 0 1 0 0 0 10 1 1 0 0 0 1 00 1 1 1 0 0 1 11 0 0 0 0 0 0 01 0 0 1 0 0 1 01 0 1 0 0 1 0 01 0 1 1 0 1 1 01 1 0 0 0 0 0 01 1 0 1 0 0 1 11 1 1 0 0 1 1 01 1 1 1 1 0 0 1algorithm with binary representation (BGA), and a human designer are shownin Table 14. The 
lassi
al human solution to this problem has 3 XNORs. Sin
ewe did not use XNORs in our representation, we 
ount ea
h XNOR as 2 gates (1XOR and 1 NOT). Therefore, the solution produ
ed by a human is 
onsideredto have 6 gates. Note how the AS and the BGA found a rearrangement ofinputs that allows us to save two gates (the two solutions are equivalent, butnot identi
al).5.5 Example 5Our �fth example is the 2-bit multiplier (4 inputs and 4 outputs) whose truthtable is shown in Table 16.The parameters used by the Ant System and the BGA are shown in Table 18.In this 
ase, the BGA performed 800,000 �tness fun
tion evaluations per run,and the AS performed 725,400 �tness fun
tion evaluations per run.The summary of the results produ
ed is shown in Table 19. The best solutionthat the AS 
ould �nd had a �tness of 82 (i.e., a feasible 
ir
uit with 7 gates)and is graphi
ally depi
ted in Figure 8. In all 
ases, the AS 
onverged to afeasible 
ir
uit and 40% of the time a �tness value of 82 was a
hieved.The best solution that the BGA 
ould �nd had a �tness of 80 (i.e., a feasible
ir
uit with 9 gates), and it appeared only on
e in the 20 runs performed. For55% of the runs, the BGA 
onverged to an infeasible solution.The 
omparison of the Boolean expressions produ
ed by the AS, a geneti
19



Table 17: Comparison of the Boolean expressions produ
ed by the AS, a GAwith binary representation (BGA), and a human designer for the 
ir
uit of the�fth example (a 2-bit multiplier).Human DesignerC0 = A0B0C1 = A0B1 �A1B0C2 = A1B1(A0B0)0C3 = A1A0B1B08 gates6 ANDs, 1 XORs, 1 NOTBGAC0 = ((A0B0)0)0C1 = A0B1 �A1B0C2 = A1B1(A0B0)0C3 = A1A0B1B09 gates1 XOR, 6 ANDs, 2 NOTsAnt SystemC0 = A0B0C1 = A1B0 �A0B1C2 = A1A0B1B0 �A1B1C3 = A1A0B1B07 gates2 XORs, 5 ANDs
C0

C1

C2

C3

A0

B1

B0

A1

Figure 8: Two-bit multiplier produ
ed by the AS for the �fth example.20



Table 18: Parameters used by the AS and the BGA for the fourth example.AS BGANo. of ants 30 Pop. size 800Max. iters. 30 Max. gen. 1000� 0.5 Cross. rate 0.5Mut. rate 0.5/LChrom. length 225Table 19: Summary of results produ
ed by the Ant System (AS) and a Geneti
Algorithm with binary representation (BGA) for the �fth example.AS BGABest �tness 82 80Average 81.4 68.25Std. dev. 0.50262469 7.731514456Mode 81 63Lowest �tness 81 62CPU time 55 se
s. 253 se
s.algorithm with binary representation (BGA), and a human designer are shownin Table 17. The solution produ
ed by the AS is better (i.e., it uses less gates)than those produ
ed by the human designer and the BGA. In fa
t, these lasttwo solutions are really the same, although the BGA was not able to eliminatea double NOT in the Boolean expression.6 Dis
ussion of ResultsThe results presented in the previous se
tion indi
ate that the AS is very suitablefor 
ombinational 
ir
uit design at the gate level. In all 
ases, our approa
hprodu
ed 
ir
uits that were, in the worst 
ase, equivalent to those generatedby a BGA and better than those produ
ed by a human designer. In fa
t, inmost 
ases, the AS was able to improve the solutions produ
ed by the BGA foran equivalent amount of �tness fun
tion evaluations. Also, the lower standarddeviation obtained from the runs of the AS indi
ate its robustness in this domain(in two examples a standard deviation of zero was a
hieved).As in the 
ase of the BGA, the AS tends to use XOR gates to simplify a
ir
uit, and it also tends to degrade (in terms of performan
e) as we in
rease the
omplexity (e.g., the amount of outputs) of a 
ir
uit. While it is feasible to usethe AS to solve larger 
ir
uits than those in
luded in this paper, its performan
etends to degrade rapidly as we in
rease the size of the 
ir
uit to be solved.21



This problem, however, is also present when using a GA, and it is 
ommonlyasso
iated with gate-level design [13℄. As indi
ated at the beginning of thispaper, one way to ta
kle s
alability issues of this kind is by using fun
tion-leveldesign. However, we believe that the use of te
hniques su
h as the AS for gate-level design 
an produ
e more 
ompa
t design units to be used for fun
tion-leveldesign and therefore gives relevan
e to the work reported here.The AS, like the GA, requires 
ertain parameters to work. To allow a fair
omparison, we tried to keep the parameters of the AS �xed for all our experi-ments. The ex
eption was the �rst example, for whi
h a lower amount of antsand iterations (ten instead of thirty) made it possible to 
onverge to the bestknown solution with a low standard deviation (the use of a higher number ofants and iterations signi�
antly redu
es the standard deviation). In order to
ompare the GA against the AS, we used a 
ombination of population size andmaximum number of generations su
h that the total number of �tness fun
tionevaluations was approximately equivalent for both te
hniques (in fa
t, the ASused always less �tness fun
tion evaluations than the GA). We favored lowerpopulation sizes for the GA based on the previous experien
e of other resear
hersand ourselves [19, 1℄.7 Con
lusions and Future WorkIn this paper we have presented an approa
h to use the ant system to optimize
ombinational logi
 
ir
uits (at the gate level). The proposed approa
h wasdes
ribed and several examples of its use were presented. Results 
omparedfairly well with those produ
ed with a BGA (a GA with binary representation)and are better than those obtained by a human designer using Karnaugh mapsand Boolean rules for simpli�
ation.Some of the future resear
h paths that we want to explore are the paral-lelization of the algorithm to improve its performan
e (ea
h agent 
an operateindependently from the others until they �nish a path and then they have to bemerged to update the pheromone trails).Finally, we are also interested in exploring alternative (and more powerful)representations of a Boolean expression in an attempt to over
ome the inherentlimitations of the matrix representation 
urrently used to solve real-world 
ir-
uits in a reasonable amount of time and without the need of ex
essive 
omputerpower. The �rst 
hoi
e that we are 
onsidering is to use a tree representationsu
h as in geneti
 programming [16℄.A
knowledgementsThe authors thank the anonymous reviewers for their 
omments whi
h greatlyhelp them to improve the 
ontents of this paper.The �rst author a
knowledges support from the Consejo Na
ional de Cien
iay Te
nolog��a (CONACyT) through proje
t number 32999-A.22



The se
ond and third authors a
knowledge support from CONACyT througha s
holarship to pursue graduate studies at the Maestr��a en Inteligen
ia Arti�
ialof LANIA and the Universidad Vera
ruzana.The last author states that his 
ontribution to this paper des
ribes resear
hdone in the Department of Ele
tri
al Engineering and Computer S
ien
e atTulane University. He a
knowledges partial support for this work through grantNAG5-8570 from NASA/Goddard Spa
e Flight Center, and in part by DoDEPSCoR and the Board of Regents of the State of Louisiana under grant F49620-98-1-0351.Referen
es[1℄ Carlos A. Coello Coello, Arturo Hern�andez Aguirre, and Bill P. Bu
kles.Evolutionary Multiobje
tive Design of Combinational Logi
 Cir
uits. InJason Lohn, Adrian Stoi
a, Didier Keymeulen, and Silvano Colombano, ed-itors, Pro
eedings of the Se
ond NASA/DoD Workshop on Evolvable Hard-ware, pages 161{170. IEEE Computer So
iety, Los Alamitos, California,July 2000.[2℄ Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Hern�andezAguirre. Automated Design of Combinational Logi
 Cir
uits using Geneti
Algorithms. In D. G. Smith, N. C. Steele, and R. F. Albre
ht, editors,Pro
eedings of the International Conferen
e on Arti�
ial Neural Nets andGeneti
 Algorithms, pages 335{338. Springer-Verlag, University of EastAnglia, England, April 1997.[3℄ Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Hern�andezAguirre. Use of Evolutionary Te
hniques to Automate the Design of Com-binational Cir
uits. International Journal of Smart Engineering SystemDesign, 2(4):299{314, June 2000.[4℄ Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Hern�andezAguirre. Towards Automated Evolutionary Design of Combinational Cir-
uits. Computers and Ele
tri
al Engineering. An International Journal,27(1):1{28, January 2001.[5℄ Carlos A. Coello Coello, Rosa L. Zavala Guti�errez, Benito Mendoza Gar
��a,and Arturo Hern�andez Aguirre. Ant Colony System for the Design of Com-binational Logi
 Cir
uits. In Julian Miller, Adrian Thompson, Peter Thom-son, and Teren
e C. Fogarty, editors, Evolvable Systems: From Biology toHardware, pages 21{30, Edinburgh, S
otland, April 2000. Springer-Verlag.[6℄ Hugo de Garis. Evolvable Hardware: Geneti
 Programming of a DarwinMa
hine. In Colin Reeves, R. F. Albre
ht, and N. C. Steele, editors, Pro-
eedings of the International Conferen
e on Arti�
ial Neural Nets and Ge-neti
 Algorithms, pages 117{123, Inssbru
k, Austria, 1993. Springer-Verlag.23



[7℄ G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergeti
 Controlfor Communi
ations Networks. Journal of Arti�
ial Intelligen
e Resear
h,9:317{365, 1998.[8℄ M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristi
.In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization.M
Graw-Hill, 1999.[9℄ M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedba
k as a sear
hstrategy. Te
hni
al Report 91-016, Dipartimento di Elettroni
a, Polite
ni
odi Milano, Italy, 1991.[10℄ David E. Goldberg and Kalyanmoy Deb. A 
omparison of sele
tion s
hemesused in geneti
 algorithms. In G.J. E. Rawlins, editor, Foundations of Ge-neti
 Algorithms, pages 69{93. Morgan Kaufmann, San Mateo, California,1991.[11℄ Hitoshi Iba, Masaya Iwata, and Tetsuya Higu
hi. Gate-Level EvolvableHardware: Empiri
al Study and Appli
ation. In Dipankar Dasgupta andZbigniew Mi
halewi
z, editors, Evolutionary Algorithms in EngineeringAppli
ations, pages 260{275. Springer-Verlag, Berlin, 1997.[12℄ I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Yamau
hi,T. Inuo, N. Kahijara, M. Iwata, D. Keymeulen, and T. Higu
hi. A Gate-Level EHW Chip: Implementing GA Operations and Re
on�gurable Hard-ware on A Single LSI. In M. Sipper, D. Mange, and A. P�erez-Uribe, edi-tors, Pro
eedings of the Se
ond International Conferen
e on Evolvable Sys-tems: From Biology to Hardware (ICES'98), volume 1478 of Le
ture Notesin Computer S
ien
e, pages 1{12, Lausanne, Switzerland, 1998. Springer-Verlag.[13℄ Tatiana G. Kalganova. Evolvable Hardware Design of Combinational Logi
Cir
uits. PhD thesis, Napier University, Edinburgh, S
otland, 2000.[14℄ D. Keymeulen, M. Durantez, K. Konaka, J. Kuniyoshi, and T. Higu
hi.An Evolutionary Robot Navigation System using a Gate-Level EvolvableHardware. In Pro
eedings of the First International Conferen
e on Evolv-able Systems: From Biology to Hardware (ICES'96), volume 1259 of Le
-ture Notes in Computer S
ien
e, pages 195{209, Tsukuba, Japan, 1996.Springer-Verlag.[15℄ Hiroaki Kitano and James A. Hendler, editors. Massively Parallel Arti�
ialIntelligen
e. MIT Press, Cambridge, Massa
husetts, 1994.[16℄ John R. Koza. Geneti
 Programming. On the Programming of Computersby Means of Natural Sele
tion. MIT Press, Cambridge, Massa
husetts,1992. 24



[17℄ J. Miller, T. Kalganova, N. Lipnitskaya, and D. Job. The Geneti
 Algorithmas a Dis
overy Engine: Strange Cir
uits and New Prin
iples. In Pro
eed-ings of the AISB Symposium on Creative Evolutionary Systems (CES'99),Edinburgh, UK, 1999.[18℄ J. F. Miller, P. Thomson, and T. Fogarty. Designing Ele
troni
 Cir
uitsUsing Evolutionary Algorithms. Arithmeti
 Cir
uits: A Case Study. InD. Quagliarella, J. P�eriaux, C. Poloni, and G. Winter, editors, Geneti
Algorithms and Evolution Strategy in Engineering and Computer S
ien
e,pages 105{131. Morgan Kaufmann, Chi
hester, England, 1998.[19℄ Julian F. Miller, Domini
 Job, and Vesselin K. Vassilev. Prin
iples in theEvolutionary Design of Digital Cir
uits|Part I. Geneti
 Programming andEvolvable Ma
hines, 1(1/2):7{35, April 2000.[20℄ Jim Torresen. A Divide-and-Conquer Approa
h to Evolvable Hardware. InMoshe Sipper, Daniel Mange, and Andr�es P�erez-Uribe, editors, Pro
eedingsof the Se
ond International Conferen
e on Evolvable Systems (ICES'98),pages 57{65, Lausanne, Switzerland, 1998. Springer-Verlag.

25


