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Abstract

In this paper we propose an application of the Ant System (AS) to opti-
mize combinational logic circuits at the gate level. We define a measure of
quality improvement in partially built circuits to compute the distances
required by the AS and we consider as optimal those solutions that repre-
sent functional circuits with a minimum amount of gates. The proposed
methodology is described together with some examples taken from the
literature that illustrate the feasibility of the approach.
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timization.

*Most of this work was performed while the first author was at the Laboratorio Nacional
de Informética Avanzada (LANIA), in Xalapa, Veracruz, México.



1 Introduction

The design of digital circuits is a difficult task that is normally associated with
certain human attributes (i.e., creativity). Its automation is therefore a chal-
lenging problem.

There are several standard graphical design aids for combinational circuit
synthesis (e.g., Karnaugh Maps and the Quine-McCluskey method). Although
some of these techniques are fairly limited, others can handle truth tables with
hundreds of inputs. In comparison, heuristics such as the genetic algorithm
(GA) are normally restricted to relatively small truth tables [19]. Such restric-
tions also apply to other heuristics such as the ant system (which is the subject
of this paper).

But evolutionary design has triggered the study of other aspects of design
that have been normally disregarded, for example, emergent design patterns
[19, 3]. It is therefore clear that when using heuristics, we aim not only to
synthesize a circuit (using a certain metric), but also to produce novel designs
that do not correspond to the solutions that a human designer would typically
produce [19, 17, 3]. Additionally, the existence of techniques (such as the one
discussed in this paper) that allow us to produce compact circuits (i.e., with
few gates) for relatively small truth tables could be of great use for function-
level design (where these compact circuits would be used as building blocks for
designing more complex circuits). Such a divide-and-conquer approach to circuit
design has been suggested in the past [20, 19] and we believe that it constitutes
a viable alternative to deal with scalability issues related to evolvable hardware
(i.e., circuit design using heuristics).

The remainder of this paper is organized as follows: first, we provide a short
description of the ant system. Then, we describe some of the previous related
work on automated combinational circuit design. After that, we introduce our
approach, giving several examples of its performance. Results are compared
against those produced by a GA and a human designer. Then, we present a
short discussion of our results, our conclusions and some of the possible paths
of future research.

2 The Ant System

The ant system (AS) is a meta-heuristic inspired by colonies of real ants, which
deposit a chemical substance on the ground called pheromone [8]. This substance
influences the behavior of the ants: they will tend to take those paths where
there is a larger amount of pheromone. Pheromone trails can be seen as an
indirect communication mechanism among ants. From the computer science
perspective, the AS is a multi-agent system where low level interactions between
single agents (i.e., artificial ants) result in a complex behavior of the whole ant
colony. Figure 1 shows graphically an example of the typical behavior of a
colony of real ants. When the ants leave initially the nest, (1) they follow
random patterns. (2) Over time, they start following a common path. (3,4)



Figure 1: Behavior of a colony of real ants.

When faced with an obstacle, some choose to go around it through the left side
of the obstacle and others avoid it going through the right. (5) Over time, the
whole colony will follow a common path (the shortest way) due to the pheromone
trials.

There are three main ideas from colonies of real ants that have been adopted
in the AS:

1. The indirect communication through pheromone trials.
2. Shortest paths tend to have a higher growth rate of pheromone values.

3. Ants have a higher preference (with a certain probability) for paths that
have a higher amount of pheromone.

Additionally, the AS has certain capabilities nonexistent in colonies of real
ants. For example:

1. Each ant is capable of estimating how far it is from a certain state.

2. Ants have information about the environment and use it to make decisions.
Therefore, their behavior is not only adaptive, but also exhaustive.

3. Ants have memory, since this is necessary to make sure that only feasible
solutions are generated at each step of the algorithm.

The AS was originally proposed for the traveling salesman problem (TSP),
and according to Dorigo [9], to apply efficiently the AS, it is necessary to refor-
mulate our problem as one in which we want to find the optimal path of a graph
and to identify a way to measure the distances between nodes. This might not
be an easy or obvious task in certain applications like the one presented in this

paper.



In fact, the main contribution of this paper is precisely our proposal regard-
ing how to reformulate the circuit optimization problem so as to allow the use
of the AS. We will use several examples to compare the solutions generated by
our approach against those produced by a human designer and by a GA with
binary representation previously developed by us for this problem [4].

3 Related Work

We could not find any previous work on the design of circuits using the ant
system. Therefore, we will briefly discuss some related work using evolutionary
techniques (genetic algorithms and genetic programming).

In the contemporary literature, the attempt to use evolutionary-based tech-
niques to design electrical circuits has been called “evolvable hardware” [15, 6].
Within evolvable hardware, we can distinguish three types of evolutionary pro-
cesses [13]: extrinsic evolution (we use software models of the circuit and eval-
uations are performed with a simulator), intrinsic evolution (we use a physical
model of the circuit and evaluations are performed with test equipment), and
mixtrinsic evolution (a mixture of the two previous types). Our work uses ex-
trinsic evolution.

There are also several levels at which evolution can be performed. In this
work, we are only considering the lowest, which is called gate-level evolvable
hardware, because the primitives used to design circuits are gates such as AND,
OR and NOT. It is known that gate-level evolution is only suitable for small
circuits [13]. However, our belief is that if these small circuits can be highly
optimized, they will be more useful at the following level of evolvable hardware
(the so-called “function-level”), at which these small circuits will be used as
primitives to design more complex circuits. In fact, similar mechanisms as
those adopted in this work can be used for function-level evolvable hardware,
although such design is beyond the scope of this paper.

Despite the limitations of gate-level design, several researchers have worked
in this area [16, 18, 11, 13]. Furthermore, besides the normal use of gate-level
design (e.g., two-bit adders, two- and three-bit multipliers, decoders, etc.), there
have been a few more complex applications reported in the specialized literature
(see for example [12, 14]).

Our goal in this paper is to show the feasibility of using the ant system
for gate-level design of circuits. We will describe how to adapt the ant system
algorithm to design combinational circuits, and we will show how the resulting
approach is competitive with a traditional GA in terms of performance and
quality of the solutions produced. The approach described in this paper is an
extension of an approach previously reported [5] in which the main limitation
was the fact that only circuits with one output could be designed by the sys-
tem. QOur current approach also shows a significant improvement in terms of
performance with respect to our previous version.
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Figure 2: Matrix used to represent a circuit to be processed by an agent (i.e., an
ant). Each gate gets its inputs from either of the gates at the previous column.

4 Description of the Approach

In this section, we will describe the way in which the circuit design problem
had to be reformulated in order to be able to use the AS to solve it. The
main problem that we faced was how to make an analogy (as much as possible)
between circuit design and the TSP. The main issues are: the representation to
be adopted, the notion of state in that representation, the way in which a path
would be built, and the way of updating the trails of each ant. Each of these
issues will be discussed in this section

4.1 Representation

Since we need to view the circuit optimization problem as one in which we want
to find the optimal path of a graph, we will use a matrix representation for the
circuit as shown in Figure 2. This matrix is encoded as a fixed-length string of
integers from 0 to N — 1, where N refers to the number of rows allowed in the
matrix.

More formally, we can say that any circuit can be represented as a bidimen-
sional array of gates S;;, where j indicates the level of a gate, so that those
gates closer to the inputs have lower values of j. (Level values are incremented
from left to right in Figure 2). For a fixed j, the index i varies with respect
to the gates that are “next” to each other in the circuit, but without being
necessarily connected. Each matrix element is a gate (five types of gates were
considered in our work: AND, NOT, OR, XOR and WIRE!) that receives its
2 inputs from any gate at the previous column as shown in Figure 2. We have
used this representation before with a GA [2, 4].

A chromosomic string encodes the matrix shown in Figure 2 by using triplets
in which the 2 first elements refer to each of the inputs used, and the third is
the corresponding gate as shown in Figure 3 (only 2-input gates were used in
this work).

LWIRE basically indicates a null operation, or in other words, the absence of gate.



Input1 | Input2 | Gate Type

Figure 3: Encoding used for each of the matrix elements that represent a circuit.

4.2 Building a path

The path of an ant in our case is a full circuit. In other words, each ant
traverses a path and, in the process, it builds a circuit. In the TSP, the ants
also traverse a path and try to find the shortest way to the goal. In our case,
“shortest” relates to “less gates”. However, in the TSP, any permutation is a
valid solution, whereas in our case, an arbitrary string encodes a circuit that
may or may not be feasible. We only try to minimize the number of gates of
feasible circuits.

The aim is to maximize a certain payoff function. Since our code was built
upon our previous GA implementation, we adopted the use of fixed matrix sizes
for all the agents, but this need not be the case (in fact, we could represent the
Boolean expressions directly rather than using a matrix, and other represen-
tations are currently a matter of further research). The matrix containing the
solution to the problem is built in a column-order fashion as indicated next.

Each state is, in our case, a column of the matrix, which is composed of
several elements. A certain state is selected element by element (gate by gate).
Each of these column elements is called a substate. A substate is a triplet in
which the first two elements refer to each of the inputs used (taken from the
previous level or column of the matrix) and the third is the corresponding gate
(chosen from AND, OR, NOT, XOR, WIRE) as shown in Figure 3. For the
gates at the first level (or column), the possible inputs for each gate were those
defined by the truth table given by the user (a modulo function was implemented
to allow more rows than available inputs). The gate and inputs to be used for
each element of the matrix are chosen randomly from the set of possible gates
and inputs (a modulo function is used when the relationship between inputs
and matrix rows is not one-to-one).

The distance (between cities or states), which we denote by h, is measured
in our case as the increment or decrement in the fitness value of the circuit when
we move from one level to the next. By level, we refer to a column in the matrix.
Since our algorithm builds the circuit progressively (starting from the leftmost
column), as we move to the right, levels increase and fitness values change.
Fitness in this domain is measured according to the amount of hits achieved
(i.e., matches between the outputs of the circuit and the outputs defined in the
truth table). Feasible circuits get an extra increase in their fitness measured
as the amount of WIREs that they contain. This allows us to perform a fair
comparison between feasible and infeasible designs (i.e., feasible designs always
get a higher reward than infeasible designs).

One important difference between the statement of this problem and the
TSP is that in our case not all the states within the path have to be visited,



but both problems share the property that the same state is not to be visited
more than once (this property is also present in some routing applications [7]).
When we move from one substate to another in the path, a value is assigned
to all the substates that have not been visited yet and the next substate (i.e.,
the next triplet) is randomly selected using a certain selection factor p*. This
selection factor determines the chance of going from state i to state j at the
iteration ¢, and is computed using the following formula that combines the
pheromone trail with the heuristic information used by the algorithm:

Prja = Fig X hij (1)
where k refers to the ant whose pheromone we are evaluating (the ant that
is building the path), f;; is the amount of pheromone at state j at row [ (this
value is initialized to zero), and h; ;; is the score increment between substate
i and substate j for row [ (each row is associated with an output in the truth
table). This score is measured according to the number of matches between the
output produced by the current circuit and the output desired according to the
truth table given by the user. The value of h; ;; is given by the amount of hits
that the partially-built circuit produces so far with respect to the [ output of
the truth table provided by the user. This value is therefore a score increment
analogous to the distance between nodes used in the TSP.

Once every combination has been assigned a selection factor, we choose one
of them. At this point, we apply roulette-wheel selection?. We do this for every
substate that belongs to one of the rows representing an output of the circuit.
The other substates are randomly chosen.

The previous process is repeated until we finish a path (i.e., until we reach
the last state of the circuit, or the last column of the matrix).

4.3 Updating the trails

The amount of pheromone is updated each time an agent builds an entire path
(i.e., once the whole circuit is built). This is done in two steps:

1. First, we simulate the evaporation of the pheromone trails in all substates,
such as they occur with real ants (over time). For the simulation, we adopt
the following formula:

fia=1—a)x fi (2)

where 0 < a < 1 (a = 0.5 was used in all the experiments reported in this
paper) is the trail persistence and its use avoids the unlimited accumula-
tion of pheromone in any path, and f;; is the amount of pheromone at
state ¢ at row [.

2Roulette-wheel selection belongs to the so-called “proportional selection methods”. In
these methods, the probability of selecting an individual is proportional to its fitness contri-
bution (with respect to the total fitness of the population) [10]. Normally, the probability of
selecting option ¢ is given by fi/(z;nzl fj), where m is the amount of options under consid-
eration and f7j is the fitness of individual j.



2. Then, we deposit the pheromone in the substates through which the ants
passed, using the following formula:

fir=Fia+ > fh (3)
k=1

where m refers to the number of agents (or ants), fi’fl corresponds to the
amount of pheromone deposited by ant k at state ¢ at row [. This value
is obtained in the following way:

e If the circuit is not feasible (i.e., if not all of its outputs match the
truth table), then:

fi’fl = payoff (4)

e If the circuit is feasible (i.e., all of its outputs match the truth table),
then:

£ = payoff x 2 (5)

e If it is the circuit with the highest fitness (i.e., the best path found):

f = payoff x 3 (6)

e If the ant k£ did not pass through substate i of row I:

fii=0 (7)

The value of payoff is given by the following expression:

payoff = hits + ((Cols x Rows) — TotClirc) (8)

where: hits is the number of matches produced between the outputs gen-
erated by the circuit produced by the AS and the truth table given by the
user; Cols is the amount of columns in the matrix; Rows is the number
of rows in the matrix, and TotCirc is the amount of gates used by the
circuit generated by the AS.

To build a circuit, we start by placing a gate (randomly chosen) at a certain
matrix position and we fill up the rest of the matrix using WIREs. This tries to
compute the effect produced by a gate used at a certain position (we compute
the score corresponding to any partially built circuit). The distance is computed
by subtracting the hits obtained at the current level (with respect to the truth
table) minus the hits obtained up to the previous level (or column). When we
are at the first level, we assume a value of zero for the previous level.

The pseudo-code of our approach is the following:



Program Ant System for Circuit Design
Open input and output files
Initialize random numbers seed
Read input data
For i = 1 to Max_Cic
// Loop until reaching maximum number of iterations
For j = 1 to popsize
// For each ant do
Build_Solution(j)
Evaluate_Solution(j)
End
Update_Trails
Print Report
End
Print Global Best
Close Files
End

5 Comparison of Results

We used several examples taken from the literature to test our AS implementa-
tion. Our results were compared to those obtained by a human designer (using
Karnaugh maps plus simplification using Boolean rules) and by a genetic al-
gorithm using binary representation (BGA). In all the examples presented, the
matrix used was of size 5 x 5, and the length of each string representing a circuit
was 75. Since 5 gates were allowed in each matrix position, then the size of the
intrinsic search space (i.e., the maximum size allowed as a consequence of the
representation used) for all of the examples is 5!, where [ refers to the length
required to represent a circuit (I = 75 in our case). Thefore, the size of the
intrinsic search space is 57° & 2.6 x 10°2. Also, the parameters of the BGA were
chosen so that they approximated the total number of fitness function evalua-
tions required by the AS®. For each of the following examples, we performed 20
runs with each technique.

The experiments described next were performed on a PC with a Pentium
III processor (running at 550 Mhz), with 128 Mbytes in RAM and a 13 Gbytes
hard disk. The code was implemented using Borland C++ Builder 4. To allow a
fair comparison, the binary genetic algorithm was tested under Red Hat Linux
(version 7) and ran on the same computer. We prefer to use the amount of
fitness function evaluations required by each approach to perform a comparison
of performance, since different architectures and software platforms can provide
different running times for the same program. However, for completeness, we
will mention the CPU required for a single run in each of the following examples

3In this work, the term “fitness function evaluation” refers to a unit used to compare
the performance of our algorithm against others. In terms of computational effort, a fitness
function evaluation is the amount of time required to evaluate a solution (i.e., a circuit).



Table 1: Truth table for the circuit of the first example.

X 'Y Z|F
0 0 0710
0 0 1]0
0O 1 010
0 1 1)1
1 0 070
1 0 1|1
1 1 0|1
1 1 1|0

Table 2: Comparison of the Boolean expressions produced by the AS, a GA
with binary representation (BGA), and a human designer for the circuit of the
first example.

Human Designer
F=ZXaY)+Y(Xo®2)
5 gates
2 ANDs, 1 OR, 2 XORs
BGA
F=(XZ)o(X+2)Y)
6 gates
2 ANDs, 1 OR, 1 XOR, 2 NOTs
Ant System
F=(ZaXY)(X+Y)

4 gates
2 ANDs, 1 OR, 1 XOR

(and using the hardware and software platforms previously mentioned).

5.1 Example 1

Our first example has 3 inputs and 1 output as shown in Table 1.

The parameters used by the Ant System and the BGA are shown in Table 3
(c is the evaporation factor). In this case, the BGA performed 25,000 fitness
function evaluations per run, and the AS performed 20,600 fitness function
evaluations per run.

The summary of the results produced is shown in Table 4. The AS was able
to find a solution with a fitness of 29 (4 gates) 85% of the time, and in all cases
it converged to a feasible solution. The graphical representation of this circuit
is shown in Figure 4.
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Figure 4: Circuit produced by the AS for the first example.

Table 3: Parameters used by the AS and the BGA for the first example.

AS BGA
No. of ants | 10 Pop. size 100
Max. iters. | 10 Max. gen. 250
e 0.5 Cross. rate 0.5

Mut. rate 0.5/L
Chrom. length | 225

The best solution that the BGA could find had a fitness of 26 (this circuit
really had only 6 gates, but the BGA could not eliminate a gate that did not
have any impact on the solution) and it appeared only once in the 20 runs
performed. For 30% of the runs, the BGA converged to an infeasible solution.

The comparison of the Boolean expressions produced by the AS, a genetic
algorithm with binary representation (BGA), and a human designer are shown
in Table 2. The solution produced by the AS is better (i.e., it uses less gates)
than those produced by the human designer and the BGA.

Table 4: Summary of results produced by the Ant System (AS) and a Genetic
Algorithm with binary representation (BGA) for the first example.

AS BGA
Best fitness 29 26
Average 28.85 18.25
Std. dev. 0.366347549 | 7.663138013
Mode 29 7
Lowest fitness 28 7
CPU time 0.1 secs. 9 secs.

11



Table 5: Truth table for the circuit of the second example.

A B W | X Y Z

[ =
—_ o = O
—_o oo
o~ oo
cor o
cCo o~

Table 6: Comparison of the Boolean expressions produced by the AS, a GA
with binary representation (BGA), and a human designer for the circuit of the
second example.

Human Designer
X=AB,Y=AB,Z=AB',W = AB

6 gates

4 ANDs, 2 NOTs
BGA

W=(AB)A, X =A® (AB),Y =((AeB)+A) @A, Z=((A®B)+ A)
7 gates
3 XORs, 1 OR, 2 ANDs, 1 NOT
Ant System
X=ABo A Y=BA,Z=A®BA',W =AB
o gates
2 XORs, 2 ANDs, 1 NOT

12



Table 7: Parameters used by the AS and the BGA for the second and third
examples.

AS BGA
No. of ants | 30 Pop. size 200
Max. iters. | 30 Max. gen. 1000
« 0.5 Cross. rate 0.5

Mut. rate 0.5/L
Chrom. length | 225

\ <:‘W
A - J%D ke
DQ ' X GY

——
B[ — ﬂz i

Figure 5: Circuit produced by the AS for the second example.

A

5.2 Example 2

Our second example has 2 inputs and 4 outputs (it is a decoder 2-4) as shown
in Table 5.

The parameters used by the Ant System and the BGA are shown in Table 7.
In this case, the BGA performed 200,000 fitness function evaluations per run,
and the AS performed 185,400 fitness function evaluations per run.

The summary of the results produced is shown in Table 8. The AS was able
to find a solution with a fitness of 36 (i.e., a circuit with 5 gates) in all the runs
performed. The graphical representation of this circuit is shown in Figure 5.

The best solution that the BGA could find had a fitness of 34 (i.e., a feasible
circuit with 7 gates). In 10% of the runs, the BGA converged to an infeasible
solution.

The comparison of the Boolean expressions produced by the AS, a genetic
algorithm with binary representation (BGA), and a human designer are shown
in Table 6. It can be clearly seen that the AS produced better solutions than
both the human designer and the BGA for this example. However, note in
Table 6, that some of the Boolean expressions generated by the BGA can be
easily simplified (e.g., W = (AB)A = AB). Nevertheless, we were interested in

13



Table 8: Summary of results produced by the Ant System (AS) and a Genetic
Algorithm with binary representation (BGA) for the second example.

AS BGA
Best fitness 36 34
Average 36 28.45
Std. dev. 0.0 5.072889761
Mode 36 30
Lowest fitness 36 15
CPU time 13 secs. 30 secs.

L > e

@]

AN

Figure 6: Circuit produced by the AS for the third example.

comparing the solutions generated by the AS and the BGA without any extra
human intervention.

5.3 Example 3

Our third example has 4 inputs and 1 output, as shown in Table 9. The parame-
ters used by the Ant System and the BGA are the same shown in Table 7. As in
the previous example, the BGA performed 200,000 fitness function evaluations
per run, and the AS performed 185,400 fitness function evaluations per run.

The summary of the results produced is shown in Table 11. The best solution
that the AS could find had a fitness of 34 (i.e., a circuit with 7 gates). The
graphical representation of this circuit is shown in Figure 6. In all cases, the
AS converged to a feasible circuit and 25% of the time a fitness value of 34 was
achieved.

The best solution that the BGA could find had a fitness of 34 (i.e., a feasible
circuit with 7 gates), but it appeared only once in the 20 runs performed. The
BGA converged to an infeasible solution 60% of the time.

The comparison of the Boolean expressions produced by the AS, a genetic
algorithm with binary representation (BGA), and a human designer are shown

14



Table 9: Truth table for the circuit of the third example.

>
w

C D

e

EFH R R HPRRFHOOOCOOOOO

— O OO OO OOO
— - OO R H OO MEFOOMMOO
—HOFROFROHOFH,RORORFROHR

OFROFRHOFRRFRRFRRRROMFRO M

Table 10: Comparison of the Boolean expressions produced by the AS, a GA
with binary representation (BGA), and a human designer for the circuit of the
third example.

Human Designer
F=(D"+(A® B))((AC)' + (B® D))
8 gates
2 XORs, 2 ANDs, 2 ORs, 2 NOTs
BGA
F=(AC+(B+ D))+ (AD @ B)
7 gates
2 ANDs, 3 ORs, 1 XOR, 1 NOT
Ant System
F=(AC+D)y+(AeB)aD
7 gates
2 XORs, 1 AND, 2 ORs, 2 NOTs

15



Table 11: Summary of results produced by the Ant System (AS) and a Genetic
Algorithm with binary representation (BGA) for the third example.

AS BGA
Best fitness 34 34
Average 33.15 21.3
Std. dev. 0.587142949 | 8.398621441
Mode 33 15
Lowest fitness 32 13
CPU time 13 secs. 30 secs.

A0

Al > Z F
A2l >
)

Figure 7: Circuit produced by the AS for the fourth example.

A3

in Table 10.

5.4 Example 4

Our fourth example is an even 4-parity problem. The circuit has 4 inputs and
1 output, as shown in Table 12.

The parameters used by the Ant System and the BGA are shown in Table 13.
In this case, the BGA performed 100,000 fitness function evaluations per run,
and the AS performed 82,400 fitness function evaluations per run.

The summary of the results produced is shown in Table 15. The AS was
able to find a solution with a fitness of 37 (i.e., a feasible circuit with 4 gates)
in all the runs performed. The graphical representation of this circuit is shown
in Figure 7.

The best solution that the BGA could find had a fitness of 37 (i.e., a feasible
circuit with 4 gates), but it appeared only four times in the 20 runs performed
(i-e., 20% of the time). For 20% of the runs, the BGA converged to an infeasible
solution.

The comparison of the Boolean expressions produced by the AS, a genetic

16



Table 12: Truth table for the circuit of the fourth example.

Ay Ay Ay A3 | F
0 0 0 0|1
0 0 0 1 ]0
0 0 1 010
0 0 1 1 1
0 1 0 010
0 1 0 1 1
0 1 1 0 |1
0 1 1 1 ]0
1 0 0 010
1 0 0 1 1
1 0 1 0|1
1 0 1 110
1 1 0 0|1
1 1 0 1 ]0
1 1 1 010
1 1 1 1 1

Table 13: Parameters used by the AS and the BGA for the fourth example.

AS BGA
No. of ants | 20 Pop. size 100
Max. iters. | 20 Max. gen. 1000
« 0.5 Cross. rate 0.5

Mut. rate 0.5/L
Chrom. length | 225

17



Table 14: Comparison of the Boolean expressions produced by the AS, a GA
with binary representation (BGA), and a human designer for the circuit of the

fourth example (an even 4-parity problem).

Human Designer
F=((A ® A1) @ (42 @ A3)")’
6 gates
3 XORs, 3 NOTs
BGA
Fr=((A1 & A2) ® (Ao ® A3))’
4 gates
3 XORs, 1 NOT
Ant System
F=(A40® As) ® (A1 & Aj)
4 gates
3 XORs, 1 NOT

Table 15: Summary of results produced by the Ant System (AS) and a Genetic
Algorithm with binary representation (BGA) for the fourth example.

AS BGA
Best fitness 37 37
Average 37 29.90
Std. dev. 0.0 9.181789758
Mode 37 15
Lowest fitness 37 15
CPU time 6 secs. 68 secs.

18



Table 16: Truth table for the 2-bit multiplier of the fifth example.

Ay Ay By By

HOOOOOOOOOOOOOOOQ
OI—‘OOI—‘)—‘OOOOOOOOOOQ
OI—‘)—‘OI—‘OI—‘OI—‘)—‘OOOOOOQ
HOHOOOOO»—\O»—\OOOOOQ

[ Bl e B el el R B K==l =] K] N o] Neol Hen)l Hen] Nean)

=== O OO O === =[O OO
== OO FHO O FHOOoOR=OoO
OO ORORO= OO =IO

algorithm with binary representation (BGA), and a human designer are shown
in Table 14. The classical human solution to this problem has 3 XNORs. Since
we did not use XNORs in our representation, we count each XNOR as 2 gates (1
XOR and 1 NOT). Therefore, the solution produced by a human is considered
to have 6 gates. Note how the AS and the BGA found a rearrangement of
inputs that allows us to save two gates (the two solutions are equivalent, but
not identical).

5.5 Example 5

Our fifth example is the 2-bit multiplier (4 inputs and 4 outputs) whose truth
table is shown in Table 16.

The parameters used by the Ant System and the BGA are shown in Table 18.
In this case, the BGA performed 800,000 fitness function evaluations per run,
and the AS performed 725,400 fitness function evaluations per run.

The summary of the results produced is shown in Table 19. The best solution
that the AS could find had a fitness of 82 (i.e., a feasible circuit with 7 gates)
and is graphically depicted in Figure 8. In all cases, the AS converged to a
feasible circuit and 40% of the time a fitness value of 82 was achieved.

The best solution that the BGA could find had a fitness of 80 (i.e., a feasible
circuit with 9 gates), and it appeared only once in the 20 runs performed. For
55% of the runs, the BGA converged to an infeasible solution.

The comparison of the Boolean expressions produced by the AS, a genetic
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Table 17: Comparison of the Boolean expressions produced by the AS, a GA
with binary representation (BGA), and a human designer for the circuit of the
fifth example (a 2-bit multiplier).

Human Designer
Co - A()BO
Cl = AoBl D AlBO
02 - A1B1 (A()Bo)l
03 = AleBlBO
8 gates
6 ANDs, 1 XORs, 1 NOT
BGA
Co = ((AoBo)")’

Cl = AoBl D AlBO
02 - A1B1 (A()Bo)l
03 = AleBlBO
9 gates
1 XOR, 6 ANDs, 2 NOTs
Ant System
Co - A()BO
Cl = A1B0 D A()Bl
02 = AleBlBO D AlBl
03 = AleBlBO
7 gates
2 XORs, 5 ANDs

Co

Al >—

C1

ﬂ» c
O

Figure 8: Two-bit multiplier produced by the AS for the fifth example.
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Table 18: Parameters used by the AS and the BGA for the fourth example.

AS BGA
No. of ants | 30 Pop. size 800
Max. iters. | 30 Max. gen. 1000
« 0.5 Cross. rate 0.5

Mut. rate 0.5/L
Chrom. length | 225

Table 19: Summary of results produced by the Ant System (AS) and a Genetic
Algorithm with binary representation (BGA) for the fifth example.

AS BGA
Best fitness 82 80
Average 81.4 68.25
Std. dev. 0.50262469 | 7.731514456
Mode 81 63
Lowest fitness 81 62
CPU time 55 secs. 253 secs.

algorithm with binary representation (BGA), and a human designer are shown
in Table 17. The solution produced by the AS is better (i.e., it uses less gates)
than those produced by the human designer and the BGA. In fact, these last
two solutions are really the same, although the BGA was not able to eliminate
a double NOT in the Boolean expression.

6 Discussion of Results

The results presented in the previous section indicate that the AS is very suitable
for combinational circuit design at the gate level. In all cases, our approach
produced circuits that were, in the worst case, equivalent to those generated
by a BGA and better than those produced by a human designer. In fact, in
most cases, the AS was able to improve the solutions produced by the BGA for
an equivalent amount of fitness function evaluations. Also, the lower standard
deviation obtained from the runs of the AS indicate its robustness in this domain
(in two examples a standard deviation of zero was achieved).

As in the case of the BGA, the AS tends to use XOR gates to simplify a
circuit, and it also tends to degrade (in terms of performance) as we increase the
complexity (e.g., the amount of outputs) of a circuit. While it is feasible to use
the AS to solve larger circuits than those included in this paper, its performance
tends to degrade rapidly as we increase the size of the circuit to be solved.
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This problem, however, is also present when using a GA, and it is commonly
associated with gate-level design [13]. As indicated at the beginning of this
paper, one way to tackle scalability issues of this kind is by using function-level
design. However, we believe that the use of techniques such as the AS for gate-
level design can produce more compact design units to be used for function-level
design and therefore gives relevance to the work reported here.

The AS, like the GA, requires certain parameters to work. To allow a fair
comparison, we tried to keep the parameters of the AS fixed for all our experi-
ments. The exception was the first example, for which a lower amount of ants
and iterations (ten instead of thirty) made it possible to converge to the best
known solution with a low standard deviation (the use of a higher number of
ants and iterations significantly reduces the standard deviation). In order to
compare the GA against the AS, we used a combination of population size and
maximum number of generations such that the total number of fitness function
evaluations was approximately equivalent for both techniques (in fact, the AS
used always less fitness function evaluations than the GA). We favored lower
population sizes for the GA based on the previous experience of other researchers
and ourselves [19, 1].

7 Conclusions and Future Work

In this paper we have presented an approach to use the ant system to optimize
combinational logic circuits (at the gate level). The proposed approach was
described and several examples of its use were presented. Results compared
fairly well with those produced with a BGA (a GA with binary representation)
and are better than those obtained by a human designer using Karnaugh maps
and Boolean rules for simplification.

Some of the future research paths that we want to explore are the paral-
lelization of the algorithm to improve its performance (each agent can operate
independently from the others until they finish a path and then they have to be
merged to update the pheromone trails).

Finally, we are also interested in exploring alternative (and more powerful)
representations of a Boolean expression in an attempt to overcome the inherent
limitations of the matrix representation currently used to solve real-world cir-
cuits in a reasonable amount of time and without the need of excessive computer
power. The first choice that we are considering is to use a tree representation
such as in genetic programming [16].
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