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After using evolutionary techniques for single-objective optimization during more than two decades,
the incorporation of more than one objective in the fitness function has finally become a popular
area of research. As a consequence, many new evolutionary-based approaches and variations of
existing techniques have been recently published in the technical literature. The purpose of this
paper is to summarize and organize the information on these current approaches, emphasizing the
importance of analyzing the Operations Research techniques in which most of them are based, in
an attempt to motivate researchers to look into these mathematical programming approaches for
new ways of exploiting the search capabilities of evolutionary algorithms. Furthermore, a sum-
mary of the main algorithms behind these approaches is provided, together with a brief criticism
that includes their advantages and disadvantages, their degree of applicability and some of their
known applications. Finally, the future trends in this area and some possible paths of further
research are also addressed.

Categories and Subject Descriptors: 1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods

General Terms: Algorithms

Additional Key Words and Phrases: artificial intelligence, genetic algorithms, multicriteria opti-
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1. INTRODUCTION

Multiobjective optimization is with no doubt a very important research topic both
for scientists and engineers, not only because of the multiobjective nature of most
real-world problems, but also because there are still many open questions in this
area. In Operations Research, more than 20 techniques have been developed over
the years to try to deal with functions that have multiple objectives, and many
approaches have been suggested, going all the way from a naive combination of
objectives into a single one to the use of game theory to coordinate the relative
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importance of each objective. However, the fuzziness of this area lies on the fact that
there is no accepted definition of “optimum” as in single-objective optimization,
and therefore is difficult to even compare results of one method to another, because
normally the decision about what the “best” answer corresponds to the so-called
(human) decision maker.

In the past, there have been other surveys of multiobjective optimization tech-
niques in the mathematical programming literature, from which the papers by
Cohon and Marks [1975], Hwang et al. [1980], Stadler [1984], Lieberman [1991],
Evans [1984], Fishburn [1978], and Boychuk & Ovchinnikov [1973] are probably the
most comprehensive. The most remarkable survey of multiobjective optimization
published in the evolutionary computing literature has been the one written by
Fonseca and Fleming [1994, 1995c]. However, in the work by Fonseca and Fleming,
little detail was provided on how each method worked, just a few applications of
each technique were mentioned and their corresponding Operations Research roots
were only scarcely mentioned. Furthermore, several other approaches have arisen
since the publication of Fonseca’s paper, and the intention of the present work is
to provide researchers and students interested in this topic with an updated survey
that can be used (to a certain extent) as a self-contained document for anyone
interested in this area who has a previous (at least basic) knowledge of genetic
algorithms in general. Those who may need additional information about genetic
algorithms should refer to Goldberg [1989], Holland [1992], Michalewicz [1992], and
Mitchell [1996] for more information.

This paper emphasizes the importance of looking at the previous work done in
Operations Research, not only to get a full understanding of some of the existing
techniques, but also to motivate the development of new GA-based approaches.
Finally, applications of each method are also mentioned, to provide the reader with
a more complete idea of the range of applicability and the underlying motivation
of each of these techniques. A brief criticism is given after the description of each
technique, mentioning their advantages, their possible drawbacks and limitations,
and (in some cases) possible ways to exploit their characteristics or even improve
their performance.

2. STATEMENT OF THE PROBLEM

Multiobjective optimization (also called multicriteria optimization, multiperfor-
mance or vector optimization) can be defined as the problem of finding [Osyczka

1985]:

a vector of decision variables which satisfies constraints and optimizes a
vector function whose elements represent the objective functions. These
functions form a mathematical description of performance criteria which
are usually in conflict with each other. Hence, the term “optimize”
means finding such a solution which would give the values of all the
objective functions acceptable to the designer.

Formally, we can state it as follows:

Find the vector T* = [z],73,... T:L]T which will satisfy the m inequality con-
straints:
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gi(Z)>0 i=12,...,m (1)

the p equality constraints

hi(Z)=0 i=1,2,...,p (2)

and optimizes the vector function

[@) =[H@), 2(@)..... fu(@)]" 3)
where T = [z1, z2,. .. ,wn]T is the vector of decision variables.

In other words, we wish to determine from among the set F of all numbers which
satisfy (1) and (2) the particular set z7,z3, ..., z} which yields the optimum values
of all the objective functions.

The constraints given by (1) and (2) define the feasible region F and any point
% in F defines a feasible solution. The vector function f(Z) is a function which
maps the set F in the set A which represents all possible values of the objective
functions. The k components of the vector f(Z) represent the non-commensurable
criteria’ which must be considered. The constraints g;(Z) and h;(Z) represent the
restriction imposed on the decision variables. The vector z* will be reserved to
denote the optimal solutions (normally there will be more than one).

The problem is that the meaning of optimum is not well defined in this context,
since we rarely have an z* such that for all 2 =1,2,...,k

AL (@) < fi(@)) (4)

If this was the case, then z* would be a desirable solution, but we normally never
have a situation like this, in which all the f;(Z) have a minimum in F at a common
point z*. An example of this ideal situation is shown in Figure 1. However, since
this situation rarely happens in real-world problems, then we have to establish a
certain criteria to determine what would be considered as an “optimal” solution.

2.1 Ideal Vector

Let us assume that we find the minimum (or maximum) of each of the objective
functions f;(Z) separately. Assuming that they can be found, let

20 = [0, 50 2O 5)
be a vector of variables which optimizes (either minimizes or maximizes) the ¢«th

objective function fi(z). In other words, the vector #°® € X is such that

f(@30) = Pt fi(2) (6)

1 Non-commensurable means that the values of the objective functions are expressed in different
units.
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Fig. 1. Ideal solution in which all our functions have their minimum at a common point.

In general, there will be a unified criterion with respect to “opt”. Most authors
prefer to treat it as a minimum. In that case, fi(i'o(i)) or simply f? (more convenient
notation) will denote the minimum value of the ith function. Hence, the vector
fo = [, f3,... ,f,?]T is ideal for a multiobjective optimization problem, and the
point in R™ which determined this vector is the ideal (utopical) solution, and is
consequently called the ideal vector.

2.2 Pareto Optimum

The concept of Pareto optimum was formulated by Vilfredo Pareto in the XIX cen-
tury [Pareto 1896], and constitutes by itself the origin of research in multiobjective
optimization. We say that a point z* € F is Pareto optimal if for every z € F
either,

2 (fi(@) = fu(@)) (7)

or, there is at least one ¢ € [ such that

fi(2) > fi(z") (8)

In words, this definition says that z* is Pareto optimal if there exists no feasi-

ble vector z which would decrease some criterion without causing a simultaneous

increase in at least one other criterion. Unfortunately, the Pareto optimum almost

always gives not a single solution, but rather a set of solutions called non-inferior
or non-dominated solutions.
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f2

f1

Fig. 2. An example of a problem with two objective functions. The Pareto front is marked with
a bold line (the two criteria are to be minimized).

2.3 Pareto Front

The minima in the Pareto sense are going to be in the boundary of the design
region, or in the locus of the tangent points of the objective functions. In Figure 2,
a bold line is used to mark this boundary for a bi-objective problem. The region of
points defined by this bold line is called the Pareto Front. In general, it is not easy
to find an analytical expression of the line or surface that contains these points,
and the normal procedure is to compute the points F* and their corresponding
f(]:k) When we have a sufficient amount of these, we may proceed to take the
final decision.

A point * € F is a weakly non-dominated solution if there is no z € F such
that fi(z) < fi(z*), for i = 1,...,n. A point z* € F is a strongly non-dominated
solution if there is no Z € F such that f;(Z) < fi(z*), for i = 1,...,n and for at
least one value of 7, f(z) < f(z*).

Thus, if £* is strongly non-dominated, it is also weakly non-dominated, but the
converse is not necessarily true. Non-dominated solutions for the biobjective case
can readily be represented graphically by passing into the objective function space
{f1(z), f2(z)}. To the locus of strongly non-dominated points corresponds the so-
called minimal curve, and to the locus of weakly non-dominated points, the weakly
minimal curve [Baier 1977]. These two curves are sketched in Figure 3 for a simple
bi-objective problem.

3. THE NEED TO PRESERVE DIVERSITY

Due to stochastic errors associated with its genetic operators, the genetic algorithm
(GA) tends to converge to a single solution when used with a finite population
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Fig. 3. Weakly and strongly non-dominated curves on the biobjective case.

[Deb and Goldberg 1989]. As long as our goal is to find the global optimum (or
at least a very good approximation of it), this behavior is acceptable. However,
there are certain applications in which we are interested in finding not one, but
several solutions. Multiobjective optimization is certainly one of those applications,
because we want to find the entire Pareto front of a problem, and not only a single
non-dominated solution. The question is then how to keep the GA from converging
to a single solution.

Early researchers in genetic algorithms identified this convergence phenomenon
of the GA, called genetic drift [DeJong 1975], and found that it happens in Na-
ture as well. They correctly stated that the key to solve this problem is to find
a way of preserving diversity in the population, and several proposals, modelled
after natural systems were made. Holland [1975] suggested the use of a “crowding”
operator, which was intended to identify situations in which more and more indi-
viduals dominate an environmental niche, since in those cases the competition for
limited resources increases rapidly, which will result in lower life expectancies and
birth rate. DeJong [1975] experimented with such a crowding operator, which was
implemented by having a newly formed offspring to replace the existing individual
more similar to itself. The similarity between two individuals was measured in the
genotype, by counting the number of bits along each chromosome that were equal
in the two individuals being compared. DeJong used two parameters in his model:
generation gap (G) and crowding factor (CF) [Deb and Goldberg 1989]. The first
parameter indicates the percentage of the population that is allowed to reproduce.
The second parameter specifies the number of individuals initially selected as can-
didates to be replaced by a particular offspring [1975]. Therefore, CF=1 means
that no crowding will take place, and as we increase the value of CF, it becomes
more likely that similar individuals replace one another [DeJong 1975].
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Goldberg and Richardson [1987] used a different approach in which the popu-
lation was divided in different subpopulations according to the similarity of the
individuals in two possible solution spaces: the decoded parameter space (pheno-
type) and the gene space (genotype). They defined a sharing function ¢(d;;) as
follows [Goldberg and Richardson 1987]:

Bldis) = { - () s <om (9)

0, otherwise

where normally a = 1, d;; is a metric indicative of the distance between designs
1 and 7, and ogp is the sharing parameter which controls the extent of sharing
allowed. The fitness of a design ¢ is then modified as:

_ i
Ejﬂil ¢(dij)

where M is the number of designs located in vicinity of the ¢-th design.

s (10)

Deb and Goldberg [1989] proposed a way of estimating the parameter o 3pqpe in
both phenotypical and genotypical space. In phenotypical sharing, the distance be-
tween 2 individuals is measured in decoded parameter space, and can be calculated
with a simple Euclidean distance in an p-dimensional space, where p refers to the
number of variables encoded in the GA; the value of d;; can then be calculated as:

P
dij = Z (zhi—zhj) (11)

k=1
where 1 ;,%2,...,Tp; and z1 j, %2 j,...,Tp ; are the variables decoded from the
GA.

To estimate the value of ogpare, Deb and Goldberg [1989] proposed to use the
expression:

L _ \/Ezlz:l(mk.ma:c - mk,min,)z (12)
va ¥2q

where r is the volume of a p-dimensional hypersphere of radius ospqre and q is
the number of peaks that we want the GA to find.

In genotypical sharing, d;; is defined as the Hamming distance between the strings
and Ospgre 18 the maximum number of different bits allowed between the strings to

Oshare =

form separate niches in the population. The experiments performed by Deb and
Goldberg [1989] showed sharing as a better way of keeping diversity than crowding,
and indicated that phenotypic sharing was better than genotypic sharing.

It should be added that much further work has been done regarding keeping
the diversity in the population. Deb and Goldberg [1989] suggested the use of
restrictive mating with respect to the phenotypic distance. The idea is to allow
two individuals to reproduce only if they are very similar (i.e., if their phenotypic
distance is less than a factor called (rsha,.e). This is intended to produce distinct
“species” (mating groups) in the population [Mitchell 1996]. Other researchers
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such as Eshelman [1991] and Schaffer [1991] did exactly the opposite: they did not
allow mating between individuals that were too similar (they said to be “preventing
incest”).

Smith, Forrest and Perelson [1993] proposed an approach, modelled after the
immune system, that can maintain the diversity of the population without the use
of an explicit sharing function. This approach has been actually used by Hajela
[1996, 1997] to handle constraints in structural optimization problems.

Poloni and Pediroda [1997] proposed an interesting alternative to preserve diver-
sity. They called their approach “local Pareto selection”, and it basically consists
of placing the population on a toroidal grid and choosing the members of the local
tournament by means of a random walk in the neighborhoods of the given grid
point.

Kita et al. [1996] proposed the so called “Thermodynamical Genetic Algorithm”
(TDGA) to maintain diversity when using a Pareto ranking technique for multi-
objective optimization. The TDGA is inspired by the principle of minimal free
energy used in simulated annealing. The idea is to select the individuals for a new
generation in such a way that the free energy F' is minimized, and

F = (E)— HT (13)

where (E) is the mean energy of the system, H is the entropy and T is the
temperature. The diversity of the population is controlled by adjusting T' according
to a certain schedule (as in Simulated Annealing). Presumably, T is less sensitive
to the population size and to the size of the feasible region than traditional sharing
functions [1996].

4. NAIVE APPROACHES TO MULTIOBJECTIVE OPTIMIZATION

The notion of genetic search in a multicriteria problem dates back to the late 60s,
in which Rosenberg’s [1967] study contained a suggestion that would have led to
multicriteria optimization if he had carried it out as presented. His suggestion
was to use multiple properties (nearness to some specified chemical composition)
in his simulation of the genetics and chemistry of a population of single-celled
organisms. Since his actual implementation contained only one single property, the
multiobjective approach could not be shown in his work, but it was nevertheless a
good starting point for researchers interested in this topic.

Knowing that a genetic algorithm needs scalar fitness information to work, prob-
ably the simplest idea that we could come up with would be to combine all the
objectives into a single one using either an addition, multiplication or any other
combination of arithmetical operations that we could think of. There are obvious
problems with this approach, though. The first is that we have to provide some
accurate scalar information on the range of the objectives, to avoid having one of
them to dominate the others. This implies that we should know, to a certain ex-
tent, the behavior of each of the objective functions, which is normally (at least in
most real-world applications) a very expensive process (computationally speaking)
that we can not afford in most cases. Obviously, if this combination of objectives
is possible (and it is in some applications), this is not only the simplest approach,
but also is one of the most efficient procedures, because no further interaction with
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the decision maker is required, and if the GA succeeds at optimizing the resulting
fitness function, then the results will be at least sub-optimum in most cases.

The approach of combining objectives into a single function is normally denom-
inated aggregating functions, and it has been attempted several times in the lit-
erature with relative success in problems in which the behavior of the objective
functions is more or less well-known. This section includes the most popular aggre-
gating approaches.

4.1 Weighted sum approach

This method consists of adding all the objective functions together using different
weighting coefficients for each one of them. This means that our multiobjective
optimization problem is transformed into a scalar optimization problem of the form:

k
min »_ w;f;(Z) (14)
i=1
where w; > 0 are the weighting coefficients representing the relative importance
of the objectives. It is usually assumed that

S w=1 (15)

Since the results of solving an optimization model using (14) can vary significantly
as the weighting coeflicients change, and since very little is usually known about
how to choose these coefficients, a necessary approach is to solve the same problem
for many different values of w;. But in this case, the designer is still, of course,
confronted with the decision of having to choose the most appropriate solution
based on his/her intuition.

Note that the weighting coeflicients do not reflect proportionally the relative
importance of the objectives, but are only factors which, when varied, locate points
in the Pareto set. For the numerical methods that can be used to seek the minimum
of (14), this location depends not only on w; values, but also on the units in which
the functions are expressed.

If we want w; to reflect closely the importance of the objectives, all functions
should be expressed in units of approximately the same numerical values. Addi-
tionally, we can also transform (14) to the form:

k
min szfz(a_r;)cZ (16)

where ¢; are constant multipliers that will scale properly the objectives.
The best results are usually obtainedif ¢; = 1 /f! . In this case, the vector function
is normalized to the form f(Z) = [f1(Z), f2(Z),. .., fx(Z)]T, where fi(Z) = f:(Z)/f].

Applications

—Syswerda and Palmucci [1991] used weights in their fitness function to add or
subtract values during the schedule evaluation of a resource scheduler, depending
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on the existence or absence of penalties (constraints violated).

—Jakob et al. [1992] used a weighted sum of the several objectives involved in a
task planning problem : to move the tool center point of an industrial robot to
a given location as precisely and quickly as possible, avoiding certain obstacles
and aiming to produce a path as smooth and short as possible.

Jones et al. [1993] used weights for their genetic operators in order to reflect
their effectiveness when a GA was applied to generate hyperstructures from a set
of chemical structures.

Wilson & Macleod [1993] used this approach as one of the methods incorporated
into a GA to design multiplierless IIR filters in which the two conflicting objec-
tives were to minimize the response error and the implementation cost of the
filter.

—Liu et al. [1998] used this technique to optimize the layout and actuator place-
ment of a 45-bar plane truss in which the objectives were to minimize the linear
regulator quadratic control cost, the robustness and the modal controllability of
the controlled system subject to total weight, asymptotical stability and eigen-
values constraints.

—Yang and Gen [1994] used a weighted sum approach to solve a bicriteria linear
transportation problem. More recently, Gen et al. [1995, 1997] extended this
approach to allow more than two objectives, and added fuzzy logic to handle the
uncertainty involved in the decision making process. A weighted sum is still used
in this approach, but it is combined with a fuzzy ranking technique that helps to
identify Pareto solutions, since the coefficients of the objectives are represented
with fuzzy numbers reflecting the existing uncertainty regarding their relative
importance.

Criticism

This method was the first technique developed for the generation of non-inferior
solutions for multiobjective optimization. This is an obvious consequence of the
fact that it was implied by Kuhn and Tucker in their seminal work on numerical
optimization [1951]. This method is very efficient computationally speaking, and
can be applied to generate a strongly non-dominated solution that can be used as
an initial solution for other techniques. The problem with this approach is how to
determine the appropriate weights when we do not have enough information about
the problem. In this case, any optimal point obtained will be a function of the
coefficients used to combine the objectives. Most researchers use a simple linear
combination of the objectives and then generate the trade-off surface? by varying
the weights. This approach is very simple and easy to implement, but it has the
disadvantage of missing concave portions of the trade-off curve® [Ritzel et al. 1994],
which is a serious drawback in most real-world applications.

2The term “trade-off” in this context refers to the fact that we are trading a value of one objective
function for a value of another function or functions.
3In other words, it does not work properly with non-convex search spaces.
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4.2 Goal Programming

Charnes and Cooper [1961] and Ijiri [1965] are credited with the development of
the goal programming method for a linear model, and have played a key role in
applying it to industrial problems. In this method, the decision maker has to assign
targets or goals that he/she wishes to achieve for each objective. These values are
incorporated into the problem as additional constraints. The objective function
will then try to minimize the absolute deviations from the targets to the objectives.
The simplest form of this method may be formulated as follows [1984]:

k
min Z |fi(z) — T3], subject toz e F (17)
i=1

where T; denotes the target or goal set by the decision maker for the sth objec-
tive function f;(Z), and F represents the feasible region. The criterion, then, is to
minimize the sum of the absolute values of the differences between target values
and actually achieved values. A more general formulation of the goal programming
objective function is a weighted sum of the pth power of the deviation |f;(Z) — T;|
[Haimes et al. 1975]. Such a formulation has been called generalized goal program-
ming [Ignizio 1976; Ignizio 1981]. This technique has also been called “target vector
optimization” by other authors [Coello 1996].

Applications

Wienke et al. [1992] used this approach in combination with a genetic algorithm
to optimize simultaneously the intensities of six atomic emission lines of trace ele-
ments in alumina powder as a function of spectroscopic excitation conditions. Eric
Sandgren [1994] also used goal programming coupled with a genetic algorithm to
optimize plane trusses and the design of a planar mechanism.

Criticism

This technique will yield a dominated solution if the goal point is chosen in the
feasible domain [Duckstein 1984]. It may be a very efficient approach (computa-
tionally speaking) if we know the desired goals that we wish to achieve, and if they
are in the feasible region. However, the decision maker is given the task of devising
the appropriate weights or priorities for the objectives that will eliminate the non-
commensurable characteristics of the problem, which in most cases is difficult unless
there is prior knowledge about the shape of the search space. Also, if the feasible
region is difficult to approach, this method could become very inefficient. Never-
theless, this technique may be useful in cases in which a linear or piecewise-linear
approximation of the objective functions can be made, because of the availability of
excellent computer programs for that, and the possibility of eliminating dominated
goal points easily. On the other hand, in non-linear cases, other approaches may
be more efficient.

4.3 Goal attainment

In this approach, a vector of weights wi,ws, ..., ws relating the relative under- or
over-attainment of the desired goals must be elicited from the decision maker in
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Fig. 4. Goal-attainment method with two objective functions.

addition to the goal vector by,bs,...,b; for the objective functions fi, fa,..., fx.
To find the best-compromise solution z*, we solve the following problem:

Minimize « (18)
subject to:
g;(2)<0;: j=12.....m
where « is a scalar variable unrestricted in sign and the weights wi,ws, ..., wg

are normalized so that

k
Z lwi| =1 (20)

If some w; = 0 (1 = 1,2,...,k), it means that the maximum limit of objectives
It can be easily shown [Chen and Liu 1994] that the set of non-dominated so-
lutions for a problem can be generated by varying the weights, with w; > 0
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(¢t = 1,2,...,k) even for nonconvex problems. The mechanism by which this
method operates is illustrated in Figure 4. The vector b is represented by the
decision goal of the decision maker, who also decides the direction of w. Given
vectors w and 5, the direction of the vector b 4+ « - @ can be determined, and the
problem stated by equation (18) is equivalent to finding a feasible point on this
vector in objective space which is closest to the origin. It is obvious that the opti-
mal solution of equation (18) will be the first point at which b+ o - @ intersects the
feasible region F in the objective space. Should this point of intersection exist, it
would clearly be a noninferior (or non-dominated) solution.

It should be pointed out that the optimum value of a will inform the decision
maker of whether the goals are attainable or not. A negative value of « implies
that the goal of the decision maker is attainable and an improved solution will be
obtained. Otherwise, if @ > 0, then the decision maker goal is unattainable.

Applications

Wilson & MacLeod [1993] used this approach as another of the methods incorpo-
rated into their GA to design multiplierless IIR filters.

Criticism

As Wilson and MacLoud [1993] indicate, goal attainment has several problems,
from which probably the main one is the misleading selection pressure that it can
generate in some cases. For example, if we have two candidate solutions which are
the same in one objective function value but different in the other, they will still

have the same goal-attainment value for their two objectives, which means that for
the GA none of them will be better than the other.

4.4 The e-constraint Method

This method is based on minimization of one (the most preferred or primary)
objective function, and considering the other objectives as constraints bound by
some allowable levels ¢;. Hence, a single objective minimization is carried out for
the most relevant objective function f; subject to additional constraints on the
other objective functions. The levels e; are then altered to generate the entire
Pareto optima set. The method may be formulated as follows:

(1) Find the minimum of the rth objective function, i.e., find z* such that

(@) = ™ f(2) (21)

subject to additional constraints of the form

fi(z) <e; fori=1,2,...,k andi#r (22)

where ¢; are assumed values of the objective functions which we wish not to
exceed.

(2) Repeat (1) for different values of &;. The information derived from a well
chosen set of ¢; can be useful in making the decision. The search is stopped when
the decision maker finds a satisfactory solution.

It may be necessary to repeat the above procedure for different indices r.
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Fig. 5. The e-constraint method for a maximizing problem.

To get adequate ¢; values, single-objective optimizations are normally carried out
for each objective function in turn by using mathematical programming techniques
(or independent GAs). For each objective function f; (i = 1,2,...,k), there is an
optimal design vector Z; for which f;(Z;) is a minimum. Let f;(Z;) be the lower

K3
bound on ¢;, i.e.

e > filZ) i=1,2,...,r—1r+1,.. .k (23)

and f;(Z}) be the upper bound on ¢;, i.e.

< fi(z) i=12...r—Lr+1,.. .k (24)

When the bounds ¢; are too low, there is no solution and at least one of these
bounds must be relaxed.

Figure 5 illustrates the e-constraint method for a maximizing problem where H
is the payoff set of the original problem, restricted to the shadowed area H; by the
further constraint f»(Z) > €2 (we are maximizing), and the objective function f is
maximized subject to the assumption that Z belongs to H;. Thus, the most impor-
tant objective (in this case, fi) has been optimized, and the others, as mentioned
before, are handled as additional constraints.

Szidarovszky and Duckstein [1982] showed that the e-constraint method usually
leads to weakly non-dominated solutions; however, if the optimal solution is unique,
then such solutions become strongly non-dominated.

This approach was suggested by Ritzel and Wayland [1994] as a simple and naive
way of solving multiobjective optimization problems using a GA. The idea was to
code the GA in such a way that all the objectives, except for one, were kept constant
(constrained to a single value), and the remaining objective would then become the
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fitness function for the GA. Thus, through a process of running the GA numerous
times with different values of the constrained objectives, a trade-off surface can be
developed.

In the mathematical programming literature, this approach is also known as the
trade-off method, because of its main concept of trading a value of one objective
function for a value of another function.

Applications

Quagliarella and Vicini [1997] suggested the use of this technique coupled with a
hybrid GA (a genetic algorithm that used gradient based optimization techniques
to speed up the search in order to reduce the computational cost required in a real-
world application) to solve multiobjective optimization problems. Ranjithan et al.
[1992] used this approach to solve groundwater pollution containment problems.
Loughlin and Ranjithan [1997] used a variation of this technique in which they
incorporated target satisfaction levels (similar to those used in Goal-Programming),
and combined it with a neighboorhood selection procedure according to which only
individuals within a certain radius were allowed to mate (individuals in the popu-
lation were indexed and placed in a matrix format). Additional genetic operators
such as elitism and dynamic scaling of the target satisfaction levels were also imple-
mented. Loughlin and Ranjithan applied this technique to a real-world air quality
management problem with two conflicting objectives: minimize the cost of control-
ling air pollutant emissions and maximize the amount of emissions reduction (this
is a combinatorial problem that is suitable for integer programming techniques).

Criticism

The obvious drawback of this approach is that it is time-consuming, and the coding
of the objective functions may be difficult or even impossible for certain problems,
particularly if there are too many objectives. Furthermore, finding weakly non-
dominated solutions may not be appropriate in some applications (e.g., structural

optimization). Nevertheless, the relative simplicity of the technique has made it
popular among some GA practitioners.

5. NON-AGGREGATING APPROACHES THAT ARE NOT PARETO-BASED

To overcome the difficulties involved in the aggregating approaches, much work
has been devoted to the development of alternative techniques based on population
policies or special handling of the objectives [Powell and Skolnick 1993]. Some of
the most popular approaches that fall into this category will be examined in this
section.

5.1 VEGA

David Schaffer [1985] extended Grefenstette’s GENESIS program [Grefenstette
1984] to include multiple objective functions. Schaffer’s approach was to use an
extension of the Simple Genetic Algorithm (SGA) that he called the Vector Eval-
uated Genetic Algorithm (VEGA), and that differed of the first only in the way
in which selection was performed. This operator was modified so that at each
generation a number of sub-populations was generated by performing proportional
selection according to each objective function in turn. Thus, for a problem with
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Generation (t) Generation (t+1)
Individual 1 Sub-popu- Individual 1 Individual 1
lation 1
Individual 2 Individual 2 Individual 2
Sub-popu-
Individual 3 lation 2 Individual 3 Individual 3
* Create Sub-popu- | ghysfie * Apply *
—_— lation 3 E—  —
* Sub-popu- entire * genetic *
. lations . population . operators .
Sub-popu-
Individual N lation M Individual N Individual N
Initial Population M sub-populations Individuals are now Start all over again
Size N are created mixed

Fig. 6. Schematic of VEGA selection. It is assumed that the population size is N and that there
are M objective functions.

E objectives, k sub-populations of size N/k each would be generated (assuming a
total population size of N). These sub-populations would be shuffled together to
obtain a new population of size IV, on which the GA would apply the crossover
and mutation operators in the usual way. This process is illustrated in Figure 6.
Schaffer realized that the solutions generated by his system were non-dominated in
a local sense, because their non-dominance was limited to the current population,
and while a locally dominated individual is also globally dominated, the converse
is not necessarily true [Schaffer 1985]. An individual who is not dominated in
one generation may become dominated by an individual who emerges in a later
generation. Also, he noted a problem that in genetics is known as “speciation”
(i.e., we could have the evolution of “species” within the population which excel on
different aspects of performance). This problem arises because this technique se-
lects individuals who excel in one dimension of performance, without looking at the
other dimensions. The potential danger doing that is that we could have individuals
with what Schaffer calls “middling” performance? in all dimensions, which could be
very useful for compromise solutions, but that will not survive under this selection
scheme, since they are not in the extreme for any dimension of performance (i.e.,
they do not produce the best value for any objective function, but only moderately
good values for all of them). Speciation is undesirable because it is opposed to our
goal of finding a compromise solution. Schaffer suggested some heuristics to deal
with this problem. For example, to use a heuristic selection preference approach
for non-dominated individuals in each generation, to protect our “middling” chro-
mosomes. Also, crossbreeding among the “species” could be encouraged by adding
some mate selection heuristics instead of using the random mate selection of the

4By “middling”, Schaffer meant an individual with acceptable performance, perhaps above aver-
age, but not outstanding for any of the objective functions.
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traditional GA.

Applications

Ritzel and Wayland [1994] used a variation of VEGA in which they incorporated
a parameter to control the selection ratio. In the case of the groundwater pollu-
tion containment problem that Ritzel and Wayland solved, there were only two
objectives, and the selection ratio was defined as the ratio of the fraction of strings
selected on the basis of the first objective (reliability) to the fraction selected via the
second objective (cost). Surry et al. [1995] proposed an interesting application of
VEGA to model constraints in a single-objective optimization problem to avoid the
need of a penalty function. Surry et al., however, modified the standard procedure
of VEGA and introduced a form of ranking based on the number of constraints vio-
lated by a certain solution, and they reported that their approach worked well in the
optimization of gas supply networks, since the tendency of VEGA to favor certain
solutions can actually be an advantage when handling constraints, because in that
case we want to favor precisely any solution that does not violate any constraint
over those which do.

Cvetkovi¢ et al. [1998] proposed several approaches to overcome VEGA’s prob-
lems. For example, to wait for a certain amount of generations before shuffling
together the population, or not do it at all, and instead copy or migrate a certain
amount of individuals from one sub-population to another. They used these and
other traditional multiobjective optimization approaches for preliminary airframe
design.

Tamaki et al. [1995, 1996] developed a technique in which at each generation,
non-dominated individuals in the current population are kept for the following
generation. This approach is really a mixture of Pareto selection (see next section)
and VEGA, because if the number of non-dominated individuals is less that the
population size, the remainder of the population in the following generation is
filled applying VEGA to the dominated individuals. On the other hand, if the
number of the non-dominated individuals exceeds the population size, individuals
in the following generation are selected among the non-dominated individuals using
VEGA. In a later version of this algorithm, called Pareto Reservation strategy,
Tamaki et al. [1996] used also fitness sharing among the non-dominated individuals
to maintain diversity in the population.

Criticism

Although Schaffer reported some success, and this approach is easy enough to
implement as to be tempted to try it, Richardson et al. [1989] noted that the shuf-
fling and merging of all the sub-populations corresponds to averaging the fitness
components associated with each of the objectives. Since Schaffer used propor-
tional fitness assignment [1989], these were in turn proportional to the objectives
themselves [Fonseca and Fleming 1994]. Therefore, the resulting expected fitness
corresponded to a linear combination of the objectives where the weights depended
on the distribution of the population at each generation as shown by Richardson et
al. [1989]. The main consequence of this is that when we have a concave trade-off
surface certain points in concave regions will not be found through this optimization
procedure in which we are using just a linear combination of the objectives, and it
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has been proved that this is true regardless of the set of weights used [Richardson
et al. 1989].

5.2 Lexicographic ordering

In this method, the objectives are ranked in order of importance by the designer.
The optimum solution z* is then obtained by minimizing the objective functions,
starting with the most important one and proceeding according to the assigned
order of importance of the objectives.

Let the subscripts of the objectives indicate not only the objective function num-
ber, but also the priority of the objective. Thus, fi(Z) and f(Z) denote the most
and least important objective functions, respectively. Then the first problem is
formulated as

Minimize fi(z) (25)

subject to
gi(2)<0; j=12,....m (26)
and its solution Z; and f;i = (Z7) is obtained. Then the second problem is

formulated as

Minimize f2(T) (27)

subject to
g;(z) <0; j=1,2,....m (28)
H(@) =7 (29)

and the solution of this problem is obtained as z5 and f; = fa(23). This pro-
cedure is repeated until all £ objectives have been considered. The :th problem is
given by

Minimize f;(T) (30)

subject to
gi(2) <0; j=1,2,....m (31)
n@y=f, 1=12,...,i—1 (32)

The solution obtained at the end, i.e., z is taken as the desired solution z* of
the problem.

Applications

Fourman [1985] suggested a selection scheme based on lexicographic ordering. In
a first version of his algorithm, objectives were assigned different priorities by the
user and each pair of individuals were compared according to the objective with



An Updated Survey of GA-Based Multiobjective Optimization Techniques . 19

the highest priority. If this resulted in a tie, the objective with the second highest
priority was used, and so on. In another version of this algorithm (that apparently
worked quite well), an objective was randomly selected at each run. Fourman used
this approach to design compact symbolic layouts [1985].

Kursawe [1991] formulated a multiobjective version of evolution strategies [Schwe-
fel 1981] (ESs) based on lexicographic ordering. Selection consisted of as many steps
as objective functions had the problem. At each step, one of these objectives was
selected randomly according to a probability vector, and used to delete a fraction
of the current population. After selection, the survivors became the parents of the
next generation. The map of the trade-off surface was produced from the points
evaluated during the run. Since the environment was allowed to change over time,
diploid individuals were necessary to keep recessive information stored.

Criticism

Selecting randomly an objective is equivalent to a weighted combination of objec-
tives, in which each weight is defined in terms of the probability that each objective
has of being selected. However, the use of tournament selection with this approach
makes an important difference with respect to other approaches such as VEGA,
because the pairwise comparisons of tournament selection will make scaling infor-
mation neggligible [Fonseca and Fleming 1994; Fonseca and Fleming 1995¢|. This
means, that this approach may be able to see as convex a concave trade-off sur-
face, although that really depends on the distribution of the population and on the
problem itself. Its main drawback is that this approach will tend to favor more cer-
tain objectives when many are present in the problem, because of the randomness
involved in the process, and this will have the undesirable consequence of making
the population to converge to a particular part of the Pareto front rather than to
delineate it completely [Coello 1996].

5.3 Use of Game Theory

We can analyze this technique with reference to a simple optimization problem with
two objectives and two design variables whose graphical representation is shown in
Figure 7. Let fi(x1,z2) and fa(z1,z2) represent two scalar objectives and z; and
T2 two scalar design variables. It is assumed that one player is associated with
each objective. The first player wants to select a design variable z; which will
minimize his objective function f;, and similarly the second player seeks a variable
z2 which will minimize his objective function f. If f; and fy are continuous, then
the contours of constant values of f; and f» appear as shown in Figure 7. The
dotted lines passing through O; and O; represent the loci of rational (minimizing)
choices for the first and second player for a fixed value of z2 and z;, respectively.
The intersection of these two lines, if it exists, is a candidate for the two objective
minimization problem, assuming that the players do not cooperate with each other
(non-cooperative game). In Figure 7, the point N(z7, z3) represents such intersec-
tion point. This point, known as a Nash equilibrium solution, represents a stable
equilibrium condition in the sense that no player can deviate unilaterally from this
point for further improvement of his/her own criterion [Nash 1950].
This point has the characteristic that
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Fig. 7. Example of cooperative and non-cooperative game solutions.
fi(21,23) < fi(z, 23) (33)
and
fa(z1,23) < fa(a7, z2) (34)

where z; may be to the left or right of z in Equation (33) and z» may lie above
or below z3 in Equation (34).

Applications

Périaux et al. [1997] proposed a GA-based approach that uses the concept of Nash
equilibrium to solve a bi-objective optimization problem (the optimal distribution of
active control elements which minimizes the backscaterring of aerodynamic reflec-
tors). The main idea of this work was to use 2 non-cooperative players represented
by 2 independent sub-populations in a genetic algorithm, and then make them to
interact in the following way:

If f; and fo are the 2 objectives to be optimized, let P; and P» represent the
2 non-cooperative players. We start at generation zero with P; trying to optimize
f1 while f5 remains fixed and P, trying to optimize f» while f; remains fixed.
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After one generation is over (i.e., when all the individuals in both populations have
been evaluated and the genetic operators have been applied independently to each
of those populations), we send (or migrate) the best individual from population 1
to population 2 and the best individual from population 2 to population 1. This
process is repeated for as many generations as needed, until the Nash equilibrium
is reached.

Criticism

This approach seems to be computationally very efficient, but in the state presented
in the work by Périaux et al. [1997] is not possible to generate more than one
non-dominated solution which, hopefully will be the best overall solution to the
problem®. However, it is indeed possible to extend this approach to k players
(where k is the number of objectives of a problem), and to have several Nash
equilibrium points, with which the Pareto front can actually be found, although a
cooperative game may be preferred in that case over a non-cooperative approach.
For more information on cooperative games, refer to Rao [1987, 1984] and Coello

[1996].

5.4 Using Gender to identify objectives

Robin Allenson [1992] used a population-based approach modelled after VEGA in
which gender was used to distinguish between the two objective functions of a prob-
lem consisting of the planning of a route composed of a number of straight pipeline
segments. With this approach, only male-female mating was allowed, and such
gender was randomly assigned at birth. In the initial population, Allenson made
sure that there was an equal number of males and females, but such balance was
not kept after applying the genetic operators. At each generation, the worst indi-
vidual (chosen according to one of the two genders) was eliminated and replaced by
another (randomly picked) individual of the same gender. Allenson used evolution
strategies to implement some form of sexual attractors that would modify the way
in which mating was performed. The idea was to model the sexual attraction that
some individuals have over others in nature, which determines a not so random
mating.

Lis and Eiber [1996] also incorporated gender in their GA, but in a more general
sense. In this case, the number of genders (or sexes), was not limited to two, but
it could be as many as objectives we had. Another distinction of this approach is
that the crossover operator was modifed as to allow panmitic reproduction, in which
several parents generate a single child (instead of having two parents generate two
children as in the traditional genetic algorithm). The idea was to select one parent
from each sex to contribute to the generation of a child. This child will have the sex
of the parent that contributed with the largest amount of genes (if there is a tie, then
the sex is randomly chosen from the parents that contributed the same amount of
genes). If no crossover takes place, then one of the individuals in the old generation
is copied exactly the same (including its sex) to the following generation. In this
approach, individuals are evaluated using different fitness functions (according to
their corresponding sex). The mutation operator is only slightly restricted to avoid

5Périaux et al. did not succeed at that in the example presented in their paper.
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changes in the sex of an individual. As generations progress, a list of non-dominated
individuals is updated, removing from it any individual that is no longer non-
dominated after the list is modified. At the end, this list will contain the Pareto
optimal solutions.

Applications

Lis and Eiber [1996] tested successfully their approach with the two multiobjective
optimization problems provided in the paper by Srinivas and Deb [1993], but no
further applications of this technique seem to be available at the moment.

Criticism

The use of genders is really another way of defining separate subpopulations for each
objective. The difference of this approach with VEGA [Schaffer 1985] lies on the
fact that Lis and Eiber used panmitic crossover, which imposes certain mating re-
strictions, avoiding the random crossing among different subpopulations performed
by Schaffer. However, as we increase the number of objectives (or genders), we
will have many subpopulations and panmitic crossover will become more inefficient
(computationally speaking), because we will need to use more parents to generate a
child. Additionally, the population size will have to be large enough as we increase
the number of objectives, to keep a reasonably diverse spread of genders, across the
entire population.

5.5 Weighted Min-Max Approach

The idea of stating the min-maz optimum and applying it to multiobjective opti-
mization problems, was taken from game theory, which deals with solving conflicting
situations. The min-max approach to a linear model was proposed by Jutler [1967]
and Solich [1969], and was further developed by Osyczka [1978, 1981, 1984], Rao
[1986] and Tseng and Lu [1990]. The definitions shown below were taken from
Osyczka [1978, 1981, 1984]. Notice that these definitions refer to nonlinear models,
because in the case of linear models the procedure is simpler (there is no need to
follow the steps mentioned below).

The min-max optimum compares relative deviations from the separately attain-
able minima. Consider the 7th objective function for which the relative deviation
can be calculated from

IR - £ -

i () 179] (35)
or from

@) = )

(=5 (36)

It should be clear that for (35) and (36) we have to assume that for every i € I
and for every z € F, f;i(z) #0.

If all the objective functions are going to be minimized, then equation (35) defines
function relative increments, whereas if all of them are going to be maximized, it
defines relative decrements. Equation (36) works conversely.
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Let 2(Z) = [21(%),...,2(%),...,25(%)]T be a vector of the relative increments
which are defined in R*. The components of the vector z(z) will be evaluated from
the formula

Vier(zi(%)) = maz {z;(2), z; (z)} (37)
Now we define the min-max optimum as follows [1984]:
A point z* € F is min-max optimal, if for every Z € F the following recurrence

formula is satisfied:
Step 1:

vi(z7) = T AT {z(7)}) (38)
and then I; = {i1}, where ¢; is the index for which the value of z;(Z) is maximal.
If there is a set of solutions z; C F which satisfies Step 1, then

Step 2:

ve(F*) = 722111 ,~ gwg . {z:(Z)} (39)
and then I» = {i1,i2}, where i is the index for which the value of z;(z) in this
step is maximal.
If there is a set of solutions z,—; C F which satisfies Step r — 1 then
Step r:

v(Z7) = fen:ﬁl i mimjril {zi(z)} (40)
and then I, = {I,._1,%,}, where ¢, is the index for which the value of z;(Z) in the
rth step is maximal.
If there is a set of solutions z_y C F which satisfies Step k£ — 1, then
Step k:

vp(z™) = iren:ﬁl zi(z) e ﬁaflkil forielandi ¢ I_y (41)
where v1(Z*),...,vr(Z) is the set of optimal values of fractional deviations or-
dered non-increasingly.

This optimum can be described in words as follows. Knowing the extremes of the
objective functions which can be obtained by solving the optimization problems for
each criterion separately, the desirable solution is the one which gives the smallest
values of the relative increments of all the objective functions.

The point Z* € F which satisfies the equations of all the previous steps may be
called the best compromise solution considering all the criteria simultaneously and
on equal terms of importance.

Applications

Hajela and Lin [1992] included the weights of each objective in the chromosome,
and promoted their diversity in the population through fitness sharing. Their goal
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was to be able to simultaneously generate a family of Pareto optimal designs cor-
responding to different weighting coefficients in a single run of the GA. Besides
using sharing, Hajela and Lin used a vector evaluated approach based on VEGA
to achieve their goal. They proposed the use of a utility function of the form:

l F
u=>" WF— (42)
=1 ?

where F}" are the scaling parameters for the objective criterion, ! is the number
of objective functions, and W, are the weighting factors for each objective function
F;.

Hajela’s approach also uses a sharing function of the form expressed in equa-
tion (9), with @ = 1, and ospare chosen between 0.01 and 0.1. Under Hajela’s
representation, weight combinations are incorporated into the chromosomic string,
and a single number represents not the weight itself, but a combination of weights.
For example, the number 4 (under floating point representation) could represent the
vector X,, = (0.4,0.6) for a problem with two objective functions. Then, sharing
is done on the weights.

Finally, a mating restriction mechanism was imposed, to avoid members within
a radius opmqt to cross. The value of o,pq: = 0.15 was suggested by Hajela and Lin
in their paper [1992].

Hajela and Lin [1992] used their approach to optimize a 10-bar plane truss in
which weight and displacemente were to be minimized, and a wing-box structure in
which they wanted to minimize its weight while maximizing its natural frequency.

Criticism

This approach can create a very high selection pressure if certain combinations of
weights are produced at early stages of the search [Coello 1996]. The use of sharing
will avoid to a certain extent to have a premature convergence, but the use of a

sharing factor (which is not easy to determine) increases the number of parameters
required by the GA, and is therefore subject to further experimenting.

5.6 Two Variations of the Weighted Min-Max Strategy

Coello [1996, 1997] proposed two variations of the weighted min-max strategy used
by Hajela and Lin. In his first approach, the decision maker has to provide a
predefined set of weights that will be used to spawn several small subpopulations
that will evolve separately (and concurrently), trying to converge to a single point
of the Pareto front each. Mating restrictions were imposed to guarantee feasibility
of all the solutions, and constraints were handled by not allowing the generation of
any infeasible solutions through the evolution process. This approach also requires
the knowledge of the ideal vector, or some estimate of it that lies in the feasible
region.

In a second approach, Coello [1996] proposed the use of a local ideal vector that
was computed at each generation, and the selection process was modified as to allow
the incorporation of min-max dominance. That means that a certain individual
would be considered the winner of a tournament if its maximum deviation from
the ideal vector was the smallest from the set under competition. Also, mating
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restrictions were imposed to keep only feasible solutions at all generations. Finally,
sharing had to be used to overcome the high selection pressure introduced by the
use of min-max tournament selection.

Applications

Coello and Christiansen applied these two approaches to the optimization of I-
beams [1999] and manufacturing problems [1998], and to the design of a robot arm
[1998].

Criticism

The use of weights obviously represents a problem, because it is not always easy to
find an appropriate set that can delineate correctly the part of the Pareto region
that we wish to find. However, Coello [1996] showed through several engineering
design examples that it was actually possible to find a good approximation of
the Pareto front with a relatively small amount of weights chosen systematically
(using a deterministic technique). The use of mating restrictions and feasibility
checks during the entire evolution process may be seen as an important drawback,
since it has been shown that such constraint-handling approach will not work in
concave search surfaces. However, this was an attempt to incorporate the handling
of constraints into the search process in another way different from the traditional
penalty approach, and it does not preclude the algorithm from handling constraints
in a different manner.

The second approach, in which weights are not used, is much more efficient
and produces good Pareto fronts [Coello 1996]. However, its main drawback is its
dependence on the value of ggpqre, but the idea of using a utility function that is
dynamically modified, as in this case, has also been exploited more recently by other
researchers [Valenzuela-Rendén and Uresti-Charre 1997; Bentley and Wakefield
1997; Greenwood et al. 1997].

5.7 Use of the Contact Theorem to detect Pareto Optimal Solutions

Osyczka and Kundu [1995] proposed the use of an algorithm based on the contact
theorem (one of the main theorems in multiobjective optimization [1976]) to de-
termine relative distances of a solution vector with respect to the Pareto set (in
fact, this approach has been called “distance method” because of this characteristic
[Kundu and Osyczka 1996]).

Initially, a solution is generated at random and it is considered as Pareto optimal.
Its fitness is d;, which is an arbitrarily chosen value called the starting distance
[Osyczka and Kundu 1995]. Then, more solutions are generated and a “distance”
value is computed for each of them using the formula:

k P N 2
z(z) = Z(“—W) . forl=1,2,...1, (43)
i=1 il
where k is the number of objectives, and [, is the number of Pareto optimal
solutions found so far.
In the following step, the minimum value from the set {z;(Z)}, and its correspond-
ing index [* are found. This value is called zj+(z). This procedure will identify which
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of the Pareto solutions is closest to the newly generated solution. Then, we have
to verify if the newly generated solution is Pareto optimal; if that is the case, then
its fitness is computed using:

Fitness = di= + 21+ () (44)

where d;+ will be an arbitrary value at the beginning of the process (as indicated
before). After the first generation, d; is defined using the maximum value of the
distances from all existing Pareto solutions.

If the newly generated solution is not a Pareto solution, then its fitness is com-
puted using;:

Fitness = dj» — z1+ () (45)

and Fitness = 0 in case a negative value results from this expression.

This approach is in a way, very similar to the Min-Max approach previously
described, only that in this case no weights are required for each objective, nor a
sharing function is needed to keep diversity in the population.

Applications

The method has been applied to control [Kundu et al. 1996] and structural engi-
neering [Kundu 1996] problems by its authors.

Criticism

Although this approach does not require an explicit sharing function, it is highly
sensitive to the values of the penalty factor used to incorporate the constraints
into each objective function, and its performance relies heavily on the starting
distance, which is some sort of scaling factor used to compare relative quality among
the different solutions. If any of these 2 values is not chosen properly, too much
selection pressure may be generated, or the GA may often jump back and forth
between the feasible and infeasible region at any given generation, producing too

many dominated points in the process, and consequently losing portions of the
Pareto front.

5.8 A Non-Generational Genetic Algorithm

Valenzuela-Rendén & Uresti-Charre [1997] proposed a GA that uses non-generational
selection and in which the fitness of an individual is calculated incrementally. The
idea comes from Learning Classifier Systems (LCS) [Goldberg 1989], in which it
has been shown that a simple replacement of the worst individual in the population
followed by an update of fitnesses of the rest of the population works better than a
traditional (generational) GA. In the context of multiobjective optimization, what
Valenzuela-Rendén and Uresti-Charre did was to transform the problem with N
objectives into another one with only two objectives : the minimization of domi-
nation count (weighted average of the number of individuals that have dominated
this individual so far) and the minimization of the moving niche count (weighted
average of the number of individuals that lie close according to a certain sharing
function). Then, this bi-objective optimization problem is transformed into a single
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objective optimization problem by taking a linear combination of these 2 objectives.

The basic algorithm is the following [Valenzuela-Rendén and Uresti-Charre 1997]:

(1) During the initialization of the population, each individual is compared to P
randomly selected individuals (P can be seen as the tournament size used in
tournament selection [Goldberg and Deb 1991]). After these comparisons take
place, the domination count is set to the number of individuals that dominated
each other individual in the group. Similarly, the moving niche count is up-
dated, using a certain measurement of closeness (normally a distance among
their fitness values) among individuals.

(2) Loop an arbitrary number of times L, and perform a comparison at each step
of the loop, while the following is done:

Update fitness of each individual ¢ using;:

fitness; = cqd; + cyw; (46)

where d; is the domination count, w; is the moving niche count, and ¢4 and
¢y are constants (arbitrarily chosen) that express the compromise between
the two final objectives.

Update the domination count using;

d(t+ 1) = d(t) — had(1) + D(1) (47)

where kg was set to zero in Valenzuela’s experiments, and D(t) was set to
1 if the individual was dominated in comparison ¢ (¢ may be seen as the
iteration number, or the generation number in a generational GA) or to zero
otherwise.

—Update the moving niche count using;

w(t+ 1) = w(t) — kyw(t) + sharing(d) (48)

% in Valenzuela’s experiments and sharing(d) refers to

the sharing expression used, based on the distance d allowed among individ-
uals to consider them part of a different niche. The sharing function used by
Valenzuela-Rendén and Uresti-Charre is the same as the one used by Hajela
and Lin [1992] that has been explained before.
Perform proportional selection according to the maximum fitness in the pop-
ulation.

—Apply crossover and mutation, and produce a single new individual that will
replace the worst individual in the current population (i.e., the individual
with lowest fitness).

where k,, was set to

Applications

Valenzuela-Rendén and Uresti-Charre [1997] obtained better results than NPGA
[1993] (see below) in 3 bi-objective optimization problems, both in terms of the
number of points in the Pareto front at the final iteration, and in terms of the
total number of function evaluations. However, no further comparisons with other
methods or in problems with more objectives was provided.
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Criticism

This approach is really a more elaborate version of the weighted ranking techniques
used by Bentley and Wakefield [1997], particularly the technique that they called
weighted average ranking (WAR). Even when this approach seems to provide good
distributions, it does not seem feasible to incorporate in it preferences of objectives
defined by decision maker, which may be a drawback in real-world applications.
Also, it does not seem to be clear how to define the additional parameters required
by this algorithm, which seem to be subject to empirical fine tuning as the other
normal parameters of the GA (e.g., crossover and mutation rates).

5.9 Use of randomly generated weights and elitism

Ishibuchi and Murata [1996] proposed an algorithm similar to Hajela’s weighted
min-max technique, but the weights were generated in a slightly different way in
this case, and the set of non-dominated solutions produced at each generation
was kept separately from the current population. The complete algorithm is the
following:

(1) Generate the initial population randomly.

(2) Compute the values of the p objectives for each individual in the population.
Then determine which are the non-dominated solutions and store them in a
separate population that we will call NOND to distinguish it from the current
population, that we will denominate CURRENT.

(3) If N represents the number of non-dominated solutions in NOND, and M is the
size of CURRENT, then we select (M — N) pairs of parents using the following
procedure:

—Let 71, 79, ..., 71 be k random numbers in the interval [0,1]. The fitness
function used for each individual is:

P
f(@) = wifi(2) (49)
i=1
where p is the number of objectives, and

r;
- (ri+ra+...+rp)
for+ =1,2,...,p. This ensures that all w; > 0 (for+ =1,2,...,p) and that

(50)

w;

Dy wi=1 (51)

%

—Select a parent with probability:

£(Z) = fmin(CURRENT)
>veccvrrent{f(E) = fmin(CURRENT)}

where fpin is the minimum fitness in the current population.

P(z) =

(52)



An Updated Survey of GA-Based Multiobjective Optimization Techniques . 29

(4) Apply crossover to the selected (M — N) pairs of parents. Apply then mutation
to the new solutions generated.

(5) Randomly select E solutions from NOND. Then add the selected E solutions to
the (M — N) solutions generated in the previous step to construct a population
of size M.

(6) Since the goal of this work was to apply the GA to combinatorial optimization
problems, the authors proposed the use of a local search procedure in which for
each individual a set of solutions within a certain neighborhood were examined
and if any of them was better than the current individual, then it would replace
it. Local search was applied to the M individuals in CURRENT.

(7) Finish if a pre-specified stopping criterion is satisfied (e.g., the pre-defined
maximum number of generations has been reached). Otherwise, return to step
2.

Applications

Ishibuchi and Murata [1996] used this technique to solve bi-objective optimization
flowshop scheduling problems in which the makespan and maximum tardiness were
to be minimized.

Criticism

This approach is very similar to the technique called Sum of Weighted Rations
(SWR) by Bentley and Wakefield [1997] and to the attribute value functions used
by Greenwood et al. [1997]. Bentley and Wakefield [1997] claim that this approach
maintains enough diversity as to keep a wide spread of solutions through many
generations. However, Coello [1996] has shown (using a similar approach), that
such spread may not be kept in problems in which there is an objective in the
ideal vector that can be easily achieved by a wide set of solutions. In such case,
it is necessary to use sharing techniques or a local search technique (as proposed
by Ishibuchi and Murata [1996]) to keep diversity. Bentley and Wakefield [1997]
showed also another variation of this algorithm called Sum of Weighted Global
Ratios (SWGR) which visibly reduces the spread of solutions produced (i.e., the
size of the Pareto set) by using the globally best and worst values instead of the
current ones. The idea is nevertheless interesting and the implementation of this
algorithm seems to be not only easy, but also quite efficient with respect to most
of the Pareto-based approaches described next.

6. PARETO-BASED APPROACHES

The idea of using Pareto-based fitness assignment was first proposed by Goldberg
[1989] to solve the problems of Schaffer’s approach. He suggested the use of non-
domination ranking and selection to move a population toward the Pareto front in
a multiobjective optimization problem. The basic idea is to find the set of strings in
the population that are Pareto non-dominated by the rest of the population. These
strings are then assigned the highest rank and eliminated from further contention.
Another set of Pareto nondominated strings are determined from the remaining
population and are assigned the next highest rank. This process continues until
the population is suitably ranked. Goldberg also suggested the use of some kind of
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niching technique to keep the GA from converging to a single point on the front.
A niching mechanism such as sharing [Goldberg and Richardson 1987] would allow
the GA to maintain individuals all along the non-dominated frontier.

Applications

Hilliard et al. [1989] used a Pareto optimality ranking method to handle the ob-
jectives of minimizing cost and minimizing delay in a scheduling problem. They
tentatively concluded that the Pareto optimality ranking method outperformed
the VEGA method. The Pareto method was found to be superior to a VEGA by
Liepins et al. [1990] when applied to a variety of set covering problems. Ritzel et al.
[1994] also used non-dominated ranking and selection combined with deterministic
crowding [Mahfoud 1992] as the niching mechanism. They applied the GA to a
groundwater pollution containment problem in which cost and reliability were the
objectives. Though the actual Pareto front was unknown, Ritzel et al. used the
best trade-off surface found by a domain-specific algorithm, called MICCP (Mixed
Integer Chance Constrained Programming), to compare the performance of the GA.
They found that selection according to Pareto non-domination was superior to both
VEGA and non-domination with deterministic crowding, at least for finding points
near or on the front found by MICCP. Stanley and Mudge [1995] implemented
Goldberg’s Pareto ranking technique to solve a microprocessor design problem in
which the constraints were handled as additional objectives.

Criticism

The main problem with Pareto ranking in general is that there is no efficient al-
gorithm to check for non-dominance in a set of feasible solutions [Coello 1996].
Traditional algorithms have serious degradation in performance as we increase the
size of the population and the number of objectives. Also, the use of sharing makes

necessary to be able to estimate the value of ggpgre, Which is not easy, and the
performance of the method relies a lot on such value.

6.1 Multiple Objective Genetic Algorithm

Fonseca and Fleming [1993] have proposed a scheme in which the rank of a certain
individual corresponds to the number of chromosomes in the current population
by which it is dominated. Consider, for example, an individual z; at generation
t, which is dominated by pgt) individuals in the current generation. Its current
position in the individuals’ rank can be given by [Fonseca and Fleming 1993]:

rank(z;,t) =1 +p£t) (53)

All non-dominated individuals are assigned rank 1, while dominated ones are
penalized according to the population density of the corresponding region of the
trade-off surface.

Fitness assignment is performed in the following way [1993]:

(1) Sort population according to rank.

(2) Assign fitness to individuals by interpolating from the best (rank 1) to the
worst (rank n < N) in the way proposed by Goldberg [1989], according to
some function, usually linear, but not necessarily.
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(3) Average the fitnesses of individuals with the same rank, so that all of them
will be sampled at the same rate. This procedure keeps the global population
fitness constant while maintaining appropriate selective pressure, as defined by
the function used.

As Goldberg and Deb [1991] point out, this type of blocked fitness assignment
is likely to produce a large selection pressure that might produce premature con-
vergence. To avoid that, Fonseca and Fleming used a niche-formation method to
distribute the population over the Pareto-optimal region, but instead of performing
sharing on the parameter values, they have used sharing on the objective function
values [Srinivas and Deb 1994].

In this approach, it is possible to evolve only a certain region of the trade-off
surface, by combining Pareto dominance with partial preference information in the
form of a goal vector. While the basic ranking scheme remains unaltered, as we
perform a Pareto comparison of the individuals, then those objectives which already
satisfy their goals will not be selected. If we specify fully unattainable goals, then
objectives will never be excluded from comparison. Changing the goal values during
the search alters the fitness landscape accordingly and allows the decision maker to
magnify a particular region of the trade-off surface [Fonseca and Fleming 1993].

Applications

MOGA has been used by several researchers in the past. For example, Chen Tan
and Li [1997] reported success in the use of MOGA for the multiobjective opti-
mization of ULTIC controllers that satisfy a number of time domain and frequency
domain specifications. Also, Chipperfield and Fleming [1995] reported success in us-
ing MOGA for the design of a multivariable control system for a gas turbine engine.
Obayashi [1997] used Pareto ranking with phenotypic sharing and best-N selection
(the best N individuals are selected for the next generation among N parents and
N children) for the aerodynamic design of compressor blade shapes. Rodriguez
Vazquez et al. [1997] extended MOGA to use it in genetic programming, intro-
ducing the so-called MOGP (Multiple Objective Genetic Programming). Genetic
programming [Koza 1992] replaces the traditional linear chromosomic representa-
tion by a hierarchical tree representation that, by definition, is more powerful, but
also requires larger population sizes and specialized operators. MOGP was used
for the identification of non-linear model structures, as an alternative that the au-
thors reported to work better (in terms of representation power) than the use of
the conventional linear representation of MOGA that they had attempted before
[Fonseca and Fleming 1996a]. Aherne et al. [1997] used MOGA to optimize the
selection of parameters for an object recognition scheme called the Pairwise Geo-
metric Histogram paradigm. Todd and Sen [1997] used a variant of MOGA for the
preplanning of containership layouts (a large scale combinatorial problem). In Todd
and Sen’s approach, a population of non-dominated individuals is kept and updated
at each generation, removing individuals that become dominated and duplicates.
The traditional genetic operators and sharing are applied only to this population.
Niche sizes are computed automatically for each criterion by substracting the max-
imum value for that criterion from the minimum and dividing it by the population
size. Crossover was restricted so that only individuals that were very similar could
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Fig. 8. Flowchart of the Nondominated Sorting Genetic Algorithm (NSGA).

mate, and because of the permutations encoded, a repair algorithm had to be used
afterwards. Finally, a heuristic mutation that basically defined rules to exchange
bit positions had to be used to avoid premature convergence of the population.

Criticism

In MOGA, sharing is done on the objective value space, which means that two dif-
ferent vectors with the same objective function values can not exist simultaneously
in the population under this scheme. This is apparently undesirable, because these
are precisely the kind of solutions that the user normally wants, although it should
be said that the method works quite well in practice [Coello 1996].

MOGA is a good approach, efficient and relatively easy to implement, but as
all the other Pareto ranking techniques, its performance is highly dependent on an
appropriate selection of gspere. However, it is important to add that Fonseca and
Fleming [1993] have developed a good methodology to compute such value using
their approach.
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6.2 Non-dominated Sorting Genetic Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srinivas
and Deb [1993], and is based on several layers of classifications of the individuals.
Before the selection is performed, the population is ranked on the basis of non-
domination: all nondominated individuals are classified into one category (with a
dummy fitness value, which is proportional to the population size, to provide an
equal reproductive potential for these individuals). To maintain the diversity of the
population, these classified individuals are shared with their dummy fitness values.
Then this group of classified individuals is ignored and another layer of nondomi-
nated individuals is considered. The process continues until all individuals in the
population are classified. A stochastic remainder proportionate selection was used
for this approach. Since individuals in the first front have the maximum fitness
value, they always get more copies than the rest of the population. This allows to
search for nondominated regions, and results in quick convergence of the population
toward such regions. Sharing, by its part, helps to distribute it over this region.
The efficiency of NSGA lies in the way in which multiple objectives are reduced
to a dummy fitness function using a nondominated sorting procedure. With this
approach, any number of objectives can be solved [Srinivas and Deb 1994], and
both maximimization and minimization problems can be handled. Figure 8 shows
the general flow chart of this approach.

Applications

Périaux et al. [1997] used the NSGA to find an optimal distribution of active control
elements which minimizes the backscattering of aerodynamic reflectors. Vedarajan
et al. [1997] used the NSGA for investment portfolio optimization, but interestingly
they used binary tournament selection instead of stochastic remainder selection
as suggested by Srinivas and Deb [1993]. The authors claim that this approach
worked well in their examples, although they do not provide any argument for their
choice of selection strategy. Tournament selection is expected to introduce a high
selection pressure that may dilute the effect of sharing. However, since Vedarajan
et al. used fairly large population sizes (above 1000 individuals), the counter-
effect of tournament selection may had been absorbed by the extra individuals in
the population. Michielssen and Weile [1995] used also the NSGA to design an
electromagnetic system.

Criticism

In this case, sharing is done in the parameter values instead of the objective values,
to ensure a better distribution of individuals, and to let multiple equivalent solutions
exist. However, this technique is more inefficient (both computationally and in

terms of quality of the Pareto fronts produced) than MOGA, and more sentitive to
the value of the sharing factor ospare [Coello 1996].

6.3 Niched Pareto GA

Horn and Nafpliotis [1993] proposed a tournament selection scheme based on Pareto
dominance. Instead of limiting the comparison to two individuals, a number of
other individuals in the population was used to help determine dominance (typically
around 10). When both competitors were either dominated or non-dominated (i.e.,
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there was a tie), the result of the tournament was decided through fitness sharing
[Goldberg and Richardson 1987]. Population sizes considerably larger than usual
with other approaches were used so that the noise of the selection method could be
tolerated by the emerging niches in the population [Fonseca and Fleming 1994].

The pseudocode for Pareto domination tournaments assuming that all of the
objectives are to be maximized is presented below [Horn and Nafpliotis 1993]. S is
an array of the N individuals in the current population, random_pop_index is an
array holding the N indices of S, in a random order, and t4om is the size of the
comparison set.

function selection /* Returns an individual from the current population S */
begin
shuffle(random _pop.index); /* Re-randomize random index array */
candidate.l = random_pop-index[1];
candidate2 = random_pop_index[2];
candidate_1_dominated = false;
candidate_2_dominated = false;
for comparison_set_index = 3 to tgom + 3 do
/* Select tgom individuals randomly from S */
begin
comparison.individual = random_pop-index|[comparison_set_index]|;
if S[comparison_individual] dominates S[candidate_1]
then candidate_1_dominated = true;
if S[comparison_individual] dominates S[candidate_2]
then candidate 2_dominated = true;
end /* end for loop */
if ( candidate_1_.dominated AND = candidate_2_dominated )
then return candidate 2;
else if ( — candidate_l_dominated AND candidate 2_dominated )
then return candidate_l;
else
do sharing;

end

The values of tgom and ospare should be provided by the user. Equivalence class
sharing [Horn and Nafpliotis 1993] is done on the attribute values (i.e., on the
vector of objective function values), and it should be implemented according to the
following algorithm [Horn and Nafpliotis 1993]:

function selection
begin

else if nichecount|candidate_1] > nichecount[candidate 2]
then return candidate_2;
else return candidate_l1;
end
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The value of nichecount is generated by the equivalence class sharing algorithm.
The idea is that the best individual will be the one that has the least number of
individuals in its niche and thus the smallest niche count.

Horn and Nafpliotis [1993] arrived at a form of fitness sharing in the objective
domain, and suggested the use of a metric combining both the objective and the
decision variable domains, leading to what they called nested sharing.

Applications

Belegundu et al. [1994] used the NPGA for the design of laminated ceramic com-
posites. Poloni and Pediroda [1997] used it for the design of a multipoint airfoil that
has its minimum drag at two given lift values with a constraint in the maximum
allowed pitching moment. A variation of the NPGA was proposed by Quagliarella
and Vicini [1997]. They introduced the dominance criteria of the problem in the
selection mechanism (as in the NPGA), but then selected the individuals to be re-
produced to generate the following population using a random walk operator. This
obviously produces a locally dominating individual rather than a globally dominat-
ing one. Additionally, if more than one non dominated individual is found, then the
first one encountered is selected (instead of doing sharing like in the NPGA). At
the end of every new generation, the set of Pareto optimal solutions is updated and
stored. They used this approach for airfoil design [Quagliarella and Vicini 1997].

Criticism

Since this approach does not apply Pareto selection to the entire population, but
only to a segment of it at each run, the technique is very fast and produces good
non-dominated runs that can be kept for a large number of generations [Coello
1996]. However, besides requiring a sharing factor, this approach also requires a

good choice of the value of t4,,, to perform well, complicating its appropriate use
in practice.

7. FUTURE RESEARCH PATHS

Although a lot of work has been done in this area, most of it has concentrated
on application of conventional or ad-hoc techniques to certain difficult problems.
Therefore, there are several research issues that still remain to be solved, some
which will be briefly described next:

—Since the size of the Pareto set is normally considerably large, and in the par-
ticular case of using a genetic algorithm, depends on the size of the population,
it may be desirable in some cases to devise ways of reducing the number of el-
ements in such set, in order to facilitate the analysis for the decision maker.
Kunha, Oliveira and Covas [1997] proposed the incorporation of Roseman and
Gero’s algorithm [1985] into the GA to cluster together points that are within a
certain distance (defined by the user) of each other in the Pareto front.
Probably one of the most difficult problems in multiobjective optimization is to
determine how to measure the quality of a solution. So far, practically visual
inspection is the only technique used, unless there is some previous knowledge
of the points which lie in the Pareto front (in which case there is obviously no
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need for a multiobjective optimization technique). Fonseca and Fleming [1996b]
proposed the definition of certain (arbitrary) goals that we wish the GA to attain;
then we can perform multiple runs and apply standard non-parametric statistical
procedures to evaluate the quality of the solutions (i.e., the non-dominated fronts)
produced by the technique under study, and/or compare it against other similar
techniques. However, these arbitrary goals are not easy to define either, and more
work needs to be done to develop a good and fair way of measuring the quality
of the solutions produced by different multiobjective optimization approaches.

—In some cases it may be necessary to be able to assign more importance to certain
objective or objectives. Interestingly, in such cases, an aggregating approach al-
lows us to change the importance of the objectives very easily, as opposed to any
ranking technique (i.e., Pareto-based approaches) which normally do not provide
the means to do it directly. Fonseca and Fleming [1993] proposed the use of a
utility function combined with MOGA [Fonseca and Fleming 1994; Fonseca and
Fleming 1995c¢] to produce a method for the progressive articulation of prefer-
ences. The idea that they proposed was to have a feedback loop between the
decision maker and the GA, so that certain solutions (from the Pareto set) are
given more preference than others. Ideally, such process could be done automati-
cally by replacing the decision maker with an expert system [1993]. The problem
with Fonseca’s approach is that it requires previous knowledge of the ranges of
each objective function, which could be excessively expensive or even impossible
to obtain in some cases.

Bentley and Wakefield [1997] proposed the use of weights to estimate the impor-
tance of solutions that are already identified as Pareto optimal, in an attempt
to overcome the problems with Fonseca’s approach. Also, in a more elaborate
approach, Greenwood et al. [1997] proposed a compromise between the aggre-
gated approach (i.e., the use of weights) and ranking techniques in which the
level of preference may be defined. Greenwood et al. [1997] used an approach
called specified multi-attribute value theory (ISMAUT) [White et al. 1984] which,
combined with a GA, allows the definition of preferences by the GA itself, rather
than asking the intervention of the decision maker. However, the decision maker
still gets to decide what particular area of the trade-off surface wants to explore,
so that the GA constraints the search to that specific area. Additionally, Green-
wood et al. [1997] defined a certain metrics that allows us to obtain a single value
(or utility function) that will guide the search to the particular Pareto region that
is of interest to the decision maker.

Finally, Voget and Kolonko [1998] proposed the use of a fuzzy controller that
regulates the selection pressure automatically by using a set of predefined goals
that define the ‘desirable’ behavior of the population. An interesting aspect of
this work is that they actually combine Pareto ranking with VEGA during the
same run of the GA, to allow the desired reduction of deviations from the goals
specified by the authors [1998].

These 3 proposals are quite interesting, but still more work needs to be done
in this area, preferrently with real-world problems (Fonseca’s approach was an
appropriate choice for the optimization of a gas turbine engine [1993], and Green-
wood et al. [1997] showed that their approach performed well in two hard-
ware/software codesign problems), so that more general guidelines can be derived
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from the different approaches proposed.

—Directly related to the problem of measuring the quality of the solutions found
with a multiobjective optimization technique lies the need to have a set of bench-
mark problems that can be used to test existing and new approaches. This set
should include both constrained and unconstrained problems®, examples with
few objectives (2 or 3) suitable for graphical inspection, problems with few and
several variables, and problems in which is possible to achieve the ideal vector
(these could be used to tune up any technique to be tried). Also, there is a need
to perform detailed studies of performance of different GAs (assuming certain
quality measures) using these benchmark problems, and derive more accurate
information on the behavior of each of the algorithms used. Coello [Coello 1996]
conducted a study of this type using several engineering design problems, but it
is necessary to design more general test problems.

It is also important to define stopping criteria for a GA-based multiobjective op-
timization technique, because it is not obvious to know when the population has
reached a point from which no further improvement can be reached. Currently,
the main approaches used to stop this kind of GA haven been to either use a
fixed number of generations, or to monitor the population at certain intervals and
interpret visually the results to determine when to halt the evolution process.

—The use of sharing in these techniques introduces another problem, because the
value of ospare becomes another parameter with which the user has to experi-
ment until a reasonable setting is found. Even when important work has been
done in this area (see for example Deb and Goldberg [1989] and Fonseca & Flem-
ing [1993]), most of that research is focused on single-objective optimization, or
multimodal optimization.

—Some researchers have also found alternative applications of multiobjective opti-
mization techniques that are quite interesting. The most remarkable is perhaps
the attempt to use ranking techniques or similar approaches to handle constraints
in a single objective optimization problem, as to avoid the use of penalty func-
tions. Surry et al. [1995] proposed the COMOGA (Constrained Optimization
by Multi-Objective Genetic Algorithms) approach, which treats each constraint
as a separate objective and therefore transforms a constrained single objective
optimization problem into an unconstrained multi-objective optimization prob-
lem, which is solved using Fonseca’s MOGA [1993]. This approach was used by
Surry et al. to optimize gas supply networks [1995]. Fonseca and Fleming [1995a]
also proposed to handle constraints as objectives, and applied their approach to
the design of a gas turbine [1995b]. Finally, Stanley and Mudge [1995] used also
Pareto ranking to handle constraints treated as objectives in a combinatorial
optimization problem (microprocessor design).

—Finally, a very important topic that has been only scarcely addressed by re-
searchers in multiobjective optimization is the development of a theory that can
explain issues such as the effect of the parameters used (i.e., population size,

SMost current papers that introduce new GA-based multiobjective optimization techniques, use
2 or 3 simple unconstrained bi-objective functions, particularly those used originally by Schaffer

[1985].
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crossover and mutation rates, and niche sizes) and the way in which the selection
technique adopted affects the performance of an algorithm.

8. CONCLUSIONS

This paper has attempted to provide a comprehensive review of the most popu-
lar evolutionary-based approaches to multiobjective optimization, giving also some
insights of their Operations Research roots, a brief description of their main al-
gorithms, their advantages and disadvantages, and their possible range of applica-
bility. Additionally, some representative real-world applications of each approach
(when found) have also been included, together with a very rich bibliography that
should be enough to guide a newcomer into this important and growing area of
research.

In the final section of the paper, the most promising areas of future research
(according to the author’s opinion) were briefly described, and some of the work
already done around them has also been briefly addressed.
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