Engineering Optimization
Vol. 00, No. 00, January 2005, 1-26

Cultural Algorithms, an Alternative Heuristic to Solve the
Job Shop Scheduling Problem

Daniel Cortés Rivera, Ricardo Landa Becerra, Carlos A. Coello Coello*
CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Ingenieria Eléctrica
Seccién de Computacién
Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco
México D.F. 07300, México
Tel. +52 55 5061 3800 x 6564
Fax +52 55 5061 3757
email: {dcortes, rlanda}@computacion.cs.cinvestav.mx
ccoello@cs.cinvestav.mx
(February 2006)

In this work, an approach for solving the job shop scheduling problem using a cultural algorithm is
proposed. Cultural algorithms are evolutionary computation methods that extract domain knowledge
during the evolutionary process. Additional to this extracted knowledge, the proposed approach also
uses domain knowledge given ‘a priori’ (based on specific domain knowledge available for the job
shop scheduling problem). The proposed approach is compared with respect to a Greedy Randomized
Adaptive Search Procedure (GRASP), a Parallel GRASP, a Genetic Algorithm, a Hybrid Genetic
Algorithm, and a deterministic method called shifting bottleneck. The cultural algorithm proposed
in this paper is able to produce competitive results with respect to the two approaches previously
indicated at a significantly lower computational cost than at least one of them and without using
any sort of parallel processing.

Keywords: job shop scheduling; cultural algorithms; metaheuristics; evolutionary algorithms;
evolutionary programming

* Corresponding author

1 Introduction

Scheduling problems constitute a very important class within combinatorial
optimization because of their complexity and their frequency in real-world
applications. The purpose of scheduling (in general) is to allocate a set of
(limited) resources to tasks over time (Pinedo 1995). Scheduling has been a
very active research area during several years, both in the operations research
and in the computer science literature (Baker 1974, Bagchi 1999, Coffman
1976). Research on scheduling basically focuses on finding ways of assigning
tasks (or jobs) to machines (i.e. the resources) such that certain criteria are
met and certain objective (or objectives) function is optimized.

In the particular case of job shop scheduling, the tasks are jobs and the re-
sources are the machines used to perform such jobs. Each job has a technolog-
ical sequence and therefore requires to be processed in the machines following
a certain order, which is fixed for that problem. The machines cannot process
more than one job at a time, and once a machine has started a certain job,
it cannot be interrupted before the job is finished. The objectives to be opti-
mized in the case of job shop scheduling can be several, but the most common
are either minimizing the maximum makespan or the total makespan.

Several heuristics have been used for different types of scheduling problems
(e.g. job shop, flowshop, production, etc.): evolutionary algorithms (Yamada
and Nakano 1997, Cheng et al. 1996, 1999), tabu search (Barnes and Chambers
1995, Taillard 1989), simulated annealing (Laarhoven et al. 1992, Catoni 1998),
the ant system (Colorni et al. 1994), and artificial immune systems (Hart et al.
1998, Hart and Ross 1999, Cui et al. 2001), among others.

Note however, that this paper presents the first attempt (to the authors’ best
knowledge) to use cultural algorithms to solve job shop scheduling problems.
Cultural algorithms (Reynolds 1994) are a particular class of evolutionary al-
gorithm that use domain knowledge extracted during the evolutionary process
in order to improve the performance of the search engine (i.e. the evolutionary
algorithm) adopted. What we explore in this paper is the use of a combination
of knowledge extracted during the evolutionary search with some knowledge
that is inserted a priori because it is known to be useful in the job schedul-
ing problem. The main hypothesis in this regard was that the incorporation
of knowledge into an evolutionary algorithm would increase its performance
as to make it competitive with other approaches whose computational cost is
significantly higher.

The proposed approach is compared with respect to GRASP (Greedy Ran-
domized Adaptive Search Procedure), a parallel version of GRASP, a genetic
algorithm and a hybrid genetic algorithm with local search, in several test
problems taken from the specialized literature. The obtained results indicate
that the proposed approach is a viable alternative for solving efficiently job

shop scheduling problems.

The remainder of this paper is organized as follows: in Section 2 a brief
description of the statement of the problem is provided. Section 3 contains an
introduction to cultural algorithms which includes a description of their main
components and the main motivation to use them. Section 4 contains the de-
tails of the proposed approach to solve job shop scheduling problems using a
cultural algorithm. As part of this section, a description of the representation
of solutions adopted in this work is included, as well as the mechanisms imple-
mented to add domain knowledge to the evolutionary algorithm both before
and during the search process. Section 5 provides a comparative study. Finally,
Section 6 presents the general conclusions and some possible paths for future
research.

2 Problem Statement

The job shop scheduling problem (JSSP) can be defined in the following way:
let’s consider a set of jobs, j1,7j2,...,J, that need to be processed in a set
of machines, 1, o, ..., tm- The processing of job j, in the machine p, is an
operation that requires of a time 7,,. Each job has a technological sequence
(i.e. an order for the machines in which the job should be processed). Other
important constraints are that the processing of a job requires the exclusive use
of the machine in which it is located at that time. Additionally, the processing
of a job cannot be interrupted in a machine once started.

Since the number of jobs will be represented by n and the number of ma-
chines will be represented by m, the problem is denoted as n x m JSSP. A
schedule is then a set of duration times for each operation {04, }1<q<n,1<r<m
that satisfies the previously indicated conditions. The total duration time re-
quired to complete all the jobs (makespan) will be called L. The goal is then to
minimize L. For the purposes of the work reported in this paper, the objective
considered will be the minimization of the makespan (i.e. the time taken to
finish the last job available). In other words, the goal is to find a schedule that
has the minimum duration required to complete all the jobs (Baker 1974).

Garey and Johnson (1979) showed that the JSSP is an NP-hard problem
and within its class it is one of the least tractable problems (Bagchi 1999).
Several enumerative algorithms based on Branch € Bound have been applied
to JSSP. However, due to the high computational cost of these enumerative
algorithms, some approximation approaches have also been developed. The
most popular practical algorithm to date is the one based on priority rules
and active schedule generation (Jones and Rabelo 1998). However, other al-
gorithms, such as an approach called shifting bottleneck have been found to
be very effective in practice (Adams et al. 1988). Furthermore, a number of

heuristics have also been used in the JSSP, (e.g. genetic algorithms (Bagchi
1999, Yamada and Nakano 1997), tabu search (Barnes and Chambers 1995),
simulated annealing (Catoni 1998), and artificial immune systems (Hart and
Ross 1999), among others), as indicated before.

An instance of the JSSP can be formulated in tabular form as indicated in
Table 1, where a 3 x 3 problem is shown. The jobs are listed in the first column.
Each table entry indicates the machine in which a job must be processed
(based on its corresponding technological sequence) followed by a number in
parentheses that represents the time 7, , that takes to the job to be processed
in that machine.

3 Cultural Algorithms

Cultural algorithms were developed by Reynolds (1994) as a complement to
the metaphor used by evolutionary algorithms (Fogel 1995), which had focused
mainly on genetic and natural selection concepts.

Cultural algorithms are based on some theories originated in sociology and
archaeology which try to model cultural evolution (see for example (Renfrew
1994, Durham 1994)). Such theories indicate that cultural evolution can be
seen as an inheritance process operating at two levels: (1) a micro-evolutionary
level, which consists of the genetic material that an offspring inherits from its
parents, and (2) a macro-evolutionary level, which consists of the knowledge
acquired by individuals through generations. This knowledge, once encoded
and stored, is used to guide the behavior of the individuals that belong to a
certain population.

Culture can be seen as a set of ideological phenomena shared by a popu-
lation. Through these phenomena, an individual can interpret its experiences
and decide its behavior. In these models, it can be clearly appreciated the part
of the system that is shared by the population: the knowledge, acquired by
members of a society, but encoded in such a way that such knowledge can be
accessed by every other member of the society. And then there is an individual
part, which consists of the interpretation of such knowledge encoded in the
form of symbols. This interpretation will produce new behaviors as a conse-
quence of the assimilation of the corresponding knowledge acquired combined
with the experiences lived by the individual itself.

Reynolds (1994) attempts to capture this double inheritance phenomenon
through his proposal of cultural algorithms. The main goal of such algorithms
is to increase the learning or convergence rates of an evolutionary algorithm
such that the system can respond better to a wide variety of problems (Franklin
and Bergerman 2000).

Cultural algorithms operate in two spaces. First, there is the population

space, which consists of (as in all evolutionary algorithms) a set of individuals.
Each individual has a set of independent features that are used to determine
its fitness. Through time, such individuals can be replaced by some of their
descendants, which are obtained through the application of a set of operators
from the population.

The second space is the belief space, which is where the knowledge, acquired
by individuals through generations, is stored. The information contained in
this space must be accessible to each individual, so that they can use it to
modify their behavior. In order to join the two spaces, it is necessary to pro-
vide a communication link, which dictates the rules regarding the type of
information that must be exchanged between the two spaces.

The following is the pseudo-code of a cultural algorithm.

Generate the initial population
Initialize the belief space
Evaluate the initial population
repeat
Update the belief space (with the individuals accepted)
Apply the variation operators (under the influence of the belief space)
Evaluate each child
Perform selection
until the end condition is satisfied

Most of the steps of a cultural algorithm correspond with the steps of a tra-
ditional evolutionary algorithm. It can be clearly seen that the main difference
lies in the fact that cultural algorithms use a belief space. In the main loop of
the algorithm, the belief space must be updated. It is at this point in which
the belief space incorporates the individual experiences of a select group of
members of the population. Such a group is obtained with the function accept,
which is applied to the entire population.

On the other hand, the variation operators (such as recombination or muta-
tion) are modified by the function influence. This function applies some pres-
sure such that the children resulting from the variation operators can exhibit
behaviors closer to the desirable ones and farther away from the undesirable
ones, according to the information stored in the belief space.

These two functions (accept and influence) constitute the communication
link between the population space and the belief space. Such interactions can
be appreciated in Figure 1 (Reynolds 1999). The implementation details for
these functions in the current proposal are given in the next section.

In (Reynolds 1994), it is proposed the use of genetic algorithms (Goldberg
1989) to model the micro-evolutionary process, and Version Spaces (Mitchell

1978) to model the macro-evolutionary process of a cultural algorithm. This
sort of algorithm was called the Version Space guided Genetic Algorithm
(VGA). The main idea behind this approach is to preserve beliefs that are
socially accepted and discard (or prune) unacceptable beliefs. Therefore, if
a cultural algorithm for global optimization is applied, the acceptable beliefs
can be seen as constraints that direct the population at the micro-evolutionary
level (Michalewicz 1995).

In genetic algorithms’ theory, there is an expression, called schema theo-
rem (Holland 1975) that represents a bound on the speed at which the best
schemata of the population are propagated. Reynolds (1994) provided a brief
discussion regarding how could the belief space affect the schema theorem. His
conclusion is that by adding a belief space to an evolutionary algorithm, the
performance of such algorithm can be improved by increasing its convergence
rate. That constitutes the main motivation to use cultural algorithms. Despite
the lack of a formal mathematical proof of this efficiency improvement, there is
empirical evidence of such performance gains reported in the literature (see for
example (Chung and Reynolds 1998, Coello Coello and Landa Becerra 2002)).

4 Proposed Approach

The approach proposed in this paper uses, as its population space, the pop-
ulation adopted by evolutionary programming (Fogel 1999), together with
its selection and variation operators. The pseudo-code of this evolutionary
programming-based algorithm is shown next. The details about the culture
influenced mutation and the update of the belief space are discussed later in
this section.

Generate s random schedules (initial population)
Compute the makespan of each individual in the initial population
Initialize the belief space (copying the best individual to the belief space)
repeat
for each individual in current population do
Apply (culture influenced) mutation
Compute the makespan of the new individual
end for
for each individual in the populations of parents and offspring do
Randomly select ¢ opponents from the union of parents and children
Compare the individual with the ¢ opponents, and store its number of
victories
end for

Select the s individuals with the largest number of victories to conform
the new population
Update the belief space (with the individuals accepted)

until the end condition is satisfied

In evolutionary programming, there are s individuals in the original pop-
ulation (such individuals are randomly generated). In the main loop of the
evolutionary programming algorithm only mutation is applied besides selec-
tion. This is because this approach simulates evolution at the species level,
and different species do not recombine among themselves (Fogel 1995).

The mutation operator obtains a child from each of the individuals in the
population (i.e. s children are obtained). In the case of continuous optimiza-
tion, the mutation operator consists of adding Gaussian noise to each variable
(Coello Coello and Landa Becerra 2002). In this case, since a combinatorial
optimization problem is addressed, a set of exchanges in the sequence of the
operations is used as the mutation operator.

Selection in evolutionary programming consists of a set of tournaments.
For each individual in the population (including both parents and offspring),
a random sample of size ¢ is chosen, and each individual is compared with
respect to each member of this sample through ¢ binary tournaments. The
number of wins accumulated by each individual is stored. At the end of all
the tournaments, the s individuals with the largest number of victories are
selected to constitute the population at the next generation.

4.1 Representation

The representation adopted to encode the solutions plays a very important
role when applying an evolutionary computation technique (Rothlauf 2002,
Ronald 1997), and this issue plays a crucial role when specifically dealing with
the JSSP (Yamada and Nakano 1997). This is due to the fact that a solution
to the JSSP cannot be represented as a permutation as normally done in many
combinatorial optimization problems (Ronald 1995, Michalewicz 1996).

The use of a permutation-based representation would only be possible in
job shop scheduling if the problem to be solved only had one machine. In such
case, the n jobs would require to be processed in the only existing machine and
the different solutions would consist of the ordering in which the jobs would
be processed (this is precisely the ordering that could be represented using
a permutation). However, regardless of the processing order of the jobs, the
time taken to complete the last job (i.e. the makespan) is always the same, as
long as there are no pauses in the schedule.

For the general JSSP of size n x m, several types of possible encodings have

been proposed in the literature. Some examples are the use of binary encoding
(Nakano and Yamada 1991), the use of disjunctive graphs (Colorni et al. 1994),
and the permutations with repetitions (Bierwirth 1995).

Most of the existing encodings can generate invalid schedules and thus re-
quire a repair mechanism (Michalewicz and Schoenauer 1996). These repair
mechanisms tend to bias solutions towards a certain region of the search space
and are, therefore, not always advisable (Coello Coello 2002).

The permutation with repetitions has the advantage of never generating in-
valid schedules and that was precisely the main reason for which it was decided
to adopt it for this approach. This representation consists of a permutation in
which each component is repeated m times. The components of the permuta-
tion represent jobs as in the previous example of a single machine. However,
in this case, the k-th occurrence of a job indicates the k-th operation in the
technological sequence of such job. In Figure 2, an example of the decoding of
a permutation with repetitions for the problem described in Table 1 is shown.

The main disadvantage of this representation is that different permutations
can encode the same schedule. In the experiments performed, we found that
this redundancy in the encoding is not a serious drawback when the search
space is properly explored. However, this remains as an issue that must be
considered when adopting this representation.

4.2 Domain Knowledge Added a priori to the Algorithm

In order to incorporate domain knowledge into the proposed algorithm, two
mechanisms were used. The first of them involves adding knowledge a priori
(i.e., before actually running the algorithm), whereas the second one involves
extracting information during the execution of the algorithm following the
traditional model of a cultural algorithm.

Next, we describe the addition of a priori domain knowledge. This mech-
anism is integrated during the evaluation of a new individual. First, a semi-
active schedule is defined as that in which the operations are performed as
soon as possible, but without changing the ordering of the schedule. For ex-
ample, in Figure 2, the operation of job 1 in machine 2 can start at the same
time as the operation of the job 2 in machine 1, since machine 2 is not busy
at the moment and the technological sequence of job 1 is accomplished.

However, it may be the case that a semi-active schedule has long pauses in
the use of some of the machines. In some cases, it is possible that some of
the jobs can be traversed to fill up that pause, thus reducing the makespan of
the schedule. This traversal movements are generically called permissible left
shifts. A schedule to which it is not possible to apply more permissible left
shifts is called active. The search of active schedules through permissible left
shifts considerably reduces the search space and it is, therefore, advisable.

In the algorithm proposed in this paper, permissible left shifts are applied
during the evaluation of an individual. The individual to be evaluated is ap-
plied all the permissible left shifts possible. When all the permissible left shifts
are applied to the decoded schedule, the permutation with repetitions string
is reordered, in order to obtain a new string where no left shifts need to be
applied.

In Figure 3, we show an example of the aplication of permissible left shitfs
to obtain an active schedule for the problem depicted in Table 1.

This process is called insertion of a priori domain knowledge, because these
modifications are ad hoc to the JSSP, and they are encoded in the algorithm
prior to its execution,

4.3 Domain Knowledge Extracted During the Search Process

This second knowledge insertion mechanism is integrated to the mutation
operator. The identification of the best individual found so far, and the best
individuals in a current generation, in addition to the use of a mechanism to
enforce that new individuals generated are similar to the best ones, are used
in this case to accelerate convergence.

This is precisely the main idea on which the design of the belief space of this
approach is based. The belief space contains a part called situational knowl-
edge, which has previously been used for continuous optimization (Chung and
Reynolds 1998, Jin and Reynolds 1999). Situational knowledge consists of stor-
ing the best individuals found during the evolutionary process, and use them
as leaders that other solutions must follow.

In this case, the best individual found so far is stored, and the individual in
the current generation which has the larger number of tournament victories
(in case of a tie, all the tied individuals are stored). The idea is that the best
individuals found during the search process provide us information about the
patterns that the sequences of operations in the machines should follow in
order to decrease the makespan value of the solutions generated.

The mutation operator is modified in order to cause that the other solutions
have a greater ‘resemblance’ (i.e. that their values are more similar) with
respect to the individuals stored in the situational part. The mutation operator
proposed is based on swaps of components in the permutation with repetitions.

The influence function over the variation operator is only applied the pey;
of the time, while the rest of the time, only a variation operator is applied.
The influence consists of choosing a reference individual at random, from any
of the individuals in the situational part, and replacing the original individual
to be mutated.

In the individual to be mutated, the algorithm selects an operation ran-
domly, then it identifies another operation being processed in the same ma-

10

chine, and exchanges those two operations.

This mutation operator is applied the 1/(m x n) of the time. Thus, the
operator is expected to be applied only once in a given string (of size m x n).

An example of this process is shown in Figure 4. This problem is based in
the problem described in Table 2. In the line labeled with (a), we show the
input string, and the operations to be exchanged are also indicated, both in
machine 4. In line (b), the string with the exchange of the selected operations
is shown. In line (c), we show the string that maps to the same solution, but
reordered to avoid the application of permissible left shifts in its descendants.

The update of the belief space consists only of replacing the individuals
stored in the situational knowledge with the accepted individuals. The accept
function selects the best individual found in the current population, and the
individual with the largest number of victories.

5 Comparison of Results

The Cultural Algorithm (CULT) is compared with respect to 4 different ap-
proaches: a Greedy Randomized Adaptive Search Procedure (GRASP) ap-
proach reported in (Binato et al. 2002), a parallel version of GRASP reported
in (Aiex et al. 2003), a genetic algorithm (GA) reported in (Gongalves and
Beirao 1999), and a hybrid genetic algorithm with local search (HGA) reported
in (Gongalves et al. 2002). These references were chosen for three main rea-
sons: (1) they provide enough information (e.g. numerical results) as to allow
a comparison, (2) these algorithms have been found to be very powerful in the
JSSP studied in this paper, and (3) the comparison with respect to another
evolutionary algorithm that does not use domain knowledge was an important
issue for us. In addition to these algorithms, as a reference point, a compar-
ison against a deterministic method, the shifting bottleneck (SB) (Adams et
al. 1988), is also provided.

The benchmark adopted for the experiments is a subset of the JSSP in-
stances contained in the OR-library (Beasley 1990). The OR-library is a set of
test problems for different types of problems of interest in operations research.
Over the years, the OR-library has become a standard benchmark to validate
new approaches to solve such problems. The OR-library contains problems
of different degrees of difficulty and reports the best known solution in each
instance contained within. In this particular case, 3 problems of (Fischer and
Thompson 1963), labeled FT06, FT10 and FT20, and the 40 problems of
(Lawrence 1984), labeled from LAO1 to LA40 were adopted.

The proposed approach was implemented in the C++ programming lan-
guage and was compiled using the GNU g++ compiler.

Table 3 shows the overall comparison of results. In the first column are the

11

algorithms with respect to which the comparison is made, together with their
corresponding reference. In the second column is shown the average deviation
of the best results obtained by each algorithm with respect to the best known
solution for the 43 test problems adopted in this study. The last column in-
dicates the improvement achieved by the cultural algorithm with respect to
each of the other algorithms compared. From Table 3, it can be seen that the
proposed approach was able to improve on the results produced by the five
algorithms compared.

In Table 4, the overall performance of the cultural algorithm is shown, with
respect to the 5 other algorithms against which it was compared. The column
labeled Win shows the number of problems in which each algorithm beat the
cultural algorithm. The column labeled Tie indicates ties between the cul-
tural algorithm and the other algorithms. Finally, the column labeled Lose
indicates the number of problems in which each algorithm lost with respect
to the cultural algorithm. Results indicate that SB and GRASP never beat
the cultural algorithm. Parallel GRASP beat the cultural algorithm only in 4
problems and lost in 7. Note however, that the proposed approach is imple-
mented sequentially and not in parallel as the Parallel GRASP. Regarding the
GA, it beat the cultural algorithm in 1 problem and lost in 20. Finally, HGA
beat the cultural algorithm in 4 problems and lost in 8.

Table 5 compares the best results found by CULT, SB, GRASP, the Parallel
GRASP, GA and HGA. Boldface is used to indicate both the best known
solutions (BKS) and when an algorithm reached such result.

Table 6 compares the number of evaluations required by CULT, and the
iterations required by GRASP and Parallel GRASP.

In all the examples, 10 independent runs of the proposed algorithm were
performed. The criterion adopted to stop the algorithm was to detect when
no changes in the result were reported after a certain (normally large) number
of consecutive iterations.

The parameters of the cultural algorithm that remained without changes
are the following:

s =20
b
=2 -10
€T3
pcult:0-1
1
bm =

where s is the population size, ¢ is the number of binary confrontations to
be performed by each individual during the tournament selection, pe,;; is the

12

probability to apply the situational knowledge, and p,, is the mutation ratio.
Some of the most remarkable examples are the following:

e LA16: In this problem, the cultural algorithm, Parallel GRASP and HGA
can reach the best known solution. However, GRASP requires 50.1 million
iterations, Parallel GRASP requires 1.3 million iterations, and our proposed
approach only requires 10 000 evaluations.

Regarding CPU times, GRASP required 155 310 s on a SGI R10000 with
a 196 MHz processor, Parallel GRASP (a sequential version) required 2 951
s on a SGI R10000 running at 196 MHz, HGA required 232 s on an AMD
Thunderbird with a 1.333 GHz processor, and CULT required 2.23 s on an
AMD K6-2 with a 550 MHz processor.

The systems on which the algorithms ran remained the same for the rest
of the instances discussed here; note that the processor on which CULT ran
is almost three times faster than those of GRASP and Parallel GRASP, but
has less than half of the speed of the one in which the HGA ran.

o LA24: In this problem, none of the 5 approaches converged to the best
known solution, but the cultural algorithm produced the closest approxima-
tion. The cultural algorithm required 250 000 evaluations, whereas Parallel
GRASP required 125 million iterations, and GRASP required 10.1 million
iterations.

The times required by each algorithm were: 64 640 s for GRASP, 407 500
s for Parallel GRASP, 578 s for HGA and 95.5 s for CULT.

o LA30: Parallel GRASP, HGA and the cultural algorithm found the best
known solution, while the two other apporaches cannot. However, Parallel
GRASP required 3 million iterations, and the proposed approach required
only 50 000 evaluations.

106 050 s were necessary for the results reported by GRASP, 22 830 s for
the results of Parallel GRASP, 1 260 s for the results of HGA and 30.9 s for
the results of CULT.

o L A22: The cultural algorithm converges to a solution that is only 3 units
away from the best known solution. Parallel GRASP, in contrast, converges
to the best known solution. However, Parallel GRASP required 26 million
evaluations, whereas the cultural algorithm only performed 200 000 evalua-
tions.

The CPU times required by the different algorithms were: 315 630 s for
GRASP, 89 700 s for Parallel GRASP, 629 s for HGA and 75.3 s for CULT.

For these 4 instances, convergence graphs of typical executions can be found
in Figure 5.

Looking for a compromise to setup a priori a maximum number of objective
function (or fitness) evaluations, a population size of 10 individuals, and a
maximum number of generations of 20 000 are suggested. This will produce a

13

total of 200 000 fitness function evaluations, which is a good compromise for
solving both the ‘easy’ and the ‘difficult’ problems included in the benchmark
adopted.

The results obtained in this case are shown in Table 7. Note that in this
case the median and worst results found by the proposed approach in each
instance are also reported. As expected, results are poorer in this case, because
some problems require a significantly larger number of evaluations. However,
this alternative provides an alternative to setup a priori a maximum number
of fitness function evaluations in the cultural algorithm. In any case, more
work in this direction is desirable as to improve the search capabilities of
the proposed approach while maintaining a relatively low number of fitness
function evaluations.

6 Conclusions and Future Work

A new approach based on a cultural algorithm to solve JSSPs is introduced.
The approach uses both knowledge introduced a priori (i.e. a heuristic to per-
form local rearrangements which we know beforehand that can reduce the
makespan) and extracted during the evolutionary search. The proposed ap-
proach adopts a permutation representation that allows repetitions. The com-
parison of results indicated that the proposed approach is competitive with
respect to other heuristics, even improving on their results in some cases.

In terms of computational efficiency, the proposed approach performs a num-
ber of evaluations that is (on average) considerably lower than those performed
by Parallel GRASP, while producing similar results. Results are also compet-
itive with respect to HGA, despite the fact that the results were obtained by
the cultural algorithm without any local search.

As part of our future work, we plan to improve the heuristics adopted to
perform local moves. It is also intended to introduce a backtracking mechanism
to recover from movements towards local attractors, and it is also planned to
incorporate into the algorithm certain mechanisms from tabu search (Glover
and Laguna 1998).

It is also desirable to find a set of parameters that can be fixed for a larger
family of problems as to eliminate the variability of iterations that is currently
reported for the proposed algorithm.

Finally, it is also planned to work on a multiobjective version of the JSSP in
which 3 objectives would be considered (Bagchi 1999): 1) makespan, 2) mean
flowtime and 3) mean tardiness. This would allow us to generate trade-offs
that the user could evaluate in order to decide what solution to choose.

14 REFERENCES
Acknowledgments

The authors thank the anonymous reviewers for their comments and sugges-
tions which greatly improved the contents of this paper.

The authors acknowledge partial support from CONACyT Mexico-
CONICYT Chile through project No. J110.331/2005.

The second author acknowledges support from CONACyT through a schol-
arship to pursue graduate studies in Computer Science at the Secciéon de Com-
putacién of the Electrical Engineering Department at CINVESTAV-IPN.

The third author acknowledges support from CONACyT through project
No. 42435-Y.

REFERENCES

Adams, J., Balas, E. and Zawack, D., The shifting bottleneck procedure for
job shop scheduling. Management Science, 1988, 34(3), 391-401.

Aiex, R. M., Binato, S. and Resende, M. G., Parallel GRASP with path-
relinking for job shop scheduling. Parallel Computing, 2003, 29(4), 393-430.

Bagchi, T. P., Multiobjective Scheduling by Genetic Algorithms, 1999 (New
York: Kluwer Academic Publishers).

Baker, K. R., Introduction to Sequencing and Scheduling, 1974 (New York:
John Wiley & Sons).

Barnes, J. and Chambers, J., Solving the Job Shop Scheduling Problem using
Tabu Search. IIE Transactions, 1995, 27(2), 257-263.

Beasley, J. E., OR-Library: distributing test problems by electronic mail. Jour-
nal of the Operational Research Society, 1990, 41(11), 1069-1072.

Bierwirth, C., A Generalized Permutation Approach to Job Shop Scheduling
with Genetic Algorithms. OR Spektrum, 1995, 17, 87-92.

Binato, S., Hery, W. J., Loewenstern, D. M. and Resende, M. G. C., A
GRASP for Job Shop Scheduling. In Essays and Surveys in Metaheuristics,
C. Ribeiro and P. Hansen (Eds), Operations Research/Computer Science
Interfaces, 2002 (Kluwer Academic Publishers).

Catoni, O., Solving Scheduling Problems by Simulated Annealing. SIAM Jour-
nal on Control and Optimization, 1998, 36(5), 1539-1575.

Cheng, R., Gen, M. and Tsujimura, Y., A tutorial survey of job-shop schedul-
ing problems using genetic algorithms: I. Representation. Computers and
Industrial Engineering, 1996, 30(4), 983-997.

Cheng, R., Gen, M. and Tsujimura, Y., A tutorial survey of job-shop schedul-
ing problems using genetic algorithms: II. Hybrid genetic search strategies.
Computers and Industrial Engineering, 1999, 36(2), 343-364.

Chung, C.-J. and Reynolds, R. G., CAEP: An Evolution-based Tool for Real-

REFERENCES 15

Valued Function Optimization using Cultural Algorithms. Journal on Arti-
ficial Intelligence Tools, 1998, 7(3), 239-292.

Coello Coello, C. A., Theoretical and Numerical Constraint-Handling Tech-
niques used with Evolutionary Algorithms: A Survey of the State of the Art.
Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-
12), 1245-1287.

Coello Coello, C. A. and Landa Becerra, R., Adding Knowledge and Efficient
Data Structures to Evolutionary Programming: A Cultural Algorithm for
Counstrained Optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2002), W. Langdon et al. (Eds), pp. 201-
209, 2002 (San Francisco, California: Morgan Kaufmann Publishers).

Coffman, Jr., E., Computer and Job Shop Scheduling Theory, 1976 (John Wiley
and Sons).

Colorni, A., Dorigo, M., Maniezzo, V. and Trubian, M., Ant system for Job-
shop scheduling. JORBEL-Belgian Journal of Operations Research, Statis-
tics and Computer Science, 1994, 34, 39-53.

Cui, X., Li, M. and Fang, T., Study of Population Diversity of Multiobjec-
tive Evolutionary Algorithm Based on Immune and Entropy Principles. In:
Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001)
pp- 1316-1321, Vol. 2, 2001 (Piscataway, New Jersey: IEEE Service Center).

Durham, W. H., Co-evolution: Genes, Culture, and Human Diversity, 1994
(Stanford, California: Stanford University Press).

Fischer, H. and Thompson, G. L., Probabilistic learning combinations of local
job-shop scheduling rules. In: Industrial Scheduling, J. F. Muth and G. L.
Thompson (Eds), pp. 225-251, 1963 (Prentice-Hall).

Fogel, D. B., Evolutionary Computation. Toward a New Philosophy of Machine
Intelligence, 1995 (New York: The Institute of Electrical and Electronic
Engineers).

Fogel, L. J., Artificial Intelligence through Simulated Evolution. Forty Years
of Evolutionary Programming, 1999 (New York: John Wiley & Sons, Inc.).

Franklin, B. and Bergerman, M., Cultural algorithms: Concepts and experi-
ments. In: Proceedings of the 2000 Congress on Evolutionary Computation,
pp- 1245-1251, 2000. (Piscataway, New Jersey: IEEE Service Center).

Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences),
1979 (W H Freeman & Co).

Glover, F. and Laguna, M., Tabu Search, 1998 (Norwell Massachusetts: Kluwer
Academic Publishers).

Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine
Learning, 1989 (Reading, Massachusetts: Addison-Wesley Publishing Com-
pany).

Gongalves, J. F. and Beirao, N. C., Um algoritmo genético baseado em chaves

16 REFERENCES

aleatdrias para sequenciamiento de operacoes. Revista Revista Associacdo
Portuguesa de Desenvolvimento e Investigacao Operacional, 1999, 19, 123—
137. (in Portuguese).

Gongalves, J. F., de Magalhaes Mendes, J. J. and Resende, M. G. C., A hybrid
genetic algorithm for the job shop scheduling problem, Technical Report
TD-5EAL6J, AT&T Labs, 2002.

Hart, E. and Ross, P., The Evolution and Analysis of a Potential Antibody
Library for Use in Job-Shop Scheduling. In: New Ideas in Optimization,
D. Corne, M. Dorigo and F. Glover (Eds), pp. 185-202, 1999, (London:
McGraw-Hill).

Hart, E., Ross, P. and Nelson, J., Producing robust schedules via an artificial
immune system. In: Proceedings of the 1998 IEEFE International Conference
on Evolutionary Computation (ICEC’98), pp. 464-469, 1998, (Anchorage,
Alaska: IEEE Press).

Holland, J. H., Adaptation in Natural and Artificial Systems, 1975 (Ann Arbor,
Michigan: University of Michigan Press).

Jin, X. and Reynolds, R. G., Using Knowledge-Based Evolutionary Computa-
tion to Solve Nonlinear Constraint Optimization Problems: a Cultural Algo-
rithm Approach. In: 1999 Congress on Evolutionary Computation, pp. 1672—
1678, 1999. (Washington, D.C.: IEEE Service Center).

Jones, A. and Rabelo, L. C., Survey of Job Shop Scheduling Techniques, NI-
STIR, National Institute of Standards and Technology, 1998.

Laarhoven, P. J. M. v., Aarts, E. H. L. and Lenstra, J., Job shop scheduling
by simulated annealing. Operations Research, 1992, 40, 113-125.

Lawrence, S. R., Resource constrained project scheduling: an experimen-
tal investigation of heuristic scheduling techniques (supplement), Gradu-
ate School of Industrial Administration, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania, 1984. (Unpublished).

Michalewicz, Z., A Survey of Constraint Handling Techniques in Evolutionary
Computation Methods. In: Proceedings of the 4th Annual Conference on
Evolutionary Programming, J. R. McDonnell, R. G. Reynolds and D. B.
Fogel (Eds), pp. 135-155, 1995 (Cambridge, Massachusetts: The MIT Press).

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs,
1996 (New York: Springer-Verlag).

Michalewicz, Z. and Schoenauer, M., Evolutionary Algorithms for Constrained
Parameter Optimization Problems. Evolutionary Computation, 1996, 4(1),
1-32.

Mitchell, T., Version Spaces: An Approach to Concept Learning, PhD thesis,
Computer Science Department, Stanford University, Stanford, California,
1978.

Nakano, R. and Yamada, T., Conventional Genetic Algorithm for Job Shop
Problems. In: Proceedings of the Fourth International Conference on Genetic

REFERENCES 17

Algorithms (ICGA-91), R. K. Belew and L. B. Booker (Eds), pp. 474479,
University of California, San Diego, 1991 (San Mateo, California: Morgan
Kaufmann Publishers).

Pinedo, M., Scheduling: Theory, Algorithms and Systems, 1995 (Englewood
Cliffs, New Jersey: Prentice Hall).

Renfrew, A. C., Dynamic Modeling in Archaeology: What, When, and Where?.
In: Dynamical Modeling and the Study of Change in Archaelogy, S. E. van der
Leeuw (Ed), 1994. (Edinburgh, Scotland: Edinburgh University Press).

Reynolds, R. G., An Introduction to Cultural Algorithms. In: Proceedings of
the Third Annual Conference on Evolutionary Programming, A. V. Sebald
and L. J. Fogel (Eds), pp. 131-139 (River Edge, New Jersey: World Scien-
tific).

Reynolds, R. G., Cultural algorithms: Theory and applications. In: New Ideas
in Optimization, D. Corne, M. Dorigo and F. Glover (Eds), pp. 367-377,
1999 (London, UK: McGraw-Hill). .

Ronald, S., Genetic algorithms and permutation-encoded problems: Diversity
preservation and a study of multimodality, PhD thesis, The University of
South Australia, 1995.

Ronald, S., Robust encodings in genetic algorithms. In: Ewvolutionaty Algo-
rithms in Engineering Applications, D. Dasgupta and Z. Michalewicz (Eds),
pp- 30-44, 1997 (Springer-Verlag).

Rothlauf, F., Representations for Genetic and FEvolutionary Algorithms, 2002
(New York: Physica-Verlag).

Taillard, E., Parallel tabu search technique for the jobshop scheduling problem,
Technical Report ORWP 89111, Ecole Polytechnique Federale, Lausanne,
Switzerland, 1989.

Yamada, T. and Nakano, R., Job-shop scheduling. In: Genetic Algorithms in
Engineering Systems, A. M. S. Zalzala and P. J. Fleming (Eds), pp. 134-160,
1997, (The Institution of Electrical Engineers).

18 REFERENCES

Acceptance Influence

Performance

Selection Population Function

Variation

Figure 1. Spaces of a cultural algorithm

REFERENCES 19

permutation with repetition 121221333

m (12 3
decoded schedule m, 1 2 3

Figure 2. Example of the decoding process of a permutation with repetitions.

20

REFERENCES

Permutation:|2|1|2|O|0|0|1|2|1|

M, M,
o, [[ER M,
M,

< < e
o, [[ER M1
M,

M,

< B <@ A
Ml ’J—o M- -
™,

[B] |
« N S . |
M,

Em
< A o 1L

« NN ENE - ENE

Figure 3. Left shifts applied to obtain an active schedule.

REFERENCES 21

(2) [s[s]1]s]s]2]+afafef4]o] 1Je]ao1]a]efe]a afa]2]alal 1]a]a o] e[1]3]3]

(b) [sfs4fe]s]s]af+ =ofelafol1Teaol 1 a]efalal ofa]a]allol [alalafa] 14 2]

ey [s[aa]s]s]al+ 2 afel4fol 1Tzlalal]a]elelal1ala]s]2]2]a] 1 s a]s]ole1] 4]

1 2 3 4 5 & 7 8 9 101112131415 15 17 18 19 20 21 22 23 24 25 26 27 2% 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 55 56 57 58 59 &0

3
1234567891011 121314 15 16 17 18 15 20 21 22 25 24 25 26 27 28 25 30 31 32 533 54 55 38 37 35 3% 40 41 42 43 44 45 46 47 43 43 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 65 70 71 72

Figure 4. Example of the mutation operator modified through the use of situational knowledge.

22

Makespan

Makespan

1650

1600

1550

1450

1400

1350

1300

REFERENCES

T T T 1250
Bestindividud ——

1100

|
Makespan

950

100

150 200 250 300
Generations

a) Instance LA16

350 400 450 500

1250

Best mc‘i\wdua‘ i
1200

1150

1100

|
Makespan

1050

1000

950

I
1500
Generations

1000

c¢) Instance LA30

Figure 5. Convergence

2000 2500

i ‘Bamdw\dhd —_—

1 I I I I I I

0 2000 4000 6000 8000 10000 12000 14000
Generations

b) Instance LA24

k Bamr‘!wwdua‘ —_—

I I I I I

0 2000 4000 6000 8000 10000
Generations

d) Instance LA22

graphs of CULT for 4 examples

REFERENCES 23

Table 1. Exampleofa 3x3
JSSP.
machin

e (time)
0 03 13 203
102 2

3) 1(4)
2 1(3) 0(2) 201)

REFERENCES

24

Table 2. Example of a 6 x 6 JSSP (FT06, taken from

the OR-Library).

machine (time)

[e

— e

N

P~ —~ —~ —~ —~—~

NN N

REFERENCES 25

Table 3. Deviations from the best known solutions and

improvement of CULT.
Deviation Improvement

CULT 0.36% —

SB 1.38% 1.02%

GRASP 1.77% 1.41%

Parallel GRASP 0.43% 0.07%
GA 0.90% 0.54%

HGA 0.39% 0.03%

26 REFERENCES

Table 4. Overall performance of CULT with
respect to the 5 other algorithms against
which it was compared.

vs CULT
Win Tie Lose
SB 0 20 23
GRASP 0 24 19
Parallel GRASP 4 32 7
GA 1 22 20
HGA 4 31 8

REFERENCES

Table 5. Comparison of results per instance. Boldface is used to show both the best known solution
and the cases in which an algorithm reached such value.
Instance Size BKS CULT SB GRASP Parallel GA HGA
GRASP
FT06 6 X6 55 55 55 55 55 55 55
FT10 10 x 10 930 930 930 938 930 936 930
FT20 20 x5 1165 1165 1178 1169 1165 1177 1165
LAO1 10 x5 666 666 666 666 666 666 666
LA02 10 x 5 655 655 669 655 655 666 655
LAO03 10 x5 597 597 605 604 597 597 597
LAO4 10 x5 590 590 593 590 590 590 590
LAO05 10 x5 593 593 593 593 593 593 593
LA06 15 x5 926 926 926 926 926 926 926
LAO7 15 x5 890 890 890 890 890 890 890
LAO08 15 x5 863 863 863 863 863 863 863
LA09 15 x5 951 951 951 951 951 951 951
LA10 15 x5 958 958 959 958 958 958 958
LAl11 20 x5 1222 1222 1222 1222 1222 1222 1222
LA12 20 x5 1039 1039 1039 1039 1039 1039 1039
LA13 20 x5 1150 1150 1150 1150 1150 1150 1150
LA14 20 x5 1292 1292 1292 1292 1292 1292 1292
LA15 20 x5 1207 1207 1207 1207 1207 1207 1207
LA16 10 x 10 945 945 978 946 945 977 945
LA17 10 x 10 784 784 787 784 784 787 784
LA18 10 x 10 848 848 859 848 848 848 848
LA19 10 x 10 842 842 860 842 842 857 842
LA20 10 x 10 902 907 914 907 902 910 907
LA21 15x 10 1046 1059 1084 1091 1057 1047 1046
LA22 15 x 10 927 930 944 960 927 936 935
LA23 15x 10 1032 1032 1032 1032 1032 1032 1032
LA24 15 x 10 935 950 976 978 954 955 953
LA25 15 x 10 977 984 1017 1028 984 1004 986
LA26 20 x 10 1218 1218 1224 1271 1218 1218 1218
LA27 20 x 10 1235 1253 1291 1320 1269 1260 1256
LA28 20 x 10 1216 1224 1250 1293 1225 1241 1232
LA29 20 x 10 1157 1186 1239 1293 1203 1190 1196
LA30 20 x 10 1355 1355 1355 1368 1355 1356 1355
LA31 30x 10 1784 1784 1784 1784 1784 1784 1784
LA32 30 x 10 1850 1850 1850 1850 1850 1850 1850
LA33 30 x 10 1719 1719 1719 1719 1719 1719 1719
LA34 30x 10 1721 1721 1721 1753 1721 1730 1721
LA35 30 x 10 1888 1888 1888 1888 1888 1888 1888
LA36 15x 15 1268 1281 1305 1334 1287 1305 1279
LA37 15 x 15 1397 1407 1423 1457 1410 1441 1408
LA38 15x 15 1196 1215 1255 1267 1218 1248 1219
LA39 15x 15 1233 1251 1273 1290 1248 1264 1246
LA40 15 x 15 1222 1244 1269 1259 1244 1252 1241

27

REFERENCES

Table 6. Comparison of the number of evaluations per-
formed by CULT and the number of iterations performed
by GRASP and Parallel GRASP.

Instance CULT GRASP Parallel
GRASP
FT06 100 100,000 10

FT10 1,500,000 90,100,000 2,500,000
FT20 2,000,000 90,100,000 7,500,000

LAOL 500 100,000 100
LAO2 100,000 100,000 4,000
LAO03 100,000 50,100,000 10,000
TA0Z 15,000 100,000 1,000
LAOS 100 100,000 100
LA06 100 100,000 100
LAO7 500 100,000 100
TA0S 1,000 700,000 300
TA09 1,000 100,000 100
LAI0 100 100,000 100
LAIL 100 100,000 100
LAIZ 500 100,000 100
TAL3 500 100,000 100
LA1Z 1,000 100,000 100
LALS 1,000 100,000 200
LAI6 10,000 50,100,000 1,300,000
TAT? 70,000 20,100,000 20,000
TAIS 50,000 20,100,000 50,000
LAI9 50,000 10,100,000 20,000
TA20 50,000 50,100,000 17,000,000
LA21 200,000 50,100,000 100,000,000
TA22 200,000 50,100,000 26,000,000
LA23 200,000 10,100,000 10,000
LA 250,000 10,100,000 125,000,000
LA25 250,000 10,100,000 32,000,000
TA%6 1,500,000 10,100,000 3,500,000
TA27 500,000 10,100,000 10,500,000
LA28 500,000 10,100,000 20,000,000
TA29 2,000,000 10,100,000 50,000,000
TA30 50,000 10,100,000 3,000,000
TA31 5,000 10,100,000 10,000
LA32 10,000 10,100,000 100
LA33 10,000 10,100,000 1,000
LA34 20,000 10,100,000 50,000
TA35 10,000 10,100,000 10,000
LA36 500,000 11,200,000 _ 51,000,000
LA37 500,000 11,200,000 20,000,000
TA38 750,000 11,200,000 20,000,000
TA39 750,000 11,200,000 6,000,000

LA40 750,000 11,200,000 2,000,000

REFERENCES

Table 7. Results obtained by CULT when fixing the number of
fitness function evaluations to 200,000. Boldface is used to show
both the best known solution and the cases in which CULT reached

such value.

Instance Size BKS Best Median Worst
LAO1 10x5 666 666 666.5 668
LA02 10x5 655 655 660.5 667
LAO03 10 x5 597 597 610.2 623
LA04 10x5 590 590 593 599
LAO05 10x5 593 593 593.5 595
LA06 15 x5 926 926 926 926
LAO7 15x5 890 890 890 890
LA08 15 x5 863 863 863.4 865
LA09 15x5 951 951 951.3 953
LA10 15 x5 958 958 958.1 959
LA11 20x 5 1222 1222 1222.3 1224
LA12 20 X 5 1039 1039 1039.3 1041
LA13 20x 5 1150 1150 1150.4 1152
LA14 20x 5 1292 1292 1292.4 1294
LA15 20 X 5 1207 1207 1207.8 1209
LA16 10 x 10 945 945 962.8 990
LA17 10 x 10 784 784 793.4 811
LA18 10 x 10 848 848 857.5 863
LA19 10 x 10 842 842 859 872
LA20 10 x 10 902 907 912.6 924
LA21 15 x 10 1046 1059 1093 1114
LA22 15 x 10 927 947 964.3 985
LA23 15x 10 1032 1032 1035.5 1045
LA24 15 x 10 935 950 976.6 997

LA25 15 x 10 977 998 1010.7 1034
LA26 20 x 10 1218 1219 1234.4 1260
LA27 20 x 10 1235 1279 1300 1324
LA28 20 x 10 1216 1236 1260.7 1291
LA29 20 x 10 1157 1219 1238.8 1271
LA30 20 x 10 1355 1355 1357.5 1369

LA31 30x10 1784 1784 1784 1784
LA32 30 x 10 1850 1850 1850.1 1851
LA33 30x 10 1719 1719 1719 1719
LA34 30x10 1721 1721 1721 1721
LA35 30 x 10 1888 1888 1888 1888

LA36 15 x 15 1268 1296 1316.7 1351
LA37 15 x 15 1397 1416 1464.9 1514
LA38 15x 15 1196 1231 1265.3 1276
LA39 15x15 1233 1269 1294.6 1327
LA40 15 x 15 1222 1256 1277.4 1328

