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Abstract. The Hausdorff distance dH is a widely used tool to measure
the distance between different objects in several research fields. Possible
reasons for this might be that it is a natural extension of the well-known
and intuitive distance between points and/or the fact that dH defines in
certain cases a metric in the mathematical sense. In evolutionary multi-
objective optimization (EMO) the task is typically to compute the entire
solution set—the so-called Pareto set—respectively its image, the Pareto
front. Hence, dH should, at least at first sight, be a natural choice to mea-
sure the performance of the outcome set in particular since it is related to
the terms spread and convergence as used in EMO literature. However, so
far, dH does not find the general approval in the EMO community. The
main reason for this is that dH penalizes single outliers of the candidate
set which does not comply with the use of stochastic search algorithms
such as evolutionary strategies.
In this work, we define a new performance indicator, ∆p, which can be
viewed as an ‘averaged Hausdorff distance’ between the outcome set and
the Pareto front and which is composed of (slight modifications of) the
well-known indicators Generational Distance (GD) and Inverted Gener-
ational Distance (IGD). We will discuss theoretical properties of ∆p (as
well as for GD and IGD) such as the metric properties and the compliance
with state-of-the-art multi-objective evolutionary algorithms (MOEAs),
and will further on demonstrate by empirical results the potential of ∆p

as a new performance indicator for the evaluation of MOEAs.
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1 Introduction

In many applications, it is desired to optimize several conflicting objectives at
once leading to a multi-objective optimization problem (MOP). Typically, the
solution set of a MOP—the Pareto set—is not given by a single point but forms
a (k−1)-dimensional object, where k is the number of objectives involved in the
MOP. Hence, a natural question that arises is how to measure the perfomance of
an (evolutionary) algorithm aiming for the approximation of the entire Pareto
set and respectively its image, the Pareto front. One way to do this is to measure
the distance of the outcome set of the algorithm to the set of interest.
One such distance function is the Hausdorff distance dH ([23]), which is already
established in several research fields such as image matching (e.g., [24, 50, 7]),
the approximation of manifolds in dynamical systems ([12, 2, 35]), or in fractal
geometry ([15]), among others. One major advantage of dH is that it defines
a metric in the mathematical sense on the set of compact subsets of Rn. The
problem at hand (i.e., to measure the distance between two sets) is certainly
abstract, and no ultimate fairness can be expected (“How can one value give all
the required information about the relation of a candidate set consisting of, say,
100 elements to a discretized Pareto set/front consisting of 300 elements?”). One
important property of a metric is that the triangle inequality is satisfied which
says that given the sets A, B, and C, the distance from A to C via B is at least
as great as from A to C directly. If indicators are used that do not have the
properties of a metric, unwanted effects can occur (e.g., greedy methods based
on such indicators may be guided into wrong directions).
Another advantage of the Hausdorff distance, which is more specific to the opti-
mization problem at hand, is that a low value dH(O,F) of the distance between
the image of the outcome set O and the Pareto front F gives a clear idea of the
approximation quality of O (the same argument holds for Pareto set approxi-
mations). Since dH(O,F) measures the distance of each set to the other one,
the decision maker (DM) gets the information about the approximation quality
in terms of the distance from O to F (which is typically termed as convergence
in the EMO literature) as well as the distance from F to O (which is closely
related to what is termed as spread in EMO literature in terms of the maximal
gap in the approximation). If, for instance, the DM is willing to accept an a
priori determined deterioration δ > 0 (resulting by lack of convergence or by the
discretization of the Pareto set), every outcome O with dH(O,F) < δ is ‘good
enough’ for his/her application (see also the results in Section 5.3).
On the other hand, the Hausdorff distance is yet scarcely used by the EMO com-
munity except for rather theoretical works ([40, 13, 47, 46]). One mayor reason
for this is probably that dH penalizes the largest outlier of the candidate set
which makes ‘good’ approximations that contain at least one outlier to appear
‘bad’. Hence, a large value of dH(O,F) can indicate both that O is indeed a bad
approximation of F and that O is ‘good’ but contains at least one outlier.
One possible remedy is to average the distances of the elements of the sets lead-
ing to an ’averaged Hausdorff distance’. However, one has to be aware of the
fact that such an averaging of the distances leads to violations of the triangle
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inequality, and hence, to a loss of the metric property.
To motivate the need for a fair incorporation of outliers for distance assignments
in the context of evolutionary multi-objective optimization, we consider the fol-
lowing three examples: the first (academic) example shows that once points near
to weakly optimal solutions that are far from the Pareto set are generated, it
might not be easy to eliminate them from the archive/population (such points
are also called dominance resistant points in the EMO literature, see [20, 31]):
consider the MOP

F : [0, 1]n → Rk

F (x) =

(

x1

g(x)

)

,
(1)

where g : [0, 1]n → Rk−1 (i.e., the first objective is given by x1 as in the Okabe
([34]) or ZDT benchmark models ([52]) which are widely used in the EMO
literature). Further, assume a point x = (ǫ, x̃), where ǫ > 0 is ‘small’ and x̃ ∈
[0, 1]n−1 arbitrarily, is generated by the evolutionary search. Depending on g,
x can be ‘far’ from PQ as well as F (x) be ‘far’ from F (PQ). Clearly, a point
z ∈ [0, 1]n can only dominate x if z1 ≤ x1. The probability for that might be low
when using stochastic search (the probability is ǫ when z is chosen uniformly
at random from [0, 1]n – not counting the required improvement according to
g). Note that this does in contrast not hold for mathematical programming
techniques: given any feasible solution, a descent direction can be computed
(e.g., [18, 37]), and hence, a sequence of dominating solutions can be generated
leading to a (local) solution of the MOP. The integration of local search, however,
is not an issue in this work but will be left for future investigation.
The next empirical result confirms the above considerations: Figure 1 shows two
typical results using the well-known state-of-the-art MOEA NSGA-II ([11]) on
the three-objective benchmark model DTLZ1 ([9]). The Pareto front of DTLZ1
is given by the triangle with the corners (1/2, 0, 0), (0, 1/2, 0), and (0, 0, 1/2).
Hence, both approximations F1 and F2 can be considered to be ’good’, however,
both of them contain several outliers. If dH is used to measure the distance of
Fi, i = 1, 2, to the Pareto front, none of the two values represents this.

Finally, we consider one example that illustrates the averaging effect in the
evaluation of the outcome set (compare to Figure 2): assume a hypothetical
discrete Pareto front is given by P where pi = ((i − 1) · 0.1, 1 − (i − 1) · 0.1)T ,
i = 1, . . . , 11. Further, we are given two approximations of P : X1 is identical to P
except for the first element x1,1 = (ǫ, 10)T (an ‘outlier’, for numerical evaluations
we will use ǫ = 0.001), i.e., X1 = {x1,1, p2, . . . , p11}. X2 is a translation of P
defined by x2,i = pi+(ǫ/2, 5)T , i = 1, . . . , 11. Now, we have to ask ourselves which
approximation is ‘better’. This certainly depends on our preference. However,
when designing an indicator (i.e., reducing the constellation of two different
sets down to one scalar value) we have to answer this question. X1 is nearly
perfect but contains one outlier, while none of the elements of X2 are ‘near’
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Fig. 1. Two typical results from NGSA-II on the benchmark model DTLZ1 with three
objectives.
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to P (though the difference of each element is less than given by the single
outlier in X1). When considering the worst case scenario, X2 is certainly better
than X1. When taking the Hausdorff distance dH (see definition in Section 2)
we obtain dH(X1, P ) ≈ 9 and dH(X2, P ) ≈ 5, i.e., X2 is ‘better’ than X1 when
considering dH (which penalizes outliers). The situation changes when averaging
the distances: when using e.g. the averaged Euclidean Distance from X1 to P
(i.e., using GD with p = 1 as described in Section 3.1) we obtain GD(X1, P ) ≈
0.81 and GD(X2, P ) ≈ 4.54. Hence, in this case X1 is a ‘better’ approximation
than X2.
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Fig. 2. Hypothetical example for a Pareto front (P ) and two different approximations
X1 and X2.

The aim of this work is to present ∆p, an indicator that evaluates the aver-
aged Hausdorff distance from the image of the output set to the Pareto front of
the given MOP. This is intended to give EMO researchers a fair basis to eval-
uate their MOEA with respect to an approximation of the Pareto front in the
Hausdorff sense. In particular, the contributions of this work are the following:

(a) We will argue that both indicators GD and IGD have to be modified slightly
and discuss its properties. As results, we will see that the new variant of GD,
called GDp, can be put in a more positive light with respect to its compliance
with Pareto optimality, and IGDp has certain relations to other distance
measures used in the EMO literature. Furthermore, both indicators seem to
be more fair when comparing outcome sets with different magnitudes. This
is in particularly interesting when comparing the performance of different
archive-based MOEAs (e.g., ǫ-MOEA [8] or ELMA [14]).
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(b) We will propose ∆p which consists of GDp and IGDp and which can be
viewed as an averaged Hausdorff distance. Here, we address the (averaged)
distance between the image of the outcome set and the Pareto front. We
also address one possiblity to handle the ‘outlier trade off’ (i.e., penalizing
single outliers but having a metric versus diminishing the influence of outliers
by considering averaged results while losing the advantages of a metric by
violating the triangle inequality). We show the potential of the new indicator
on theoretical and empirical results.

(c) We will next to discrete or discretized problems also address the problem
of how to handle continuous models which has to our best knowledge not
been done before for GD and IGD. The knowledge of the indicator for the
continuous case is in particular interesting to estimate the approximation
error when discretizing the Pareto front.

A preliminary study of this work can be found in [39].

The remainder of this paper is organized as follows: Section 2 gives the re-
quired background for the understanding of the sequel. In Section 3, we argue
that a slight modification of GD and IGD leads to more fair indicators and
discuss further on the variants GDp and IGDp. Based on these two indicators,
we construct and discuss the averaged Hausdorff distance ∆p. In Section 4, we
address the extension of the three performance measurements to the case where
the MOP is continuous. In Section 5, we present some numerical results, and
finally, we conclude in Section 6.

2 Background

In the following we consider multi-objective optimization problems (MOPs)
which are of the form

min
x∈Q

{F (x)}, (2)

where the function F is defined as the vector of the objective functions

F : Q ⊂ Rn → Rk, F (x) = (f1(x), . . . , fk(x)),

and where each fi : Rn → R is continuous. In the next definition we state the
classical concept of optimality for MOPs.

Definition 1. (a) Let v = (v1, . . . , vk), w = (w1, . . . , wk) ∈ Rk. Then the vector
v is less than w (v <p w), if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p

is defined analogously.
(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn (in short: x ≺ y) with

respect to (2) if F (x) ≤p F (y) and F (x) 6= F (y) (i.e., there exists a j ∈
{1, . . . , k} such that fj(x) < fj(y).

(c) A point x ∈ Rn is called Pareto optimal or a Pareto point if there is no
y ∈ Rn which dominates x.
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Denote by PQ the Pareto set of (2) and its image F (PQ) the Pareto front.
In the following we will assume that PQ is compact. This is for instance always
given if the domain Q is compact which is in turn typically given if Q is defined
by inequality and equality constraints. As one example, which is also the most
common one considered in EMO literature, assume the domain is given by box-
constraints, i.e.,

Q = Bl,u := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n}, (3)

where l = (l1, . . . , ln), r = (r1, . . . , rn) ∈ Rn with li ≤ ui, i = 1, . . . , n.
In the following we define metrics and related functions ([23]).

Definition 2. Suppose X is a set and d is a real function defined on the Carte-
sian product X × X. Then d is called a metric on X if, and only if, for each
a, b, c ∈ X,

(a) (Positive Property) d(a, b) ≥ 0 with equality if, and only if, a = b;
(b) (Symmetric Property) d(a, b) = d(b, a); and
(c) (Triangle Inequality) d(a, c) ≤ d(a, b) + d(b, c).

d is called a semi-metric, if properties (a) and (b) are satisfied. If a semi-metric
satisfies the relaxed triangle inequality

d(a, c) ≤ σ(d(a, b) + d(b, c)), ∀ a, b, c ∈ X (4)

for a value σ ≥ 1, d is called a pseudo-metric. In the following we will consider
X as the set of compact subsets of the Rk. A well-known metric on X is the
Hausdorff distance dH .

Definition 3. Let u, v ∈ Rn, A, B ⊂ Rn, and ‖ · ‖ be a vector norm. The
Hausdorff distance dH(·, ·) is defined as follows:

(a) dist(u, A) := inf
v∈A

‖u − v‖
(b) dist(B, A) := sup

u∈B
dist(u, A)

(c) dH(A, B) := max(dist(A, B), dist(B, A))

Given a candidate set A = {a1, . . . , aN} (in objective space) and a Pareto
front F (PQ) = {y1, . . . , yM}, the Generational Distance (GD, see [49]) and the
Inverted Generational Distance (IGD, see [5]) are defined as follows:

GD(A) :=
1

N

(

N
∑

i=1

dp
i

)1/p

, (5)

where di denotes the minimal Euclidean Distance from ai to F (PQ) (though in
principle any other norm can be chosen depending on the user’s preferences),
and

IGD(A) :=
1

M

(

M
∑

i=1

d̃p
i

)1/p

, (6)
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where d̃i denotes the minimal Euclidean Distance from yi to A.
There exist next to GD and IGD quite a few performance indicators for the
evaluation of MOEAs. The most prominent ones are the S metric (or Hyper-
volume Indicator, see [51, 3]), the ǫ-Indicator ([51]), the error ratio ([49]), and
Schott’s spacing metric ([38]). A discussion of these and further indicators can
be found in [25, 54]. However, it has to be noted that none of them are related
to Hausdorff approximations of the set of interest.

Within this study we will concentrate on the evaluation of the outcome sets
of stochastic search algorithms such as Multi-Objective Evolutionary Algorithms
(MOEAs). Most of such procedures consist basically of two operators: a genera-
tor and an archiver which are applied in a loop, see Algorithm 1. The task of the
generator is to generate a new set of candidate solutions Pj+1 from a given set
(or population) Pj , where j denotes the current iteration step. The task of the
archiver is to store and update the sequence of archives Aj by the data coming
from the generator. In the following we will refer to the archive as the candidate
set obtained by the MOEA (alternatively, the word population could be used. In
this work, we will not distinguish between these two notations).

Algorithm 1 Generic Stochastic Search Algorithm

1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do

4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for

3 Investigating the Indicators

Here, we discuss GD and IGD with respect to their ability to measure the dis-
tance between a candidate set and the Pareto front. We argue that a slight
change in both definitions makes both indicators more ‘fair’, in particular when
comparing sets with different magnitudes. Out of these two modifications (GDp

and IGDp), we will derive a ‘new’ indicator, ∆p. We will investigate all three
indicators with respect to their metric properties, their relation to other distance
measurements used in EMO literature, and their compliance to ‘Pareto optimal-
ity’ (i.e., the compliance of the indicators with the dominance relation or, more
general, with modern Pareto-based MOEAs).
In the following, we will assume that the Pareto front is discrete or discretized;
extensions to continuous models will be studied in Section 4.
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3.1 GD

Discussion of the original indicator Given two finite sets X = {x1, . . . , xN} and
Y = {y1, . . . , yM}, and using dist, the indicator GD as proposed in [49] can be
written as follows:

GD(X, Y ) :=
1

N

(

N
∑

i=1

dist(xi, Y )p

)1/p

=
‖dXY ‖p

N
, (7)

where dXY ∈ RN is the associated vector of distances, i.e., the i-th component
is given by (dXY )i = dist(xi, Y ). If not explicitly stated otherwise, we will use
the 2-norm for dist. However, in general, the q-norm can be taken, i.e.,

distq(xi, Y ) = inf
y∈Y

‖xi − y‖q. (8)

Though used in many studies, GD is not accepted by all researchers in the
EMO community. We conjecture that the main reason for this, at least in the
context of distance assignment, is its averaging strategy as the following example
demonstrates: assume we are given one (arbitrary) point a ∈ Q, and without loss
of generality let the distance of the image F (a) toward the Pareto front be 1.
Now, define the archive An as the multiset which is given by n copies of a, i.e.,
A = {a, . . . , a}. Then, for the ‘averaged’ distance of F (A) toward the Pareto
front it holds:

GD(F (An), F (PQ)) =
‖(1, . . . , 1)T ‖p

n
=

p
√

n

n
. (9)

We see that (i) with increasing number n, the approximation quality gets ‘better’
though the approximation has apparently not changed, and (ii) the sequence of
archives An converges even to a ‘perfect’ approximation, i.e., it is

lim
n→∞

GD(F (An), F (PQ)) = 0 (10)

The result in (10) can be generalized: instead of multisets, one can for instance
consider small perturbations of a. Or, if the image F (A) is bounded, even any
sequence of archives An with |An| = n can be chosen, regardless if the entries a
of An are dominated or not, nor how far F (a) is away from the Pareto front.
Hence, in the context of EMO, it is advantageous from this point of view to
‘fill’ the archive with further, even dominated, solutions since typically larger
sets yield better GD values. In the community, it has been established to fix
the population size in order to allow a comparison of different algorithms (say,
Npop = 100). However, this leads to trouble for MOEAs which are based on
archives that are not bounded by an a priori defined value (but rather indirectly,
e.g., by the use of ǫ-dominance as in [29, 8, 43, 44]). A ‘perfect’ archiver (with
respect to GD) is hence the one that accepts all (or at least as many as possible)
candidate solutions. An effect which is certainly not desired.
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An alternative version of GD To avoid the effect discussed above, we propose a
nearby modification of the indicator, namely to use the power mean1 to average
the distances dist(xi, Y ), i.e.:

GDp(X, Y ) :=

(

1

N

N
∑

i=1

dist(xi, Y )p

)1/p

=
‖dXY ‖p

p
√

N
(11)

We name the new indicator here GDp (i.e., with the index p) only to distinguish
between the classical version which is needed for further comparison in this
work. The ‘new’ indicator does not have the unwanted characteristic as discussed
above and seems hence to be more fair for a comparison of sets with different
magnitudes. In particular, large candidate sets do not have to be ‘good’ any
more. For instance, for the above example we have GD(F (An), F (PQ)) = 1 for
all numbers n ∈ N. The discussion in the next subsection shows that the Pareto
compliance gets improved significantly by the modification.

Compliance to Pareto optimality Here, we investigate the compliance of GDp

with Pareto-based MOEAs. Apparently, the question can not be answered right
away since the Pareto front of the given MOP is a priori not known. However, the
answer can be given at least indirectly: according to [4], state-of-the-art MOEAs
share three characteristics which are crucial in the present context:

(1) they incorporate a selection mechanism based on Pareto optimality (i.e.,
based on the dominance relation defined in Definition 1),

(2) they adopt a diversity preservation mechanism that avoids that the entire
population converges to a single solution, and

(3) they incorporate elitism.

Interesting in the current context are points (1) and (3): the following results
show that dominance replacements lead in certain situations to better GDp

values of the archive, which shows a certain compliance of the indicator with
state-of-the-art Pareto-based MOEAs. To investigate this compliance, we will
first address dist for single solutions, and will proceed with a consideration of
GDp on sets.

The following proposition states that if two objectives are considered and
the Pareto front is connected, then dominating solutions always offer better dist
values than the dominated ones.

Proposition 1. Let k = 2 and F (PQ) be connected. Then, for a, b ∈ Q it holds

a ≺ b ⇒ dist(F (a), F (PQ)) < dist(F (b), F (PQ)). (12)

Proof. Let a, b ∈ Q with a ≺ b. Since PQ is compact, there exists a point pb ∈ PQ

such that
dist(F (b), F (PQ)) = ‖F (b) − F (pb)‖ > 0 (13)

1 Also known as generalized mean or Hölder mean.
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(the positivity follows since a dominates b). If a ∈ PQ, the claim follows since
then dist(F (a), F (PQ)) = 0, hence, we can assume in the following that a 6∈ PQ.
If pb ≺ a, then we have since a ≺ b:

dist(F (a), F (PQ)) ≤ ‖F (a) − F (pb)‖ < ‖F (b) − F (pb)‖ = dist(F (b), F (PQ)),
(14)

and we are done. Now assume that pb 6≺ a, i.e., pb and a are mutually non-
dominating. That is, there exist two indexes i, j ∈ {1, 2}, i 6= j, such that

fi(pb) < fi(a) and fj(pb) > fj(a). (15)

Since a 6∈ PQ there exists a point pa ∈ PQ such that pa ≺ a. Further, since
F (PQ) is connected there exists a path from F (pa) to F (pb) along the Pareto
front. Hence, there exists a point p̄ ∈ PQ such that fj(p̄) = fj(a), and since p̄
and pb are mutually non-dominating we obtain

dist(F (a), F (PQ)) ≤ ‖F (a) − F (p̄)‖ = |fi(a) − fi(p̄)| < |fi(b) − fi(pb)|
≤ ‖F (b) − F (pb)‖ = dist(F (b), F (PQ)),

(16)

and the proof is complete. ⊓⊔

One intersting question is certainly what happens if more than two objectives
are involved in a MOP. However, we have to leave this for future investigation.
The above result does not hold when the Pareto front is disconnected. However,
this ‘monotonic behavior‘ again holds if an element is close enough to the Pareto
set. The following example and proposition give the counterexample and the
proof, respectively.

Example 1. Let the Pareto front be given by

F (PQ) = {(10, 0)T , (0, 1)T}, (17)

and further the points a, b with F (a) = (5, 2)T and F (b) = (11, 3)T (see Figure
3). Then, it is a ≺ b, but

dist(F (b), F (PQ)) =
√

12 + 32 =
√

10 <
√

29 =
√

52 + 22 = dist(F (a), F (PQ)),
(18)

i.e., the distance of F(a) toward the Pareto front is larger than the distance from
F (a).

Proposition 2. Let a, b ∈ Q such that a ≺ b and

∀i = 1, . . . , k; ∃y(a, i) ∈ F (PQ) s.t. fj(a) = y(a, i)j ∀j ∈ {1, . . . , k}\{i} (19)

Then

dist(F (a), F (PQ)) < dist(F (b), F (PQ)). (20)
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Fig. 3. If a ≺ b, it does not follow that dist(F (a),R(PQ)) < dist(F (b), F (PQ)) (com-
pare to Example 1).

Proof. Since PQ is compact, there exists a point pb ∈ PQ such that

dist(F (b), F (PQ)) = ‖F (b) − F (Pb)‖. (21)

First, let us assume that pb ≺ a, then since a ≺ b we have

dist(F (a), F (PQ)) ≤ ‖F (a) − F (Pb)‖ < ‖F (b) − F (pb)‖, (22)

and the claim follows. Second, assume that pb 6≺ a. Then there exists an index
i ∈ {1, . . . , k} such that fi(pb) < y(a, i)i, and we obtain

dist(F (a), F (PQ)) ≤ ‖F (a) − y(a, i)‖ = fi(a) − y(a, i)i < fi(b) − fi(pb)

≤ ‖F (b) − F (Pb)‖ = dist(F (b), F (PQ))
(23)

⊓⊔
Crucial for this result is the existence of the projections y(a, i). This is given if
F (a) is close enough to the Pareto front (compare to Figure 4), and in this case
connectedness of F (PQ) is not required.
To summarize, dominating solutions a yield better dist values than its dominated
points b in case the Pareto front is connected (at least for k = 2). Further, this
holds when F (a) is either ’sufficiently far away’ from the Pareto front (in this
case, the claim follows with Equation (13) since then pb has to dominate a) or
sufficiently close to it (Proposition 2).
These results can, in light of GDp, be interpreted as follows: if the new archive
results from the former one by replacement of one dominated solution by a
dominating one, the GDp value decreases. That is, for A1 = {b, x2, . . . , xn} and
A2 = {a, x2, . . . , xn}, where a and b are as above, it is

GDp(F (A2), F (PQ)) < GDp(F (A1), F (PQ)). (24)

The following result is more general, however, requires further assumptions.
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Fig. 4. Examples where dominance replacement leads to better dist values (compare
to Proposition 2).

Proposition 3. Let A, B ⊂ Rn be finite sets such that

1.) ∀a ∈ A ∃b ∈ B : F (b) ≤p F (a)
2.) ∀b ∈ B ∃a ∈ A : F (b) ≤p F (a)
3.) ∃b ∈ B\A, ∃a ∈ A\B : b ≺ a
4.) ∀a ∈ A, ∀b ∈ B : if a ≺ b ⇒ dist(F (a), F (PQ)) < dist(F (b), F (PQ))

Then
GDp(F (B), F (PQ)) < GDp(F (A), F (PQ)) (25)

Proof. Let A = {a1, . . . , an} and B = {b1, . . . , bm}. Now we rearrange B as
follows: choose B1 ⊂ B as the set of elements of B whose images are partially
less than F (a1), i.e.,

B1 := {b ∈ B | F (b) ≤p F (a1)}. (26)

By assumption 1.) it is m1 ≥ 1. If B1 6= B, proceed with B2 as the subset of
B\B1 those images are partially less than F (a2), and so on. This leads to a
sequence B1, . . . , Bν , ν ≤ n. By assumption 2.) it follows that B = B1∪ . . .∪Bν ,
where |Bi| = mi ≥ 1, i = 1, . . . , ν and

∑ν
i=1 mi = m. Using the Bi’s, we can

write

GDp(F (B), F (PQ)) =

(

1

m

∑

b∈B1

dist(F (b), F (PQ))p + . . . +
∑

b∈Bν

dist(F (b), F (PQ))p

)1/p

(27)
By assumptions 3.) and 4.) and using Equation (27) it follows that

GDp(F (B), F (PQ))p <
1

m
(m1dist(F (a1), F (PQ))p + . . . + mνdist(F (aν), F (PQ))p)

≤ m1

m
dist(F (a1), F (PQ))p + . . . +

mν

m
dist(F (aν), F (PQ))p

+ dist(F (aν+1), F (PQ))p + . . . + dist(F (an), F (PQ))p

≤ GDp(F (A), F (PQ))p

(28)



14

⊓⊔
Assumptions 1.) to 3.) say, roughly speaking, that B ‘evolves’ out of A by

dominance replacement, but B does not contain any point outside the region
of dominance of A. In the EMO literature, other (more intuitive) dominance
relations between sets have been introduced, which can, however, not be taken
in our setting. For instance, Hansen and Jaskiewicz ([21]) define complete out-
performance of sets as follows: B completely outperforms A (in short: B ≺c A),
if for every solution a ∈ A there exists a solution b ∈ B such that b ≺ a. Note
that if B ≺c A, then also B ∪ C ≺c A for every set C, and its members can
be either ‘far away’ from the Pareto set, or be contained outside the region of
dominance of A. In both cases, no prediction can be made on averaged distance
to the Pareto front, i.e., on the GDp value.
Note that the scenario described by the assumptions 1.) to 3.) involves the
situations shown in Figure 5. One important implication is that the result is
independent of the magnitudes of A and B (which is in constrast to the classical
version of GD).

Metric properties Here we discuss the metric properties of GDp (see Definition
1) which are the same as for the classical variant GD.
Due to the non-negativity of norms, also GDp is non-negative, i.e., it is
GDp(X, Y ) ≥ 0 for all finite sets X and Y . However, it is

GDp(X, Y ) = 0 ⇔ X ⊂ Y, (29)

and hence, the positive property is not satisfied since X can be a proper subset
of Y .
Further, GDp is not symmetric. For this, consider two sets X, Y such that X is
a proper subset of Y . Then, it is GDp(X, Y ) = 0 and GDp(Y, X) > 0.
Finally, also the triangle inequality does not hold. As an example, consider
A = {(2, 3)T , (4, 5)T}, B = {(9, 3)T , (5, 4)T }, and C = {(7, 10)T , (9, 6)T}. The
triangle equality is violated for p ≤ 3, i.e., GDp(A, C) > GDp(A, B)+GDp(B, C)
for p = 1, 2, 3.
The next example shows that GDp does not satisfy a relaxed triangle inequality
of the form (4) for p < ∞ if the number of elements in the sets are not bounded.
For this, consider any two sets X and Z such that GD(X, Z) > 0. Given these
two sets, the right hand side of the triangle equation reads as

rhs(Y ) := GDp(X, Y ) + GDp(Y, Z) =
‖dXY ‖p

p
√

|X |
+

‖dY Z‖p

p
√

|Y |
(30)

Now, choose the set Yn as follows:

Yn := X ∪ {y1, y2, . . . , yn}, (31)

such that the values δi := dist(yi, Z) are monotonically decreasing with δi → 0
for i → ∞ and

∑∞
i=1 δp

i < ∞. By construction, we have ‖dXY ‖p = 0 and

‖dY Z‖p/
p
√

|Yn| → 0, i.e., rhs(Yn) → 0 for n → ∞. That is, there is no value σ
such that (4) is fulfilled for all such sets Yn.
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Fig. 5. Three different scenarios where the GDp value of archive B is better than the
GDp value of archive A (under the additional assumptions made in Proposition 3).
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Relation to other distance measurements Apparently, GDp has a relation to dist,
i.e.,

GD∞(A, B) = dist(A, B). (32)

That is, for p < ∞, GDp can be viewed as an ‘averaged’ version of dist.

3.2 IGD

Here, we proceed with a discussion of the IGD indicator analog to GD. We
will propose the same modification, IGDp, which has the same (poor) metric
properties as GDp. Surprisingly, the new indicator is related to many distance
measurements used in the EMO literature.

Discussion of the original indicator Analog to GD, the indicator IGD as pro-
posed in [5] can be written as follows:

IGD(X, Y ) :=
1

M

(

M
∑

i=1

dist(yi, X)p

)1/p

=
‖dY X‖p

M
, (33)

where X = {x1, . . . , xN} and Y = {y1, . . . , yM}. Apparently, it is

IGD(X, Y ) = GD(Y, X) (34)

for all finite sets X and Y . Hence, in principle the same argumentation can
be applied to justify a modification of the operator. In the context of multi-
objective optimization, a (suitable) discretization Y of the Pareto front has to
be chosen. Analog to the discussion for GD, the IGD value gets better when
choosing a finer discretization of the Pareto front: assume we are given an archive
A, and two discretizations Y1 and Y2 of the Pareto front, where Y2 is finer than
Y1 (i.e., better in the Hausdorff sense and contains more elements). Then, it is
IGD(Y2, F (A)) < IGD(Y1, F (A)) (see also Example 2). Though this problem
can in principle be avoided by fixing a discretization of the Pareto front, this is
also an unwanted effect. Also, as we will see later on, the classical IGD indicator
allows no extension to continuous models.

An alternative version of IGD Motivated by the above discussion we propose to
use the power mean as for GDp, i.e., to use

IGDp(X, Y ) :=

(

1

M

M
∑

i=1

dist(yi, X)p

)1/p

=
‖dY X‖p

p
√

M
(35)

Example 2. We consider the Pareto front of a hypothetical MOP that is the line
segment between the points y1 = (0, 1)T ∈ R2 and y2 = (1, 0)T ∈ R2, i.e.,

F (PQ) = {λy1 + (1 − λ)y2 : λ ∈ [0, 1]} (36)
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Further, we consider the two following discretizations Y1 and Y2:

Y1 = {(i ∗ 0.1, 1 − i ∗ 0.1)T : i ∈ {0, . . . , 10}}
Y2 = {(i ∗ 0.01, 1 − i ∗ 0.01)T : i ∈ {0, . . . , 100}},

(37)

i.e., we have |Y1| = 11 and |Y2| = 101. We assume for simplicity that the archive
consists only of one point, A = {a}, with F (A) = (0.5, 0.5)T . Different IGD
and IGDp values are shown in Table 1. The following observations can be made:
the IGD values get lower for the finer approximation Y2. This is in accord to
the related discussion on GD: a given approximation A can be made ‘better’
(measured by IGD) simply by refining the approximation of the Pareto front
and without changing A which is against the intuition of an approximation
quality indicator. On the other hand, such a decay can not be observed in the
IGDp values. To get a better understanding of the difference in these values we
refer to Example 4.

Table 1. Numerical values for the IGD and IGDp indicators from Example 2.

p Indicator Y1 Y2

p = 1 IGD 0.3857 0.3571
IGD1 0.3857 0.3571

p = 2 IGD 0.1348 0.0410
IGD2 0.4472 0.4123

p = ∞ IGD 0.0643 0.0070
IGD∞ 0.7071 0.7071

Metric properties Due to (34), IGDp has the same metric properties as GDp,
i.e., GDp is merely non-negative. In particular, it is

IGDp(X, Y ) = 0 ⇔ Y ⊂ X. (38)

In the context of multi-objective optimization, this means that whenever the
Pareto front is contained in the image of the archive F (A), then the IGDp value
is zero.

Compliance to Pareto optimality As for GDp, the compliance of IGDp with
state-of-the-art MOEAs cannot be answered directly, but rather indirectly. In
this context, a combination of the characteristic (2) and (3) of modern MOEAs
(see related discussion on GDp) is most influential: a higher diversity among
the archive entries can lead to a better IGDp as it may reduce the maximal
gap in the distance from the Pareto front to the image of the outcome set. Up
to date, there exist quite a few diversity preservation mechanisms. There are,
for instance, fitness sharing schemes [19, 10], clustering [48], the adaptive grid
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[26, 27], the crowded-comparison operator [11], and entropy [6, 16, 17], among
others. Further, there exist algorithms that are specialized on a movement along
the Pareto set such as multi-objective continuation methods [45, 22, 41] or the
mutation operator HCS [28] which may be helpful to increase the diversity among
the archive entries. Future studies have to show if and to which extent these
operators indeed help to improve the IGDp value.

Relation to other distance measurements Before we can discuss the relations to
other measurements, we have to state the following definitions:

Definition 4 ([32]). Let ǫ ∈ Rk
+ and x, y ∈ Rn. x is said to ǫ-dominate y

(short: x ≺ǫ y), with respect to (MOP) if F (x)−ǫ ≤p F (y) and F (x)−ǫ 6= F (y).

Definition 5 ([29]). Let ǫ ∈ Rk
+. A set A ⊂ Rn is called an ǫ-approximate

Pareto set of (MOP) if for all x ∈ Rn there exists an a ∈ A such that a ≺ǫ x.

In the following, we use the notation 1ǫ := (ǫ, . . . , ǫ) ∈ Rk
+ for ǫ ∈ R+.

Definition 6 ([53]). Let A, B ⊂ Rn. The ǫ-Indicator of A and B is defined as

Iǫ+(A, B) := min
ǫ

∈ R+{∀b ∈ B ∃a ∈ A : F (a) − 1ǫ ≤p F (b)} (39)

Definition 7 ([36]). Let d be a metric, δ > 0, and D ⊂ Z be a discrete set. D
is called a dδ representation of Z if for any z ∈ Z there exists an element y ∈ D
such that d(z, y) ≤ δ.

Now we are in the position to state the relations of IGDp to the different
distance measurements.
First, there is the relation to dist. Analog to (32) we have

IGD∞(X, Y ) = dist(Y, X). (40)

The next proposition gives the relation of IGD∞ to the measurements based
on ǫ-dominance. Hereby, we use IGDq

∞ to indicate that the q-norm is used for
d(a, b) (see Equation (8)).

Proposition 4. Let A ⊂ Rn be given.

(a) A is a 1c-approximate Pareto set of the MOP, where c := IGDq
∞(F (A), F (PQ).

(b) Iǫ+(A, PQ) = IGD∞
∞(F (A), F (PQ))

Proof. Ad (a): It is

IGDq
∞(F (A), F (PQ)) = max

p∈PQ

min
a∈A

‖F (p) − F (a)‖q. (41)

That is, for all p ∈ PQ there exists an a ∈ A such that ‖F (p) − F (a)‖q ≤ c.
Since in particular |fi(p) − fi(a)| ≤ c for all i = 1, . . . , k it is also a ≺1c p, and
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the claim follows.
Ad (b): It is

Iǫ+(A, PQ) = min
ǫ∈R+

{∀p ∈ PQ∃a ∈ A : F (a) − 1ǫ ≤p F (p)}

IGD∞
∞(F (A), F (PQ)) = max

p∈PQ

min
a∈A

‖F (p) − F (a)‖∞ =: c,
(42)

and there exist p̄ ∈ PQ, ā ∈ A such that

‖F (p̄) − F (ā)‖∞ = c. (43)

That is, for all p ∈ PQ there exists an a ∈ A such that ‖F (p)−F (a)‖∞ ≤ c. Since
also here |fi(p)− fi(a)| ≤ c for all i = 1, . . . , k it follows that F (a)− 1ǫ ≤p F (p).
This together with (43) completes the proof. ⊓⊔

Finally, there is a relation to the measurement in Definition 7, but for this we
need in addition GD∞: Let A ∈ Rn. Then its image, F (A), is a dδ representation
of the Pareto front iff

GD∞(F (A), F (PQ)) = 0 and

IGD∞(F (A), F (PQ)) ≤ δ,
(44)

where d is the metric induced by the 2-norm (or more general, the q-norm).

3.3 A ‘New‘ Indicator to Measure the Hausdorff Distance to the
Pareto Front

Here, we combine GDp and IGDp to the ‘new’ indicator ∆p, which can be viewed
as an ‘averaged Hausdorff distance’.

The indicator: Inspired by the relation of GDp and IGDp to dist, we define the
new indicator ∆p as follows.

Definition 8. Let X = {x1, . . . , xn}, Y = {y1, . . . , ym} ⊂ Rk be finite and non-
empty sets. Then we define ∆p(X, Y ) by

∆p(X, Y ) : = max(GDp(X, Y ), IGDp(X, Y ))

= max





(

1

N

N
∑

i=1

dist(xi, Y )p

)1/p

,

(

1

M

M
∑

i=1

dist(yi, X)p

)1/p




(45)

Example 3. We revisit the two introductory examples from Section 1. Table 2
shows the numerical values of ∆p for different values of p. For p = 1, 2, 3, X1

is the ‘better’ approximation, and X2 is ‘better’ for p > 3 (compare to Figure
2). For the two fronts Fi, i = 1, 2, (compare to Figure 1) obtained by NSGA-II,
the ∆p values are ‘good’ for low values of p. That changes, however, for larger
values of p since in that case outliers are penalized more.
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Table 2. Values of ∆p(P, Xi) and ∆p(F (PQ), Fi), i = 1, 2, (compare to Figures 1 and
2) for different values of p. The higher the value of p, the more outliers are penalized
by ∆p.

p = 1 p = 2 p = 3 p = 5 p = 10 p = ∞
∆p(P, X1) 0.818 2.714 4.047 5.571 7.080 9.000

∆p(P, X2) 4.541 4.550 4.558 4.575 4.616 5.000

∆p(F (PQ), F1) 0.159 0.566 1.059 1.939 3.289 5.885

∆p(F (PQ), F2) 0.037 0.010 0.177 0.283 0.403 0.599

Metric properties Due to its combination of GDp and IGDp, ∆p has stronger
metric properties than the first two indicators. For instance, in case of bounded
archive sizes, ∆p defines a pseudo-metric for all values of p. Further on, we
address the ‘outlier trade off’ (i.e., penalizing single outliers but having a metric
in the mathematical sense versus diminishing the influence of outliers to the
indicator value by considering averaged results while losing the advantages of a
metric by violating the triangle inequality).

Proposition 5. ∆p is a semi-metric for 1 ≤ p < ∞ and a metric for p = ∞.

Proof. The positive property follows directly by the non-negativity of the norm
and the equations (29) and (38). The symmetry follows by the construction of
∆p. Hence, ∆p is a semi-metric.
Let p = ∞, then

∆∞(X, Y ) = max

„

max
i=1,...,|X|

(dist(xi, Y )), max
i=1,...,|Y |

(dist(yi, X))

«

= max(dist(X,Y ), dist(Y,X)) = dH(X, Y ),

(46)

i.e., for p = ∞ the indicator ∆p coincides with the Hausdorff distance. ⊓⊔

∆p does not satisfy the triangle inequality for p < ∞ which is caused by
the averaging of the distances. Assume, for instance, X = {(7, 1)T , (5, 3)T},
Y = {(5, 4)T , (3, 6)T }, and Z = {(1, 9)T , (3, 7)T }. Then, it is ∆1(X, Z) >
∆1(X, Y ) + ∆1(Y, Z).
However, in the case the magnitudes of the sets are bounded—and this is typ-
ically the case for most MOEAs—it follows that ∆p is a pseudo-metric in the
sense of Equation (4).

Proposition 6. Let X, Y, Z ⊂ Rk be non-empty with |X |, |Y |, |Z| ≤ N , then

∆p(X, Z) ≤ p
√

N(∆p(X, Y ) + ∆p(Y, Z)) (47)
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Proof.

∆p(X, Z) = max

(

‖dXZ‖p

p
√

|X |
,
‖dZX‖p

p
√

|Z|

)

≤ max

(

p
√

|X |‖dXZ‖∞
p
√

|X |
,

p
√

|Z|‖dZX‖∞
p
√

|Z|

)

= dH(X, Z) ≤ dH(X, Y ) + dH(Y, Z)

= max (‖dXY ‖∞, ‖dY X‖∞) + max (‖dY Z‖∞, ‖dZY ‖∞)

≤ max
(

p
√

|X |, p
√

|Y |
)

∆p(X, Y ) + max
(

p
√

|Y |, p
√

|Z|
)

∆p(Y, Z)

≤ p
√

N(∆p(X, Y ) + ∆p(Y, Z))

(48)

⊓⊔

Apparently, the choice of the p-norm in (45) is the key to handle the ‘outlier
trade off’: the smaller p, the higher the averaging effect and the lower the influ-
ence of single outliers. If, on the other hand, p is increased, the more the largest
distances in GD(X, Y ) get dominant, and hence, outliers influence the value of
∆p(X, Y ) (recall that limp→∞ ‖x‖p = ‖x‖∞). In the extreme case, p = ∞, only
the farthest distances are considered (i.e., the value of the distance is determined
entirely by the largest outlier), but in turn ∆p defines a metric on the set of dis-
crete sets.
This is reflected in Table 3: it shows the percentage of the triangle inequality
violations for different values of p for a sequence of randomly chosen sets X ,
Y , and Z with different magnitudes. The larger p, the fewer triangle inequality
violations are observed, and hence, the ‘nearer’ ∆p is to a metric (measured
empirically by the probability of a triangle inequality violation). Note that the
triangle inequality violations decrease both with increasing value of p as well
as with increasing number of elements considered in the sets. This might be a
reason that the violation of the triangle inequality has never been observed in
literature. For practical use (i.e., assuming the magnitude of both the candidate
set and the Pareto front approximation to be at least 100, and p ≥ 2), it seems
that ∆p might be already quite ‘close’ to a metric.

Table 3. Percentage of the triangle violations for different values of p. Here 100,000
different sets X, Y , and Z with magnitude N = 2, 4, 6, 10 and 100 have been chosen,
and each entry of each set has been chosen randomly from [0, 10]2.

p = 1 p = 2 p = 5 p = 10 p = 20 p = ∞
N = 2 0.541 0.15 0.026 0.008 0.005 0.006

N = 4 0.249 0.06 0.019 0.009 0.005 0.002

N = 6 0.105 0.033 0.008 0.003 0.001 0

N = 10 0.02 0.002 0.004 0.001 0 0

N = 100 0 0 0 0 0 0
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Compliance to Pareto optimality: This follows directly by the related discussions
for GDp and IGDp. Note that in particular all the three characteristics of a state-
of-the-art MOEA (see related discussion for GDp) are indeed helpful to decrease
the ∆p value. Hence, one can say that state-of-the-art MOEAs are in principle
compliant with the new indicator ∆p. It remains, however, to detect to what
extent Pareto-based MOEAs can be evaluated by ∆p.

Relation to other distance measurements: By construction, there is a strong
relation to the Hausdorff distance, i.e., it is

∆∞(X, Y ) = dH(X, Y ). (49)

Hence, ∆p can be viewed as an ‘averaged Hausdorff distance’ for p < ∞.

It is important to note that ∆p is not compliant with the dominance relations
defined by Hansen and Jaskiewicz ([21]) such as the complete outperformance
(see also the related discussion in Section 3.1 on GDp). For this, consider the
third example introduced in Section 1 (see also Figure 2), and consider X2 is
obtained via the translation x2,i = pi + (2ǫ, 5)T , i = 1, . . . , 11, while P and X1

are unchanged. Then, it is X1 ≺c X2 regardless of the outlier in X1, but one
obtains very similar values as the one shown in Table 2 (in particular, the ∆p

value is only better for X1 for low values of p). This is due to the fact that ∆p

considers all dist values of the two given sets in order to compute the ‘distance’
between them.

4 Extension to Continuous Models

So far, we have assumed that PQ, and hence also F (PQ), was finite. Since the
Pareto set of a continuous MOP typically forms a (k−1)-dimensional set, a nat-
ural question arises—at least from the theoretical point of view—how to extend
the indicators to such problems which we address here. Though the ’extended
indicators’ can hardly be solved for a general model, their definition allows to
address the (practically relevant) question of the discretization error when dis-
cretizing F (PQ) (see Proposition 7 for such a result).

4.1 Extension of the Indicators

In the following, we investigate how GDp and IGDp (and hence, also ∆p) can be
extended for the case where all objectives are continuous. Hereby, we consider
the sets A, PQ ⊂ Rn, where A = {a1, . . . , a|A|} (i.e., the archive) is finite.

GDp for Continuous Models: It is

GDp(F (A), F (PQ)) =





1

|A|

|A|
∑

i=1

dist(F (ai), F (PQ))p





1/p

(50)
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Since PQ is compact and F is assumed to be continuous it is

dist(F (ai), F (PQ)) = min
p∈PQ

‖F (ai) − F (p)‖ (51)

That is, the form of GDp does not change, but it turns from a discrete
optimization problem (to be more precise, an enumeration problem) into a con-
tinuous optimization problem.

IGDp for Continuous Models The extension of IGDp requires the integration
over the Pareto front (see Appendix for a derivation). Assume for sake of a
better understanding first the bi-objective case (i.e., k = 2) and that the Pareto
front is connected. In that case, the Pareto front can be expressed as a curve
γ : [m1, M1] ⊂ R→ R2, where m1 := minp∈PQ

f1(p) and M1 := maxp∈PQ
f1(p),

and IGDp reads as follows:

IGDp(F (A), F (PQ)) =

(

1

M1 − m1

∫ M1

m1

dist(γ(t), F (A))pdt

)1/p

(52)

In case F (PQ) consists of l connected components one can define in an analog
way l such curves γi : [mi,1, Mi,1] → R2 such that the union of these curves are
equal to the Pareto front. In that case one obtains:

IGDp(F (A), F (PQ)) =
l
∑

i=1

(

1

Mi,1 − mi,1

∫ Mi,1

mi,1

dist(γi(t), F (A))pdt

)1/p

(53)

Finally, we consider the general case: assume we are given a MOP with k
objectives where the Pareto front consists of l connected components. Then
there exist l mappings Φi : Di → R, i = 1, . . . , l, where Di ⊂ [m1, M1] × . . . ×
[mk−1, Mk−1] (where mi and Mi are defined analogously for i = 2, . . . , k − 1),
such that the union of the graphs of the Φ’s is equal to F (PQ). Define Ψi : Di →Rk as Ψi(x) = (x, Φi(x))T . Then, we obtain

IGDp(F (A), F (PQ)) =

l
∑

i=1

(

1

vol(Di)

∫

Di

dist(Ψi(x), F (A))pdx

)1/p

. (54)

where vol(Di) is the (k − 1)-dimensional volume of Di, i = 1, . . . , l.

4.2 Discretization of the Pareto Front

Though in principle the Pareto fronts of all commonly used benchmark models
are given analytically, and there exist attempts to express F (PQ) analytically
for a given model (e.g., [1]), the indicator values are—at least for k > 2—in gen-
eral not easy to calculate, or relatively expensive to approximate numerically in
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terms of function calls. Since we assume that F (PQ) is given the question arises
if it is not advantageous to use a discretization of the Pareto front (as done so
far in the literature). In the following we analyze this.
Since F (PQ) is given, we can assume that we are given a finite approximation
Y ⊂ Rk of the Pareto front with dH(Y, F (PQ)) ≤ δ (i.e., Y contains no out-
liers, see below for one possible heuristic for the generation of Y for bi-objective
problems). The natural question that arises in this context is the resulting dis-
cretization error that has to be considered when comparing different indicator
values. Here, we define the approximation error in a straightforward way: given
an archive A, the Pareto front F (PQ) and its discretization Y , we define the
error e.g. for GDp as |GDp(F (A), F (PQ))−GDp(F (A), Y ))|, and analog for the
other indicators.
The following result shows that the discretization error for the three indicators
under investigation is equal to the approximation quality of Y .

Proposition 7. Let A ⊂ Rn be finite, F (PQ) is given and can be expressed as
in Equation (54), and let Y ⊂ Rk be finite such that dH(F (PQ), Y ) ≤ δ. Then

(a) |GDp(F (A), F (PQ)) − GDp(F (A), Y ))| ≤ δ

(b) |IGDp(F (A), F (PQ)) − IGDp(F (A), Y ))| ≤ δ

(c) |∆p(F (A), F (PQ)) − ∆p(F (A), Y ))| ≤ δ

Proof. Since dH(F (PQ), Y ) ≤ δ it holds

∀p ∈ PQ : dist(F (p), Y ) ≤ δ, and (55)

∀y ∈ Y : dist(y, F (PQ)) ≤ δ. (56)

Ad (a): this follows by the reverse triangle inequality (RTI) and Equation (55):

|GDp(F (A), F (PQ)) − GDp(F (A), Y ))| =
∣

∣

∣

∣

∣

1
p
√

|A|
‖dF (A)F (PQ)‖p − 1

p
√

|A|
‖dF (A)Y ‖p

∣

∣

∣

∣

∣

=
1

p
√

|A|
∣

∣‖dF (A)F (PQ)‖p − ‖dF (A)Y ‖p

∣

∣

(RTI)

≤ 1
p
√

|A|
‖dF (A)F (PQ) − dF (A)Y ‖p

(55)

≤ ‖(δ, . . . , δ)T ‖p ≤ δ.

(57)

Ad (b): Here we give the proof for k = 2 and l = 1, all the other cases are analog.
By assumption there exists a curve γ : [m1, M1] → R2 such that

IGDp(F (A), F (PQ)) =

(

1

M1 − m1

∫ M1

m1

dist(γ(t), F (A))pdt

)1/p

(58)
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In the following we show that IGDp(F (A), Y ) can be estimated above by an
upper Riemann sum which leads to the desired result. Denote

I(i, |Y |) :=

[

m1 +
i − 1

|Y | (M1 − m1), m1 +
i

|Y | (M1 − m1)

]

, i = 1, . . . , |Y |,
(59)

i.e., the union of these intervals forms a uniform partition of the interval [m1, M1].
Define ∆t := (M1 − m1)/|Y |, and choose a value ti in each interval I(i, |Y |).
Since dH(Y, F (PQ)) ≤ δ there exists for every ti an element yi ∈ Y such that
‖γ(ti) − yi‖ ≤ δ, i = 1, . . . , |Y |. We thus have

IGDp(F (A), Y ) =





1

|Y |

|Y |
∑

i=1

dist(yi, F (A))p





1/p

≤





1

|Y |

|Y |
∑

i=1

(dist(γ(ti), F (A)) + δ)p





1/p

=





1

M1 − m1

|Y |
∑

i=1

(dist(γ(ti), F (A)) + δ)p ∆t





1/p

,

(60)

i.e., an upper Riemann sum of (58). The maximal error is hence given by
∣

∣

∣

∣

∣

∣

∣





1

M1 − m1

|Y |
∑

i=1

(dist(γ(ti), F (A)) + δ)p ∆t





1/p

−





1

M1 − m1

|Y |
∑

i=1

dist(γ(ti), F (A))p ∆t





1/p
∣

∣

∣

∣

∣

∣

∣

≤ 1
p
√

|Y |
‖(δ, . . . , δ)T ‖p = δ,

(61)

and the claim follows. Ad (c): this follows immediately by (a) and (b)
⊓⊔

Example 4. We revisit Example 2. It is m1 = 0 and M1 = 1, and the Pareto
front can be expressed by the curve

γ : [0, 1] → R2, γ(t) =

(

t
1 − t

)

. (62)

The IGDp value for A = {a} is given by (see Appendix for a derivation):

IGDp(F (A), F (PQ)) =
1√
2

p

√

1

p + 1
(63)

In particular, we obtain the following numerical values

IGD1(F (A), F (PQ)) ≈ 0.3536

IGD2(F (A), F (PQ)) ≈ 0.4082

IGD∞(F (A), F (PQ)) = 1/
√

2.

(64)
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It is dH(Y1, F (PQ)) = 0.1 and dH(Y2, F (PQ)) = 0.01, and the difference of the
above results with the IGDp values in Table 1 are in accord with the above
result.

It remains to obtain such an approximation Y with the desired Hausdorff
distance to the Pareto front which is not always an easy task: in almost all
benchmark functions, PQ is given explicitly and in ‘easy’ form, however, this
does only in certain cases hold for F (PQ).
In the following, we present one possible heuristic for the computation of Y for bi-
objective optimization problems with differentiable objectives (the latter holds
for all continuous benchmark models, even if MOEAs do typically not exploit
that information). Assume we are given PQ analytically (which can consist of
one or more connected components), the question is how to get a ‘suitable’
discretization P = {p1, . . . , pn}, pi ∈ PQ, such that Y := F (P ) serves as a
Pareto front approximation with dH(Y, F (PQ)) ≤ δ, where δ ∈ R+ is given a
priori. Here we can lean elements from the step size control for multi-objective
continuation (e.g., [44]) since the main difficulty for the problem at hand is to
estimate the distance ‖pi+1−pi‖∞ of two ‘consecutive’ elements pi and pi+1 (for
the bi-objective case, PQ is typically a curve, and hence, the elements pi can be
arranged accordingly): by demand on F (P ), the distance of the images of the
two consecutive solutions should be

‖F (pi+1) − F (pi)‖∞ ≈ Θδ, (65)

where Θ ∈ (0, 1) is a safety factor. If F is Lipschitz continuous there exists a
L > 0 such that

‖F (x) − F (y)‖∞ ≤ L‖x − y‖∞ ∀x, y ∈ Q. (66)

If x and y are close enough together, then the inequality in (66) turns approx-
imately to the equality when using the local Lipschitz estimate of F around x.
The latter can be estimated by

Lx := ‖DF (x)‖∞ = max
i=1,..,k

‖∇fi(x)‖1 (67)

Putting (65) and (66) together and assuming that δ is ‘small’, we obtain the
following estimation for the distance of the two consecutive solutions

‖pi+1 − pi‖∞ ≈ Θδ

Lpi

(68)

From this, and the knowledge of PQ, the next iterate can be computed. In case
also PQ is not easy to track, the above distance can be used as the step size for
the predictor within a multi-objective continuation method.
The aim of the method presented above is to generate an equidistant approxi-
mation of the Pareto front. Such approximations are considered to be ‘optimal’
by the PL-metric ([33]).
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5 Numerical Results

Here, we attempt to demonstrate the usefulness of the novel indicator. First, we
show some examples of discretizations of the Pareto front as discussed in Section
4.2. Next, we intend to show empirically that modern MOEAs indeed comply
(to a certain extent) with ∆p. For this, we have chosen to apply NSGA-II ([11])
on a benchmark model. It can be seen that the MOEA indeed generates good
(averaged) Hausdorff approximations of the Pareto front. Finally, we want to
demonstrate that ∆p can be used to measure empirically the speed of conver-
gence of certain archive-based MOEAs.

5.1 Generating Discretizations of the Pareto Front

First, we address the problem of generating a ‘suitable’ discretization of F (PQ).
Here, we have used the multi-objective continuation method proposed in [13, 42]
together with the step size control discussed in Section 4.2. Figures 6 and 7 show
results for different values of δ (in all computations, we have chosen Θ = 0.99)
on bi-objective problems, and Figure 8 shows one result for a 3-objective model
(see Appendix for the definitions of the MOPs under consideration). In all cases,
sufficient approximations could be obtained.

5.2 Measuring the Performance of NSGA-II on DTLZ1

Next, we are interested in measuring the performance of a modern Pareto-based
MOEA on a benchmark model. Here, we have decided for the well-known algo-
rithm NSGA-II and the benchmark model DTLZ1 ([9]) since NSGA-II is a widely
accepted state-of-the-art MOEA, and DTLZ1 contains weakly optimal Pareto
points which are easily detected—but not easily discarded—by a MOEA.
Figure 9 and Table 4 show the values of GDp, IGDp, and ∆p for the extreme
values p = 1 and p = ∞ for the first 700 generations (averaged over 50 indepen-
dent runs using population size Npop = 60). In general, a convergent behavior
can be observed, which differs, however, for the different values of p: while for
p = 1 all curves of the indicators values are nearly ‘smooth’, this is not the case
for p = ∞, where jumps in the indicator values can be observed. The latter is
probably due to the (few) outliers NSGA-II has detected time and again (com-
pare to Figure 1), and/or possibly to the deterioration and cyclic behavior which
can occur in the sequence of populations as discussed in [29].
Next, we address the optimality of the NSGA-II approximations. Since the ∆p

value is not known for this example (as for Example 2), we have solved numeri-
cally the following problem:

min
x∈Rn×Npop

∆p({F (x(1)), . . . , F (x(Npop))}, F (PQ)), (69)

where x(i) = (x1+(i−1)n, . . . , xin) ∈ Rn, i = 1, . . . , Npop, leading to the approxi-
mations of the optimal values

∆̃1 ≈ 0.0234, and ∆̃∞ ≈ 0.0514. (70)
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Fig. 6. Discretizations of the Pareto front of model OKA2 ([34]) using a continuation
method together with the step size control described in Section 4.2.
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Fig. 7. Discretizations of the Pareto front of model UF1 ([30]) using a continuation
method together with the step size control described in Section 4.2.
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Fig. 8. Discretizations of the Pareto front of model SDD1 ([42]) using a continuation
method together with the step size control described in Section 4.2. Here, we have used
δ = 100 leading to 3421 solutions.

Hence, the values obtained by NSGA-II are not optimal up to generation 700
(compare to Table 4) which can apart from (70) also be seen that the GDp

values are greater than the IGDp values. However, since NSGA-II has not been
designed to aim for Hausdorff approximations, the algorithm cannot be blamed
for that.
It has to be noted that this is just a first attempt to demonstrate the usefulness
of the new indicator on a state-of-the-art MOEA. Much further investigation
has to be done in this direction.

Table 4. Numerical results of NSGA-II on the DTLZ1 model, measured by GDp,
IGDp, and ∆p for p = 1 and p = ∞ (compare to Figure 9).

No. of Generations
100 200 300 400 500 600 700

GD1 18.586 4.682 1.953 1.061 0.670 0.239 0.128
GD∞ 40.051 10.954 3.510 2.205 9,791 0.466 0.253

IGD1 9.327 3.123 1.421 0.778 0.371 0.173 0.124
IGD∞ 9.467 3.217 1.506 0.861 0.438 0.260 0.233

∆1 18.586 4.682 1.953 1.061 0.670 0.239 0.128
∆∞ 40.051 10.954 3.510 2.205 9,791 0.466 0.253
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Fig. 9. Numerical results of NSGA-II on the DTLZ1 model, measured by GDp, IGDp,
and ∆p for p = 1 and p = ∞ (compare to Table 4). The results are averaged over 50
independent runs. The left figures show the result of the entire run, and the figures on
the right show a zoom.
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5.3 Evaluation of ArchiveUpdateTight Results

In this section, we want to demonstrate that the indicators developed in this
work can be helpful to evaluate the outcome set of evolutionary strategies that
are coupled with certain (specialized) archiving strategies. Here we will investi-
gate the result coming from three different archivers: the archiver that stores all
nondominated solutions, and two further ones that aim for particular finite size
representations of the Pareto front. We will propose a model where it is likely
that an evolutionary strategy traces weakly optimal solutions that are possibly
far from the Pareto set, and that the outcome set (i.e., the final archive) can
be evaluated more fairly with respect to the occurence of outliers. We are of
the opinion that this can be used in the future to compare the performance of
different MOEAs equipped with the same archiver.

The first archiver we consider here, ArchiveUpdateND (short: ND), is the
one that stores all nondominated solutions obtained by the generation process,
i.e.,

ArchiveUpdateND(P, A0) := {x ∈ P ∪ A0 : y 6≺ x ∀y ∈ P ∪ A0} . (71)

In [46], it is shown that the archiver generates under certain (mild) assumptions
on the generator a sequence of archives Al, l ∈ N, such that it holds with
probability one

lim
l→∞

dH(F (Al), F (PQ)) = 0 (72)

That is, the images of the archives converge to the Pareto front in the Hausdorff
sense. The drawback of this archiver—at least for continuous models—is that the
magnitudes of the sequence of archives quickly go beyond any given threshold.
As a possible remedy, further archives have been proposed that aim for particular
finite size representations of the Pareto front, for instance the archivers inves-
tigated in [44]. Though the two archivers were developed with different scopes,
both can be explained quite well using the distance measurements discussed in
this work:
The first archiver, ArchiveUpdateT ight1 (short: Tight1), is generating a se-
quence Al of archives that are aiming to construct a (δ, Θǫm)-tight ǫ-approximate
Pareto set, where δ ∈ R+, ǫ ∈ Rk

+ are discretization parameters with ǫm :=
mini=1,...,kǫi, ǫM := maxi=1,...,kǫi, and Θ ∈ (0, 1) is a safety factor. Though the
existence of outliers is not excluded in this set of interest, the underlying idea of
such an approximation A1 is that (at least after removal of the outliers) it holds

dist(F (A1), F (PQ)) ≤ ǫM , and

dist(F (PQ), F (A1)) ≤ δ.
(73)

Since ǫ-approximate solutions are considered to be ‘good enough’ by Tight1,
they are not replaced by dominating solutions any more. By this, the uniformity
level ǫm (i.e., ‖F (a1)−F (a2)‖∞ ≥ ǫm ∀a1, a2 ∈ A1, a1 6= a2) can be guaranteed,
but no convergence toward the Pareto front. Hence, the values on the right hand
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sides of (73) can be considered to be ideal ones for the resulting archives.
If convergence toward the Pareto front is desired, then the archiver
ArchiveUpdateT ight2 (short: Tight2) can be chosen. Tight2 aims for a δ-tight
Pareto set, i.e., for an ‘ideal’ approximation A2 generated by Tight2 it is expected
that

dist(F (A2), F (PQ)) = 0, and

dist(F (PQ), F (A2)) ≤ δ.
(74)

Hence, unlike the outcome of Tight1, the images of the archive entries have to
converge toward the Pareto front (albeit with the price of dropping the unifor-
mity level, see [44] for a thorough discussion).
In [46, 44], it is shown that all the archivers generate (under certain assumptions
on the generator) sequences of archives that converge with probability one to
such sets of interest, however, it is not known how fast this happens since this is
dependent on the performance of the generation process. To evaluate this, one
can in principle use the operators dist and dH . However, as discussed above,
these ones are probably not as ‘fair’ as desired to the occurence of outlieres (this
‘fairness’ is of course depending on the preferences of the algorithm designer
and/or the given application). Hence, it might make sense to use the indicators
GDp, IGDp, and ∆p instead.

As a test model for the investigation for the determination of the approxi-
mation quality we suggest the following MOP

min
x∈Q

F (x) = x, (75)

where F : Rk → Rk and the domain Q is given by

Q =

{

x ∈ Rk : xi ∈ [0, 10], i = 1, . . . , k, and

k
∑

i=1

xi ≥ 1

}

. (76)

Hereby, Pareto set and front are given by the (k − 1)-standard simplex

PQ = F (PQ) =

{

x ∈ Rk : xi ≥ 0, i = 1, . . . , k, and

k
∑

k=1

xi = 1

}

(77)

Though apparently the objectives in MOP (75) are very easy, we have chosen
this model for two reasons (that are both induced by the structure of Q): (i)
every x ∈ ∂Q (i.e., the boundary of Q) with xi = 0 for an index i ∈ {1, . . . , k}
is a weak Pareto point, and (ii) given x ∈ Q, every vector ν in the non-positive
orthand is a descent direction of MOP (75) at x (i.e., every point x + tν where
t ∈ R+, dominates x). Hence, it can be expected that weak Pareto points in
∂Q\PQ will be found easily by a stochastic search algorithm, even if line search
methods are involved (e.g., [28]).
In the following we will use MOP (75) for the bi-objective case (i.e., k = 2). Since
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the aim is to demonstrate the behavior of the indicator values on the sequence of
archives and not to compare different algorithms, we have chosen to use random
search as the generator: we choose N test points xi uniformly at random from
[0, 10]2 and feed the archiver with the feasible solutions (i.e., if xi ∈ Q, else xi

is discarded). We have observed that when using random search it is practically
impossible to eliminate points that are near to weakly optimal points once they
have been detected. Hence, we have chosen to impose the additional constraints
to Q in order to reduce (but not eliminate) that problem

−α + αx1 − x2 ≤ 0

−α + αx2 − x2 ≤ 0,
(78)

where we have chosen α = 0.01: the constraints have the effect that the weakly
optimal (but not Pareto optimal) points of the original MOP (75) are outside
the new domain. A larger value of α leads in general to less outliers in the archive.
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Fig. 10. Numerical results from Tight1 and Tight2 on MOP (75).
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Table 5. Numerical results ND

N ∆1 GD1 IGD1 ∆2 GD2 IGD2 ∆∞ GD∞ IGD∞

1e3 0.0803 0.0791 0.0446 0.1341 0.1331 0.0499 0.4239 0.4194 0.1035
1e4 0.0176 0.0174 0.0140 0.0347 0.0346 0.0158 0.1873 0.1873 0.0361
1e5 0.0047 0.0047 0.0044 0.0071 0.0071 0.0050 0.0581 0.0581 0.0121
1e6 0.0024 0.0024 0.0015 0.0030 0.0030 0.0017 0.0357 0.0357 0.0041

Table 6. Numerical results Tight1

N ∆1 GD1 IGD1 ∆2 GD2 IGD2 ∆∞ GD∞ IGD∞

1e3 0.0973 0.0959 0.0543 0.1582 0.1582 0.0599 0.4957 0.4757 0.1153
1e4 0.0612 0.0605 0.0329 0.1009 0.1005 0.0358 0.3302 0.3292 0.0653
1e5 0.0513 0.0513 0.0284 0.0836 0.0836 0.0312 0.2799 0.2799 0.0562
1e6 0.0508 0.0508 0.0275 0.0798 0.0798 0.0299 0.2156 0.2156 0.0550

Table 7. Numerical results Tight2

N ∆1 GD1 IGD1 ∆2 GD2 IGD2 ∆∞ GD∞ IGD∞

1e3 0.0822 0.0868 0.0448 0.1583 0.1583 0.0495 0.5231 0.5231 0.0986
1e4 0.0243 0.021 0.0223 0.0405 0.0396 0.0249 0.1666 0.1652 0.0543
1e5 0.0150 0.0062 0.0150 0.0191 0.0121 0.0176 0.0569 0.0569 0.0392
1e6 — 0.0130 0.0024 0.0130 0.0156 0.0029 0.0156 0.0349 0.0088 0.0550
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6 Conclusions and Future Work

In this paper, we have proposed a new performance indicator, ∆p, which mea-
sures the averaged Hausdorff distance of the image of the outcome set (or final
archive) F (A) to the Pareto front F (PQ) of a given multi-objective optimization
problem. Since ∆p considers the averaged distances between the entries of F (A)
and F (PQ), the novel indicator is in particularly interesting for the evaluation
of stochastic search algorithms such as multi-objective evolutionary algorithms
since such methods tend to generate outliers, and in that case the ‘classical’
Hausdorff distance dH is entirely determined by the largest outlier (and hence,
not always applicable with satisfying results).
To establish ∆p, we have first investigated two widely used indicators in the
evolutionary multi-objective optimization community, namely the Generational
Distance and the Inverted Generational Distance. We have argued that a slight
modification of both operators (i.e., by using the power mean of the consid-
ered distances) leads to more ‘fair’ indicators. To be more precise, larger archive
sizes (for the modification GDp of the Generational Distance) respectively finer
discretizations of the Pareto front (for the modification IGDp) do not automat-
ically lead to ’better’ approximations as in their original definitions. This led in
particular to a better Pareto compliance for GDp.
Next, we have defined ∆p—analog to dH—as the maximum of the GDp and
the IGDp value which defines an averaged Hausdorff distance for p < ∞ and
coincides with dH for p = ∞. ∆p offers better metric properties than its compo-
nents GDp and IGDp: it defines a semi-metric for all values of p and is even a
pseudo-metric in case the magitudes of the considered sets are bounded (which is
typically the case when considering the outcome sets of evolutionary algorithms).
A related topic is the outlier trade off which we have addressed next: the lower
the value of p, the less single outliers are penalized but the more ‘far away’ ∆p

is to a metric (due to its high probability to violate the triangle inequality). On
the other hand, the larger the value of p, the ’nearer’ ∆p comes to a metric in
the mathematical sense, but, in turn, single outliers get penalized stronger.
Furthermore, we have addressed extensions of GDp, IGDp, and ∆p to contin-
uous multi-objective optimizatiom problems. Though the expressions are typi-
cally not easy to compute on a general problem, they can be used to bound the
discretization error which is certainly of interest when considering discretized
Pareto fronts (as usually done in the literature).
Finally, we have presented some numerical results that aim to demonstrate the
applicability and usefulness of the new indicators.

For the future, there are several aspects worth investigating. For instance, it
seems that further theoretical investigations could help for a better understand-
ing of the three indicators such as the influence of the values of p and q. Next,
the compliance of Pareto based MOEAs with ∆p is certainly of major interest.
In this paper, we have shown that the aim of these algorithms can be described
quite well using the Hausdorff distance, however, it is left to investigate i) how
far this relation goes and ii) how this can be improved. Finally, it is consider-
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able that the current study can be extended to further sets of interest such as
Hausdorff approximations of the Pareto set or the family of Pareto sets/fronts
of dynamic MOPs.
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Appendix

IGDp for Continuous Models To derive formula (52) for IGDp, we assume that
k = 2 and that the Pareto front can be expressed by a curve γ : [m1, M1] ⊂ R→R2, where m1 := minp∈PQ

f1(p) and M1 := maxp∈PQ
f1(p). Assume first we are

given a discretized Pareto front P̃Q = {p̃1, . . . , p̃|PQ|}, then

IGDp(F (A), F (P̃Q)) =





1

|P̃Q|

|P̃Q|
∑

i=1

dist(F (p̃i), F (A))p





1/p

(79)

Now we consider Equation (79) using γ: for every point p̃i there exists a t̃i ∈
[m1, M1] such that γ(t̃i) = F (p̃i), and hence, Equation (79) can be written as

IGDp(F (A), F (P̃Q)) =





1

|P̃Q|

|P̃Q|
∑

i=1

dist(γ(t̃i), F (A))



 (80)



41

In the following we discretize F (PQ) by choosing samples of the interval [m1, M1]
which is justified by the above equation. For this, let [m1, M1] be subdivided into
N subintervals of equal length ∆t = (M1 − m1)/N , and choose one ti in each
interval. Then, we obtain for the discretization PQ,N := {γ(t1), . . . , γ(tN )} the
formula

IGDp(F (A), F (PQ,N )) =

(

1

N

N
∑

i=1

dist(γ(ti), F (A))p

)1/p

=

(

1

N · ∆t

N
∑

i=1

dist(γ(ti), F (A))p · ∆t

)1/p

=

(

1

M1 − m1

N
∑

i=1

dist(γ(ti), F (A)) · ∆t

)1/p

,

(81)

i.e., the Riemann sum of ϕ : [m1, M1] → R, ϕ(t) = dist(γ(t), F (A)), with the
given partition. Since we obtain for N → ∞ that F (PQ,N ) → F (PQ) in the
Hausdorff sense and dist(·, F (A)) (and hence also ϕ) is continuous we can define
for the limit

IGDp(F (A), F (PQ)) =

(

1

M1 − m1

∫ M1

m1

dist(γ(t), F (A))pdt

)1/p

. (82)

Derivation of Equation (63)

IGDp(F (A), F (PQ)) =

(

1

1 − 0

∫ 1

0

dist

((

1
t-1

)

,

(

0.5
0.5

))p

dt

)1/p

=

(∫ 1

0

∥

∥

∥

∥

(

t-0.5
0.5-t

)∥

∥

∥

∥

p

2

)1/p

=

(∫ 1

0

(

√

(t − 0.5)2 + (0.5 − t)2
)p

dt

)1/p

=
√

2

(∫ 1

0

|t − 0.5|p
)1/p

=
√

2

(

2

∫ 1

1/2

(t − 0.5)p

)1/p

=
√

2
p
√

2

(

[

(t − 0.5)p+1

p + 1

]1

1/2

)1/p

=
√

2
p
√

2

(

1

2

)
p+1

p
p

√

1

p + 1

=
1√
2

p

√

1

p + 1
(83)

MOPs under consideration In Section 5.1, we have used the MOPs which are
listed in Table 8.
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Table 8. MOPs used in Section 5.1.

Name Definition Constraints

DTLZ1 [9]

f1 = 0.5x1x2(1 + g(x3))
f2 = 0.5x1(1 − x2)(1 + g(x3))
f3 = 0.5(1 − x1)(1 + g(x3))
where

g(x3) = 100(|x3| +
P3

i=1
(xi − 0.5)2 − cos(20π(xi − 0.5)))

xi ∈ [0, 1]

OKA2 [34]
f1 = x1

f2 = 1 − 1

4π2 (x1 + π)2 + |x2 − 5 cos(x1)|
1
3 + |x3 − 5 sin(x1)|

1
3

x1 ∈ [−π, π]
x2, x3 ∈ [−5, 5]

SDD1 [42]

fi(x) =
n

P

j=1

j 6=i

(xj − ai
j)

2 + (xi − ai
i)

4, i = 1, 2, 3,

where
a1 = (1, 1, 1, 1, . . .) ∈ Rn,
a2 = (−1,−1,−1,−1, . . .) ∈ Rn,
a3 = (1,−1, 1,−1, . . .) ∈ Rn.

none

UF1 [30]

f1(x) = x1 + 2

J1

P

j∈J1
|xj − sin(6πx1 + jπ/n)|2,

f2(x) = 1 −√
x1 + 2

J2

P

j∈J1
|xj − sin(6πx1 + jπ/n)|2,

where
J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j is even and 2 ≤ j ≤ n},

x1 ∈ [0, 1]
xi ∈ [−1, 1], i = 2, . . . , n
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