
DEMORS: A hybrid Multi-Objective

Optimization Algorithm using Differential

Evolution and Rough Set Theory for

Constrained Problems

Luis V. Santana-Quintero1, Alfredo G. Hernández-Dı́az2, Julián Molina3,
Carlos A. Coello Coello1∗, and Rafael Caballero3

1 CINVESTAV-IPN, Computer Science Department, Av. IPN No. 2508 Col. San
Pedro Zacatenco, México D.F. 07360, México
lvspenny@hotmail.com, ccoello@cs.cinvestav.mx

2 Pablo de Olavide University, Department of Economics, Quantitative Methods
and Economic History, Ctra. de Utrera, km.1, 41013, Seville, Spain
agarher@upo.es

3 University of Málaga, Department of Applied Economics (Mathematics),
Campus El Ejido s./n. 29071, Spain
julian.molina@uma.es, rafael.caballero@uma.es

Summary. The aim of this paper is to show how the hybridization of a multi-
objective evolutionary algorithm (MOEA) and a local search method based on the
use of rough set theory, is a viable alternative to obtain a robust algorithm able
to solve difficult constrained multi-objective optimization problems at a moderate
computational cost. This paper extends a previously published MOEA [11], which
was limited to unconstrained multi-objective optimization problems. Here, the main
idea is to use this sort of hybrid approach to approximate the Pareto front of a
constrained multi-objective optimization problem while performing a relatively low
number of fitness function evaluations. Since in real-world problems the cost of
evaluating the objective functions is the most significant, our underlying assumption
is that, by aiming to minimize the number of such evaluations, our MOEA can be
considered efficient. As in its previous version, our hybrid approach operates in
two stages: in the first one, a multi-objective version of differential evolution is
used to generate an initial approximation of the Pareto front. Then, in the second
stage, rough set theory is used to improve the spread and quality of this initial
approximation. To assess the performance of our proposed approach, we adopt, on
the one hand, a set of standard bi-objective constrained test problems and, on the
other hand, a large real-world problem with 8 objective functions and 160 decision
variables. The first set of problems are solved performing 10,000 fitness function
evaluations, which is a competitive value compared to the number of evaluations
previously reported in the specialized literature for such problems. The real-world

∗ The fourth author is also associated to the UMI-LAFMIA 3175 CNRS.

2 Santana-Quintero et al.

problem is solved performing 250,000 fitness function evaluations, mainly because
of its high dimensionality. Our results are compared with respect to those generated
by NSGA-II, which is a MOEA representative of the state-of-the-art in the area.

Key words: Hybrid algorithms, multi-objective optimization, differential
evolution, rough set theory

1 Introduction

Multi-Objective Programming (MOP) is a research field that has raised great
interest over the last thirty years, mainly because of the many real-world
problems which naturally have several (often conflicting) criteria to be simul-
taneously optimized [9, 20].

In recent years, a wide variety of multi-objective evolutionary algorithms
(MOEAs) have been proposed in the specialized literature [5, 6, 7]. However,
the study of hybrids of MOEAs with other types of techniques is still rel-
atively scarce. This paper presents a study of the combination of a MOEA
and a local search method inspired by rough set theory as a viable way of
obtaining a good approximation, both in quality and diversity, of the Pareto
front of a constrained multi-objective optimization problem. Our main moti-
vation for such a hybrid approach is to reduce the overall number of fitness
function evaluations performed to approximate the Pareto front of a problem.
For this aim, we consider one of the fastest MOEAs in the literature, differ-
ential evolution [26, 31], and improve its performance by using a local search
method inspired by rough set theory. This kind of hybrid approach (Differ-
ential Evolution and rough set theory) has been already used and tested to
solve box-constrained multi-objective optimization problems showing a high
performance [11] when compared with highly competitive methods, and this
is the main reason to approach its adaptation to constrained problems here.
We opted to implement such adaptation also taking into account the increase
in the demand of multi-objective solvers for real cases, where most of the
problems are (hard) constrained. It is worth noting, however, that in spite of
this demand, the number of multi-objective metaheuristics developed with a
particular emphasis on reducing the number of objective function evaluations
that they perform, is very scarce. Taking into account these last facts, we
adapted and tested this hybrid method in order to validate it to be used for
constrained multi-objective optimization problems.

The remainder of this paper is organized as follows: Section 2 provides
some basic concepts required to understand the rest of the paper. In Sec-
tion 3, we introduce differential evolution, which is the approach adopted as
our search engine. An introduction to rough set theory is provided in Sec-
tion 4. Section 5 describes the relaxed form of Pareto dominance adopted
for our secondary population (called Pareto-adaptive ǫ-dominance). Our pro-
posed hybrid is described in Section 6. The experimental setup adopted to

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 3

validate our approach and the corresponding discussion of results are pro-
vided in Section 7. Finally, our conclusions and some possible paths for future
research are provided in Section 8.

2 Basic Concepts

We are interested in solving problems of the type4:

Minimize f (x) := (f1(x), f2(x), . . . , fk(x)) (1)

subject to:
gi(x) ≤ 0 j = 1, 2, . . . , m (2)

hi(x) = 0 k = 1, 2, . . . , p (3)

where x = (x1, x2, . . . , xn)T is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gj, hk : IRn → IR, j = 1, ..., m,
k = 1, ..., p are the constraint functions of the problem. To describe the con-
cept of optimality in which we are interested, we will introduce next a few
definitions.

Definition 1. Given two objective vectors x,y ∈ IRk, we say that x ≤ y if
xi ≤ yi for all i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if
x ≤ y and x 6= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is a
nondominated or Pareto-optimal solution if there does not exist another
x′ ∈ X such that f (x′) ≺ f(x).

Definition 3. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ X|x is Pareto-optimal}
Definition 4. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

3 Differential Evolution

Differential Evolution (DE) [26, 31] is a relatively recent heuristic designed
to optimize problems over continuous domains. DE has been shown to be not
only very effective as a global optimizer, but also very robust producing in
many cases a minimum variability of results from one run to another. DE has

4 Without loss of generality, we will assume only minimization problems.

4 Santana-Quintero et al.

been extended to solve multi-objective problems by several researchers (see
for example [1, 2, 13, 15, 18, 19, 23, 28, 33]). However, in such extensions, DE
has been found to be very good at converging close to the true Pareto front
(i.e., for coarse-grained optimization), but not so efficient for actually reaching
the front (i.e., for fine-grained optimization). Thus, we will show how these
features can be exploited by our hybrid, which uses rough set theory as a local
optimizer in order to improve the spread and convergence of the nondominated
solutions obtained by our differential evolution implementation.

In DE, each decision variable is represented in the chromosome by a real
number. As in any other evolutionary algorithm, the initial population of DE,
P , is randomly generated, and then evaluated. Then, the selection process
takes place: three parents are chosen to generate a single offspring which com-
petes with a fourth population member to determine who passes to the fol-
lowing generation. DE generates a single offspring (instead of two as a genetic
algorithm) by adding the weighted difference vector between two parents to
the third one. In the context of single-objective optimization, if the resulting
point yields a lower objective function value than the fourth element selected,
the newly generated vector replaces this individual. In addition, the best indi-
vidual Xbest,g is evaluated for every generation g in order to keep track of the
progress that is made during the minimization process. Summarizing, for each
individual in the population, an offspring is generated, using three randomly
generated parents, and compared with a fourth individual in the population,
in order to be replaced if this new solution performs better. More formally,
the process is described as follows (for a given generation g and a population
size |P |):

For each vector xi,g; i = 1, 2, . . . , |P |, a trial vector v is generated using:

v = xr1,g + F · (xr2,g − xr3,g)

with r1, r2, r3 ∈ [1, |P |], integer and mutually different, and F > 0.
The integers r1, r2 and r3 are randomly chosen from the interval [1, |P |]

and are different from i. F is a real and constant factor which controls the
amplification of the differential variation xr2,g − xr3,g. This trial solution v is
compared with xi,g, and will replace it if it is better.

All details about our differential evolution implementation are provided in
Section 6.

4 Rough Set Theory

Rough set theory is a new mathematical approach to imperfect knowledge.
The problem of imperfect knowledge has been tackled for a long time by
philosophers, logicians and mathematicians. Recently, it also became a crucial
issue for computer scientists, particularly in the area of artificial intelligence
(AI). There are many approaches to the problem of how to understand and

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 5

manipulate imperfect knowledge. The most used one is the fuzzy set theory
proposed by Lotfi Zadeh [34]. Rough set theory was proposed by Pawlak [24],
and presents another attempt to address this problem. Rough set theory has
been used by many researchers and practitioners all over the world and has
been adopted in many interesting applications. The rough set approach seems
to be of fundamental importance to AI and cognitive sciences, especially in the
areas of machine learning, knowledge acquisition, decision analysis, knowledge
discovery from databases, expert systems, inductive reasoning and pattern
recognition. Basic ideas of rough set theory and its extensions, as well as
many interesting applications, can be found in books (see [25]), special issues
of journals (see [17]), proceedings of international conferences, and in the
internet (see www.roughsets.org).

Let’s assume that we are given a set of objects U called the universe and
an indiscernibility relation R ⊆ U × U , representing our lack of knowledge
about elements of U (in our case, R is simply an equivalence relation based
on a grid over the feasible set; this is just a division of the feasible set in
(hyper)-rectangles). Let X be a subset of U (X is a finite set). We want to
characterize the set X with respect to R. The way rough set theory expresses
vagueness is employing a boundary region of the set X built once we know a
finite number of points both inside X and outside X . If the boundary region
of a set is empty it means that the set is crisp; otherwise, the set is rough
(inexact). A nonempty boundary region of a set means that our knowledge
about the set is not enough to define the set precisely (see Figure 1).

Fig. 1. Rough set approximation

Then, each element in U is classified as certainly inside X if it belongs to
the lower approximation or partially (probably) inside X if it belongs to the
upper approximation (see Figure 1). The boundary is the difference of these
two sets, and the bigger the boundary the worse the knowledge we have of
set X . On the other hand, the more precise is the implicit grid used to define
the indiscernibility relation R, the smaller the boundary regions are. But, the

6 Santana-Quintero et al.

more precise is the grid, the bigger the number of elements in U , and then,
the more complex the problem becomes. Then, the less elements in U the
better to manage the grid, but the more elements in U the better precision we
obtain. Consequently, the goal is obtaining “small” grids with the maximum
precision possible.

4.1 Use of Rough Set Theory in Multi-Objective Optimization

For our MOPs we will try to approximate the Pareto front using a rough
set grid. To do this, we will use an initial approximation of the Pareto front
(provided by any other method) and will implement a grid in order to get more
information about the front that will let us improve this initial approximation.
Then, at this point we have to face the following problem: the more precise the
grid is, the higher the computational cost required to manage it. Conversely,
the less precise the grid is, the less knowledge we get about the Pareto front.
Thus, we need to design a grid that balances these two aspects. In other
words, we need a grid that is not so expensive (computationally speaking)
but that offers a reasonably good knowledge about the Pareto front to be
used to improve the initial approximation. To this aim, we must design a grid
and decide which elements of U (that we will call atoms and will be just
rectangular portions of decision variable space) are inside the Pareto optimal
set and which are not. Once we have the nondominated atoms, we could easily
intensify the search over these atoms as they are built in decision variable
space.

To create this grid, as an input we will have several feasible and infeasible
points divided in three sets: the nondominated points (ES), the dominated
points (DS), and the infeasible solutions (IS). Using these three sets we want
to create a grid to describe the set ES in order to intensify the search on
it. This is, we want to describe the Pareto front in decision variable space
because then we can easily use this information to generate better solutions
and then improve this initial approximation. Figure 2 shows how information
in objective function space can be translated into information in decision vari-
able space through the use of a grid, where the black points are dominated
solutions, the grey points are infeasible solutions, the white points are non-
dominated solutions, and the “x” solutions correspond to offspring randomly
generated inside the atoms. Thus, it can be seen how the addition of both
dominated solutions and infeasible solutions at the time at which the grid is
generated avoids that the atoms generated around the nondominated solu-
tions expand towards little promising or undesired regions (i.e., regions that
have been already explored and that are occupied by dominated or infeasible
solutions).

We must note the importance of the DS and IS sets as in a rough set
method the information comes from the description of the boundary of the
three sets. The goal is not to have an exhaustive knowledge of the boundary
among these three sets (nondominated, dominated and infeasible), but to

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 7

X1

X2
F

nondominated

dominated2

F1

infeasible

feasible region

infeasible region

Fig. 2. Decision variable space (left) and objective function space (right)

narrow down the search towards the feasible nondominated solutions in such a
way that as the quality of the sets DS and IS improves (in the sense that they
only contain nondominated solutions which are well-distributed), the atoms
generated for the nondominated solutions become more and more accurate (in
other words, the boundary among the three sets becomes smaller). In this way,
not considering the two sets DS and IS would cause an important increase in
the size of the atoms, which would transform the offspring generation process
into something very similar to a random search procedure. The way in which
these atoms are computed is described in Section 6.

Since the computational cost of managing the grid increases with the num-
ber of points used to create it, we will try to use just a few points of ES, DS,
and IS. Moreover, such points must be as far from each other as possible, be-
cause the better the distribution the points have in the initial approximation
the less points we need to build a reliable grid. On the other hand, in order to
diversify the search we build several grids using different (and disjoint) sets
DS, IS and ES coming from the initial approximation. To ensure these sets
are really disjoint we will mark each point as explored or non-explored (if it
has been used or not to compute a grid) and we will not allow repetitions. For
all of the above reasons, both for narrowing down the size of these sets and
for improving their quality (quality is measured in terms of nondominance),
we use a Pareto-adaptive ǫ-dominance grid, which is described in the next
section. Algorithm 1 describes a rough set iteration.

5 Pareto-adaptive ǫ-dominance

One of the concepts that has raised more interest within evolutionary multi-
objective optimization in the last few years is, with no doubt, the use of
relaxed forms of Pareto dominance that allow us to control the convergence of
a MOEA. From such relaxed forms of dominance, ǫ-dominance [16] is certainly

8 Santana-Quintero et al.

Algorithm 1 Rough Set Iteration

1: Choose NumEff non-explored points of ES.
2: Choose NumDom non-explored points of DS.
3: Choose NumInfea non-explored points of IS.
4: Generate NumEff efficient atoms.
5: for i = 0 to NumEff do
6: for j = 0 to Offspring do
7: Generate (randomly) a point new in atom i and send to ES

8: if new is nondominated then
9: Include in ES

10: end if
11: if A point old in ES is dominated by new then
12: Send old to DS

13: end if
14: if new is dominated by a point in ES then
15: Remove new and send to DS

16: end if
17: if new is infeasible then
18: Include it in IS

19: end if
20: end for
21: end for

the most popular. ǫ-dominance has been mainly used as an archiving strategy
in which one can regulate the resolution at which our approximation of the
Pareto front will be generated. This allows us to accelerate convergence (if a
very coarse resolution is sufficient) or to improve the quality of our approxi-
mation (if we can afford the extra computational cost). However, ǫ-dominance
has certain drawbacks and limitations. For example: (1) we can lose a high
number of nondominated solutions if the decision maker does not take into
account (or does not know) the geometrical characteristics of the true Pareto
front, (2) the extrema of the Pareto front are normally lost and (3) the upper
bound for the number of points allowed by a grid is not easy to achieve in
practice.

In order to overcome some of these limitations, the concept of paǫ-
dominance was proposed in [12]. Briefly, the main difference is that in paǫ-
dominance the hyper-grid generated adapts the sizes of the boxes to certain
geometrical characteristics of the Pareto front (e.g., almost horizontal or verti-
cal portions of the Pareto front) as to increase the number of solutions retained
in the grid. This scheme maintains the good properties of ǫ-dominance but
improves on its main weaknesses. In order to do this, it considers not only a
different ǫ for each objective but also the vector ǫ = (ǫ1, ǫ2, ..., ǫk) associated
to each f = (f1,f2, ..., fk) ∈ Rk depending on the geometrical characteristics
of the Pareto front. This is, the scheme considers different intensities of dom-
inance for each objective according to the position of each point along the

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 9

Pareto front. Then, the size of the boxes is adapted depending on the portion
of the Pareto front that is being covered. Namely, the boxes are, for example,
smaller at the extrema of the Pareto front (since these regions are normally
more difficult to cover), and they become larger towards the middle portions
of the front.

In [12], it is empirically shown that the advantages of paǫ-dominance over
ǫ-dominance make it a more suitable choice to be incorporated into a MOEA
and therefore our decision of adopting this scheme for the work reported in
this paper.

6 The Hybrid Method: DEMORS

Our proposed approach, called DEMORS (Differential Evolution for Multi-
objective Optimization with local search based on Rough Set theory) [11], is
divided in two different phases, and each of them consumes a fixed number of
fitness function evaluations. During Phase I, our DE-based MOEA performs
the greatest effort for obtaining a good Pareto front approximation. For that
reason, this phase consumes 65% of the total number of evaluations. During
Phase II, a local search procedure based on rough set theory is applied for the
remainder 35% of the total number of evaluations, in order to improve the
solutions produced during the previous phase. These two values correspond
to a balance of 65%-35% empirically derived after an exhaustive number of
experiments. Each of these two phases is described next in more detail.

6.1 Phase I : Use of Differential Evolution

The pseudo-code of our proposed DE-based MOEA is shown in Algorithm 2
[29]. Our approach keeps four populations: the main population (which is
used to select the parents), a secondary (external) population, which is used
to retain the nondominated solutions found, a third population that retains
dominated solutions removed from the second population, and the fourth pop-
ulation that retains the infeasible solutions found so far. Both the size and the
quality of these populations are controlled through the paǫ−dominance grid.

First, we randomly generate |P | individuals, and use them to generate |P |
offspring. Phase I has two selection mechanisms that are activated based on
the total number of generations and a parameter called sel2 ∈ [0, 1], which
regulates the selection pressure. For example, if sel2 = 0.6 and the total num-
ber of evaluations is MaxEval = 10, 000, this means that during the first
6,000 evaluations (60% of MaxEval), a random selection will be adopted,
and during the last 4,000 evaluations an elitist selection will be adopted. Both
selection mechanisms are described next:

1. Random selection: 3 parents are randomly selected from the main pop-
ulation.

10 Santana-Quintero et al.

Algorithm 2 Phase I pseudo-code

1: Initialize vectors of the population P

2: Evaluate the cost of each vector
3: eval ← |P |
4: repeat
5: repeat
6: Select three different vectors
7: Perform crossover using DE scheme
8: Perform mutation
9: Evaluate objective values

10: eval ← eval + 1
11: if offspring is better than main parent then
12: replace it in population
13: end if
14: until population is completed
15: Identify nondominated solutions in population
16: Add nondominated solutions into secondary population
17: Add dominated solutions into third population
18: Add infeasible solutions into fourth population
19: until 0.65 ·MaxEval <eval

2. Elitist selection: 3 parents from the secondary population are randomly
selected but in such a way that their mutual distance is less than fclose,
where this parameter is computed as follows:

fclose =

√

∑k

i=0 (fi,max − fi,min)
2

2k

where: k = number of objective functions, fi,max = maximum value for
the i-th objective function in the secondary population, fi,min = minimum
value for the i-th objective function in the secondary population.

The recombination in the Phase I is done as follows: For each parent
pi; i = 1, 2, . . . , P (P = population), the offspring h is generated using:

{

hj = pr1,j + F · (pr2,j − pr3,j), with probability pc;
hj = pref,j , otherwise;

(4)

where j = 1, 2, . . . , n (n = number of variables), pc = crossover probability,
pr1, pr2, pr3 ∈ [1, P] are different integer numbers, and F > 0. The integers
r1, r2 and r3 are the indices for the three randomly selected parents in [1, |P |]
and ref is the index for the reference parent. F is a constant real number
which controls the difference pr2,j − pr3,j.

In both selections (random and elitist), a single parent is selected as ref-
erence. This parent is used to compare the offspring generated by the three
different parents. This mechanism guarantees that all the parents of the main

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 11

population will be reference parents for only one time during the generating
process.

Next, we show the constraint-handling selected when comparing the parent
and the offspring generated. It is important to mention that in our approach,
we normalize the constraints so that their value ranges between 0 and 1.
This normalization is transparent for the user (the algorithm operates without
requiring any input from the user). This normalization mechanism is described
next: For each constraint constr[i], two different variables UbC[i] and LbC[i]
keep track of the maximum and minimum values that each constraint reaches,
respectively, throughout the evolutionary process. The values are updated only
when the new value produced is either above or below the previously stored
value. Therefore, whenever a constraint is required, the following expression
is adopted to normalize it (Norm constr is the normalized constraint value):

Norm constr[i] =
constr[i] − LbC[i]

UbC[i]− LbC[i]

* If the parent and the offspring are both infeasible, the one closest to the
feasible region is selected.

* If the parent is feasible and the offspring is infeasible, the offspring is
selected if and only if the offspring is at a distance of 0.1 from the feasible
region5 and a flip(0.5)6 returns TRUE. Otherwise, the parent is selected.

* If the parent is infeasible but the offspring is feasible, the parent is selected
if and only if it is at a distance of 0.1 from the feasible region and a
flip(0.5) returns TRUE. Otherwise, the offspring is selected.

* If both are feasible, they are compared using the classical Pareto dominance
relation:
– if the parent dominates its offspring, the parent is selected.
– if the offspring dominates its parent, the offspring is selected.
– if both are nondominated with respect to each other, the one who gets

TRUE out of a flip(0.5) is selected.

Differential evolution does not use a specific mutation operator, since such
operator is somehow embedded within its recombination operator. However,
in multi-objective optimization problems, we found it necessary to provide
an additional mutation operator in order to allow a better exploration of the
search space. We adopted uniform mutation for that sake [10].

As indicated before, our proposed approach uses several external archives
(ES, DS, and IS). In order to include a solution into any of these archives,
such a solution is compared with respect to each member already contained in
the archive using the paǫ-dominance grid [12]. Any member that is removed
from the ES is included in the third population, DS. The paǫ-dominance
grid is created once we obtain 100 nondominated solutions and the same

5 Let’s keep in mind that the constraints space is normalized between 0 and 1.
6 flip(p) is a function that returns TRUE with a probability p.

12 Santana-Quintero et al.

grid is used for the three sets. If Phase I is not able to find at least 100
nondominated solutions, then the grid is not created until Phase II (if during
this second phase it is possible to find at least 100 nondominated solutions).
The minimum number of nondominated solutions needed to create the grid is
critical in several aspects:

• If we create the grid with just a few points, then the performance of the
grid may considerably degrade.

• Once we create the grid, the number of points in this population consider-
ably decreases, and we have to ensure a minimum number of points that
will be used by the Phase II.

• The behavior of the Phase II is a lot better if the grid was created dur-
ing Phase I, since this ensures that the secondary population has a good
distribution of solutions.

An exhaustive set of experiments undertaken by the authors indicated that
100 points was a good compromise to cover the three aspects indicated above
for the benchmark problems considered in this paper and in our previous work
[11].

6.2 Phase II : Local Search Based on Rough Set Theory

For the problems of our interest, we will try to approximate the Pareto front
using a Rough Set theory grid. In order to do this, we will use an initial
approximation of the Pareto front (provided by the first phase algorithm based
on DE) and will implement a grid to get more information about the front
that will let us improve this initial approximation. We aim to produce a grid
that is not so expensive (computationally speaking) but that offers reasonably
good knowledge about the Pareto front to improve the initial approximation.
To this aim, we must design a grid and decide which elements of U (that
we will call atoms and will be just rectangular portions of decision variable
space) are inside the Pareto optimal set and which are not. Once we have
the nondominated atoms, we can easily intensify the search over these atoms
as they are built in decision variable space. To create this grid, we will have
as inputs N feasible points divided in three sets: the nondominated solutions
(ES), the dominated solutions (DS) and the infeasible ones. Using these three
sets we want to create a grid to describe the set ES in order to intensify the
search on it.

We must note the importance of the DS and IS sets as in rough set theory,
the information comes from the description of the boundary of the three sets.
Then, the more nondominated points provided the better. However, it is also
required to provide some dominated and infeasible points, since we need to
estimate the boundary between being dominated, infeasible and being non-
dominated. Once this information is computed, we can simply generate more
points in the nondominated side. Since the computational cost of managing

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 13

the grid increases with the number of points used to create it, we will try to
use just a few points. However, such points must be as far from each other
as possible, because the better the distribution the points have in the initial
approximation the less points we need to build a reliable grid. On the other
hand, in order to diversify the search we build several grids using different
(and disjoint) sets DS, IS and ES coming from the initial approximation.
To ensure these sets are really disjoint we mark each point as explored or
non-explored (if it has been used or not to compute a grid) and we do not
allow repetitions. Algorithm 3 describes a rough set iteration.

Algorithm 3 Rough set Iteration

1: Input nondominated solutions from the first phase ES.
2: Input dominated solutions from the first phase DS.
3: Input Infeasible solutions from the first phase IS.
4: Output nondominated solutions found by the RS.
5: eval ← 0
6: repeat
7: Choose NumEff unexplored points of ES.
8: Choose NumDom unexplored points of DS.
9: Choose NumInf unexplored points of IS.

10: Generate NumEff nondominated atoms.
11: for i = 0 to NumEff do
12: for j = 0 to Offspring do
13: Generate (randomly) a point new in atomi

14: eval ← eval + 1
15: if new is infeasible then
16: Send new to IS

17: else
18: if new is nondominated then
19: Include it in ES

20: end if
21: if A point old in ES is dominated by new then
22: Send old to DS

23: end if
24: end if
25: end for
26: end for
27: until 0.35 ·MaxEval < eval

7 Computational Experiments

In order to validate our proposed approach, our results are compared with
respect to those generated by NSGA-II [8], which is a MOEA representative
of the state-of-the-art in the area.

14 Santana-Quintero et al.

The first phase of our approach uses four parameters: crossover probability
(pc), elitism (sel2), population size (P), and the amplification value (F). On
the other hand, the second phase uses four more parameters: number of points
randomly generated inside each atom (Offspring), number of atoms per
generations (NumEff), number of dominated points considered to generate
the atoms (NumDom), and the number of infeasible points considered to
generate the atoms (NumInfea). Moreover, the maximum number of fitness
function evaluations must be prefixed to MaxEval. Finally, the minimum
number of nondominated points needed to generate the paǫ-dominance grid
is set to 100 for all problems (except for the real case, in which the grid is not
used).

Our approach is validated using 7 test constrained problems from the
benchmark (in all cases, the decision variables have bound constraints): Binh2
(two decision variables and two inequality constraints) [3], Kita (two decision
variables and three inequality constraints) [14], Osyczka1 (two decision vari-
ables and two inequality constraints) and Osyczka2 (six decision variables and
six inequality constraints) [22], Srinivas (two decision variables and two in-
equality constraints) [30], Tanaka (two decision variables and two inequality
constraints) [32] and the Welded Beam problem (four decision variables and
four constraints) [27]. All of them, except for Kita, are minimization problems
(Kita is a maximization problem). It is worth noting that all of these prob-
lems have their constraints active at the Pareto front (i.e., the Pareto front is
located exactly in the boundary between the feasible and infeasible regions).
The definition of each of these problems, except for the Welded Beam can be
found at:

http://www.cs.cinvestav.mx/~emoobook/apendices/appendix-a.pdf

These problems have been selected trying to cover all different complexi-
ties: convex, non-convex and disconnected Pareto fronts, linear and nonlinear
objective functions and constraints or the number of decision variables (from
2 to 6). Since the welded beam problem is not included in the above appendix,
its description is provided next:

This problem was originally proposed in [27]. In this problem, the aim is to
minimize the cost and the end deflection of the beam subject to constraints on
the shear stress in the weld (τ), bending stress in the beam (ρ), buckling load
on the bar (Pc, and side constraints). The problem has four decision variables:
h, l, t and b:

minimize f1(x) = 1.10471h2l + 0.04811tb(14.0 + l),

minimize f2(x) =
4 · F · L3

Et3b

subject to:

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 15

g1(x) ≡ τmax − τ ≥ 0,

g2(x) ≡ ρmax − ρ ≥ 0,

g3(x) ≡ b − h ≥ 0,

g4(x) ≡ 0.125 − h ≥ 0,

g5(x) ≡ Pc − F ≥ 0

where:
F = 6, 000 lb L = 14 in
E = 30e6 psi G = 12e6 psi
τmax = 13, 600 psi ρmax = 30, 000 psi
α = 1

(3G·t·b3)

I = 1
(12·t·b3)

Pc = (4013
√

EIα/L2) · (1 − (t/2L) ·
√

EI/α)
ρ = (6FL)/(bl2)
J = 2 · (0.707hl · (l2/12 + ((h + b)/2)2)
R =

√

l2/4 + ((h + l)/2)2

M = F (L + l/2)
cost = l/2R
τ ′′ = MR/J
τ ′ = F/(

√
2 + hl)

τ =
√

(τ ′2 + 2τ ′τ ′′cost + τ ′′2)

The bounds of the decision variables are the following:

0 ≤ h, b ≤ 2.0

0 ≤ l, t ≤ 10.0

In all cases, the parameters of our approach were set as follows: pc = 0.3,
sel2 = 0.5, P = 25, F = 0.5, Offspring = 1, NumEff = 2, NumDom = 5,
and NumInfea = 5. These parameter values are the same that were adopted
in [11], except for sel2, which has been changed from 0.1 to 0.5 due to the
difficulty associated with the addition of constraints. This requires that the
elitist selection is delayed in order to ensure first the existence of a reason-
able number of feasible nondominated solutions before increasing the selection
pressure (which speeds up convergence). Also, the maximum number of objec-
tive function evaluations is set here in MaxEval = 10, 000, instead of the 3,000
evaluations adopted in some of our previous work [11]. Again, the presence
of constraints requires a higher computational effort than before. NSGA-II
was used with the following parameters: crossover rate = 0.9, mutation rate
= 1/n, ηc = 15, ηm = 20, population size = 100 and maximum number of
generations = 100. The population size of NSGA-II is the same as the size of
the grid of our approach, in order to allow a fair comparison of results, and

16 Santana-Quintero et al.

both approaches adopt real-numbers encoding and performed 10,000 fitness
function evaluations per run.

In order to allow a quantitative comparison of results, we adopt the three
following performance measures:

Size of the space covered (SSC): This performance measure was pro-
posed by Zitzler and Thiele [35], and it measures the hypervolume of the
portion of the objective space that is dominated by the set, which is to be
maximized. In other words, SSC measures the volume of the dominated
points. Hence, the larger the SSC value, the better. The reference points
required for this performance measure, were obtained from the optimum
values for each of the objectives (considered separately) of each problem.
This information was retrieved of the true Pareto fronts generated in order
to assess our results.

Unary additive epsilon indicator (I1
ε+): The epsilon indicator family

has been introduced by Zitzler et al. [36] and comprises a multiplicative
and an additive version. Due to the fact that the additive version of ǫ-
dominance has been implemented in the hybrid algorithm, we decided to
use the unary additive epsilon indicator (I1

ε+) as well. The unary additive
epsilon indicator of an approximation set A (I1

ε+(A)) gives the minimum
factor ǫ by which each point in the real front R can be added such that
the resulting transformed approximation set is dominated by A:

I1
ε+(A) = infǫ∈R{∀z2 ∈ R\∃z1 ∈ A : z2

i ≤ z1
i + ǫ ∀i}.

I1
ε+(A) is to be minimized. A value smaller than zero would imply that A

would strictly dominate the real front R.
Spread (∆): In order to measure both the spread of the approximation set

A and the distances from the extreme points of A to the extremes of the
real Pareto front R, we use Spread [7]:

∆ =

∑2
m=1 de

m +
∑|A|

i=1 |di − d|
∑m

m=1 de
2 + |A| · d

where di has been taken to be the Euclidean distance of the i− th point in
A to the i + 1 − th point in A (once these points are ranked in ascending
order), d is the mean value of di, de

m is the Euclidean distances between
the extreme solutions of both fronts corresponding to the m− th objective
function (m = 1, 2). So, 0 ≤ ∆ ≤ ∞ and the lower the value of ∆, the
better the distribution of vectors in A. A perfect distribution, that is
∆ = 0, means that di = d for all i and de

m = 0 for all m (so the extremes
of the true Pareto front have been achieved).

7.1 Discussion of Results

Table 1 shows a summary of our results. For each test problem, we performed
30 independent runs per algorithm. The results reported in Table 1 are the

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 17

mean values for each of the three performance measures and the standard
deviation of the 30 runs performed. The best mean values in each case are
shown in boldface in Table 1.

It can be clearly seen in Table 1 that our DEMORS produces the best
mean values in 3 cases (Binh2, Kita and Srinivas) for all the performance
measures, although NSGA-II obtains similar results. For the 4 other problems
(Osyczka1, Osyczka2, Tanaka and Welded Beam), NSGA-II obtains the best
mean values for SSC and I1

ε+ performance measures but DEMORS improves
all its ∆ values, while results on the first two performance measures are very
similar, too. This is, results in SSC and I1

ε+ performance measures are very
similar for all the problems, but DEMORS performs better according to the
distribution performance measure ∆ for all the problems.

SSC I1
ε+ ∆

Function DEMORS NSGA-II DEMORS NSGA-II DEMORS NSGA-II
Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ

Binh2 0.808 0.000 0.806 0.000 0.007 0.001 0.013 0.002 0.452 0.018 0.492 0.036
Kita 0.879 0.002 0.879 0.001 0.013 0.006 0.013 0.003 0.964 0.068 1.038 0.060

Osyczka1 0.821 0.084 0.875 0.021 0.107 0.099 0.051 0.027 0.716 0.164 0.816 0.062
Osyczka2 0.946 0.012 0.963 0.000 0.034 0.022 0.009 0.003 0.771 0.287 1.210 0.068
Srinivas 0.557 0.000 0.556 0.000 0.012 0.003 0.013 0.002 0.165 0.015 0.277 0.015
Tanaka 0.718 0.008 0.749 0.001 0.021 0.012 0.012 0.002 0.918 0.115 1.140 0.045

Welded Beam 0.953 0.020 0.974 0.003 0.030 0.021 0.009 0.003 0.732 0.188 0.898 0.133

Table 1. Comparison of results between DEMORS and NSGA-II for the constrained
problems adopted. σ refers to the standard deviation over the 30 runs performed.

The graphical results shown in Figures 3 and 4 serve to reinforce our ar-
gument about convergence. These plots correspond to the run in the median
value with respect to the unary additive additive epsilon indicator and, there-
fore, are not really representative of the average diversity obtained in Table 1.
In all the optimization problems, the true Pareto front7 is shown with a con-
tinuous line together with the approximation obtained by each algorithm. In
Figures 3 and 4, we can clearly see that both algorithms have already con-
verged to the true Pareto front after only 10,000 fitness function evaluations.

Our results indicate that DEMORS is a competitive MOEA for constrained
multi-objective optimization problems when performing only 10,000 fitness
function evaluations, and it is also able to ensure a good spread and distribu-
tion of the solutions within this reduced number of evaluations.

7.2 Evaluating the Importance of Using Rough Set Theory

A natural question to ask regarding the use of rough set theory in this case
is if they really provide an aggregated value to the MOEA adopted. It is

7 The true Pareto front shown in each case was obtained through an exhaustive
search process conducted over a discretized version of each problem.

18 Santana-Quintero et al.

DEMORS - Binh2

0 50 100 150 200

0

10

20

30

40

50

Fu
nc

tio
n
2

Function 1

 Binh2 Pareto Front
 DEMORS

NSGA-II - Binh2

0 50 100 150 200

0

10

20

30

40

50

Fu
nc

tio
n
2

Function 1

 Pareto Front
 NSGA-II

DEMORS - Kita

-4 -2 0 2 4 6 8
7.4

7.6

7.8

8.0

8.2

8.4

8.6

Fu
nc

tio
n
2

Function 1

 Kita Pareto Front
 DEMORS

NSGA-II - Kita

-4 -2 0 2 4 6 8
7.4

7.6

7.8

8.0

8.2

8.4

8.6

Fu
nc

tio
n
2

Function 1

 Kita Pareto Front
 NSGA-II

DEMORS - Osyczka1

-300 -250 -200 -150 -100 -50 0

0

10

20

30

40

50

60

70

80

Fu
nc

tio
n
2

Function 1

 Osyczka2 Pareto Front
 DEMORS

NSGA-II - Osyczka1

-300 -250 -200 -150 -100 -50 0

0

10

20

30

40

50

60

70

80

Fu
nc

tio
n
2

Function 1

 Osyczka2 Pareto Front
 NSGA-II

DEMORS - Osyczka2

26 27 28 29 30
9.16

9.18

9.20

9.22

9.24

9.26

9.28

9.30

Fu
nc

tio
n
2

Function 1

 Osyczka Pareto Front
 DEMORS

NSGA-II - Osyczka2

26 27 28 29 30
9.16

9.18

9.20

9.22

9.24

9.26

9.28

9.30

Fu
nc

tio
n
2

Function 1

 Osyczka Pareto Front
 NSGA-II

DEMORS - Srinivas

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

Fu
nc

tio
n
2

Function 1

 Srinivas Pareto Front
 DEMORS

NSGA-II - Srinivas

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

Fu
nc

tio
n
2

Function 1

 Srinivas Pareto Front
 NSGA-II

Fig. 3. Pareto fronts generated by DEMORS (left) and NSGA-II (right) for the
first five test problems adopted.

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 19

DEMORS - Tanaka

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
nc

tio
n
2

Function 1

 Tanaka Pareto Front
 DEMORS

NSGA-II - Tanaka

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
nc

tio
n
2

Function 1

 Tanaka Pareto Front
 NSGA-II

DEMORS - Welded Beam

4 8 12 16 20 24 28

0.000

0.005

0.010

0.015

0.020

0.025

Fu
nc

tio
n
2

Function 1

 Welbeam Pareto Front
 DEMORS

NSGA-II - Welded Beam

4 8 12 16 20 24 28

0.000

0.005

0.010

0.015

0.020

0.025

Fu
nc

tio
n
2

Function 1

 Welbeam Pareto Front
 NSGA-II

Fig. 4. Pareto fronts generated by DEMORS (left) and NSGA-II (right) for the
problems Tanaka and Welded Beam.

reasonable to ask if the multi-objective extension of differential evolution use
for the first stage of our approach is powerful enough to converge to the Pareto
front without any further help. In order to answer this question we carried out
some experiments: we evaluated the outcome produced when applying only
the first stage of the algorithm, and then we compared such results with those
generated upon applying the second stage. Table 2 shows this comparison
of results. The values in boldface are the best mean results. By looking at
Table 2, one can clearly appreciate that in most cases, and with respect to the
three performance measures adopted, the use of rough set theory improved
the performance of the first phase both in terms of convergence to the true
Pareto front and in terms of distribution along it. However, it is worth noting
that in the second phase, our approach deteriorates in two cases with respect
to spread. This is due to the use of our paǫ−dominance grid, which, because
of the definition of ǫ-dominance, tends to lose certain points of the Pareto
front each time the grid is recomputed (see [12] for further details about this).

7.3 Solving a real case

In order to complement our validation, we also considered a real multi-
objective optimization problem related to the Mexican Economy [4]. In this
problem, the effects of the public investment in the social and economical de-
velopment in Mexico are studied. This investment is divided into five different
sectors (industry, agriculture, education, health and infrastructure) for each of
the 32 states in Mexico. Therefore, we want to obtain values for 5× 32 = 160

20 Santana-Quintero et al.

SSC I1
ε+ ∆

Function DEMORS Phase I DEMORS Phase I DEMORS Phase I
Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ

Binh2 0.797 0.000 0.796 0.000 0.081 0.001 0.080 0.001 0.610 0.013 0.603 0.016
Kita 0.879 0.002 0.867 0.005 0.013 0.006 0.035 0.014 0.964 0.068 1.130 0.069

Osyczka1 0.821 0.084 0.747 0.123 0.107 0.099 0.170 0.131 0.716 0.164 1.072 0.170
Osyczka2 0.946 0.012 0.838 0.065 0.034 0.022 0.187 0.076 0.771 0.287 0.427 0.231
Srinivas 0.557 0.000 0.555 0.001 0.012 0.003 0.018 0.005 0.165 0.015 0.245 0.029
Tanaka 0.718 0.008 0.672 0.086 0.021 0.012 0.099 0.128 0.918 0.115 1.207 0.203

Welded Beam 0.953 0.020 0.916 0.028 0.030 0.021 0.075 0.032 0.732 0.188 0.940 0.163

Table 2. Comparison of results between our DEMORS and the first Phase of our
algorithm for the problems adopted. σ refers to the standard deviation over the 30
runs performed.

decision variables representing the investment for the five different sectors for
the 32 states in Mexico. To measure the effects of the investment designed,
four criteria are formulated related to four different aspects of this develop-
ment: sanitary facilities rate, education level rate, children mortality rate and
the gross inner product. But one of the main problems currently faced in Mex-
ico is the big gap found among the different states: some of them present very
good levels in these four rates and some others fall into poverty and under-
development. To try to balance the situation among the 32 states in Mexico,
four objectives are added: standard deviation of the sanitary facilities rate
among the 32 states, standard deviation of education level rate among the 32
states, standard deviation of children mortality rate among the 32 states and
standard deviation of the gross inner product among the 32 states.

As a result, we have a nonlinear multi-objective optimization problem
with 8 objective functions, 160 continuous variables and several blocks of con-
straints, including some upper and lower bounds for investments, as well as
some economical constraints related to investment conditions. We solved this
problem with three different methods, NSGA-II, DEMORS and SSPMO [21]
(this approach was included because it is the one that originally solved this
problem). This last approach is a competitive multi-objective metaheuristic,
based on scatter search, which has been found to be very competitive over
several standard test function sets, as it is shown in [21]. We performed 10
independent runs with each method but, due to the fact that SSPMO has a
self-adaptive stopping criterion and performed on average 250,000 fitness func-
tion evaluations, we had to use the settings described next. SSPMO was used
with the same settings as described in [21]; NSGA-II was used with the same
above parameters except for the population size and the maximum number of
generations, which were defined in this case as 1000 and 250, respectively. Sev-
eral of the parameters of DEMORS remained the same as before (pc = 0.3,
sel2 = 0.5, P = 25, and F = 0.5), but others had to be increased due to
the high dimensionality of the problem, which requires a grid of better preci-
sion in order to generate the atoms produced for Phase II of the algorithm:
Offspring = 10, NumEff = 10, NumDom = 10, and NumInfea = 10.

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 21

Also, DEMORS performed MaxEval = 250, 000 fitness function evaluations
per run in order to obtain a fair comparison of results among the algorithms.

In order to compare results, we used the Size of the Space Covered (SSC),
the Coverage of Two Sets performance measures (C), and the standard devi-
ation of crowding distance (SDC) to compare results. The Coverage of Two
Sets, C(A, B), [35] measures the proportion of the solutions on the estimated
frontier B that are dominated by the solutions on the estimated frontier A,
while SDC measures the spread of the approximation set A. To this end, we
compute the standard deviation of the crowding distance of each point in A:

SDC =

√

√

√

√

1

|A|

|A|
∑

i=1

(di − di)2

where di is the crowding distance of the i − th point in A (see [7] for more
details on this distance) and di is the mean value of all di. Nevertheless,
other types of measures could be used for di. Now, 0 ≤ SDC ≤ ∞ and
the lower the value of SDC, the better the distribution of vectors in A. A
perfect distribution, that is SDC = 0, means that di is constant for all i. It is
important to mention that the true Pareto front of this problem is unknown,
and we decided to execute the DEMORS for a very long period of time until
it reached the 2 million of function evaluations. The Pareto front obtained
from this experiment, was used as the true Pareto front and as a reference to
calculate the SSC metric.

Table 3 summarizes the results for SSC, SDC, and C for this problem.
With respect to the C metric, we show the mean and standard deviation of
comparing the 10 runs in pairs (e.g. demors run-1.dat with nsga2 run-1.dat).
Since they are independent from each other, it is unnecessary to compare all
the runs with respect to each other in order to obtain a single value. This
results show how both NSGA-II and DEMORS outperform SSPMO for all
the performance measures considered. Comparing DEMORS and NSGA-II
only, it is worth mentioning that DEMORS presents the best value for SSC,
which measures the convergence to the true Pareto front. On the other hand,
NSGA-II obtains the best SDC value (this is because NSGA-II uses crowding
distance to preserve diversity while the paǫ-dominance grid is inactive in DE-
MORS due to the high number of objective functions of this problem). And
finally, DEMORS outperforms NSGA-II for the coverage measure: DEMORS
dominates on average to 17.88% of the results produced by NSGA-II while
NSGA-II only dominates, on average, to 0.13% of the results generated by
DEMORS. This is, performance of DEMORS for this real world problem is
also competitive with respect to NSGA-II and SSPMO.

With respect to the computational time that is required by the algorithms
to achieve 250,000 fitness function evaluations, we found the following:8 1) DE-

8 In the benchmark problems, the CPU times were too small to allow a reasonable
comparison.

22 Santana-Quintero et al.

SSC SDC C (σ)

Algorithm Mean σ Mean σ DEMORS NSGA-II SSPMO

DEMORS 0.446 0.0360 0.0041 0.0011 -
0.1788
(0.0481)

0.9705
(0.0180)

NSGA-II 0.271 0.0517 0.0035 0.0002
0.0013

(0.0020)
-

0.9775
(0.0139)

SSPMO 0.0 0.0 0.0176 0.0047
0

(0)
0

(0)
-

Table 3. Comparison of results between our DEMORS, NSGA-II and SSPMO
for the real Mexican problem. σ refers to the standard deviation over the 10 runs
performed.

MORS takes 990 seconds 2) NSGA-II takes 550 seconds and 3) SSPMO takes
225 seconds. However, it is worth noting that SSPMO has a self-adaptive stop-
ping criterion, which makes it difficult to compare (in terms of CPU time or
total number of evaluations performed) with respect to the other two MOEAs
in a fair way. Additionally, SSPMO has a very poor performance, when com-
pared to the other two approaches. Thus, we will focus our analysis only on
DEMORS and NSGA-II.

Clearly, when performing the same number of evaluations (and considering
a negligible cost for evaluating the objective functions), DEMORS, being a hy-
brid approach, is more expensive (computationally speaking) than NSGA-II.
However, the question remains of which MOEA can achieve a better perfor-
mance given a certain number of evaluations. This was precisely the focus of
our study. For that sake, we adopted the SSC performance measure, which was
applied for both MOEAs at intervals of 10,000 objective function evaluations,
until reaching 250,000 evaluations. Figure 5 shows the corresponding values
in a graphical form. There, it can be clearly seen that DEMORS obtained
better results most of the time, since the beginning of the search.

In a second experiment, we stopped both MOEAs after a fixed amount
of time: 1,000 seconds. After that time, DEMORS performed about 250,000
objective function evaluations, and NSGA-II performed about 500,000 evalu-
ations. However, as can be seen in Figure 5, even with this number of evalua-
tions (which is twice the number of evaluations performed by our DEMORS),
NSGA-II went from an SSC value of 0.174 (achieved with 250,000 evalua-
tions) up to a value of 0.271. This is still considerably lower than the SSC
value of 0.446 achieved by our DEMORS with 250,000 evaluations. This led
us to conclude that the quality of the search performed by our DEMORS
is higher than that of NSGA-II. Thus, if dealing with problems that have
objective functions that are very expensive to evaluate (e.g., in aeronautical
engineering), this better search quality may translate into important savings
in terms of CPU time.

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 23

0
50,

000
100

,00
0
150

,00
0
200

,00
0
250

,00
0
300

,00
0
350

,00
0
400

,00
0
450

,00
0
500

,00
0
550

,00
0

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 true Pareto front
 DEMORS
 NSGA-II

S
S

C

No. Evaluations

0.446

0.271

0.174

Fig. 5. Graphical representation of the values of the SSC performance measure at
certain numbers of iterations performed by two MOEAs: DEMORS and NSGA-II.

8 Conclusions

We have presented a new hybrid multi-objective optimization algorithm for
constrained MOPs based on the use of a fast differential evolution algorithm
and a local search engine based on rough set theory. The proposed approach
was found to provide very competitive results with respect to other previous
approaches, in a variety of bi-objective test problems, in spite of the fact that
it performed only 10,000 fitness function evaluations. Within this number
of evaluations, both DEMORS and NSGA-II (which is a highly competitive
MOEA), were able to converge to the true Pareto front in most of the test
problems adopted. Both algorithms were also compared (performing 250,000
evaluations) in a real application with 8 objective functions and 160 decision
variables. In this case, DEMORS found better results with respect to most of
the performance measures considered.

This led us to conclude that the hybridization of a fast MOEA with a
properly designed local search engine can be a suitable tool. If the search
engine adopted to produce a coarse-grained approximation of the Pareto front
is nondominated (as in our case), then a good approximation of the true Pareto
front can be finally achieved with an extra small additional cost (35% of the
total number of evaluations) by using our local optimizer based on rough set
theory.

24 Santana-Quintero et al.

As part of our future work, we are interested in validating our proposed
scheme with other MOPs (including more real-world applications). We also
want to refine the hybridization scheme, such that a larger reduction in the
total number of evaluations can be achieved. Additionally, we aim to reduce
the number of parameters that need to be set by the user. We would like to
have an approach that uses self-adaptation mechanisms in order to fine-tune
by itself its parameters during its execution.

Acknowledgments

The authors thank the two anonymous reviewers for the comments which
greatly helped them to improve the contents of this paper.

The first author acknowledges support from CONACyT through a schol-
arship to pursue graduate studies at the Computer Science Department at
CINVESTAV-IPN. The fourth author acknowledges support from CONACyT
project number 45683-Y.

References

1. Hussein A. Abbass. The Self-Adaptive Pareto Differential Evolution Algorithm.
In Congress on Evolutionary Computation (CEC’2002), vol. 1, pages 831–836,
Piscataway, New Jersey, May 2002. IEEE Service Center.

2. B.V. Babu and M. Mathew Leenus Jehan. Differential Evolution for Multi-
Objective Optimization. In Proceedings of the 2003 Congress on Evolutionary
Computation (CEC’2003), volume 4, pages 2696–2703, Canberra, Australia, De-
cember 2003. IEEE Press.

3. T. T. Binh and U. Korn, MOBES: A multiobjective evolution strategy for con-
strained optimization problems, In The Third International Conference on Ge-
netic Algorithms (Mendel 97), 176–182, Brno, Czech Republic, 1997.

4. B. Cobacho. Planificación de la inversión pública federal en México mediante
técnicas de análisis multicriterio PhD. Dissertation, University of Cartagena,
Spain,2007.

5. C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
New York, May 2002. ISBN 0-3064-6762-3.

6. C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Al-
gorithms for Solving Multi-Objective Problems, Second Edition. Springer, 2007.
ISBN: 978-0-387-33254-3.

7. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, 2001. ISBN 0-471-87339-X.

8. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, April 2002.

9. M. Ehrgott. Multicriteria Optimization. Springer, Berlin, second edition, 2005.
ISBN 3-540-21398-8.

DEMORS: Hybridizing Differential Evolution and Rough Set Theory 25

10. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Co., Reading, Massachusetts, USA, 1989.

11. A. G. Hernández-Dı́az, L. V. Santana-Quintero, C. Coello Coello, R. Caballero,
and J. Molina. A new proposal for multi-objective optimization using differential
evolution and rough set theory. In 2006 Genetic and Evolutionary Computation
Conference (GECCO’2006), Seattle, Washington, USA, July 2006. ACM Press.

12. A. G. Hernández-Dı́az, L. V. Santana-Quintero, C. A. Coello Coello, and J.
Molina. Pareto adaptive - ǫ-dominance. Evolutionary Computation, 15(4):493–
517, Winter 2007.

13. A. W. Iorio and X. Li. Solving rotated multi-objective optimization problems
using differential evolution. In AI 2004: Advances in Artificial Intelligence, Pro-
ceedings, pages 861–872. Springer-Verlag, Lecture Notes in Artificial Intelligence
Vol. 3339, 2004.

14. H. Kita, Y. Yabumoto, N. Mori, and Y. Nishikawa. Multi-Objective Optimiza-
tion by Means of the Thermodynamical Genetic Algorithm. In H.-M. Voigt, W.
Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem Solving
from Nature–PPSN IV, 504–512. Springer-Verlag. Lecture Notes in Computer
Science No. 1141, Berlin, Germany, September 1996.

15. S. Kukkonen and J. Lampinen. An Extension of Generalized Differential Evo-
lution for Multi-objective Optimization with Constraints. In Parallel Problem
Solving from Nature - PPSN VIII, 752–761, Birmingham, UK, September 2004.
Springer-Verlag. Lecture Notes in Computer Science Vol. 3242.

16. M. Laumanns, L. Thiele, K. Deb, and Eckart Zitzler. Combining convergence
and diversity in evolutionary multi-objective optimization. Evolutionary Com-
putation, 10(3):263–282, Fall 2002.

17. T.Y. Lin. Special issue on rough sets. Journal of the Intelligent Automation
and Soft Computing, 2(2):*, Fall 1996.

18. N. K. Madavan. Multiobjective Optimization Using a Pareto Differential Evo-
lution Approach. In Congress on Evolutionary Computation (CEC’2002), vol-
ume 2, pages 1145–1150, Piscataway, New Jersey, May 2002. IEEE Service Cen-
ter.

19. E. Mezura-Montes, M. Reyes-Sierra, and C. A. Coello Coello. Multi-Objective
Optimization using Differential Evolution: A Survey of the State-of-the-Art. In
Uday K. Chakraborty, editor, Advances in Differential Evolution, pages 173–
196. Springer, Berlin, 2008. ISBN 978-3-540-68827-3.

20. K. M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Boston, Massachusetts, 1999.

21. J. Molina, M. Laguna, R. Mart́ı and R. Caballero. SSPMO: A Scatter Tabu
Search Procedure for Non-Linear Multiobjective Optimization. Informs Journal
on Computing, Vol. 19, No. 1, pp. 91–100, January 2007.

22. A. Osyczka and S. Kundu, A new method to solve generalized multicriteria op-
timization problems using the simple genetic algorithm, Structural Optimization
10, 94–99, 1995.

23. K.E. Parsopoulos, D.K. Taoulis, N.G. Pavlidis, V.P. Plagianakos, and M.N. Vra-
hatis. Vector Evaluated Differential Evolution for Multiobjective Optimization.
In 2004 Congress on Evolutionary Computation (CEC’2004), volume 1, pages
204–211, Portland, Oregon, USA, June 2004. IEEE Service Center.

24. Z. Pawlak. Rough sets. International Journal of Computer and Information
Sciences, 11(1):341–356, Summer 1982.

26 Santana-Quintero et al.

25. Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1991. ISBN 0-471-87339-X.

26. K. V. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution. A Prac-
tical Approach to Global Optimization. Springer, Berlin, Germany, 2005. ISBN
3-540-29859-6.

27. K. M. Ragsdell and D. T. Phillips, Optimal Design of a Class of Welded Struc-
tures Using Geometric Programming, Journal of Engineering for Industry Series
B, 98, 1021–1025, 1975.

28. T. Robič and B. Filipič. DEMO: Differential Evolution for Multiobjective
Optimization. In Carlos A. Coello Coello, Arturo Hernández Aguirre, and
Eckart Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third Inter-
national Conference, EMO 2005, pages 520–533, Guanajuato, México, March
2005. Springer. Lecture Notes in Computer Science Vol. 3410.

29. L. Vicente Santana-Quintero and C. A. Coello Coello. An algorithm based
on differential evolution for multi-objective problems. International Journal of
Computational Intelligence Research, 1(2):151–169, 2005.

30. N. Srinivas and K. Deb. Multiobjective Optimization Using Nondominated Sort-
ing in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, fall 1994.

31. R. Storn and K. Price. Differential Evolution - A Fast and Efficient Heuristic for
Global Optimization over Continuous Spaces. Journal of Global Optimization,
11:341–359, 1997.

32. M. Tanaka, H. Watanabe, Y. Furukawa, and T. Tanino,GA-Based Decision Sup-
port System for Multicriteria Optimization, Proceedings of the International
Conference on Systems, Man, and Cybernetics 2, 1556–1561, IEEE Piscataway,
NJ, 1995.

33. F. Xue, A. C. Sanderson, and R. J. Graves. Pareto-based Multi-Objective Dif-
ferential Evolution. In Proceedings of the 2003 Congress on Evolutionary Com-
putation (CEC’2003), volume 2, pages 862–869, Canberra, Australia, December
2003. IEEE Press.

34. L.A. Zadeh. Fuzzy sets. Information and Control, 8(1):338–353, Fall 1965.
35. E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Compar-

ative Case Study and the Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, November 1999.

36. E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and Viviane G. da Fonseca.
Performance assessment of multiobjective optimizers: an analysis and review.
IEEE Transactions on Evolutionary Computation, 7(2):117–132, April 2003.

