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Abstract—To evaluate the search capabilities of a multi- Evolutionary AlgorithmgEAs), Particle Swarm Optimization
objective algorithm the usual approach is to choose a bench- (PSQ), Ant Colony OptimizationTabu SearchDifferential
mark of known problems, to perform a fixed number of  pyq\ytion Scatter Searchand many others. The most pop-

function evaluations, and to apply a set of quality indicates. . S S
However, while real problems could have hundreds or even ular algorithms for multi-objective optimization based on

thousands of decision variables, current benchmarks are me  Metaheuristics in current use (NSGA-II [8] and SPEA2 [35])
mally adopted with relatively few decision variables (normally — adopt EAs as their search engine [5], [7].

from tentqthirty). Furthermore., per.forming.a constant num ber The performance of these algorithms has been typically
of evaluations does not provide information about the effor  ;cge55eq using benchmark problems, such as the Zitzler-Deb

required by an algorithm to get a satisfactory set of solutios; . .
this information would also be of interest in real scenarios Thiele (ZDT) test problems [34], the Deb-Thiele-Laumanns-

where evaluating the functions defining the problem can be Zitzler (DTLZ) test problems [9], and the Walking-Fish-
computationally expensive. In this paper we study the efféac Group (WFG) test problems [14], [15]. These three problem

of parameter scalability in a number of state-of-the-art muti-  families are scalable in the number of decision variabled, a
objective metaheuristics. We adopt a benchmark of paramete 6 |55t two are also scalable in the number of objectives. Th

wise scalable problems (the ZDT test suite) and analyze the thodol v adooted in th ialized litegat
behavior of eight multi-objective metaheuristics on the tlese methodology commonly adopted In the specialized liteaatur

test problems when using a number of decision variables that IS to compare several algorithms using a fixed (pre-defined)
ranges from 8 up to 2048. By using the hypervolume indicator number of objective function evaluations and then to evalua

as a stopping condition, we also analyze the computational the values of different quality indicators (e.generational
effort required by each algorithm in order to reach the Pareto distance[32] or hypervolumg36], among others).

front. We conclude that the algorithms based on particle swam Th . tivati f thi K is that | d
optimization and differential evolution yield the best oveall € main motivation of this work IS that many real-wor

results. problems have hundreds or even thousands of decision vari-
ables, which constrasts with the current practice of valida
ing multi-objective metaheuristics using the aforememtid
|. INTRODUCTION benchmarks, but with a low number of decision variables

Many real-world optimization problems require the Op_(normally, no more than 30). Thus, the studies currently

timization of more than one objective function at the Samgvgllaple do not consider the capability of current multi-
time. These problems are called Multi-objective Optinmiaat Objective evolutionary algorithms to properly scale when

Problems (MOPSs). In constrast to single-objective optimiz dealing with a very large number of decision variables.

tion problems, the solution to MOPs is not a single solutionscal"jlblllty is a key issue in optimization algorithms, but

but a set of non-dominatedsolutions called thePareto it has been rarely addressed in the multi-objective domain.

optimal set A solution that belongs to this set is said toAn example IS the StUdY pr_ese_nted in [30]' n Wh'Ch the
o-called intelligent multi-objective evolutionary alijm

: . . S
be aPareto optimunand, when the solutions of this set are . i o
plotted in objective space, they are collectively knowntees t (IMOE.A) IS compared to sevgral elitist and nop—ehust it
Pareto front Obtaining the Pareto front is the main goal inObIeCt'Ve evolutionary algorithms (MOEAs) in several of
multi-objective optimization the ZDT test problems, adopting 63 decision variables. This

The fact that real-world MOPs tend to be nonlinear anaomparative study was undertaken to validate the hypathesi

with objective functions that are very expensive to eveduatof the authors of IMOEA, who argued the capability of

L : such approach to deal with large parameter MOPs. Another
has led to the use Fnﬁetaheurlst|g$1], [3l. [13.] to deal W'th . exampEapcan be found in [33] 8vh£re a study using only the
them. Metaheuristics are a family of techniques compnsngT1 problem with up to 10'0 variables is included. This
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in consequence, of iterations) is defined by the user, and the [1. MULTI-OBJECTIVE OPTIMIZATION

performance of the different algorithms studied is comgare | this section, we include some background on multi-

However, this sort of comparison only measures the fronfpiective optimization. More specifically, we define the €on

aspect, and it does not provide any indication regarding trt‘*epts of MOP, Pareto optimality, Pareto dominance, Pareto

computational effort that a given algorithm requires toclea optimal set, and Pareto front. In these definitions we are

the true Pareto front of a problem, i.e., the efficiency ofssuming, without loss of generality, the minimization bf a

the algorithm. We believe that this is an important issugpe objectives.

because if we take into account that evaluating the objectiv p general multi-objective optimization problem (MOP)

functions of a MOP can be very time-consuming, it becomegyp pe formally defined as follows:

_of interest to know how expensive for a certain algorithm it pefinition 1 (MOP): Find a vectorz* = 2%, 25, ..., 2]

is to generate the Pareto front. which satisfies then inequality constraintg; (Z) > 0,
We carried a first analysis of these ideas in [11], wher&,2,...,m, the p equality constraintsh; (¥) = 0,i =

six state-of-the-art multi-objective metaheuristics &eom- 1,2,...,p, and minimizes the vector functiorf () =

pared when solving the ZDT benchmark, considering theiif1(Z), f2(Z), . . L @), where® = [z, 2, ..., 2] is

formulation ranging from 8 up to 2048 variables. The althe vector of decision variables.

gorithms included in the study reported in [11] were three The set of all values satisfying the constraints defines the

genetic algorithms (GAs) (NSGA-II [8], SPEA2 [35], andfeasible regiorf2 and any point € Q2 is afeasible solution

PESA-II [6]), one evolution strategy (PAES [17]), one PSCAs mentioned before, we seek for thRareto optima lIts

(OMOPSO [27]), and one cellular GA (MOCell [23]). In formal definition is provided next:

that work, the number of evaluations required to provide a Definition 2 (Pareto Optimality)./A point &* € Q is

satisfactory solution was also analyzed. Given that thetBar Pareto optimal if for eveng@ € Q andI = {1,2,...,k}

fronts of the ZDT problems are known, an algorithm wasitherVic; (f; (Z) = fi(Z*)) or there is at least ong € I

considered successful when the hypervolume of its curreauch thatf; (Z) > f; (Z*).

population (or archive, depending on the algorithm) was This definition states thaf* is Pareto optimal if no

higher than the 95% of the hypervolume of the Pareto fronfgasible vector exists which would improve some criterion

The current paper conduct furher research along tify 7 B89 B BIEEE AR et
line. Compared to our previous work in [11], the main ' P

A ) . Pareto optimality are the following:
contributions of this paper are the following: DefinitiF:)n 3 (Izareto Dominanceg)A vector

. Two additional modern multi-objective metaheuristics?, = (¥1.---,ux) is said to dominates = (v, ..., vx)
(denoted byii < ?) if and only if @ is partially smaller thamw,

have been included, GDE3 [19] (a Differential EVOH e i € {1 ot <uATiell A -
: . .., V1 seeey , Ui S Uy 7 geeey LUy Vi.
lution algorithm) and AbYSS [22] (a Scatter Searc Definition 4 (Pareto Optimal Set)For a given MOP

Igorithm), leading t total of eight multi-objective - . ) !
algorithm), leading to a total of eight multi-objec Ivef(f), the Pareto optimal set is defined & = {7 €

metaheuristics, representative of the state-of-the-art. W e -
« We analyze the search capabilities of the algorithmgh e f(@) < f(@)) ) L
when solving the scalable ZDT problems using a Definition 5 (Pareto Front):For a given MOPf(Z) and

stronger stopping condition, by which the algorithméts Pareto optimal seP*, the Pareto front is defined as

stop either when they find a solution set having 4 7. ={f(@),7eP}. _ _
hypervolume higher than the 98% of the hypervolume Obtaining the Pareto front of a MOP is the main goal of

of the true Pareto front or when they have performe$1ljIti'ObjeCﬁVe pptin;ization. Hl;)wevfer, 9“’9“ thatj leare_t
10,000,000 function evaluations (500,000 in [11]). ront can contain a large number of points, a good solution

« A more complete statistical analysis is performed inMmust contain a limited number of them, which should be as

cluding pair-wise comparisons among the techniques Iﬂo_se as possible to the_ true Pareto front, as well as being
order to determine the significance of the results. uniformly spread; otherwise, they would not be very usedul t

« We study the behavior of the most promising techniquetahe deC|S|on_ makgr. Clo_seness to_the Pareto fror_1t ensuwaes th
in order to propose mechanisms that enhance theiye are dealing with optimal solutions, and a uniform spread
search capabilities of the solutions means that we have made a good exploration

of the search space and no regions are left unexplored.

The remainder of this paper is organized as follows.
Section 1l includes basic background on multi-objective !!l- SCALABLE PARAMETER-WISE MULTI-OBJECTIVE
optimization. Sections Il and IV describe, respectivehe OPTIMIZATION PROBLEMS
problems and the metaheuristics we have used. Section V isTo carry out our study, it would be helpful to use problems
devoted to the presentation and analysis of the experimenthich are scalable in terms of the number of decision
carried out. In Section VI, we include a discussion about theariables while keeping an invariable Pareto front. The ZDT
obtained results. Finally, Section VIl summarizes the papéest function family [34] fulfills this requirement. It offs,
and discusses possible lines of future work. furthermore, a group of problems with different properties



TABLE |
ZDT TEST FUNCTIONS

Problem | Objective functions Variable bounds | Comments
[(@E) = o
zoT1 (3 = 9@ - Va1 /9@) 0<a <1 convex
9@ = 149(S8 @) /(n—1)
[@) = =
ZDT2 f2(Z) = g(@)[1- (z1/9(2))?] 0<z; <1 non-convex
g9(Z) = 1+9(Z?:2 17) /(n—1)
1@ =
- - T zy convex
ZDT3 f2(&8) = g(@) {1 V5@ ~ s sin (107””)] Osm <1 disconnected
g(ﬂ(?)) = 1+903 7 ) /(n=1)
fi@) = =1
sora | 2@ = @0 (@1/e(@)?] 0=m <l nonconvex
g(Z) = 1+410(n— 1)+ l.‘);;”* —n‘) multi-frontal
Son L7 — 10 cos (4mw;)] T
f1(@) = 1—e ™1sin® (6mx1) non convex
ZDT6 f2(@) = g@)[1 - (f1(@)/9(F))?] 0<z; <1 many-to-one
g(@) = 149, z)/(n— 1)]0-25 non uniformly spaced

convex, non-convex, disconnected, multi-frontal, mamy-t the archive are copied into a new population. If the number
one problems (see Table I). These problems have been widelfynon-dominated individuals is greater than the poputatio
used in many studies in the field since they were firsdize, a truncation operator based on calculating the dis&an
formulated. Table | shows the formulation of the ZDT testo thek-th nearest neighbor is used. This way, the individuals
problem family. We omitted problem ZDT5 because it ishaving the minimum distance to any other individual are
binary encoded. The Pareto front of each problem is plottethosen.

in Fig. 1. PESA-II [6] uses an internal population from which par-

Since we are interested in studying the behavior of thents are selected to create new solutions, and an external
algorithms when solving scalable parameter-wise problemgopulation in which the non-dominated solutions found are
we have evaluated each ZDT problem with 8, 16, 32, 64tored. This external population uses the same hyper-grid
128, 256, 512, 1024, and 2048 variables. This way, we cafivision of phenotype (i.e., objective funcion) space addp
study not only what techniques behave more efficiently wheisly PAES [18] to maintain diversity in which region-based
solving problems having many variables, but also if theiselection is adopted. In region-based selection, the unit
search capabilities remain constant or not when the numbef selection is a hyperbox rather than an individual. The
of decision variables increases. procedure lies in selecting (using any of the traditional

selection techniques) a hyperbox and then randomly chgosin

IV. MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS an individual within that hyperbox.

In this section, we briefly describe the eight metaheusstic PAES is a metaheuristic proposed by Knowles and
that we have considered in this study. We have used tlorne [18]. The algorithm is based on a simple (1+1)
implementation of these algorithms provided by jMetal [12]evolution strategy. To find diverse solutions in the Pareto
a Java-based framework for developing metaheuristics &ptimal set, PAES uses an external archive of nondominated
solve multi-objective optimization problems. solutions, which is also used to decide about the new

The NSGA-II algorithm was proposed by Debal.[8]. It  candidate solutions. An adaptive grid is used as a density
is a genetic algorithm based on obtaining a new populatiagstimator in the archive. We have used a real coded version
from the original one by applying the typical genetic operaof PAES, applying a polynomial mutation operator.
tors (selection, crossover, and mutation); then, the iddais OMOPSO (Optimized MOPSO) is a particle swarm opti-
in the two populations are sorted according to their rankyization algorithm for solving MOPs [27]. Its main features
and the best solutions are chosen to create a new populatigfplude the use of the crowding distance from NSGA-II
In case of having to select some individuals with the samg filter out leader solutions and the use of mutation op-
rank, a density estimation based on measuring the crowdiRgators to accelerate the convergence of the swarm. The
distance to the surrounding individuals belonging to thaesa original OMOPSO algorithm makes use of the concept of
rank is used to get the most promising solutions. ~ c_dominance to limit the number of solutions produced by

SPEA2 was proposed by Zitleet al. in [35]. In this the algorithm. We consider here a variant discarding the use
algorithm, each individual has a fitness value that is thgf ..dominance, and considering the leader population as the
sum of its strength raw fitness plus a density estimationesy|t yielded by the algorithm.

The algorithm applies the selection, crossover, and nartati - 5pg3 [19] is an improved version of the Generalized

operators to fill an archive of individuals; then, the nonpjferential Evolution (GDE) algorithm [20]. It starts wita
dominated individuals of both the original population andyonylation of random solutions, which becomes the current

liMetal is freely available for download at the following URL populatlon._ At eaCh_generatlon* an_OﬁSprmg population is
http://jmetal . sourceforge. net/. created using the differential evolution operators; thie,



ZDT1 ZDT2

Fig. 1. Pareto fronts of the ZDT test functions.

current population for the next generation is updated usingethods, respectively.
the solutions of both, the offspring and the current popu-
lation. Before proceeding to the next generation, the size V. EXPERIMENTATION
of the population is reduced using non-dominated sorting
and a pruning technique aimed at diversity preservation, in.
similar way as NSGA-II, although the pruning used in GDE
modifies the crowding distance of NSGA-II in order to solve
some of its drawbacks when dealing with problems having o
more than two objectives. . Parameterization
MOCell [23] is a cellular genetic algorithm (cGA). Like We have chosen a set of parameter values such that we
many multi-objective metaheuristics, it includes an exé¢r allow a fair comparison among all the algorithms compared.
archive to store the non-dominated solutions found so fall the GAs (NSGA-II, SPEA2, PESA-II, and MOCell) as
This archive is bounded and uses the crowding distance wkll as GDE3, use an internal population size equal to 100;
NSGA-II to keep diversity in the Pareto Front. We have usethe size of the archive is also 100 in PAES, OMOPSO,
here an asynchronous version of MOCell, called aMOCell&GDE3, MOCell, and AbYSS. OMOPSO has been configured
in [24], in which the cells are explored sequentially (asynwith 100 particles. For AbYSS, the population and the
chronously). The selection is based on taking an individuagference set have a size of 20 solutions.
from the neighborhood of the current solution (caltzsl in In the GAs we have used simulated binary crossover
cGAs) and another one randomly chosen from the archivéSBX) and polynomial mutation [7]. The distribution indge
After applying the genetic crossover and mutation opesatorfor both operators are. = 20 andn,,, = 20, respectively.
the new offspring is compared with the current one, replgcinThe crossover probability i®. = 0.9 and the mutation
it if better; if both solutions are non-dominated, the worsprobability isp,, = 1/L, whereL is the number of decision
individual in the neighborhood is replaced by the currentariables. In PAES we have also adopted a polynomial mu-
one. In these two cases, the new individual is inserted intation operator, with the same distribution index as inttida
the archive. before. AbYSS uses polynomial mutation in the improvement
AbYSS is an adaptation of thezatter searcimetaheuristic method and SBX in the solution combination method. GDE3
to the multi-objective domain [22]. It uses an external areh uses 0.5 for the two parametersRk and F' [19]. OMOPSO
similar to the one employed by MOCell. The algorithmapplies a combination of uniform and non-uniform mutation
incorporates operators from the evolutionary algorithros d to the particle swarm [27]. A detailed description of the
main, including polynomial mutation and simulated binanparameter values adopted for our experiments is provided
crossover in the improvement and solution combinatiom Table II.

In this section, we describe the parameter settings used
n the experiments, as well as the methodology we have
ollowed in the tests, and the results we have obtained.



TABLE Il
PARAMETERIZATION

Parameterization used in NSGA-II [8]

100 individuals

binary tournament + binary tournament
simulated binaryp. = 0.9
polynomial, p, = 1.0/L

(L = individual length)

Population Size
Selection of Parents
Recombination
Mutation

Parameterization used in SPEA2 [35]

100 individuals

binary tournament + binary tournament
simulated binaryp. = 0.9
polynomial, p,, = 1.0/L

(L = individual length)

Population Size
Selection of Parents
Recombination
Mutation

Parameterization used in PESA-II [6]

Population Size 100 individuals
Selection of Parents

Recombination simulated binaryp. = 0.9

region based selection + region based selection

Mutation polynomial, p, = 1.0/L

(L = individual length)
Archive Size 100 individuals

Parameterization used in PAES [17]

Mutation polynomial, p, = 1.0/L

(L = individual length)
Archive Size 100

Parameterization used in OMOPSO [27]

Particles 100 particles
Mutation uniform + non-uniform
Leaders Size 100

Parameterization used in GDE3 [19]

Population Size 100 individuals

Recombination

Differential Evolution,CR =0.1, F = 0.5

Parameterization used in MOCell [24]

Population Size
Neighborhood
Selection of Parents
Recombination

100 individuals {0 x 10)

binary tournament + binary tournament
simulated binaryp. = 0.9

Mutation polynomial, p,, = 1.0/L
(L = individual length)
Archive Size 100 individuals

1-hop neighbors (8 surrounding solutions)

Parameterization used in AbYSS [22]

Population Size 20 individuals

Reference Set Size 10 + 10

Recombination simulated binaryp. = 1.0

Mutation (local search) polynomial, p,, = 1.0/L
(L = individual length)

Archive Size 100 individuals

B. Methodology

We are interested in two main goals: analyzing the b
havior of the algorithms when solving the scalable ZD

reference point can simply be found by constructing a vector
of worst objective function values. Thereafter, the unibalb
hypercubes is found and its hypervoluniél() is calculated:

lQl
HV = volume U vi | . (1)

i=1

Higher values of the HV performance measure imply more
desirable solutions. A property of this quality indicatsithat
it measures both convergence to the Pareto front and diyersi
of the obtained fronts.

Once the quality indicator we are going to use has been
described, we need to establish a stopping condition to be
Used in the execution of the algorithms. The idea is that the
metaheuristics stop when they reach a certain percentage of
the HV of the Pareto front, which ensures that the obtained
front represents an accurate approximation to it. To decide
about that percentage, we show different approximations of
the Pareto front for the problem ZDT1 with different percent
ages ofHV in Fig. 2. We can observe that a front with a hy-
pervolume of 98.26% represents a reasonable approximation
to the true Pareto fronts in terms of convergence and diyersi
of solutions. This same value has been corroborated using th
other test problems from the ZDT suite. So, we have taken
98% of the HV of the Pareto front as a criterion to consider
that a MOP has been successfully solved. Furthermore, those
algorithms requiring fewer function evaluations to acleiev
this termination condition can be considered to be more
efficient orfaster In those situations in which an algorithm
is unable to obtain a front fulfilling this condition aftereth
maximum number of function evaluations, we consider that
it has failed in solving the problem; this way, we can obtain a
hit rate for the algorithms, i.e., their percentage of ssetd
executions. We set the maximum number of evaluations to
ten million.

In our experiments, we check the stopping condition every
100 evaluations (that is, each iteration in the population-
based metaheuristics), where we measure the hypervolume
of the non-dominated solutions found so far. Therefore,
in NSGA-Il, SPEA2, and GDE3 we have considered the

_?_non -dominated solutions at each generation; in PESA-II,

PAES, AbYSS, and MOCell, the external population and,

benchmark and their speed (efficiency) in reaching the Bar eh MOPSO, the lead hi
front. Given that the Pareto fronts of the ZDT problems are © leaders archive

known beforehand, a strategy could be to run the algorithms

until they are able to produce them. However, it is possible

that some of them never produce the true Pareto front, or

simply take too long to do it. Thus, we adopt instead a

stopping condition for all the algorithms compared, based

on the high quality of the Pareto front produced. For that

purpose, the hypervolume [36] quality indicator is adopted !
The hypervolume computes the volume (in objective func- ,

tion space) covered by members of a non-dominated SeE(ruskaI WaII% [ Welch j

of solutions(@ for problems in which all objectives are to

be minimized. Mathematically, for each solutiene @), a Fig. 3. Statistical analysis performed in this work.

hypercubev; is constructed with a reference poilit and

the solutioni as the diagonal corners of the hypercube. The We have executed 100 independent runs for each algo-

Normality

(Kolmogorov-Smirnov)




ZDT1

~ ——True front

\ - - -HV =60.32%

N x HV=75.45% ||
N + HV=96.82%

RN © HV =098.26%

Fig. 2. Pareto fronts with differeniZ V' values obtained for problem ZDT1.

rithm and each problem instance. Since we are dealingspectively. This indicates that all the 100 independensr
with stochastic algorithms, we need to perform a statikticdhave been successful, which means a hit raté.@f When
analysis of the obtained results to compare them with @an optimizer is not able to reach an acceptable front upon
certain level of confidence. Next, we describe the staéiktic performing 10,000,000 function evaluations in all the 100
test that we have carried out for assuring this [29]. Firsindependent runs, its cell in the tables includes the *
a Kolmogorov-Smirnov test is performed in order to checlsymbol, and it is not taken into account in the statistical
whether the values of the results follow a hormal (Gaussiatgsts. In other words, the-" symbol means that, in order to
distribution or not. If so, the Levene test checks for theolve successfully the problem in all the independent runs,
homogeneity of the variances. If samples have equal vagianthe optimizer may need more than 10,000,000 of function
(positive Levene test), an ANOVA test is done; otherwise wevaluations. In these cases, the hit rate would be less than
perform a Welch test. For non-Gaussian distributions, the0. To ease the analysis of the results in these tables, the
non-parametric Kruskal-Wallis test is used to compare theells containing the lowest number of function evaluations
medians of the algorithms. have a grey colored background. There are two grey levels:
We always consider in this work a confidence level ofhe darker grey indicates the best (lowest) value, whiletég
95% (i.e., significance level of 5% @-value under0.05) grey is used to point out the second best value. We can
in the statistical tests, which means that the differences aobserve that the results in these tables are significant, as
unlikely to have occurred by chance with a probability oftan be seen in the last row of each of them, where each
95%. Successful tests are marked with “+” symbols in theell contains a “+” symbol, except for ZDT4 with 1024 and
last row in the tables containing the results (see Tables 1#048 variables (where there are no results to compare).
to VII); conversely, =" means that no statistical confidence Next, we analyze the results obtained for each of the
was found p-value > 0.05). For the sake of homogeneity problems. To make the results clearer, we include a figure
in the presentation of the results, all the tables include thsummarizing the values, using a logarithmic scale, in émiit
median,Z, and the interquartile rangdQ R, as measures to the corresponding table. The discussion is organizeldgn t
of location (or central tendency) and statistical dispersi following order: first, we analyze the success of the algo-
respectively. rithms when solving the different instances of the problem;
We have performed a post-hoc testing phase using tsecond, we analyze the speed of the techniques to obtain
mul t conpar e function provided by Matla®, which al- the Pareto front when solving the problems; and, finally, we
lows for a multiple comparison of samples. This way, wenake a pairwise comparison of the algorithms, considering
can make pairwise comparison between algorithms to knothiose problems in which there are no statistical difference

about the significance of their results. between each pair of techniques (if we included the problems
with statistical significance, this would lead to larger|és).
C. Analysis of results « ZDT1: This problem presents a uniform density of
Tables IlI, IV, V, VI, VII show the median and the in- solutions in the search space and a convex Pareto front.

terquartile range of the number of evaluations needed by the Table Il and Fig. 4 show the number of evaluations
different optimizers for ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, needed to obtain a Pareto front with 98% of the HV of



TABLE Il
EVALUATIONSFORZDT1

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables
NSGATl | 4.406+34.0012 | 8.106%35.0012 | 1.526%49.0c12 | 2.886+41.4015 | 572645 0013 | 1.216%55 2015 | 2.716%59 5013 | 6.316%51 6ora | 1.456%63 3014
SPEA2 5.00e+33 ge42 9.30e+3g 042 1.69e+41 1043 3.14e+4 4043 6.03e+42 7043 1.25e+55 e+ 3 2.69e+59 4043 6.01e+5; ge44 1.34e+62 8c4+4
PESA-II 4.15e+3; 2043 8.40e+39 542 1.73e+41 e+ 3 3.74e+43 ge 43 8.36e+45 03 1.96e+59 3043 4.78e+5;1 get4 1.18e+64.0c 44 2.93e+6g. 9c44
PAES 3.40e+32 5043 7.25e+34 4e43 1.34e+45 ge+3 2.57e+4 geqa 4.70e+43 5c44 9.07e+43 9c44 1.73e+51 3c45 3.68e+54 7¢45 -
OMOPSO [ T.406%31.0012 | 3.406¥35 0012 | 7A06%31 scys | 1386455015 | 2806745 4015 | 6.316%47.4. 15 | 1.586%5; 5,14 | 4.556%53 4014 | LALET61 0015
GDE3 2.80e+32.0c42 5.30e+33.0c+2 1.00e+44 ge42 1.81e+44 5¢42 3.30e+49 gect2 6.10e+4; 2c43 1.16e+5; gc 43 2.40e+53 gc 3 5.64e+57 0c 43
MOCell | 1.806#35.0c12 | 3.806%36.0015 | 9.206%3s 0ets | 2.18641 5,15 | 4926430015 | 1.136+5g.acss | 2.566+5s 6ets | 562651 gora | 1206463 7014
ADYSS | 3.406+37.0c12 | 6.806%3p.0045 | 14941 5,15 | 3.30645 7015 | 7.296+4g 1045 | 1.586+57.5045 | 350651 5c1a | 7.066%55 1o1a | 1397626014
+ + + + + + + + B
TABLE IV
EVALUATIONS FOR ZDT2
Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables
NSGATT | 7506435 0012 | 1376450042 | 2.606+4; gors | A4.986+45 5,53 | 101645 5015 | 2.086%5; gopa | 4546451 sora | 1.016+63 gora | 2.286%65 5044
SPEA2 | 7.806%31.0045 | 1466%4; 5,45 | 2.606+4; 7015 | 4.866+45 2043 | 9.506+4; 4045 | 1.906%55 0045 | 3.956%59.0c+5 | B8.516%51 7c4a | 1.896+62.6044
PESA-II 1-506+47.86+3 3.516"‘42_564,4 9.386+46_08+4 3.986+54_28+5 - - - - -
PAES 3.14e+44_5e+4 6.946"‘47_164,4 1.296+51_28+5 2.936+54_28+5 - - - - -
OMOPSO 1.758+34_oe+2 3.906+31,65+3 9.70e+33,ge+3 1.688+45_oe+3 3.066+45,3e+3 5.446+4g_4e+3 1.11e+51_1e+4 2.83e+52,7e+4 7.7le+57,96+4
GDE3 3.2Oe+32_08+2 6.106"‘34_564,2 1.186+46_5e+2 2.266+41_28+3 4.33e+41.ge+3 8.189+41436+3 1.586+52416+3 3.27e+54,28+3 7.666+59_86+3
MOCell 2.909+31(0E+3 4.9094‘31‘454_3 8.2594‘32.25_'_3 l.74e+41A18+4 4.429+42_55+4 l.26e+54_3e+4 2.916+51_1e+4 6.609+51_15+4 l.46e+62_05+4
ADYSS | 4506+3; 5042 | 9.106+3; 7045 | 1.866+4 5045 | 3.966+45 5015 | 8.266%47.0015 | 1.756%5s.co45 | 3.686+50.c45 | 7.746%51 go4a | 1.606%62. 4044
+ + + + + + + + +
TABLE V
EVALUATIONS FORZDT3
Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables
NSGATT | 4.206%35 ooz | 7406360042 | 1.366+40 5oro | 2.536+4; 2043 | 5.06e+43 1015 | 10867548075 | 2.386+50 0o | 5376+51 goga | 1.206+65 5054
SPEA2 | 4.906+36.0042 | 9.106%37.0042 | 1.626+41 0015 | 3.006+43. 0045 | 5.896+44 0045 | 1206755 5045 | 2.566%59 4ot5 | 5.586%51 gota | 1.226+62.5044
PESA | 3.756%3.0c42 | 7.606%31 o043 | 1.596+42 0ots | 3436438043 | 7.766+47 scis | 1.77€%5s 003 | A.146¥51 5044 | 9.836+53 5014 | 2.286%64 5044
PAES | 6.006%3s.8015 | 121641 0044 | 2.566+43. 2014 | 5.686%46.1c44 | 9.926%41 2015 | 2.036%53.0c45 | 3.656%56.3c15 | 8.17%5s 4015 -
OMOPSO 2.606“'314064,3 5.40e+32,4e+3 1.01e+43436+3 2.206“'444064,3 5.06e+4g. le43 1.266+52_3e+4 3.536+53_98+4 1.036"‘68_364,4 3.17e+6; 9e+5
GDE3 2.906+32_5e+2 5.606‘*‘33_064,2 1.08e+44_08+2 1.968+4g_oe+2 3.4Ge+49,5e+2 6.296+41_3e+3 1-209+51.Se+3 2.506+52,ge+3 6.07e+57_2e+3
MOCell 1.90e+36_oe+2 4.206+38,05+2 9.906+31_4e+3 2.3Oe+42_28+3 5.246"‘43_464,3 1.166+59_3e+3 2.57e+51_7e+4 5.44e+5, Ge+4 1.1Se+63_58+4
AbYSS

3.35e+31 .6e43
T

6.75e+31 8¢ 43
¥

1.40e+45 1043
T

2.87e+43 813
T

6.02e+46.1c43
T

1.23e+51 .6e44
T

2.57e+53 pey4
T

5.47e+54 4c44
T

1.12e+64.5¢44
T




TABLE VI
EVALUATIONSFOR ZDT4

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables
NSGA-II 1.62e+43 4043 4.38e+41 2c4a 1.37e+53 3¢44 4.25e+59 1c44 1.20e+61 .8¢+5 3.29e+63 . 5¢+5 8.85e+66.7¢+5 - -

SPEA2 2.1le+44_28+3 4.54e+48_7€,+3 1.34e+53416+4 3.696+5644e+4 1.07e+64 3e+5 2.986+62_4e+5 8.24e+65_9e+5 - -
PESA-II 1.84e+45_2e+3 5.00e+4, de+4 1.51e+53_2e+4 4.126+57_3e+4 1.069+61.3e+5 2.729"‘624564,5 6.696“‘634564,5 - -

PAES 3.086+41_1e+4 8.53e+44_1e+4 2.17e+56_4e+4 5.4le+51_9e+5 1.286+63_06+5 3.186+67_28+5 - - -

OMOPSO - - - - - - - - -

GDE3 1.1894’48‘0,5_'.2 - - - - - - - -
MOCell 8.80e+32,25+3 2.04e+45_4e+3 5.869+41,05+4 1.658+52,75+4 4.67e+55_se+4 1.23e+61,05+5 3.258+61,65+5 8.14e+62_se+5 -
AbYSS 1.46e+45 4043 5.46e+42 1c44 1.61e+54 3¢44 4.82e+51 ge+5 1.39e+61 .5¢+5 3.81e+64.2¢ 45 - - -

+ + + E + + + B B

TABLE VII
EVALUATIONS FORZDT6
Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 2.31e+4q 3c43 4.60e+41 4e43 8.84e+45 gc 43 1.68e+53 5¢43 3.24e+5¢ 4¢3 6.47€+51 1c44 1.33e+61 .6e+4 2.77€+62 7¢ 44 5.80e+64 . 6e+4
SPEA2 2.64e+41 2043 5.26e+45 gc+3 9.94e+45 2043 1.87e+54 2¢43 3.53e+57 gc 3 6.84€+51 1c44 1.37e+61 . 4c44 2.81e+62.3¢44 5.82€+63. 8¢ 44
PESA-II 2.16e+4 geq3 4.78e+45 4e43 9.85e+44 7c 43 2.01e+57 2¢43 4.10e+51 1e44 8.57e+52 1c44 1.83e+62.9¢ 44 3.89€+64. 4¢44 8.32e+6g.9c 44

PAES 6.806+36_88+3 1.62e+4, Ge+t4 3-216+42.83+4 - - - - - -
OMOPSO 2.908+31_66+3 4.206+31,9e+3 7.70e+32_7e+3 1.388+43_5e+3 2.886+45,25+3 6.10e+41_oe+4 1.268+51_66+4 2.7Ge+53,05+4 6-12e+56.65+4
GDE3 3.7Oe+35,06+2 6.609+35.0e+2 1-329+41,1e+3 3.14e+42,66+3 1-539+56.7e+3 3.219"‘534564,3 6.366“‘544064,3 1.35€+67.5e+3 3.27e+61456+4
MOCell 1.07e+41_08+3 2.58e+4, de+3 5.65e+42_58+3 1.1Qe+53_08+3 2.47e+54_7e+3 5.186+57_88+3 1.1Oe+69_4e+3 2.35e+6; Qe+4 5.OOe+63_4e+4
AbYSS 1.23e+41 1c43 2.57et+4; gey3 5.26e+43 0c+3 1.08e+53 8¢ +3 2.26€+57 2¢.43 4.67e+59 2c43 9.60e+5;1 4e44 1.96e+62.1¢44 4.00e+64. 1c44

+ + + + + + + + +
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Fig. 4. Number of evaluations when solving ZDT1.
TABLE VIII
HIT RATE FORZDT1
Algorithm/Variables. | 8 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048
NSGA-II VIVIVIVIVIVITY v v
SPEAZ VIVIVIVIVI VIV V]IV
PESA-II VIVIVIVIVIV]Y v v
PAES VIiVI]IVI]V Vv Vv vV v/ 0.95
OMOPSO VIVIVIVIVIV]TY v v
GDE3 VIVIVIVIVIV]Y v v
MOCel VIVIVIVIVIVIVIVIV
ABYSS VIVIVIVIVIVIVI VIV

the Pareto front for this problem. Table VIII presents
the hit rate indicator, where we have used the symbol
y/ to indicate a value ofl.0 (a 100% success rate).
Table IX contains the problems for which no statisti-
cal differences have been found between each pair of
algorithms.

We begin by analyzing which algorithms are able to
solve the problems in all the independent runs carried
out. The results in Table Il show that all the algorithms
have success in all the instances, except for PAES in
the instance with 2048 variables. This is corroborated
considering the hit rate (see Table VIII), where all the
algorithms have a hit rate df.0 except for PAES in the
2048 instance, which has95. This means that in five
out of the100 executions carried out for this instance,
PAES reached the maximum number of evaluations
before obtaining a Pareto front with the desired HV
value.

We pay attention now to the speed, i.e., the number
of function evaluations needed by the metaheuristics to

find a Pareto front according to our success condition.
In Fig. 4, we plot the results using a logarithmic
scale. We have connected by a line the symbols of
the two algorithms yielding the best values. Thus, we
can observe that OMOPSO (dotted line) is the fastest
algorithm up to 128 variables, while GDE3 scales better
from 256 to 2048 variables. The lines clearly depict that
there is a tendency change in these two algorithms at
256 variables, indicating that GDE3 tends to be faster
than the other techniques as the number of decision vari-
ables increases, while OMOPSO exhibits the opposite
behavior. This suggests that GDE3 could be the most
appropriate algorithm to solve ZDT1 with more than
2048 variables. Accordingly, we determine that GDE3
is the algorithm that scales the best in problem ZDT1.
Considering the rest of techniques, MOCell is the
second fastest algorithm up to 32 variables and in the
case of 2048 variables. NSGA-Il, SPEA2, and AbYSS
tend to need a similar number of evaluations when the
instances are larger.



TABLE IX
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NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONSOR ZDT1

NSGA-II 128, 256, 512, 1024| 8, 16 16, 32, 64, 128

32

SPEA2 16, 32 2048

2048

256
- 64

PESA-II 8

128

PAES

512, 1024

128, 256, 512, 1024] 8, 16, 32

OMOPSO

128, 256 8, 16, 32

GDE3

2048
32 -

MOCell

SPEA2 PESA-II PAES

OMOPSO

GDE3 MOCell AbYSS

Finally, we make an analysis considering the outcome
of the statistical tests included in Table IX. If we focus
on OMOPSO and GDE3, the tests are non-successful
only in the instances of 128 and 256 variables, which
does not affect the previous analysis. It is interesting to
note that PAES, the simplest of the evaluated techniques,
presents no differences in many instances compared to
NSGA-II and MOCell. We can also observe that NSGA- «
Il and SPEA2 do not present statistical confidence in
four cases.

ZDT2 This problem also presents a uniform density
of solutions in the search space, but it has a non-
convex Pareto front. The number of evaluations needed
to solve the ZDT2 problem are included in Table IV and
Fig. 5. Table X shows the hit rate of each algorithm.
The problems in which each pair of algorithms are
statistically independent appear in Table XI.

We start by commenting that some optimizers have
difficulties when solving this problem, as can be seen
in Table IV and Fig. 5. In particular, neither PAES nor
PESA-II are able to reach a hit rate b0 in instances
with more than 64 variables. These results indicate that
problems having a non-convex Pareto front can cause
difficulties for some algorithms.

Consequently, the hit rate indicator shows that six
algorithms have a00% success rate in all the instances.
Among the algorithms with a hit rate smaller thar),
PESA-II is the algorithm having the worst valu@49

in the problem with 128 variables, arid0 in the next
ones. PAES does not achieve a 100% of success after
128 variables but, in constrast to PESA-II, the values are
near 100% in the instances ranging from 128 to 1024
variables.

Let us examine now the speed of the algorithms. A
look at Fig. 5 reveals that OMOPSO and GDES3 are
the fastest algorithms. The lines connecting the values
of these solvers indicate that OMOPSO requires a lower
number of function evaluations than GDE3 to get the
desired Pareto fronts in all but in the largest instance. In
fact, when observing the lines we can see that the one of
GDE3 suggests again that it could scale better than the
other techniques in order to solve instances of more than
2048 variables. MOCell, AbYSS, SPEA2, and NSGA-
Il, in this order, are the following metaheuristics in o
terms of speed, although they tend to get close to each
other when the number of decision variables of the
problem increases.

The pairwise tests in Table XI reveal some inter-
esting facts. On the one hand, the results of GDE3
and OMOPSO in the two largest instances are non-
significant; on the other hand, the tests show the dif-
ferences between MOCell and OMOPSO up to 64
variables and between MOCell and GDE3 up to 512
variables are also non-significant.

ZDT3 This problem presents a uniform density of
solutions in the search space and its Pareto front is
composed of several discontinuous regions; therefore,
the main complexity is to find all these discontinuous
regions. The evaluations required for solving the differ-
ent instances are shown in Table V and Fig. 6. Table XII
presents the hit rate of the algorithms. The problems in
which there are not statistical differences between each
pair of algorithms are shown in Table XIII.

Proceeding as before, we start by analyzing which al-
gorithms are able to solve successfully all the instances
of the problem. Therefore, at Table V we see that all
the algorithms solve all the instances, except for PAES,
which fails in the largest one.

Concerning the speed of the algorithms, in Table V and
Fig. 6 we can see which algorithms need a lower number
of function evaluations to reach the target results. We
have drawn a dotted line joining the points of GDES3,
which shows clearly that this optimizer is the best
when solving this problem, considering scalability. The
dashed line joins the number of evaluations required by
NSGA-II, which is the second fastest algorithm in ZDT3
from 128 to 1024 variables. We can see that NSGA-II,
MOCell, and SPEA2 are very close, and we observe
in Fig. 6 that they tend to similar values when the
number of decision variables of the problem is higher.
OMOPSO appears as the worst algorithm with 1024 and
2048 variables, so it scales as well as other algorithms
in this problem.

The pairwise tests in Table XIIl do not alter the pre-
vious discussion. All the differences between GDE3
and NSGA-II have statistical confidence. Considering
MOCell and NSGA-II, the tests are non-successful in
only two instances (128 and 1024). We note that SPEA2
does not provide statistical differences with respect to
PAES and AbYSS in five instances.

ZDT4 This problem has a total of 100 different Pareto
optimal fronts of which only one is global. Conse-
quently, the main difficulty for the different algorithms
is to reach this global front. The number of evaluations
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Number of evaluations when solving ZDT2.
TABLE X
HIT RATE FORZDT?2
Algorithm/Variables | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048
NSGA-II VIVIVIVIV v vV vV v
SPEA2 VIVIVIVI VI VIV V]V
PESA-II VI v | Vv | v ]043] 00| 00 | 00 0.0
PAES VI v | v | v | 09| 098] 099 096 | 0.79
OMOPSO VIVIVIVIV v v v v
GDE3 VIVIVIVIV vV vV vV v
MOCell VIVIVIVIV v vV vV v
AbYSS VIVIVIVIV v vV vV v
TABLE XI
NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONSOR ZDT2
NSGA-II 8, 16, 32, 64, 128
SPEA2 - 128, 256, 512
PESA-II 8, 16, 32, 64 -
PAES - -
OMOPSO 32, 1024, 2048 16, 32, 64
GDE3 8, 16, 64, 128, 256, 512
MOCell -
SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

required by the different algorithms is shown in Ta-
ble VI and Fig. 7. The hit rate indicator is presented
in Table XIV. The problems in which there are no
statistical differences in each pair of algorithms are
shown in Table XV.

The fact that the problem has many sub-optimal Pareto
fronts represents a great challenge for the different
algorithms, as can be concluded from seeing Table VI
and Fig. 7. On the one hand, none of them is able
to solve the problem successfully with 2048 variables.
Only MOCell needs a number of evaluations lower than

the maximum established for 1024 variables. On the
other hand, OMOPSO and GDES3, which are among
the most effective algorithms for the problems analyzed
until now, cannot solve successfully any of the instances
(except for the one with 8 variables, in the case of
GDE3).

Looking at the hit rate of the different algorithms
(Table X1V), the only solver able to reach sometimes the
Pareto optimal front in all the instances is AbYSS, the
scatter search algorithm. The rest of the algorithms have
a hit rate of0 with 1024 and 2048 (with the exception
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Number of evaluations when solving ZDT3.
TABLE XII
EVALUATIONS ZDT3
Algorithm/Variables | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048
NSGA-II VIVIVIVIVIVI]IV vV vV
SPEA2 VIVIVIVIVIVIV v v
PESA-II VIVIVIVIVIVIY v v
PAES VIVIVIVIV I V]V v [o08
OMOPSO VIVIVIVIVIVIY v v
GDE3 VIVIVIVIVIVI]IV vV vV
MOCell VIVIVIVIVIVI]IV vV vV
AbYSS VIVIVIVIVIVIV v v
TABLE XIlI
NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONSORZDT3
NSGA-II 2048 8, 16 - 128 128, 1024 8, 16, 32, 1024
SPEA2 32 8, 16, 32, 64, 1024 256 256, 512, 1024| 64,128, 256, 512, 1024
PESA-II 32, 64 1024 - 8,16
PAES 512 - - -
OMOPSO 8,16,32 | 8,32, 64,128 256
GDE3 32 -
MOCell 512, 1024, 2048
SPEA2 | PESA-II PAES OMOPSO GDE3 MOCell AbYSS

of MOCell with 1024 variables).

Analyzing the speed of the algorithms, we see in Ta-
ble VI that MOCell needs less than half of the function
evaluations than the next fastest solvers, PESA-II and
NSGA-II.

The tests included in Table XV show the instances of
the problem where the differences are non-significant.
However, they do not change the main conclusion about
ZDT4, which is that, given that MOCell needs more
than eight million function evaluations to achieve the
stopping condition in the 1024 variables instance, it is

clear that none of the analyzed techniques scales well
on this problem.

ZDT6: This problem presents a non-convex Pareto front,
in which the density of solutions across the Pareto-
optimal region is not uniform. Table VII and Fig. 8
show the number of evaluations required for reaching a
front with the target HV value. Table XVI presents the
hit rate of the algorithms. In Table XVII, the problems
in which there are no statistical differences for each pair
of algorithms appear.

As before, we start analyzing which algorithms are able
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TABLE XIV
HIT RATE FORZDT4
Algorithm/Variables 8 16 32 64 | 128 | 256 | 512 | 1024 | 2048
NSGA-TI V4 IV V4 v | v/ V 0.0 0.0
SPEA2 V/ / V/ vV | / V/ 0.0 0.0
PESA-II v/ V4 v/ N V4 v/ 0.0 0.0
PAES v/ V/ v/ N v/ | 0.85 [ 0.0 0.0
OMOPSO 0.66 | 0.0 00 [ 00| 00 [ 0.0 0.0 0.0 0.0
GDE3 v 096 | 086 | 0.7 | 0.0 | 0.0 0.0 0.0 0.0
MOCell Vv Y N N N 0.0
AbYSS v v v v v vV | 040 | 0.16 | 0.22
TABLE XV
NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONSORZDT4
NSGA-II 16, 32, 64, 512 8, 16, 32, 64 128, 256, 512 - - - 8
SPEA2 8, 16, 32, 64, 128 - - 32 - 16
PESA-II 16 - 16 16, 32
PAES - 64, 128
OMOPSO 512
GDE3 512
MOCell -
SPEA2 PESA-II PAES OMOPSO | GDE3 | MOCell AbYSS

to achieve the desired results in the different instances
of the problem. Looking at Fig. 8 and Table VII we
see that all the optimizers, except for PAES, are able
to solve the problem in all cases. Anyway, if we have
a look at the hit rate indicator (Table XVI), we can
observe that PAES achieves values n&@@% in the
instances ranging from 64 to 2048 variables.

We focus now on the speed of the algorithms. We can
clearly see in Table VIl and Fig. 8 that the fastest
algorithm is OMOPSO, followed by GDE3. The lines

that both of them scale well and they would probably
successfully solve larger instances. In fact, this conclu-
sion could be applied to all the algorithms but PAES.

If we analyze the tests included in Table XVII, the
most remarkable fact is that the differences between
OMOPSO and GDE3 that are non-significant affect only
the smallest instances (8, 16, and 32 variables).

VI. DISCUSSION OF RESULTS

joining the values of these algorithms in Fig. 8 indicate In this section, we analyze the results globally, trying to
identify the strengths and weaknesses of the algorithm&whe
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Fig. 8. Number of evaluations when solving ZDT®6.

TABLE XVI
HIT RATE FORZDT6

Algorithm/Variables | 8 | 16 | 32 64 128 | 256 | 512 | 1024 | 2048
NSGA-I VIVIVI VI VI VIV VIV
SPEA2 VIVIVIVIVIVIVIV IV
PESA- VIVIVI VI VI VIV V[V
PAES IV v/ IV 099 | 0.99 | 0.98 | 0.98 0.99 0.94
OMOPSO VIVIVI VI VIVIV ] VTV
GDE3 VIVIVIVIVIVIVI VIV
MOCell VIVIVIVIVIVIVI VIV
AbYSS VIVIVIVIVIVIVI VIV
TABLE XVII
NON-SUCCESSFUL STATISTICAL TESTS OF THE NUMBER OF EVALUATIONSOR ZDT6
NSGA-II 1024, 2048 8, 16
SPEA2 32, 64
PESA-II
PAES - -
OMOPSO 8, 16, 32
GDE3 - -
MOCell 8, 16, 32
SPEA2 PESA-II PAES | OMOPSO GDE3 MOCell AbYSS

executing the full set of experiments. To facilitate thisalis- with the highest number of decision variables. The ties are
sion, we have made first a rank of the algorithms accordingroken considering the number of evaluations in the most
to their scalability and speed. Second, we analyze the podifficult instances. To make the discusion clearer, we have
behavior of OMOSPO and GDE3 when solving problemmarked in boldface those optimizers having a hit rate lower
ZDT4 and indicate ways of improving these algorithmsthan 1.0 in at least one experiment, which indicates that the
After that, we analyze the rest of the techniques. Finally, walgorithm does not scale well.

compare the results of this study with our previous work [11]

According to this ranking, GDE3 is the most impressive
metaheuristic: it achieves three best and one second best
ranks. However, given the difficulties of this algorithm whe

The scalabity ranking is presented in Table XVIII. Thissolving ZDT4, MOCell is the technique that appears as the
ranking considers first those algorithms solving the protde most reliable, in the sense that it is able to solve all the

A. Scalability and speed
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instances considered in this study but the largest one @waluations to solve it.

ZDT4, and it occupies the first rank on ZDT4. OMOPSO The ZDT benchmark is very well-known, but it is not
scales the best in one problem (ZDT6), and it is the secoridlly representative in the sense that there are MOPs having
best on ZDT2 (although recall that its results on ZDTZeatures not covered by ZDT [14] (e.qg., linear or degenerate
and 2048 variables and those obtained by GDE3 have g@ometry, variable linkage, etc.). This work is a first step i
statistical confidence). However, it is unable to solve ZDT4he study of the behavior of multi-objective metaheursstic
and it tends to require more evaluations than other algosth when solving parameter scalable problems; an extension
when solving the larger instances of ZDT1 and ZDT3including other problem families, such as DTLZ [9] and
SPEA2, AbYSS, and NSGA-Il are in the middle of theWFG [15], would allow more general conclusions to be
ranking: they never obtain the best result nor they are beéyomrawn. However, many researchers may find useful insights
the sixth position in the ranking. PESA-II is in the lowerfrom the results obtained in this paper when facing the
positions mainly because it does not scale well in ZDT2 ansblution of MOPs having a large number of parameters. For
ZDT4. Finally, PAES is the last algorithm in the rankingexample, the two reference algorithms in the field, NSGA-II
because of its low hit-rate in many experiments. and SPEA2, are expected to work well, but MOCell can scale
better and provide results faster; and GDE3 and OMOPSO
are techniques to consider if we are looking for efficiency,
although there is a risk that they cannot solve the problem

TABLE XVIII
RANKING OF THE ALGORITHMS: SCALABILITY

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 if this is a multi-frontal one.

T GDE3 T. GDE T GDE3 T. MOCell T. OMOPSO

2.MOCell 2. OMOPSO 2. AbYSS 2. PESAII 2. GDE3

3. SPEA2 3.MOCell  3.MOCell 3. SPEA2 3. AbYSS ;

4. ADYSS 4. AbYSS 4. NSGAJl  4.NSGAIl 4. MOCell B. OMOPSO and Multi-frontal problems

5. OMOPSO 5. SPEA2 5. SPEA2 5. PAES 5. NSGA-Il ;

6 NSGAN 6 NSCAUl o PESAIl 6 AbYSS o SPEA2 If we do not_take |nt0. accoqnt problem ZPT4, one of the
7. PESA-Il 7. PAES 7. OMOPSO 7. GDE3 7. PESA-II most outstanding algorithms in our study is OMOPSO. In
8. PAES 8. PESAl 8. PAES 8. OMOPSO 8. PAES

this section, we analyze whether its inefficacy when dealing

o ) _ ~ with ZDT4 is particular of that problem or it happens with
The ordering in Table XIX relies on the algorithms requir-myti-frontal problems in general.

ing globally lower numbers of evaluations to find the target 1o explore this issue, we have defined two multi-modal
Pareto front, i.e., we sort them according to their speed. T9oblems using the methodology described in [7]. In this
make this ranking, we consider all the instances, not onlyaner, it is pointed out that given a functioriz), a two-

the largest ones. Thus, for each problem we have sortg@iective problem can be defined as the minimization of

the evaluations of the algorithms when solving each of the = f; (1,7) = x
instances, and the sum of the obtained positions determine fo(z1,7) = g(@)/z1
the order of the techniques. This problem has a local or global Pareto-optimal solution

If we do not consider the ZDT4 problem, OMOPSO is(x1, Z), whereZ is the locally or globally minimum solution
globally the fastest algorithm: it requires the lowest nemb of g(Z), respectively, and:; can take any value.
of evaluations in problems zZDT1, ZDT2, ZDT6, and it is

the fourth one in the ranking of ZDT3. GDE3 is the second TABLE XX

. . . L. " . RIEWANK AND ACKLEY MONO-OBJECTIVE FORMULATION
algorithm in the ranking, because it is first one in a problem,
ZDT3, and the second one in ZDT1, ZDT2, and ZDT6. The[ Problem [ Functions ] Variables
next algorithms are MOCell (first rank in ZDT4, a second| Griewank | g(z) =1+ X% 35 — [1% cos Z% 10

position, and two third ones), AbYSS, SPEA2 (the first GA| Ackley glz) =20+ e+ —206mp(—0.2\/% P 22) 3
in the speed ranking), and NSGA-Il. Among the slowest

metaheuristics we find again PESA-Il and PAES. This way, given a mono-objective function with local op-
An interesting fact is that, if we observe the two tablesimal solutions, we can construct a multi-frontal bi-olijee
the rankings are the same in problems ZDT2, ZDT4, anfiop. We have selected two well-known problems having lo-
ZDT6. This suggests that when an algorithm scales wedla| minimal solutions, Griewank and Ackley (see Table XX).
with a problem, it may require a low number of functionThe resulting problems have been solved by the eight meta-
heuristics we are dealing with. Our experiments revealat th

TABLE XIX OMOPSO does not converge to the corresponding Pareto

RANKING OF THE ALGORITHMS: SPEED fronts. To illustrate this fact, we include in Figs. 9 and 10
—— 573 573 577 576 the fronts obtained by OMOPSO and NSQA—II. .
1. OMOPSO 1. OMOPSO 1. GDE3 T. MOCell 1. OMOPSO In [11] we argued that the reason for this behavior could
1. GDES 2. GDE3 2.MOCell 2. PESAI 2. GDE3 be related to an inbalance between (low) diversification and
3. MOCell 3. MOCell 3. NSGA-II 3. SPEA2 3. AbYSS . . .o . .
4. PAES 4. AbYSS 4. OMOPSO 4. NSGA-I 4. MOCell (high) intensification, given that OMOPSO appears to be
5.SPEA2 ~ 5.SPEA2 5. AbYSS  5.AbYSS  5.NSGAll g fast algorithm. Here we go deeper into this issue, in
6. NSGA-l 6. NSGAl 6. SPEA2 6. PAES 6. PESA-II ; . .
6. AbYSS 7.PESAIl  7.PESAIl 7. GDE3 7. SPEA2 order to find the explanation and propose a solution. Let us
8. PESAl 8. PAES 8. PAES 8. OMOPSO 8. PAES recall that OMOPSO is a PSO-based MOEA, in which the
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Fig. 9. OMOPSO solving Griewank’s test problem.
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Fig. 10. OMOPSO solving Ackley’s test problem.

potential solutions to the problem are callpdrticles and
the population of solutions is called tls&varm The way in
which PSO updates particle at generatiort is by applying

the following formula:

.I'l(t) = .I'i(t + 1) + ’Ui(t)

where the factow;(¢) is known as velocity and it is given

by

vi(t) = w*v;(t — 1)

In this formula, z;.s; IS the best solution stored by;,

+ Clxrl* (Tipest — ;)
+ C2%72 % (Tgiobar — T3
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approach taken in OMOPSO is to assign the limit value to
the particle and to change the direction of the velocity.

ZDT4

Speed
o

&h“_}r{ﬁfrj!“ \Iﬁj‘r L?f’m{‘{-‘-’*—-}- ‘l}i’ —omorso

o 20 40 60 80 100 120 140 160 180 200 220 240

Number of iterations

Fig. 11. OMOPSO: Velocity of one particle in the swarm.

We have monitored the velocity of the particle representing
the second decision variable in ZDT4 (this variable takes
values in the interval-5, +5], which provides a better illus-
tration of the following analysis than using the first vategb
which ranges in[—1,+1]). Fig. 11 depicts the velocity of
OMOPSO in the250 iterations. The x-axis represents the
number of iterations. We can observe that the velocity \&alue
suffer a kind of erratic behavior, alternating very high hwit
very low values, in some points of the execution. Let us note
that the limits of the second variable in ZDT4 dre5, +5],
and the velocity takes values higher th&20. Thus, as a
consequence, this particle is moving to its extreme values
continuously, so it is not contributing to guide the search.

To determine whether this is the reason making OMOPSO
unable to solve multi frontal MOPs, we have modified it
including a velocity constraint mechanism, similar to tmeo
proposed in [4]. In addition, the accumulated velocity aftea
variablej (in each patrticle) is also bounded by means of the
following equation:

delta;  if v; ;(t) > delta;
v;,j(t) = § —delta; if v; ;(t) < —delta, (4)
v;;(t)  otherwise
where

(upper_limit; — lower_limit ;) 5)
2

This way, we can ensure an effective new position calcu-
lation, and hence avoid erratic movements. We have called
the resulting algorithm SMPSO (Speed-constrained Multi-
objective PSO).

In Fig. 12, we show again the velocity of the particle
representing the second parameter of ZDT4. We can observe
that the erratic movements of the velocity have disappeared

delta; =

Zglobal 1S the best particle that the entire swarm has viewedo the particle has taken new values and thus it has explored
w is the inertia weight of the particle and controls the tradedifferent regions of the search space.

off between global and local experiened, andr2 are two
uniformly distributed random numbers in the rariggel], and

To evaluate the effect of the changes in SMPSO, we

C'1 and(C?2 are specific parameters which control the effect ohave used it to solve all the problems, following the same
the personal and global best particles. If the resultingtip;s methodology. The results are included in Table XXI. To
of a particle is out of the limits of its allowable values, theillustrate its search capabilities we have included in Hig.
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ZDT4

25 evolution appears to be a technique worth considering to
20 solve problems like those considered in this work.

et

10

: ’Fﬂ,}‘ww D. About the Rest of Algorithms

Speed
o

==SMPSO

10 In the two previous sections we have analyzed OMOPSO
o and GDES3, aiming to improve their search capabilities. We
25 discuss here the rest of the techniques adopted in our cempar
0. 20 %0 €0 F0 100 120 10 160 180 200 220 210 ative study. Although they are different algorithms (NSGA-
numper ot ierations Il, SPEA2, and PESA-Il are GAs, MOCell is a cellular GA,
Fig. 12. SMPSO: Velocity of one particle in the swarm. PAES is an evolution strategy, and AbYSS is a scatter search

approach), all of them share the use of polynomial mutation
and, except for PAES, the SBX crossover operator. This
five pictures showing the values of SMPSO and OMOPS@neans that the main way to modify the search capabilities of
except for ZDT4, where the evaluations of MOCell arghese metaheuristics is by modifying the distribution aedi
included instead of those of OMOPSO. Let us comment othat govern these operators.
this last case first. We can observe that the results of SMPSOWe have made a number of preliminary experiments with
on ZDT4 are surprisingly good: SMPSO is not only capabl®OCell considering different values, ranging from0 to
of solving ZDT4, but it scales up to 2048 variables, requgjrin 200.0, in both indexes, and we have not observed noticeable
a very low number of evaluations (which are several ordemhanges in the behavior of the technique. This, howeves doe
of magnitude lower than those required by MOCell). If wenot mean that there is no room for improvement; the use of
consider the other problems, we see that in general SMPSiifferent mutation and crossover operators may change the
is faster than OMOPSO up to 64 variables, but OMOPS®earch capabilities of a GA.
scales better. So, with SMPSO we have a PSO metaheuristic
which is more robust than OMOPSO (in the sense that it can
solve all the problems considered in this work) and faster
when the problems have few decision variables, but at the In this section we compare the results of this paper with
price of not being able to scale as well as OMOPSO. those obtained in some of our previous work [11]. In that
We would like to remark that we have not tried to findPaper, the main conclusions were that, considering sdalabi
the best possible configuration for SMPSO, i.e., SMPSO h#¥, PAES was the most competitive algorithm followed by
the same parameter settings as OMOPSO, except for thdaMOPSO, while the latter appeared as the fastest algorithm.
affecting the velocity constraint. Thus, there is cleapm [0 the present work, however, PAES appears in the last
for improvement here. positions in the scalabily ranking. This is explained by
the fact that we have not considered here the impact of
. not having al00% hit rate in the tables containing the
C. Improving GDE3 computed evaluations, which undoubtely has penalized PAES
GDE3 shows similarities to OMOPSO in the sense thah practically all the problems considered.
it is among the top techniques in four problems, but it fails If we consider OMOPSO, its results in [11] remain basi-
in ZDT4. It is clear that the factors leading to the poor pereally the same. The inclusion in the present work of GDE3
formance of GDE3 in ZDT4 are different to those affectingand AbYSS have affected OMOPSO only in the scalabity
OMOPSO, especially because the search capabilities ofranking, and OMOPSO is still among the fastest algorithms
differential evolution metaheuristic depend on the valaés assessed (excluding the ZDT4 test problem).
the parameter§’R and F'. A deeper study that attempts to  Finally, we would like to mention the effort that has been
find the best values for these parameters is beyond the scapquired to carry out this work. If we consider that we
of this paper; instead, we take the approach of keefify have studied eight algorithms to solve nine instances of five
and F' unchanged and applying polynomial mutation to thgroblems, the number of experiments is 360. As we have
new generated solutions, as is suggested in [21]. The @utainexecuted one hundred independent runs per experiment, this
results are included in Table XXII. means a total of 36,000 runs. Furthermore, the experiments
We proceed now as for OMOPSO, showing a figurevith SMPSO and GDE3 with mutation have required 9,000
containing a comparison between GDE3 and its variant usirgglditional runs. Taking into account also the pilot testthwi
mutation, except for ZDT4, where MOCell is included. Thethe other algorithms to study the influence of the distrimuti
results indicate that GDE3 with mutation is able to solvéndices in the mutation and crossover operators, the total
ZDT4 instances of up to 128 variables, while in the reshumber of runs have been in the order of 50,000. The fact
of the problems it needs more evaluations than the originglat we have used a stronger termination conditi6®%(
GDES3, although it can be observed in the figures that thastead 0f95% of the hypervolume of the Pareto front) and
two algorithms have a very similar behavior. that the maximum number of evaluations have been raised
As in the case of PSO and OMOPSO/SMPSO, differentidtom 500,000 in [11] to 10,000,000 in this paper, has had

Comparison with Previous Work



TABLE XXI
SMPSO: EVALUATIONS

Problem

8
variables

16
variables

32
variables

64
variables

128
variables

256
variables

512
variables

1024
variables

2048
variables

ZDT1

1.40e+33.5¢2

2.50e+37.0c 42

5.20e+31.3¢+3

1.33e+45.0c+3

3.37e+4g.2¢43

9.17e+4 7c44

2.31e+52.7¢44

6.44e+57 4c44

1.81e+69.4c44

ZDT2

l.409+33_05+2

2.309+35_oe+2

4.606+31 5e+3

l.l6e+43_gc+3

2.809+4g_oe+3

7.266+41_4e+4

l.77e+52_gc+4

4.559+55_96+4

l.206+62_26+5

ZDT3

l.909+36_05+2

3.609+39_oe+2

8.00e+33_06+3

2.189+46_25+3

6.309+41_25+4

l.728+52_5e+4

4.859+56_35+4

1.43e+6; 2e+5

4.386+61_7e+5

ZDT4

3-909+38.05+2

4.65e+3; .0e+3

5.25e+3; de+3

5.909+31_25+3

6.75e+3; de+3

6.95e+3; de+3

7.409+31_gc+3

8.159+32_oe+3

9.10e+32_66+3

ZDT6

2-459+38.55+2

3.40e+3; de+3

7.15e+32_7e+3

l.609+44_45+3

3.659+4g_oe+3

8.67e+41_66+4

1.94e+53, le44

4-459+55.66+4

1.03e+6; .0e+5

GDE3WITH POLYNOM

TABLE XXl

IAL MUTATION : E

VALUATIONS

Problem

8
variables

16
variables

32
variables

64
variables

128
variables

256
variables

512
variables

1024
variables

2048
variables

ZDT1

3.309+33_05+2

6.509+34_oe+2

1.18e+45_oc+2

2.129+4g_05+2

3.809+49_oe+2

6.98e+4, de+3

l.33e+52_45+3

2.74e+53_5e+3

6.45e+58_4e+3

ZDT2

4.109+33_05+2

8.009+35_oe+2

l.54e+47_5e+2

2.889+49_05+2

5.41e+4, .6e+3

1.02e+5; .8e+3

l.989+53_45+3

4.l4e+54_4e+3

9.91e+5; de+4

ZDT3

2.609+31_05+3

5.409+32_4e+3

l.Ole+43_3e+3

2.209+44_05+3

5.06e+4g_1e+3

l.268+52_3e+4

3.53e+53_95+4

1.03e+68_3e+4

3.17e+6; 9e+5

ZDT4

2.11e+4; ge43

5.98e+44 gc+3

1.88e+51 4c44

7.786+56.9¢44

3.41e+64.6c45

ZDT6

4.50e+34.0c+2

9.10e+37.5¢42

1.90e+45.0c+3

5.02e+45.2¢43

2.24e+5g.0c+3

4.67e+55.0e+3

9.396+57.4¢43

2.02e+61.4¢44

4.97e+63.30+4

8T
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Fig. 13. Results of SMPSO on the ZDT problem family.

as a consequence the fact that the computational time of teelve problems having a large number of decision variables.
algorithms unable to solve the problems with 1024 and 204Bhe benchmark has been composed of five problems from
variables was higher than one hour. the ZDT family, using instance sizes ranging from 8 to 2048
To execute this large amount of experiments, we have usedriables. We have also studied the speed of the techniques
the computers of the laboratories of the Departament of Comhen solving the problems. The stopping condition has been
puter Science of the University of Malaga, in Spain. Mosto reach a front with a hypervolume higher than W&%
of them are equipped with modern dual core processors guf, the hypervolume of the true Pareto front, or to compute
taking into account that there are more than 180 computetd),000,000 function evaluations.

that means that up to 360 cores have been available. To rungyr study has revealed that differential evolution and par-
all the programs, we have used Condor [31], a middlewafg:je swarm optimization are the most promising approaches
that acts as a distributed scheduler, which has proven to R¢deal with the scalable problems used in this work. GDE3
an ideal tool to cope with the large amount of tasks we havg,g OMOPSO do not only scale well, but they are among

dealt with. the fastest algorithms. Furthemore, we have shown that thei
search capabilities can be improved to solve ZDT4, the
VII. CONCLUSIONS ANDFUTURE WORK problem which has appeared as the most difficult one to

We have evaluated eight state-of-the-art metaheuristi€8!ve-
over a set of parameter scalable problems in order to study Two modern optimizers, MOCell and AbYSS, have shown
the behavior of the algorithms concerning their capabiito a high degree of regularity in the tests. With the exception
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Fig. 14.

Results of GDE3 with polynomial mutation on the ZDiblgem family.
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of MOCell in ZDT4 (where it is the overall best technique) these problems confirm the results obtained in this work. Our
they are not in the first position in the scalabily and the dpeenalysis of OMOPSO and GDES3 has also shown that an open
rankings, but also they are always around the third and fiftesearch line is to study variations and different paramete
positions. Both metaheuristics are in the group of algargh settings of the existing multi-objective metaheuristitsider
having solved a higher number of instances. In this groute improve their scalability, and that is another path faufe

we find NSGA-Il and SPEA2, which are, in general, veryresearch that we aim to explore.

close in the rankings, but they usually appear after MOCell.

PESA-II has difficulties in ZDT2 and it normally appears
among the algorithms requiring higher numbers of function
evaluations to reach a front with the target HV value.
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