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Abstract

Finding the optimum solution for open-pit mine scheduling problems (OPMSPs) is a well-known challenging prob-

lem in the mining industry. The existing methodologies for solving large-scale OPMSPs are mostly limited to

conventional optimization approaches and heuristics. However, due to the problem’s complexity, represented by

high-dimensionality, and hard and soft constraints, the current approaches face challenges in finding good quality

solutions with a reasonable computational cost. As an alternative approach, in this paper, we propose an evolu-

tionary approach, based on differential evolution, with three important features: to deal with high-dimensionality,

based on the extraction status of each block, we reduce the number of decision variables (blocks) over the planning

horizon; to deal with the complex constrained landscape, we develop a repair mechanism that guarantees feasibility

and to enhance the algorithm’s performance, we incorporate a local search technique. The experimental results on

well-known mine deposits, with up to 112, 687 blocks show that the algorithm has the edge over existing methods to

obtain better solutions.
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1. Introduction

In the mining industry, to extract natural materials from an open pit, a deposit is divided into a three-dimensional

grid of fixed-size blocks (i.e., 50 × 50 × 20 ft for the p4hd Gold/Copper mine in Nevada, USA [18]), each with its

own characteristics, such as tonnage, grade (proportion of useful mineral in one unit (tonnage). The most common

metric used to represent the grade of an ore is grams per tonne (g/t)) and density. Tonnage is predicted by spatial

interpolation techniques, i.e., kriging and inverse distance weighting methods [18]. The blocks are categorized either

as ore (those with an expected revenue that exceeds their processing expense) or as waste blocks. Here, the goal is

to find the optimal long-term planning sequence of blocks that maximizes net profit while satisfying a set of physical

requirements (for example, a safe working width for equipment) and operational constraints (for example, a block

cannot be extracted before its predecessor blocks, in other words, the extraction process starts at the top of the

ore body and progress downward) [33, 24, 36, 20, 34]. For a small number of blocks, the problem can be firstly

formulated as an integer linear programming model and then the developed model can be solved using standard

optimization solvers. However, in most real-world mine scheduling problems, too many variables and constraints are
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involved. As reported in the literature, one such problem contains more than 2 million decision variables and 100

million constraints [18]. This mine scheduling decision problem is known as the open pit mine scheduling problem,

which we will refer to as ‘OPMSP’ in this paper.

Over time, several approaches for solving OPMSPs have been proposed. Most of these approaches were mainly

based on integer linear programming (ILP) techniques [8] and/or heuristics for specific cases [22]. For many practical

scale OPMSPs, ILP based approaches might be computationally expensive; for instance, the commercial solver

CPLEX cannot solve many of these large-scale problems, due to memory overflow or unacceptable computational

effort [31], on top of that such commercial solvers are expensive.

On the other hand, although meta-heuristics (such as evolutionary algorithms (EAs) (i.e., genetic algorithms

(GAs) [12] and differential evolution (DE) [40]) and swarm intelligence (SI) (i.e., ant colony optimization (ACO)

[39] and particle swarm optimization (PSO) [28])) which are population-based stochastic search methods, have

demonstrated great success in solving complex optimization problems, research on using them to solve OPMSPs is

scant.

Motivated by the abovementioned fact and to take advantage of the flexible nature of EAs, in this paper, a DE

algorithm for solving OPMSPs is introduced. Note that DE is very efficient for solving optimization problems in the

continuous domain but OPMSPs are integer problems. To take advantage of this, we perform the search process in

the continuous domain and then generate integer solutions using a heuristic. To the best of our knowledge, this is

the first attempt to adapt DE to solve such problems. In the proposed algorithm, problem dimensionality is reduced

over the time horizon, that is, DE is used to solve the model over only one time period. Once the optimization

process of a time period is completed, all the blocks mined are removed from the model and then DE optimizes the

new model by considering only blocks that have not yet been mined. This process continues until all periods are

covered, or all the blocks are mined, in the given planning horizon. In addition, a repair mechanism is carried out

to convert infeasible solutions (those do not satisfy the precedence and resources constraints) to feasible ones, with

a local search mechanism being adopted to enhance the performance of the proposed methodology.

The performance of the proposed approach is evaluated by solving a set of test instances with up to 112, 687

blocks that are available in the mine library (MineLib) [18]. Compared to existing methods, the results obtained by

this approach are better. The performance of the proposed algorithm and the choices of its parameters are analyzed

to offer in-depth understanding of its strengths and weaknesses.

The rest of this paper is organized as follows: the problem model is introduced in the following section, followed

by a brief description of DE and an overview of related work in Section 3. Then, the proposed algorithm is described

in Section 4; and the experimental results and conclusions are discussed in Sections 5 and 6, respectively.

2. OPMSP Model

Mathematically, OPMSPs can be formulated as follows:

Maximize f =
T∑
t=1

B∑
b=1

p̂btxbt
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subject to∑
τ≤t

xbτ ≤
∑
τ≤t

xb′τ , ∀b ∈ B, b
′ ∈ Bb, t ∈ T

T∑
t=1

xbt ≤ 1, ∀b ∈ B,

Lr,t ≤
B∑
b=1

qbrxb,t ≤ Ur,t, t ∈ T, r ∈ <

xb,t ∈ {0, 1}, b ∈ B, t ∈ T (1)

where T is the number of time periods in the planning horizon, B the total number of blocks, Bb the set of predecessor

blocks b′ for block b, qbr the amount of operational resource r required to extract the bth block, Lr,t and Ur,t the lower

and upper bounds of r at time t, respectively, < the number of resources, p̂bt the profit obtained from extracting

block b at time period t. xbt = 1 if b is extracted in time period t, 0 otherwise. The objective is to maximize the net

present value of the extracted blocks over the life of the mine. Constraint 1 ensures that no block is mined before

its predecessors. Constraint 2 ensures that each b can be extracted only once. Constraint 3 guarantees that the

operational resources used in each time period, must be within the upper and lower limits of those resources.

3. DE and Review

This section starts with a brief description of DE followed by a review of existing conventional approaches and

meta-heuristics (EA and SI-based) approaches for solving RCPSPs.

3.1. Differential Evolution: brief overview

DE is a population-based stochastic algorithm that uses a set of operators to guide a set of solutions towards

the optimal solution [40]. The algorithmic steps of DE (as shown in Algorithm 1) begin with a set of solutions

(also called vectors) , i.e.,(X = {−→x 1,
−→x 2, ...

−→x PS}) randomly generated within the search domain, where PS is the

population size. Subsequently, a mutant population is produced by a DE mutation, where new perturbed vectors

are produced. Note that a large and growing body of literature has investigated many variations of the mutation

operator, with more information given in [11]. Then, each −→x z is recombined (through a crossover operator) with its

corresponding mutant vector to generate a trial vector −→u z, where z = {1, 2, ..., PS}. For many years, two crossover

variants (binomial (also known as uniform or discrete) and exponential (also known as two-point)) have widely been

used [16]. Finally, a pairwise comparison between −→x z and −→u z is performed, with the winning solutions based on

their quality. The resultant solutions are considered the next population at the next generation.

3.2. RCPSPs: related work

To alleviate time complexity when solving OPMSPs, past research used to either aggregate blocks into layers [7]

or ignore the discrete nature of the block-extraction decisions [41]. Consequently, these approaches have proved to

be impractical in many cases. In this section, we provide a brief review on uses of the conventional approaches and

meta-heuristics that have been proposed to solve OPMSPs.
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Algorithm 1 DE framework

1: Define PS, MaxGen, F , Cr, gen← 0;
2: Generate random X;
3: Calculate the fitness values fz (−→x z) ∀z = 1, 2, ..PS;
4: while gen < MaxGen do
5: fgbest ← min(f);
6: gen← gen+ 1;
7: Generate new mutant solutions using a mutation operator;
8: Generate new solutions (u) using a crossover operator;
9: Calculate fnewz (−→u z) ∀z = 1, 2, ..PS;

10: for z = 1, 2, ..PS do
11: if fz is better than fnewz then
12: fnewz ← fz
13: −→u z ← −→x z
14: end if
15: end for
16: f ← fnew

17: x← u
18: end while

3.2.1. Conventional approaches

In [8], a mixed integer linear programming (MILP) formulation of OPMSPs was solved with a branch-and-cut

algorithm embedded with an LP relaxation and mixed integer program. The aim of that work was to deliver a

method which explicitly incorporates all constraints in the optimization and is capable of producing good solutions.

The method used the CPLEX solver in solving the relaxed LP sub-problems. On test instances with a number of

blocks between 6, 720 and 209, 664 and 10 time periods, the algorithm was able to obtain near-optimal solutions.

Bolan et al. [6] first formulated the problem as a MIP, and then aggregated (i.e., variables and/or constraints that

are similar based on predefined criteria are grouped together into new variables or constraints) were used to schedule

the mining process, while individual blocks were used for processing decisions. Also, an iterative disaggregation

method was proposed with the model solved by the CPLEX solver. Two test instances were considered with the

algorithm showing encouraging results.

Cullenbine et al. [10] proposed a sliding time window heuristic (STWH) to solve OPMSPs. The idea was to

solve the model over a time window that covers a smaller number of periods and upon completion, it fixed the those

periods’ variables to the values found, and moved subsequent periods. The process continues until all periods are

covered in the time window. Also, instead of completely ignoring the out periods, the proposed STWH maintained

an approximate sub-model in the out periods, along with an exact sub-model in the “window” between the fixed and

approximate parts of the overall model. On problems with 15 time periods and 25, 620 blocks, STWH was able to

obtain near-optimal solutions, while a commercial software failed to solve it. However, STWH was not able to solve

a test instance with 53, 668 blocks.

Martinez and Newman [32] introduced a MIP to schedule long- and short-term productions at LKAB’s Kiruna

mine located in Sweden. To mitigate the problem’s complexity, they proposed a variable elimination approach. Also,

they decomposed the objective function either by ore grade or by nature of the deviation. The algorithm was able
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to attain solutions with about 3-6% of total demand.

Chicoisne et al. [9] introduced a decomposition method for solving OPMSPs, that solves the LP version of

OMPSPs with a single capacity constraint in each time period. Then, if the resultant solution is infeasible, it is

converted to a feasible one by using a rounding algorithm based on a topological sorting approach. It was reported

that the algorithm provides near-optimal solutions in reasonable time. However, the time required to run the LP

relaxation was not reported.

Lamghari et al. [30] employed three approaches to reduce the computational time needed to solve OPMSPs. The

first one was eliminating variables/blocks which were not mined in the optimal solution. The second was using a

Maximum Value Feasible Pit (MVFP) heuristic to generate an initial feasible solution, which was then used by the

branch-and-bound algorithm; and the last approach employs a Tailored Lagrangian Relaxation (TLR) mechanism.

The algorithm showed encouraging performance on test instances with up to 53, 668 blocks.

Liu and Kozan [31] proposed two graph-based algorithms (GBA-Alg1 and GBA-Alg2) that are based on the

network flow and conjunctive graph theories for solving OPMSPs. On 10 test instances, the results showed that

GBA-Alg2 was better than GBA-Alg1, but computationally expensive. Unfortunately, if we compare the results

obtained, we will infer that its performance was inferior to other approaches.

The authors in [22] suggested a new approach based on aggregation and disaggregation heuristics to solve OPM-

SPs. First, their approach aggregated blocks to reduce its size and make it computationally tractable then approxi-

mately solved the problem using IP techniques (forward stage). Then, in the backward stage, the approach used the

solution obtained from the forward stage and fixed some variables in the original problem. Although the algorithm

was only compared against two state-of-the-art approaches, the results were better for 9 problems out of 11. The

algorithm was then extended in [21] and showed good results.

Samavati et. al. [37] proposed a heuristic for solving OPMSPs. Firstly, they added some inequality constraints

to the LP relaxation formulation and then used the LP solutions to generate efficient weights for the sequencing

heuristic. On 11 test instances, the algorithm showed better performance than those of other heuristics. Although

the computational time of that algorithm was good, it was not clear if the authors considered the time consumed to

solve the mixed integer problem or not. The same authors extended their work by proposing a new method called

adding cut (AC). Firstly, they iteratively added some special cuts to the LP relaxation formulation and solved it

using the CPLEX solver, with the resultant solution improved by a topological sort heuristic. The algorithm was

tested on a set of instances taken from MineLib and showed improvements in the quality of solutions for 6 problems

out of 11, in comparison with two other existing methods.

Kenny et al. [24] proposed a merge search algorithm, which uses information from a population of solutions

to create a smaller sub-problem which can then be used by the MIP solver. The algorithm was evaluated on 6

OPMSPs and showed its superiority to earlier work introduced by the authors [25, 23], but the algorithm still could

not compete with other existing algorithms.
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3.2.2. EAs-based approaches

Although EAs have been used to solve OPMSPs for more than 20 years [13] when Denby and Schofield used a

traditional GA to solve such problems, only very limited subsequent research has been conducted.

Myburgh and Deb [33] proposed a GA for solving OPMSP, called evORElution. In it, an integer-based repre-

sentation was used to encode chromosomes, with a sequencer used to generate feasible solutions. To search for the

optimum schedule, evORElution tried to minimize the average waste material violation across all periods. After a

binary tournament selection has taken place, one of two crossover operators was used to generate new offspring, i.e.,

if released stages were known, a single-point crossover would be carried out; otherwise a period crossover operator

would be used. For the period undergoing mutation, a new sub-sequence of blocks was generated. The algorithm

kept running until the objective values had not been improved for 10 consecutive generations. It is worthy to mention

that the authors used a master-slave parallel implementation. evORElution was tested on two instances: (1) 470, 161

blocks divided into 40 periods; and (2) 62, 761 blocks with 32 periods, but suffered from a rapid loss of diversity. The

authors improved the algorithm by optimizing a single period at a time, and once it was completed, it moved to the

next one, and so on. Unfortunately, no details about the number of runs used and comparisons with other methods

on other complex instances were given.

A hybridization of maximum flow and a GA based on linear programming was introduced in [35], in which GA

was used to control the flow in the arcs to the maximum flow algorithm to general the schedule. The results showed

that the performance of the algorithm was deteriorated as it did not effectively control the extraction of more waste

blocks during later periods.

In [29], the authors provided a comparative study of a small number of DE parameters and operators on only 3

mining problems, with the results showing using cr = 0.1, F = 0.4 is recommended, while no single DE operator was

performing the best in all three problems. Unfortunately, the study neither analyzed the algorithm in a well-known

test suit, nor compared it to other well-known algorithms.

3.2.3. SI-based approaches

Shishvan and Sattarvand [39] introduced an ACO for the solution of a real Copper–Gold deposit with just over

350,000 blocks. The algorithm used a penalty approach to merge the constraints into the objective function. Also, at

every generation, only the global best ant was allowed to add pheromones, with the evaporation process only applied

to the blocks of the global best schedule, not to all the ants. The results showed that the proposed ACO was able to

enhance quality by 12% in comparison to traditional algorithms.

Ferland et al. [19] formulated OPMSPs as a resource-constrained project scheduling problem (RCPSP), where

the representation was based on a priority value encoding. After the generation of the initial solutions (swarm),

the swarm was evolved using PSO. The algorithm was tested on 20 randomly generated small-scale problems, over

a two dimensional grid with 20 layers and 60 blocks wide. Although the algorithm showed encouraging results, its

performance on well-known large-scale mine scheduling problems is not known.

Flowing their attempt to solve a simple version of OPMSPs [27], in [28], OPMSPs were turned into constraint

satisfaction problems and were then solved using the CPLEX solver to get multiple feasible solutions (swarm). This
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swarm was then updated by a continuous version of a PSO algorithm,while using (1) a repair method to convert

infeasible solutions to feasible ones and (2) a back transform scheme to determine the period in which a block was

scheduled. Unfortunately, the algorithm was only tested on a hypothetical 3D block model, which made it difficult

to provide in-depth understanding about the pros and cons of the algorithms. The algorithm was then extended by

including a bat algorithm to solve one uncertain OPMSP with grade uncertainty [26].

4. DE for OPMSPs

In this section, the proposed DE algorithm, denoted as DE-OPMSPs, is discussed and its steps are given in

Algorithm 2. To smooth the description of the proposed approach, it will be helpful to give the meaning of the

variables below.

variable meaning

BΥ not mined blocks

xcont real-valued population
−→x contz the zth real-valued solution in xcont

xint integer population

xz,b the zth mining status vector ∈ {0, 1}, where

1 means block b is mined and 0 is not

xint,fes feasible integer population

xint,fesz the zth integer solution in xint,fes

−→u contz the zth trial real-valued solution generated

by DE mutation and crossover operators
−→u intz integer trial solution

To alleviate the complexity of the problem, the model is simplified and iteratively solved over a time window

that covers only one period until all periods in the time horizon are covered. Meaning, for every time period (t) the

problem is reformulated as follows:

Maximize ft = ft−1+
BΥ∑
b=1

p̂btxb

subject to

xb ≤ xb′ ∀b ∈ BΥ, b
′ ∈ Bb

Lr,t ≤
BΥ∑
b=1

qbrxb ≤ Ur,t, r ∈ <

xb ∈ {0, 1}, b ∈ BΥ (2)
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Algorithm 2 General framework of DE-OPMSPs

1: Define PS, α, MaxGen, −→x P,b ← T + 1, −→x S,b ← 0, sim← 0, and all other parameters required (Section 5);
2: Generate random xcont and their corresponding xint;
3: Convert xint to feasible solutions (xint,fes), update their xcont and generated x (Section 4.2);
4: Calculate the fitness values fz (−→x z) ∀z = 1, 2, ..PS;
5: fgbest ← min(f);
6: for t = 1 : T do
7: while gen < MaxGen && sim < α do
8: gen← gen+ 1;
9: Generate new solutions (ucont) (equation 3);

10: Convert ucont to new feasible integer-based solutions and update xcont,new and xnew (Section 4.2);
11: Calculate the fitness values for xnew;
12: Apply selection operator and update x, xcont, xint,fes and f ;
13: fbest,gen ← min(f);
14: if fbest,gen == fbest,gen−1 then
15: sim← 1;
16: else
17: sim← 0;
18: end if
19: end while
20: Apply local search and update fbest,gen
21: Update −→x P,b, −→x S,b and BΥ;
22: fgbest ← fgBest + fbest,gen;
23: end for

where ft−1 is the best objective value obtained at t− 1 and with f(t=0)−1 = 0 . BΥ is the list of all blocks that have

not been mined yet, which means that at t = 0, BΥ = B and at the end of the optimization process of each time

period, BΥ is updated by removing any block with xb = 1. All the other symbols are discussed in Section 1.

Note that this model represents the same problem described by the model in Section 2, in which operational

constraints, i.e., slope constraints (each block cannot be mined before its predecessors), and resource constraints, are

considered.

To begin, two reference vectors (−→x S ∈ {0, 1} and −→x P ) of length B are initialized, such that xS,b = 0 (0 means

the current block has not been mined yet) and xP,b = T + 1 ∀ b = 1, 2, ..., B. The value of −→x S,b will change to 1 and
−→x P,b to t, if a block b is extracted at time period t. Note that these two vectors are updated at the end of the entire

optimization process of each time period.

Regarding the optimization process, at time period t = 0, a real-valued initial population (xcont) of size PS is

randomly generated, with each xcontz,b ∈ [0, 1] , ∀ z = {1, 2, ..PS} and b = 1, 2, ..., BΥ. Then, feasible integer solutions(
xint,fes

)
and mined blocks (xz,b ∈ {0, 1}) are generated with their corresponding continuous vectors (xcont) updated

(see Section 4.1). The quality (objective value) of each solution (ft (−→x z)) is then measured.

Subsequently, for every −→x contz , a new trial continuous vector (−→u cont,newz ) is generated using the current-to-p-best

mutation and binomial crossover, as
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ucontz,b =


xcontz,b + Fz

(
xcontpbest,b − xcontz,b + xcontr1,b

− xcontr2,b

)
if (rand ≤ crb or b = brand)

xcontz,b otherwise

(3)

where r1 6= r2 6= z are random integer numbers, with −→x contr1 and −→x contr2 randomly selected from xcont [43], brand

randomly selected from BΥ and −→x contpbest randomly selected from the pbest solutions in xcont. The rationale of using

such a DE mutation is its efficiency in solving many optimization problems [42, 15, 17, 14].

Based on the values of each −→u contz , a corresponding integer-based solutions
(−→u intz )

is generated (see Section

4.1).As a −→u intz may be infeasible, the following two steps are carried out, with the first probabilistically applied:

1. For every −→u intz , a random number ∈ [0, 1] is generated, and if it is less than a predefined probability (Probprec),
−→u intz is updated to represent a sequence of blocks that satisfies the precedence constraints (step one in Section

4.2).

2. Using −→u intz , a new solution −→x new,int,fesz that satisfies the precedence and resources constraints is generated,

with its corresponding −→x cont,newz and −→x newz being produced (see Algorithm 3).

Once a feasible solution is generated, its objective value (ft (−→x newz )) is calculated and then a selection operator

takes place to keep the fittest ones in the next generation, i.e., update x, xcont and xint. The optimization process

continues until at least one of the following stopping criteria is met: (1) MaxGen generations are carried out, or (2)

the best fitness value is not improved for α consecutive generations.

After that, a local search, discussed in section is sub-section 4.3[38, 1], is applied to the best solution (−→x best) and

if the new fitness value (ft (−→x best,LS)) is better than ft (−→x best), −→x best,LS replaces −→x best.

Finally, −→x S,b and −→x P,b ∀b = 1, 2, ..., B are updated, such that −→x S,b = 1 and −→x P,b = t for all −→x best = 1.

Remember, BΥ is also updated by removing any mined block, i.e., xb = 1. The process continues until all the time

periods are covered or all the blocks are extracted.

4.1. Representation

As in this paper, an OPMSP is represented by an integer-based mathematical model, while the DE uses real-valued

solutions, it is essential to consider two representations. As previously mentioned, PS real-valued solutions (xcont)

are randomly generated (xcont = {−→x cont1 ,−→x cont1 , ...−→x contz , ...,−→x contPS }), with each xcontz,b ∈ [0, 1] , ∀ z = {1, 2, ..PS} and

b = 1, 2, ..., BNotMined. Then, every −→x contz is converted to a vector of integer values (−→x intz ) by sorting the values in
−→x contz in an ascending order and then −→x intz is considered the place of each block in the order. To clarify, assuming

there is a vector with 10 blocks, Figure 1 shows how to convert −→x contz to −→x intz .

4.2. Generating feasible solutions

To satisfy the precedence constraints, a repair method is used. It is worth mentioning that to save the computa-

tional effort, the following iterative processes take place on only the blocks which have not been extracted.
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block 1 2 3 4 5 6 7 8 9 10
−→x contz 0.11 0.45 0.85 0.49 0.75 0.19 0.25 0.05 0.67 0.99

⇓sort
block 8 1 6 7 2 4 9 5 3 10
−→x contz 0.05 0.11 0.19 0.25 0.45 0.49 0.67 0.75 0.85 0.99

⇓final
−→x intz 8 1 6 7 2 4 9 5 3 10

Figure 1: Conversion of real-valued solution to integer-based one

First, blocks and their precedence relationships are represented as a directed acyclic graph (DAG), i.e., every

directed edge ij from node i to node j means that j depends of i. The degree of each node is represented by the

number of predecessors, i.e., a node with no predecessors has a 0 degree. Then, based on the sequence represented

in −→x intz , an iterative process is carried out, that is selecting a block with a degree of 0, then removing it and its

outgoing edges from the DAG and subsequently updating the degree of the remaining blocks. The process continues

until all blocks are selected, hence −→x intz is updated.

Subsequently, the steps in Algorithm 3 take place. For every block xintz,b , if its predecessors have been extracted

and there are enough resources, then the block is marked as extracted (xz,b = 1, line 7) at time period t, and xcontz,b

and the remaining resources are updated (line 7 and 8, respectively), otherwise we move to the next block in −→x int.

Once all blocks are checked, to update every xcontz,b for block which has not been extracted, another cycle goes

through every xz,b = 0, with its xcontz,b assigned a real value bigger than that of the last block mined (see line 16).

The worst time complexity for these steps should be O(n). Finally, −→x contz is sorted in ascending order and then
−→x intz is updated as the place of each block in the order (line 13). As we are using the quick sort algorithm, the time

complexity will be O(nlogn). Therefore, the overall time complexity for this algorithm should be (O(n)+O(nlogn)).

By focusing only on the dominant term, the time complexity is O(nlogn).

It is important to note that the first step mentioned above is done for all the initial solutions, while it is probabilis-

tically applied to any new solution generated by DE. The intuitive reason for this is to reduce the computational time

over generations and it is expected that the possibility to generate feasible sequences increases with the progression

of the evolutionary process.

To illustrate the abovementioned steps, assume that we have an open-pit with 5 blocks, as shown in Fig. 2, where

each node represents the block id (expected profit, extraction cost) and the available budget in every time period is

6K. Starting with an initial random −→x int = [1, 2, 4, 3, 5], the first step is to make sure that this solution satisfies the

precedence constraints by applying a topological sort that can generate different feasible variations. For simplicity,

assume that the new −→x int is [1, 2, 3, 4, 5]. Once it is generated, the steps in Algorithm 3 take place, −→x is initialized

to [0, 0, 0, 0, 0] and counter is set to 1. Then, we check if xint1 can be extracted or not. In this example, the extraction

cost for xint1 is 3K which is less than the budget available (6K). Subsequently, x1 is set to 1 (i.e., −→x = [0, 0, 0, 0, 0]),

xcont1 = 1+rand∈[0,1]
5 and counter is increased by 1, i.e., counter = 2. Now, the process comes to xint2 , as the remaining

budget (3K) is less than that needed to extract it, no action is taken. Then, we move to the next block in xint,

which is 3. xint3 can be extracted as there is sufficient budget. Subsequently, x3 is set to 1 (−→x = [1, 0, 1, 0, 0]),

xcont3 = 2+rand∈[0,1]
5 , and counter = 3. This sets the remaining budget at t = 0 to zero. Meaning, neither x4 nor x5
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Algorithm 3 Generating feasible solutions at time period t

1: Define BΥ, L← size of BΥ, counter ← 1, −→xz ← 0;
2: for i = 1 : L do
3: b← xintz,i ;
4: if (xP

z,b′
≤ t) then

5: if qbr ≤ Ur,t ∀r ∈ < then
6: xz,b ← 1;
7: xcontz,b ←

couner+rand∈[0,1]
B ;

8: Ur,t ← Ur,t − qbr∀r ∈ <;
9: counter ← counter + 1;

10: end if
11: end if
12: end for
13: for i = 1 : L do
14: if xz,b = 0 then
15: b← xintz,i ;
16: xcontz,b ←

couner+rand∈[0,1]
B ;

17: end if
18: end for
19: Sort −→x contz then update the sequence in −→x int,feasz

1
(10K, 3K)

2
(10K, 5K)

3
(10K, 3K)

4
(15K, 6K)

5
(10K, 6K)

Figure 2: Open-pit example with 5 blocks, each node represents block id (expected profit, extraction cost)

can be extracted. The final step is to update xcontb ∀b = 1 . . . 5 and xb = 0, such that xcontb = 3+rand∈[0,1]
5 .

4.3. Local Search

The local search used is based on a branch-and-bound algorithm [5]. Firstly, a pre-processing step (also called

presolve [3] [2]), which refers to a collection of problem reductions that are intended to reduce the size of the problem

and to tighten its formulation, is used. The problem is then relaxed by removing the condition that all variables

should be integer. Then, it is solved using the simplex method [4]. If the final solution does not satisfy all integer

values, then a decision variable that is not integer is selected and then two branches are created (i.e., two sub-

problems). The same procedure is used to solve these branches. Note that at one point we may have more than one

variable which needs branching. Therefore, selecting the proper variable to branch next is important and is done

here by a heuristic [2].

4.4. Adaptation of F and Cr

The methodology introduced in [42] is adopted.

• First, H values for both parameters (MCr, MF ) are initialized at a value of 0.5.
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• Crz and Fz are assigned to every −→x contz as

Crz = randni(MCr,rz , 0.1) (4)

Fz = randci(MF,rz , 0.1) (5)

where rz is randomly selected from [1, H], and randni and randci values randomly selected from normal and

Cauchy distributions with mean values of MCr,rz and MF,rz , respectively, and with variance of 0.1.

• After every gen, successful Crz and Fz are recorded in SCr and SF , respectively, and then MCr and MF are

updated as

MCr,λ = meanWA (SCr) if SCr 6= null (6)

MF,λ = meanWL (SF ) if SF 6= null (7)

where 1 ≤ λ ≤ H is a position in the memory to be updated. λ is initialized to 1 and is then incremented

whenever MCr and MF are updated, and if it is greater than H, it is set to 1 with meanWA(SCr) and

meanWL(SF ) computed, respectively, as follows

meanWA(SCr) =

|SCr|∑
γ=1

ωγScr,γ (8)

meanWL(SF ) =

∑|SF |
γ=1 ωγS

2
F,γ∑|SF |

γ=1 ωγSF,γ
(9)

where |SCr| is the number of successful Cr recorded in SCr, |SCr|=|SF |, wγ =
∆fγ∑|Scr|

γ=1 ∆fγ
and ∆fγ =

|fγ,t,gen−1 − fγ,t,gen|.

5. Experimental results

The proposed algorithm is tested on 10 problems taken from MineLib [18]. These problems come from real-world

mining project and simulated data, as follows: (1) KD is a copper deposit located in North America; (2) P4HD is

a gold and copper deposit in North America; (3) W23 and McLaughlin are gold mines located in North America;

(4) McLaughlin limit is the final pit of McLaughlin computed by Somrit (2011); (5) Newman1, Marvin, Zuck small,

Zuck medium, Zuck large and SM2 are conceptually simulated, with the last one simulated based on a nickel deposit

in Brazil. The characteristics of these problems are shown in Table 1.

The initial algorithm’s parameters were set as follows: PS = 30, Probprec adaptively reduced from 1.0 to 0.00

(i.e., = 1.0 − gen
MaxGen , where MaxGen = 15,000

PS ), α = 30 consecutive generations and pbest was PS
3 . For adapting

F and Cr, the history size (H) was set to 6 with 5 runs carried out. The algorithm was implemented in JAVA, with

all the experiments conducted on a PC with a Core(TM) i7-3770 CPU @ 3.40GHz, 8.0 GB RAM and Windows 7.
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Table 1: Characteristics of MineLib instances (noPrCon number of precedence constraint and noCon total number of constraints)
Problem LP upper bound ($) T Blocks variables noPrCon noCon
Newman 24,176,865 6 1060 6360 3922 10,294
Zuck small 847,013,492 20 9400 188,000 145,640 333,680

KD 409,104,193 12 14,153 169,836 219,778 389,626
Zuck medium 669,493,906 15 29,277 439,155 1,271,207 1,710,392

P4HD 247,405,783 10 40,947 409,470 738,609 1,148,099
Marvin 856,206,143 20 53,271 1,065,420 650,631 1,716,091
W23 399,960,130 12 74,260 891,120 764,786 1,655,942

Zuck large 57,265,626 30 96,821 2,904,630 1,053,105 3,957,795
SM2 1,647,167,503 30 99,014 2,970,420 96,642 3,067,122

McLaughin lim 1,078,662,109 15 112,687 1,690,305 3,035,483 4,725,803

Table 2: Average fitness values and computational time obtained by DE-OPMSPs with different values of PS

Prob.
PS

10 20 30 40
Average fitness values

Newman 24,176,864.825 24,176,864.825 24,176,864.825 24,176,864.825
Zuck small 847,022,705.562 847,022,705.562 847,022,705.562 847,022,705.562

KD 409,102,820.239 409,103,817.080 409,104,124.828 409,103,313.298
P4HD 247,405,783.326 247,405,783.326 247,405,783.326 247,405,783.326

Time (seconds)
Newman 3.0102 3.9358 3.9682 4.9072
Zuck small 417.703 459.146 471.2108 499.7182

KD 586.818 603.9118 634.291 646.5824
P4HD 2878.8582 3104.2462 3174.8106 3139.3964

5.1. Parametric analysis

In this subsection, three sets of experiments designed to analyze the effects of: (1) PS, (2) α, and (3) Probprec are

described. As the computational time needed to solve all the test instances is huge, this limits our ability to analyze

all the parameters. So, in this subsection, these three parameters are analyzed on a subset containing 4 instances

(Newman, Zuck small, KD and P4HD). Remember that P4HD has 40, 947 blocks to mine over 10 time periods.

5.1.1. PS

In this set of experiments, four variants of DE-OPMSPs were run by varying PS as 10, 20, 30, and 40 with α = 30

and Probprec set as adaptive, as discussed in Section 5.

From the results presented in Table 2, it is clear that changing PS did not have an effect on the performance

of DE-OPMSPs in solving Newman, Zuck small and P4HD, while using 30 individuals showed improvement in the

quality of solutions for KD. Using the Friedman test, the variants with PS = 30 were positioned at the first place

with a mean rank of 2.88, followed by PS = 20, PS = 40 and PS = 10 with a mean rank of 2.63, 2.38 and 2.13,

respectively. Note that the bigger the mean rank, the better the variant.

Considering the computational time recorded, the results presented in Table 2 demonstrate that DE-OPMSPs

with PS = 10 was the fastest, although it was not the best based on the quality of solutions. The reason for this might

be that it meets the second stopping criterion quickly, i.e., the best solution was not improved for 30 consecutive

generations. Over the test instances, DE-OPMSPs with PS = 20 came 2nd, while the algorithms with 30 and 40

13



Table 3: Average fitness values and computational time obtained by DE-OPMSPs with different values of Probprec

Prob.
Average fitness values ($)

Probprec
adaptive 1.0 0.75 0.5 0.25 0.01

Newman 24,176,864.83 24,176,864.83 24,176,864.83 24,176,864.83 24,176,864.83 24,176,864.83
Zuck small 847,022,705.56 847,022,705.56 847,022,223.16 847,021,740.76 847,022,705.56 847,022,705.56

KD 409,104,124.83 409,103,636.02 409,104,124.83 409,102,494.22 409,102,914.19 409,101,177.10
P4HD 247,405,783.37 247,405,783.37 247,405,783.37 247,405,783.33 247,405,783.33 247,405,783.33

Time (seconds)
Newman 3.97 4.11 4.16 3.51 3.39 2.74
Zuck small 471.21 710.30 534.49 420.41 289.91 221.22

KD 634.29 1232.88 569.27 646.87 577.59 543.74
P4HD 3174.81 3700.00 3197.63 3128.55 2781.37 2650.65

Table 4: Average mean rank by Friedman test of DE-OPMSPs with 6 different Probprec values (higher rank means better performance)
adaptive 1.0 0.75 0.5 0.25 0.01

4.25 3.88 3.63 2.5 3.63 3.13

individuals were 3rd and 4th respectively. Because of the time difference between DE-OPMSPs with PS = 20 and

PS = 30, at this stage we preferred the variant with PS = 30.

5.1.2. Probprec

This set of experiments fixed PS at the best value found above, i.e., 30, α to 30 consecutive generations and

uses 6 different variations of Probprec: (1) adaptive, as previously described, (2) 1.0, (3) 0.75, (4) 0.5, (5) 0.25 and

(6) 0.01. The average fitness values, reported in Table 3 demonstrate that Probprec did not have an effect on the

quality of solutions obtained in two test instances (Newman and P4HD). Also, it was found that when the proposed

algorithm adaptively controlled Probprec it was able to obtain the best results for all of the 4 test instances. Also, we

ranked all the variants based on the Friedman test, see Table 4, with the results showing that the adaptive version

of Probprec was in the lead with a mean score of 4.25 (remember the biggest value is the best).

Also, what stands out in Table Table 3 is that using a small value of Probprec reduces computational time, but

this affects the quality of solutions. Also, it was noticed that setting Probprec as adaptive was faster than setting it

to 1.0 or 0.75.

Overall, bearing in mind the quality of solutions, average ranking and computational time of each variant, we

conclude that setting Probprec as adaptive is the most preferable approach.

5.1.3. α

The third set of analyses examines the impact of α in the performance of the proposed approach. In doing this,

PS was set to the value of 30, Probprec adaptive and α changed as 10, 20, 30 and 40 consecutive generations. The

average fitness values presented in Table 5 show DE-OPMSPs with α = 20 was the best, though the other three

variants were able to obtain similar results for at least two test instances. Surprisingly, the proposed algorithm with

α = 40 was the worst variant. Based on a Friedman test, setting α at a value of 20 was ranked the best, while both

α = 10 and α = 30 came in 2nd place, and α = 40 was 4th.

In line with our expectations, using a small value of α reduces the computational load (see Table 5), but this

came with a cost in the quality of solutions. Generally speaking, if the computational time was the only concern, α
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Table 5: Average fitness values and computational time obtained by DE-OPMSPs with α = 10, 20 , 30 and 40

Prob.
Average fitness values

α
10 20 30 40

Newman 24,176,864.825 24,176,864.825 24,176,864.825 24,176,864.825
Zuck small 847,022,705.562 847,022,705.562 847,022,705.562 847,022,223.161

KD 409,102,860.942 409,104,686.593 409,104,124.828 409,104,286.243
P4HD 247,405,783.326 247,405,783.326 247,405,783.326 247,405,783.326

Time (seconds)
Newman 2.63 3.39 3.97 4.46
Zuck small 247.03 384.41 471.21 562.24

KD 580.61 589.48 634.29 653.81
P4HD 2733.94 2975.99 3174.81 3195.40

Table 6: GAP% results obtained by DE-OPMSPs, LR-MTS, SH-VND, LR-MTS-VND, GBA, BAA, GA+MF and LPA

Prob. LR-MTS SH-VND LR-MTS-VND GBA BAA GA+MF LPA DE-OPMSPs (Proposed)
best average std.

Newman 4.1 1.68 2.34 1.38 1.28 1.47 1.26 1.26 1.26 0
Zuck small 7.7 1.8 4.88 2.98 0.86 1.92 2.41 0.84 0.84 0

KD 3.1 – – 2.28 0.19 3.39 0.16 0.10 0.10 4.32E-06
Zuck medium 13.4 8.08 9.04 5.74 5.83 – 5.78 5.83 5.83 0

P4HD 0.5 6.61 0.19 0.08 0.2 2.68 0.36 0.004 0.004 0
Marvin 5 1.87 3.2 1.66 0.89 1.51 0.67 0.89 0.89 2.81E-04
W23 2.1 9.96 1.06 0.19 0.55 4.79 0.38 0.17 0.17 0

Zuck large 1.1 8.07 0.56 12.01 0.24 – 1 0.19 0.21 1.12E-02
SM2 0.2 5.85 0.04 0.1 0.08 9.18 0.09 0.06 0.06 0

McLaughin lim 0.5 – – 9.04 0.07 5.28 0.06 0.03 0.03 0

may be set at 10. On the other hand, if the quality of solutions was the main target, which is the case here, α = 20

is a good choice.

5.2. Final results and comparison with state-of-the-art methods

In this subsection, the proposed algorithm with the final set of parameters (i.e., PS = 30, Probprec adaptive

and α = 20) was run to solve all 10 test instances. The percentage difference between the solution obtained by the

algorithm (fitalg,best) and the LP upper bound (UPLP ), i.e., GAP% =
(
UPLP−fitalg,best

UPLP

)
× 100% were calculated

and then the best, average and standard deviation results are shown in Table 6. It is apparent from this table that

the proposed method was capable of attaining consistent results, i.e., the standard deviation values were very small.

Turning now to the comparison with the state-of-the-art methods. The results of 6 state-of-the-art algorithms,

known as: (1) LP relaxation using a modified TopoSort (LR-MTS) [18]; (2) SH-VND and LR-MTS-VND heuristics

[30]; (3) graph based algorithm (GBA) [31]; (4) block aggregation algorithm (BAA) [22]; (5) LP-based algorithm

(LPA) [37], (6) GA with maximum flow (GA+MF) [35] are shown in the same Table 6.

Overall, these results revealed that the proposed method outperformed all the other algorithms. For Zuck small,

KD, P4HD, W23, Zuck large and McLaughin lim, the proposed algorithm was clearly superior to all the other

methods. For the Newman test instance, DE-OPMSPs was able to obtain the best result reported in the literature,

which was also obtained by the LPA, but the other algorithms could not achieve this value. Regarding the Zuck

medium deposit, the value obtained by DE-OPMSPs was better than or equal to all the algorithms, except the LPA
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Table 7: Statistical test results between DE-OPMSPs and existing methods
LR-MTS SH-VND LR-MTS-VND GBA BAA GA+MF LPA

DE-OPMSPs vs. + + + + + + ≈

Table 8: Average mean rank by Friedman test of DE-OPMSPs and existing algorithms (smaller rank means better performance)
LR-MTS SH-VND LR-MTS-VND GBA BAA GA+MF LPA DE-OPMSPs

6.55 6.2 5.2 4.25 3.0 6.3 2.95 1.55

and GBA. For the Marvin test instance, the proposed method was better than those of 6 algorithms, but inferior

to only one. A similar performance was attained for SM2, in which DE-OPMSPs was superior to all the algorithms

except LR-MTS-VND.

Statistically, the Wilcoxon test was carried out to determine if there was a statistical difference between the

proposed algorithm and the other algorithms based on a whole set of test instances, i.e., 10 results. With a 5%

significance level, DE-OPMSPs outperformed 5 algorithms, but no statistical difference was found between it and

only the LPA.

Statistically, the Wilcoxon test was carried out to determine if there was a statistical difference between the

proposed algorithm and the other algorithms based on a whole set of test instances, i.e., 10 results. With a 5%

significance level, one of three symbols (+, − and ≈) was used, with +, − and ≈ meaning DE-OPMSPs was statis-

tically superior, inferior and similar to the other algorithm, respectively. The summary given in Table 7 shows that

DE-OPMSPs outperformed 5 algorithms, but no statistical difference was found between it and the LPA.

To rank all the algorithms, the Friedman test was carried out, with the summary given in Table 8 revealing that

the proposed algorithm had an edge over all the other methods. Note that high values (i.e., higher than those of the

worst method) were assigned to SH-VND and LR-MTS-VND for the KD and McLaughin lim test instances, as both

methods were not able to solve them. The same was done for GA. Note that here, the smaller the mean rank value,

the better the algorithm is.

5.3. Discussion

In this sub-section, we analyze the effect of the reduction of the number of decision variables over the planning

horizon and the local search introduced in this study. To do this, different variants (var1: DE-OPMSPs without

reduction of the number of variables and local search; var2: DE-OPMSPs with reduction of the number of variables

but without local search; var3: local search without reduction of decision variables; var4: local search with a

reduction of decision variables) are tested on the Zuck small problem, which has 20 time periods, 9400 blocks,

333, 680 constraints with 145, 640 are precedence constraints. The best result achieved by each algorithm is reported

in Table 9.

The results demonstrate that the reduction of the number of variables over the time horizon (var2) improves the

standard DE’s performance (var1) by 1.49% which is equal to $12,727,317 in the total profit.

The interesting fact is that the local search (var3), which basically depends on conventional optimization tech-

niques discussed earlier, was not able to solve the problem when no reduction was considered, even after 24 hours

on a PC with the specifications previously mentioned. This problem was clearly mitigated by carrying out the op-
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Table 9: GAP% results obtained by different variants of DE-OPMSPs on Zuck small problem
var1 var2 var3 var4 DE-OPMSPs
13.13 11.64 - 1.07 0.86

timization process at each period separately, which is shown by the result achieved by var4. Having said that, the

hybridization of DE and local search with the reduction of the problem dimensionality over the time horizon is taken

into account (DE-OPMSPs) led to better results. This version took a few minutes to solve this problem.

6. Conclusions and Future Work

Solving OPMSPs is a challenging research area due to the presence of a large number of decision variables and

hard constraints. Although many conventional approaches and heuristics for solving them have been introduced, they

still have some limitations. Over the years, EAs have shown promising performance in solving complex problems,

but scant research on using them for solving OPMSPs exist.

In this paper, the first attempt to adapt DE to solve OPMSPs was introduced. The mathematical model was

simplified and repeatedly optimized by the proposed algorithm over a time window that covered only one period until

all periods in the time horizon ware considered. The algorithm started with real-valued solutions which were then

converted to integer-based sequences with a heuristic carried out to guarantee feasibility. Then, DE operators were

used to evolve the real-valued solutions which were heuristically modified to obtain feasible ones. Upon completing

the optimization process for one time period, a local search procedure was carried out. The local search was based

on a LP-based branch-and-cut algorithm, with the LPs being solved by the dual simplex algorithm. The algorithm

continued until all the time periods were covered.

The proposed methodology was tested on 10 open-pit mine instances, both academically designed and real-life

deposits. Three parameters (PS, Probprec and α) were analyzed and the final version of algorithm favored setting

them to values of 30, adaptive, and 20, respectively. In addition, this study has identified that the proposed algorithm

had an edge over 6 techniques that recently solved the same test instances.

Overall, as the performance of evolutionary algorithms deteriorates when the number of decision variables in-

creases, we believe that reducing the number of decision variables over the time horizon mitigates this problem, as it

helps to reduce the search space, which in turn allows a better convergence rate. Also, the local search used plays a

vital role in the success of the proposed algorithm. In addition, converting infeasible solutions to feasible ones helped

DE to improve the quality of solutions, instead of wasting fitness evaluations to evolve infeasible ones.

Although the proposed algorithm has shown success in solving OPMSPs, some limitations were observed. The

computational time consumed to repair infeasible solutions may be seen as one shortcoming. Unfortunately, this

issue cannot be solely solved by using constraint-handling techniques (i.e., feasibility based approach), as such

approaches cannot reach easily a feasible solution for such large-scale problems. So, to reduce the computational

time of the proposed algorithm, a possible way may be dynamically using either the repair method or any of the

existing constraint-handling techniques or to use a pre-process operation, possibly by using a block aggregation

approach, to further reduce a problem’s dimensionality. In line with this limitation, the extra process of converting
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discrete solutions to continuous ones (to fit the DE operators) and vice-versa adds extra time, yet, it showed its

effectiveness in comparison with other EAs (i.e., GA). Therefore, using one or more EAs, which do not require

extra decoding/encoding processes, along with DE within the same framework and subsequently sharing information

among them efficiently might be a way to improve the algorithm’s efficiency further.

Another future direction may be extending the algorithm to deal with uncertain OPMSPs. During the last

decade, the evolutionary computation field has witnessed the development of many efficient evolutionary algorithms,

so analysing those algorithms on these complex scheduling problems will be beneficial.
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