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Abstract

Resource-constrained project scheduling problems (RCPSPs) represent an important class of practical problems. Over
the years, many optimization algorithms for solving them have been proposed, with their performances of such algorithms
evaluated using well-established test instances with various levels of complexity. While it is desirable to obtain a
high-quality solution and fast rate of convergence from an optimization algorithm, no single one performs well across
the entire space of instances. Furthermore, even for a given algorithm, the optimal choice of its operators and control
parameters may vary from one problem to another. To deal with this issue, we present a generic framework for solving
RCPSPs in which various meta-heuristics, each with multiple search operators, are self-adaptively used during the
search process and more emphasis is placed on the better-performing algorithms, and their underlying search operators.
To further improve the rate of convergence and introduce good-quality solutions into the population earlier, a local
search approach is introduced. The experimental results clearly indicate the capability of the proposed algorithm to
attain high-quality results using a small population. Compared with several state-of-the-art algorithms, the proposed
one delivers the best solutions for problems with 30 and 60 activities, and is very competitive for those involving 120
activities.
Keywords: Resource-constrained project scheduling problems, evolutionary algorithms, multi-algorithm,
multi-operator

1. Introduction

Resource constrained project scheduling problems (RCPSPs) represent one of the most important and challenging
scheduling problems and are known to be NP-hard [10]. Such problems are at the heart of many applications, e.g.,
job-shop scheduling problems [17], and can be found in construction management, the production of cars, rolling ingots
and assembly shop scheduling [9, 8].

The aim of an RCPSP is to find the optimal schedule of a set of activities that minimizes the total duration of
the project (makespan) while satisfying some constraints. Generally, a single project consists of D + 2 activities, i.e.,
{1, 2, .., j, ..., D + 2}, where the first and last are dummies to be scheduled, each of which has a duration (dj). There
are different types of resources, i.e., R = {R1, ..., Rk, ..., RK}, with each activity requiring rkj units of the kth type of
resource. Note that a dummy activity is one with dj = 0 and rkj = 0, ∀ k = {1, 2, ...K}. In this paper, we assume that
an activity in progress cannot be interrupted, and the following two kinds of constraints need to be satisfied.

1. Precedence constraint: the jth activity cannot be started before the completion of all its predecessors, that is, its
starting time (STj) is always greater than or equal to the maximum finish time (FT ) of its predecessors.

2. Resource constraint: the rk required by the jth activity should be less than or equal to the available Rk at each
time step.
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Generally, the mathematical model of a single-mode RCPSP can be formulated as

minimize FTD+2

subject to: FTj≤FTj+1 − dj+1,∀ j = {1, 2,…, D + 1}

∑
j∈A(t)

rkj≤Rk,∀ k = {1, 2,…,K}

FTj ≥ 0,∀ k = {1, 2,…,K} (1)

where A (t) is a set of activities scheduled at time t ≤ FTD+2.
Over the years, several approaches for solving RCPSPs, including exact, heuristics, meta-heuristics and hyper-heuristic

ones, have been proposed, with exact methods only able to be used to solve small-scale problems. Although heuristics,
which are rules of thumb designed to solve specific kinds of problems, perform better than exact methods for most
problems, it is difficult to find a single one that performs well for a range of test instances with varying complexities
[4]. Meta-heuristics, such as evolutionary algorithms (EAs) (i.e., genetic algorithms (GAs) [14] and differential evolution
(DE) [36]) and swarm intelligence (SI) (i.e., ant colony optimization (ACO) [35] and particle swarm optimization (PSO)
[18]), have demonstrated better performances than heuristic-based approaches [16]. Although the underlying flexibility
they offer through evolving a population of solutions minimizes the chances of becoming trapped in local optima [34], due
to their stochastic natures, they cannot guarantee the delivery of an optimal solution. The idea of hyper-heuristic-based
approaches is to use a high-level heuristic to select a heuristic in the low-level, that is, solutions are indirectly evolved
through low-level heuristics. While there is limited literature on these techniques for solving RCPSPs, our proposed
method is a step in that direction.

The detailed review of the existing literature provided in Section 2 clearly reveals the following observations.

• Although some approaches were able to obtain good solutions to some problems, their quality was still far from
optimal or from their corresponding lower bounds (where the optimal solution was not known) for many test
instances and their rates of convergence were often slow.

• No single algorithm performed consistently well across the complete range of instances space of RCPSPs.

• Even for a single algorithm, the choice of the right set of operators involved tedious steps of parameter tuning.

To manage the above challenges, we introduce a consolidated optimization framework which has more than one op-
timization algorithm, each of which uses multiple operators to efficiently solve the entire spectrum of RCPSPs. The
framework uses two multi-operator algorithms (MOAs). As one of our aims is to speed up the rate of convergence, we
use a common population evolved by the MOAs in a sequential manner, where the probability of applying each MOA is
based on its effectiveness in identifying good solutions and emphasis is placed on the best-performing operator in each
MOA. This two-level optimization procedure (for selecting an algorithm and operators), which is undertaken during the
overall search process is a unique feature of the proposed method.

The performance of the proposed approach is evaluated using a set of test instances with 30, 60 and 120 activities
(J30, J60 and J120, respectively) is available in the project scheduling library (PSPLIB) [26, 27]. Compared with
well-known state-of-the-art algorithms, the results obtained by this approach are the best in terms of solutions quality
and convergence for the J30 and J60 instances and very competitive for the J120 ones. Also, the performance of the
algorithm and the effects of the choices of its parameters are analyzed to offer deeper insights into their strengths and
weaknesses. Different from existing techniques which suggest using a large population to solve RCPSPs [3][30], the
proposed algorithm has the capability to work effectively with a small population. In fact, this can save computational
time, as optimal solutions may be found in a small number of generations, that is, no need to evaluate a large number
of solutions over generations.

The rest of this paper is organized as follows: an overview of related work is presented in Section 2; the proposed
algorithm is described in Section 3; and the experimental results and conclusions are discussed in Sections 4 and 5,
respectively.

2. Solving RCPSPs: A Brief Review

Over the years, many exact methods, heuristics, meta-heuristics and hyper-heuristic techniques for solving RCPSPs
have been proposed. Of the first two approaches, integer programming-based heuristics, branch-and-bound (BB) pro-
cedures [13, 17] and single-pass (a single schedule is generated) and multi-pass (more than one schedule is repeatedly
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generated) priority rule-based scheduling, are the most common. In fact, due to early unsuccessful attempts to solve
RCPSPs using integer programming, several BB procedures were developed [17] which, although producing promising
results, are computationally expensive for problems with a large number of activities. Generally speaking, in a priority
rule-based scheduling heuristic, two components are required [25]: (1) a schedule generation process (serial or parallel);
and (2) a priority rule, such as the latest finish time (LFT), most total number of successors (TS) and minimum slack
time (MST) [24]. Although they are widely used because they are easy to implement and computationally cheaper than
BB procedures, it is difficult to find an efficient priority rule that performs well for a broad range of RCPSPs [4].

As a consequence, meta-heuristics, such as EAs and SI, have attracted the attention of researchers and offered
improvements for solving RCPSPs, with some of these algorithms discussed below.

GAs
Alcaraz and Maroto [2] proposed a GA for solving RCPSPs. In it, the activity list representation was used to encode

the solutions by ensuring that any activity could appear in any location after all its predecessors, with the serial method
used to generate feasible solutions based on the LFT rule. Three crossover operators were developed and tested, namely
the precedence set, forward-backward (similar to the traditional one-point crossover) and two-point forward-backward
(similar to the two-point crossover) crossover operators. For mutation, two operators were used to: (1) randomly move
the position of each activity to another one that satisfied the precedence constraint; and (2) exchange each position with
the following one. For the PSPLIB problems, although the algorithm with the forward-backward crossover and first
mutation operator offered better performance than the other variants, its results were far from the best-known solutions.

Debels and Vanhoucke [16] proposed a decomposition-based GA (DBGA) that iteratively solved sub-parts of a project.
In it, the population was randomly generated and a serial scheduling scheme used to convert each individual to a feasible
one. Then, sub-problems were constructed and improved by a GA which used a two-point crossover with a modified
version of the peak crossover [39]. The algorithm was tested on PSPLIB test instances and performed well for problems
with 60 and 120 activities, and was competitive for those problems with 30. Valls et al. [40] proposed a hybrid GA (HGA)
in which, a specific peak crossover operator was introduced to define the good parts of a chromosome to combine, and a
double justification operator used as a local search engine. The algorithm was superior to other algorithms considered
in the paper for problems with 60 and 120 activities, and was competitive for those with 30. However, it has been
outperformed by many other approaches introduced in recent years.

In the GA proposed by Mendes et al. [30], chromosome representation was based on random keys, with the schedules
constructed by a heuristic priority rule which was an ideal priority with an infinite capacity. The underlying GA used
a uniform and one- or two-point crossover operators, and a mutation operator to introduce random solutions in the
current population. This algorithm was tested on well-known benchmark problems and, although it showed competitive
results, could not outperform other algorithms in the literature. A similar algorithm which was competitive to those
in the literature was introduced in [21], but it suffered from a slow convergence rate. Zamani [42] proposed a GA
with a magnet-based crossover (GA-MBX) that preserved up to two contiguous parts from the second parent and one
contiguous part from the first parent’s genotype. This type of crossover was an enhanced version of the two-point
crossover. To increase the quality of solutions, a local search procedure was adopted, with the results indicating that
GA-MBX could deliver competitive solutions.

DE algorithms
Cheng et al. [12] combined fuzzy clustering and a chaotic technique in a DE algorithm (FCDE), and solved two

case study problems. A logistic map was used to generate chaotic sequences which were then processed by the serial
generator to produce feasible schedules. DE operators evolved the population and a fuzzy c-means tracked the main
movements of the population. Although this algorithm appeared to perform well in comparison with other optimization
ones, this was difficult to judge, due to the limited number of test problems considered in the paper. More recently, Ali
et al. [5] proposed a DE algorithm for solving RCPSPs, with its operators used to generate real-valued solutions which
were then converted to integer-based ones. Also, two local search procedures combined with the scheme known as the
superiority of feasible solutions [15] to handle infeasible schedules. Although this algorithm performed well, it was only
tested on a small sample of benchmark problems.

Estimation of distribution algorithm (EDA)
In the EDA called HEDA introduced in [41], solutions were encoded using the extended active list (EAL) and the

serial schedule generation scheme (SGS) used to generate feasible schedules, which were then updated by the EDA
operators. A local search was used to improve the quality of solutions but, when evaluated on PSPLIB test instances,
HEDA did not outperform the state-of-the-art algorithms considered.
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SI-based approaches
Zhang et al. [44] evaluated two variants of PSO for solving RCPSPs, the first of which used priority-based represen-

tation and the second permutation-based representation with the serial method adopted to convert particles to feasible
schedules. Although the results showed that the priority-based PSO representation outperformed the other, the results
were inferior to those obtained by recent PSO variants [23, 10]. The algorithm was then extended slightly in [43], to
generate feasible schedules using the parallel method but insufficient results were presented to compare the algorithms.

A PSO which had forward-backward improvement (FBI) and double-justification procedures for enhancing the quality
of solutions was introduced in [10] but its results were far from the best-known solutions. In [23], an improved PSO
for solving RCPSPs, in which particles represented using a rank-priority technique and schedules were generated using
the serial method, was proposed. In addition, a double-justification local search procedure employed as a local search
mechanism. The algorithm was tested on PSPLIB test instances and demonstrated better results than other PSO
variants, but was significantly inferior to those of state-of-the-art algorithms.

Ziarati et al. [46] investigated the performances of three bee-type algorithms (1) the bee algorithm (BA); (2) artificial
bee colony (ABC); and (3) bee swarm optimization (BSO) for solving RCPSPs. Three local search procedures were
introduced in each and the results showed that BA with FBI was the best. However, all of these algorithms were inferior
to many other approaches previously reported in the literature.

Although ACO was also used to solve RCPSPs [31], its performance was inferior to those of other algorithms [20, 28].

Hybrid algorithms
Fang and Wang [20] proposed a shuffled frog-leaping algorithm (SFLA), which was a combination of a memetic GA

and PSO, for solving RCPSPs. In it, the virtual frog was encoded as the EAL with feasible schedules generated by the
SGS. Firstly, initial solutions were generated by the regret-based sampling method and priority rule, and then evolved
by adopting a crossover operator, with a combined local search, i.e., a permutation-based local search (PBLS) and FBI.
The algorithm was tested on PSPLIB test problems, with the results showing competitive performances on problems
with 120 and 60 activities, but a poor performance for those problems with 30.

Agarwal et al. [1] proposed a hybrid framework combining a GA and neural network (NN) (GANN), in which the
GA operators were used to search for good solutions and the NN for a local search. However, the algorithm did not
perform well. Chen et al. [11] proposed a hybrid algorithm for tackling RCPSPs, in which ACO and a scatter search
(SS) were used in an iterative manner. Firstly, ACO generated new solutions which were then passed on to the SS
algorithm for improvement and then ACO used the improved solutions to update the pheromone set. Also, a local
search procedure was applied to enhance the quality of solutions. Although the results were not better than those
reported in the literature for problems with 30 and 60 activities, they were good for those problems with 120.

Hyper-heuristic-based algorithms
A few hyper-heuristic-based approaches for solving RCPSPs have been proposed; for example, Koulinas et al. [28]

developed a PSO-based hyper-heuristic algorithm in which the solutions were represented using random keys and sched-
ules constructed by the SGS using the priorities of the activities. These priorities were updated by one of 8 low-level
heuristics. Also, each particle was a vector of 8 integer numbers, each representing a low-level heuristic, with particles
indicating the order in which the low-level heuristics were applied. In addition, a local search procedure was applied to
every generated solution. The algorithm showed competitive performance, but it was noted that its convergence was
not very good. Anagnostopoulos and Koulinas [6] proposed a genetic hyper-heuristic algorithm. The lower level had 8
heuristics, 6 of which included random selection-based heuristics and the remaining two selected activities based on the
TS criterion while, in the upper level, the random linear bias selection was adopted to choose the best heuristic. The
algorithm showed encouraging results but the paper did not provide a proper comparison with other existing approaches.
Following the same algorithmic framework, the same authors proposed a similar algorithm [7] by replacing the GA with
a greedy randomized adaptive search procedure (GRASP)-based hyper-heuristic.

Other techniques
In [32], an approach for automatically selecting algorithms for multi-mode RCPSPs (MRCPSPs) was proposed. Firstly,

to find the features of a problem that are the most suitable for an algorithm, machine-learning techniques were used
and then redundant and uninformative features eliminated. Finally, a model was built for each algorithm to map the
feature space onto the running time. Two algorithms were incorporated in the technique to validate its accuracy and,
although encouraging results were reported, in our opinion, this approach is computationally expensive in terms of model
building. Also, it might not work for solving problems that have features different from those considered in the training
phase. Therefore, one of our aims in this paper is to automatically place emphasis on the best-performing algorithm
during the course of the optimization process.
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Algorithm 1 General framework of COA

1: Define PS, cy ← 0, probi ← 1, g ← 1, and all other parameters required (Section 4).
2: Generate random individuals (X).
3: Convert X to feasible schedules (Xs), and obtain corresponding continuous vectors Xcont.
4: Apply local search on Xs and updat X = Xs and Xcont.
5: while cfe < FFEmax do
6: cy ← cy + 1.
7: if cy = CS then
8: Measure the improvement of each Algi (Section 3.1).
9: Update probi.

10: end if
11: if cy = 2× CS then
12: probi ← 1.
13: cy ← 0; .
14: end if
15: for i = 1 : noAlg do
16: Generate randi ∈ [0, 1], with at least one satisfies randi ∈ [0, 1] ≤ probi.
17: if randi ≤ probi then
18: Generate new offspring using Algi and update probability of applying each operator (Section 3.4).
19: Apply local search.
20: Update cfe.
21: end if
22: end for
23: g ← g + 1, and go to step 5.
24: end while

3. Consolidated Optimization Algorithm for RCPSPs

In this section a consolidated optimization algorithm (COA) is discussed and its steps given in Algorithm 1.
Firstly, an initial integer population (X) of size PS is randomly generated

(
X =

{−→
X 1,
−→
X 2, ...,

−→
XPS

})
. Then, X is

converted to feasible schedules (Xs) with their corresponding continuous vectors (Xcont) calculated (see Section 3.2).
The makespan of each

−→
X s

z ∀ z = {1, 2, ..PS}, which represents the quality of a solution, is calculated and then a local
search is applied to improve each

−→
X s

z and its
−→
X cont

z is also generated, as discussed in Section 3.3.
Then, the population is then evolved by one or two multi-operator EAs (MOEAs). Initially, the probability of each

algorithm being applied is set to 1, i.e., probi = 1 ∀ i = {1, 2}. Then, in each generation, two random numbers are
generated, i.e., randi ∈ [0, 1] ∀ i = {1, 2}, and if randi ≤ probi, new individuals are generated using Algi, where Alg1 is
a multi-operator GA (MOGA) and Alg2 a multi-operator DE (MODE).

If MOGA is applied, integer-based crossover and mutation operators are used to generate new integer-based offspring
(Xnew) and then new schedules (Xs,new) and continuous-based vectors (Xcont,new) are generated (see Section 3.2). On
the other hand, if MODE is adopted, using Xcont, firstly, new Xcont,new are generated and then their integer-based
solutions (Xnew) calculated, with new feasible Xs,new and Xcont,new are subsequently produced. For both MOGA and
MODE, a local search process is applied to every new offspring and then the selection procedure defines the new solutions
that should survive to the next generation. Once this is done, the improvement achieved by each operator is measured
to place more emphasis on the best-performing one in each MOEA. This process is repeated for a cycle (CS) and, when
it is finished, every probi is updated based on its performance during the first cycle, as discussed in Section 3.1.

For each generation in the 2nd cycle, 2 random numbers are generated (rand), with at least one having to be less
than its corresponding probi to make sure that at least one algorithm is applied in each generation. Similar to the first
cycle, if randi ≤ probi, then Algi is used to update the population ∀ i = {1, 2} and, at the end of this cycle, each probi
is set to 1, i.e., returned to its value in the 1st cycle. The reason for this is that the search capabilities of optimization
algorithms may vary during the optimization process, i.e., one may be good in the early stages of but perform poorly in
later generations. COA continues until a stopping criterion is met.

In the following subsections, each component of the proposed COA is discussed in detail.

3.1. Updating probi

The quality of solutions obtained by each MOEA is used to place emphasis on the best-performing one. To do this,
in each generation, the best fitness value before (fbest,old) and after (fbest,new) applying each MOEA is recorded. Next,
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the improvement rate (Icy,i ∀ i = {1, 2}), where cy is a generation counter, is calculated as

Icy,i =
fbest,old − fbest,new

fbest,old
, (2)

At the end of the 1st cycle, i.e., cy = CS, each probi, ∀ i = {1, 2}, is updated as

probi =

max

(
0.1,min

(
0.9,

∑CS
cy=1 Ii,cy∑CS

cy=1 I1,cy +
∑CS

cy=1 I2,cy

))
(3)

Also, in the case that no improvement in the makespan is attained either algorithm, both probs are set to a value of
0.5. Note also that, as one MOEA may perform well in different stages of the evolutionary process, and poorly perform
in others, a minimum value of 0.1 is considered [19].

3.2. Representation and feasible schedules

As previously discussed, two MOEAs are used. As the first deals with integer-based solutions and the other with
real-valued solutions, in this paper, it is essential to consider two representations.

Generally, the initial population (X) is generated in an activity list form, i.e., PS permutation vectors, each of which(−→
X z

)
consists of D + 2 values, where the first and last activities are dummies. As these random solutions may not

satisfy the precedence and/or resource constraints, it is important to convert them to feasible ones. To do this, the SGS
is used to decode each

−→
X z, ∀z = {1, 2, .., PS}, to obtain its corresponding schedule

(−→
X s

z

)
by selecting the activities

according to their order in
−→
X z and scheduling them at their earliest starting times. Subsequently, the corresponding

continuous-based solution
(−→
X cont

z

)
is generated, so that each value

−→
X cont

z,j , ∀j = {2, ..., D + 1}, is the location of the

jth activity in
−→
X s

z plus a random value ∈ [0, 1], while the first (d = 1) and last (d = D + 2) values are rand ∈ [0, 1]
and D + (rand ∈ [0, 1]), respectively. To clarify this, Figure 1 shows an example of converting a feasible schedule to a
continuous-based solution; for instance, as activity 3 is in the 2nd position in

−→
X s

z, the 3rd value in
−→
X cont

z takes a value
of 2 + rand3, where rand3 ∈ [0, 1]. Similarly, activity 5 is in the 3rd position in

−→
X s

z, the 5th value in
−→
X cont

z is set to
a value of 3 + rand5, where rand5 ∈ [0, 1]. The same is done for the remaining activities which means that the search
space when using MODE is [0, D + 3].

−→
X s

z 1 3 5 2 4 6 7
⇓−→

X cont
z rand1 4 + rand2 2 + rand3 5 + rand4 3 + rand5 6 + rand6 7 + rand7

Figure 1: Conversion feasible schedule to a continuous-based solution with 7 (5 + 2 dummies) activities (where randj ∈ [0, 1], ∀ j = 1, 2, ..., 7)

For MODE, as we are dealing with real-valued vectors,
−→
X cont

z is converted to
−→
X z, followed by the same steps mentioned

above. To do this, firstly, we sort the values in
−→
X cont

z in an ascending order and then
−→
X z is considered the place of each

activity in the rankings (Figure 2).

act 1 2 3 4 5 6 7
−→
X cont

z 0.23 4.35 2.8 5.45 3.95 6.11 7.78
⇓sort

act 1 3 5 2 4 6 7
−→
X cont

z 0.23 2.8 3.95 4.35 5.45 6.11 7.78
⇓final−→

X z 1 3 5 2 4 6 7

Figure 2: Conversion of real-valued solution to integer-based one
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3.3. Local search

In this research, motivated by the work presented in [29], the local search starts by sorting all the activities in a
descending order based on their finishing times. Then, without violating the resource and successor constraints, each
activity is shifted to the right as far as possible. After this step, all the activities are sorted again based on their starting
times and a feasible schedule is generated

(−→
Xnew

z,LS ,∀ z = {1, 2, ..PS}
)

, as discussed in Section 3.2, i.e., shifting them to
the left.

To maintain diversity within the current population, if
−→
Xnew

LS is not in the memory (MLS), its objective value(
f
(−→
Xnew

LS

))
is calculated and if f

(−→
Xnew

LS

)
< f

(−→
Xnew

)
,
−→
Xnew

LS replaces
−→
Xnew. On the other hand, if the solution

is in MLS ,
−→
Xnew is retained. It is worth highlighting the following two points about this step.

1. A solution is considered redundant, if all the starting times of its activities match those of at least one schedule in
MLS .

2. As retaining all the solutions generated in the previous generations increases the computational time, the maximum
size of the memory is set to 2PS (the size of the old population plus the new one). In each generation, and before
applying every MOEA, MLS is cleared, and then the current solutions,

−→
X , are inserted into it, i.e., the memory

size is now PS. Then, if
−→
Xnew

z,LS satisfies the condition previously mentioned, it is inserted into it.

3.4. Optimization algorithms

Although the framework proposed in this paper is general and can be applied to any diverse group of algorithms, two
MOEAs are considered (1) MOGA which combines two GA-based crossover operators; and (2) MODE which uses two
DE-based mutation operators.

3.4.1. MOGA
Firstly, of the set of solutions passed to MOGA, a tournament selection is undertaken to create a mating pool of

solutions. Then, in each generation, the number of individuals that can be generated by each crossover is determined as

n1 = min(PS − 1, (max (1, count (rand ∈ [0, 1]1:PS ≤ PGA,1))) (4)

n2 = PS − n1 (5)

where n1 individuals are generated by a two-point crossover and n2 by a uniform one, with the initial value of PGA,1

set to 0.5. Note that a minimum value of 1 is assigned to each ni, i = {1, 2} and both crossover operators generate
integer-based solutions (Xnew). In a two-point crossover, from two parents P 1 and P 2, two offspring are generated as
follows

1. Select two points ∈ [1, D + 2], i.e., divide both P 1 and P 2 into three parts.
2. Copy the 1st and 3rd parts from P 1 into their corresponding indices in the first child while the remaining values are

taken from P 2, with the constraint that there are no redundant activities.
3. To generate the 2nd offspring, the 1st and 3rd parts of the variables are taken from P 2, and the remaining ones

from P 1, with the constraint that there are no redundant activities.

In the uniform crossover, one child is produced from two parents P 1 and P 2 as follows

1. For every gene, i.e., j = 1, 2, .., D, a random number (randj) ∈ [0, 1] is generated. Then, if randj ≤ 0.5, the jth

gene from P 1 is copied.
2. Then, to avoid having redundant activities in the new child, the remaining activities, which are not taken from P 1,

are copied from P 2 based on the first-come, first-served (FCFS) rule.

Then, a left-shift mutation operator is applied to each offspring generated. In it, for each gene in each chromosome(
Xnew

z,j

)
, a random number(randj) ∈ [0, 1] is generated, and if it is less than the mutation rate(MR), Xnew

z,j is randomly
shifted to a position to its left side, i.e., between [1, j − 1].

Subsequently, Xnew is converted to feasible schedules, Xs,new, with their corresponding Xcont,new determined, as
discussed in Section 3.2. Then, the objective values for all the new offspring are calculated, and a local search is applied
to every

−→
Xnew

z . As elitism is important in a GA, the best solution from the previous generation is combined with the
current offspring so that the best PS, among PS + 1, solutions survive to the next generation.

Then, the average improvement in the objective values of all the offspring generated by each GA is calculated as
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IGAκ
=

∑PS
z=1 max (0, fnewz

− foldz
)

PS
,

∀
−→
X z updated by GAκ and κ = 1, 2 (6)

where fnew and fold are the new and old fitness values, respectively.
Then, each probability is updated as

PGA,κ = max
(
0.1,min

(
0.9,

IGAκ

IGA1
+ IGA2

))
,

∀κ = 1, 2 (7)

If
∑2

κ= IGAκ
= 0, each PGA,κ is set to a value of 0.5.

3.4.2. MODE
This algorithm starts with the set of solutions previously generated by the MOGA, or using its own steps if the MOGA

is not applied during the current generation. Similar to MOGA, the number of individuals that can be generated by
each DE variant in each generation is determined, as in equations 4 and 5, so that n1 individuals are generated by DE1

and n2 by DE2, respectively, as
(1) DE1: current-to-rand/bin with archive

uz,j =


Xcont

z,j + Fz

(
Xcont

r1,j
−Xcont

z,j +Xcont
r2,j
− X̃cont

r3,j

)
if (rand ≤ crz or j = jrand)

Xcont
z,j otherwise

(8)

(2) DE2: current-to-rand/bin without archive

uz,j =


Xcont

z,j + Fz

(
Xcont

r1,j
−Xcont

z,j +Xcont
r2,j
−Xcont

r4,j

)
if (rand ≤ crz or j = jrand)

Xcont
z,j otherwise

(9)

where r1 6= r2 6= r3 6= z are random integer numbers, with
−→
X cont

r1 ,
−→
X cont

r2 and
−→
X cont

r4 randomly selected from Xcont [45],
while X̃cont

r3,j
is chosen from the union of the entire Xcont and the archive (AR). Initially, the archive is empty, and then

parent vectors which failed in the selection process are added to it. Once its size exceeds a threshold (of size PS [45]),
randomly selected elements are deleted to make space for the newly inserted ones.

As both DE variants deal with continuous-based solutions, the new solutions are converted to integer-based ones
(Xnew), as discussed in Section 3.2. Subsequently, Xnew is converted to feasible schedules, Xs,new, and their corre-
sponding Xcont,new are updated (Section 3.2). Then, the objective values for all the solutions are calculated and for
every

−→
Xnew

z , ∀ {z = 1, 2, .., PS}, a local search is carried out to produce
−→
Xnew

z,LS , which replaces
−→
Xnew

z , if its objective
value is better.

After that, the average improvements (IDE1
, IDE2

) in the objective values are calculated in a similar way as that
described in equation (6) and each DE probability is updated as

PDE,κ = max
(
0.1,min

(
0.9,

IGAκ

IGA1
+ IGA2

))
,

∀κ = 1, 2 (10)

If
∑2

κ= IDEκ
= 0, then each PDE,κ is set to a value of 0.5.

Adaptation of F and Cr

In this paper, the mechanism proposed in [38], which is considered an improvement of JADE [45], is adopted and works
as follows:

• Initially, H entries for both parameters (MCr, MF ) are initialized, with all the values are set to 0.5.
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• Each individual −→x z is associated with its own Crz and Fz as

Crz = randni(MCr,rz , 0.1) (11)

Fz = randci(MF,rz , 0.1) (12)

where rz is randomly selected from [1,H], and randni and randci values randomly selected from normal and Cauchy
distributions with mean values of MCr,rz and MF,rz , respectively, and variance of 0.1.

• At the end of each generation, the Crz and Fz used by the successful individuals are recorded in SCr and SF ,
respectively, and then the contents of memory are updated as

MCr,d = meanWA (SCr) if SCr 6= null (13)

MF,d = meanWL (SF ) if SF 6= null (14)

where 1 ≤ d ≤ H is a position in the memory to be updated. It is initialized to 1 and then incremented whenever
a new element is inserted into the history, and if it is greater than H, it is set to 1 with meanWA(SCr) and
meanWL(SF ) computed, respectively, as follows 1

meanWA(SCr) =

|SCr|∑
γ=1

wγScr,γ (15)

meanWL(SF ) =

∑|SF |
γ=1 wγS

2
F,γ∑|SF |

γ=1 wγSF,γ

(16)

where

wγ =
∆fγ∑|Scr|

γ=1 ∆fγ
(17)

and ∆fγ = |fγ,old − fγ,new|.

4. Experimental Results

This section presents, discusses and analyzes the computational results obtained by COA on the PSPLIB instances
[26, 27] with 30, 60 and 120 activities (J30, J60 and J120, respectively). The J30, J60 and J120 sets contain 48, 48
and 60 test instances, respectively, with 10 problems in each instance (this makes a total of 480, 480 and 600 problems,
respectively) which were generally generated by changing three parameters:

(1) the network complexity (NC) which defines the average number of predecessors per activity.
(2) the resource factor (RF) which determines the average percentages of different resource types for which each

activity has a nonzero-demand.
(3) the resource strength (RS) which defines the degree of scarceness of the resources.
For the J30 and J60 instances, the parameter values were: NC ∈ {1.5, 1.8, 2.1}, RF ∈ {0.25, 0.5, 0.75, 1} and RS ∈

{0.2, 0.5, 0.7, 1} which were different from those for the J120 ones of NC ∈ {1.5, 1.8, 2.1}, RF ∈ {0.25, 0.5, 0.75, 1} and
RS ∈ {0.1, 0.2, 0.3, 0.4, 0.5} [31]. It is worth mentioning that if RF had a value of 1, this would mean that every activity
needed all the resources to be completed, while the opposite exists when RF = 0. Also, for RS = 0, the capacity of
each resource cannot exceed the maximum demand of all activities, while 1 means that the capacity of each resource is
equal to the demand imposed by a project performed based on the earliest start time schedule [31, 22].

The computational results were recorded at three different levels, i.e., 1000, 5000 and 50000 fitness evaluations with
the COA’s parameters PS = 10 and CS = 25 (the only new parameter introduced). For MOGA, the mutation rate
(MrGA) was set to a value of 0.05 at the beginning of the evolutionary process and then linearly reduced to 0.001
(i.e., = 0.05 − 0.049 × cfe

50000 , where cfe is the current number of fitness evaluations), the crossover rate (CrGA) 1, the
tournament size 2, and elitism size 1 while, for MODE, H was set to the number of activities [37] with 15 runs carried
out.

1|SCr| is the number of successful Cr recorded in SCr, with |SCr|=|SF |
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Table 1: Average deviations obtained by COA for J30, J60 and J120 for 1000, 5000 and 50000 fitness evaluations

Dev

Problems Schedules
1000 5000 50000

J30 0.03 0.01 0.00
J60 11.11 10.79 10.60
J120 34.04 32.90 31.198
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Figure 3: Deviation from lower bound for each problem with 30 activities for 1000, 5000 and 50000 schedules (deviation values in %)

The deviation (Dev) from the lower bound (LB) was calculated for each problem (p) as

Devp =
Fbest,p − LBp

LBp
, ∀p = 1, 2, ..., P (18)

where P is the maximum number of problems, i.e., 480, 480 and 600 for J30, J60 and J120, respectively, and Fbest,p the
best fitness value achieved for the pth problem. Subsequently, the average deviation

(
Dev

)
was calculated as

DevD =

∑P
p=1 Devp

P
× 100%, ∀D = {30, 60, 120} (19)

Note that all the experiments were run on a PC with a Core(TM) i7-3770 CPU @ 3.40GHz, 16 GB RAM and Windows
7 using MATLAB 8.5.0 (R2015a) with some of its parts converted to a C++ code by the MATLAB coder. Note that
MATLAB was run in an ordinary serial mode.

From the results obtained (Table 1 and Figure 3), it was found that COA was fast to obtain the optimal solutions for
470, 477 and 479 of the 480 J30 problems, in 1000, 5000 and 50000 schedules, respectively. The only problem for which
COA could not obtain the optimum value was 281 (instance 29 problem 1), in which the best makespan obtained was
86, whereas the optimal one would be 85, with only 1000 schedules, but did subsequently improve. Another observation
was that those problems for which COA could not achieve optimality with 1000 schedules had RS values of 0.2 (the
smallest in the range used to generate the test instances).

For the J60 instances, as their optimal solutions were not known, and their LBs, which are not often feasible, were
used to calculate the Dev, COA’s deviations were expected to be higher than those of the J30 ones. However, the results
were quite consistent with those of J30, in which deviations were high for those problems with small values of RS and
high RF , see Figure 4. Another observation was that the algorithm was fast to obtain high-quality solutions with 1000
fitness evaluations, and then slightly improved until reaching 50000. Generally speaking, COA still coped well with the
J60 instances.

As smaller values of RS were used to generate the J120 problems, this became challenging. As depicted in Figure 5,
the deviations were high for small values of RS, and improved with increases in them.

In summary, it was found that both RS and RF greatly affected a problem’s complexity while NC did not demonstrate
any significant influence.

4.1. Parametric analysis

In this subsection, three sets of experiments designed for the J60 problems to analyze the effects of: (1) CS, (2) PS,
and (3) MrGA are described.
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Figure 4: Deviations from lower bounds for each problem with 60 activities in 1000, 5000 and 50000 schedules
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Figure 5: Deviations from lower bounds for each problem with 120 activities in 1000, 5000 and 50000 schedules
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Table 2: Average deviation values obtained by COA for J60 instances in 1000, 5000 and 50000 fitness evaluations with different values of CS

Dev

CS
Schedules Time (seconds)

1000 5000 50000
10 11.12 10.83 10.61 8.92
25 11.11 10.79 10.60 9.27
50 11.13 10.77 10.58 8.52
100 11.13 10.77 10.59 8.85

Table 3: Average deviation values obtained by COA for J60 instances in 1000, 5000 and 50000 fitness evaluations with different values of PS

Dev

PS
Schedules Time (seconds)

1000 5000 50000
5 11.15 10.85 10.66 10.02
10 11.13 10.77 10.58 8.52
25 11.32 10.84 10.59 8.61
50 11.62 10.99 10.56 9.46

CS
The aim of the first experiment was to analyze the effect of the new parameter introduced by COA, CS, by changing

it to 10, 25, 50 and 100 while MrGA and PS were set to their initial settings previously mentioned. The computational
results, shown in Table 2, demonstrate that CS did not have a significant impact on COA in 1000 fitness evaluations,
while its values in 5000 and 50000 improved a little until reaching 50 generations and then slightly deteriorating.
Therefore, COA with a CS value of 50 was considered the best.

Also, for each variant, the average computational times taken to solve all the test problems were recorded, if one of
the following two criteria was met: (1) the maximum number of fitness evaluations was reached, or (2) the best known
solution was found. The results reported in Table 2 demonstrate that there was a little difference in the computational
times of all the variants.

PS
In this set of experiments, four variants of COA were run by varying PS as 5, 10, 25, and 50 with MrGA set as adaptive,

as discussed in Section 4, and CS = 50 (the best value previously found). From the computational results shown in
Table 3, it is clear that increases in PS negatively affected the quality of solutions in 1000 and 5000 fitness evaluations
although, interestingly, the variant with PS = 50 was the best in 50000 schedules. Considering the computational times,
COA with PS = 10 was the best and generally, as one of our aims was to increase the algorithm’s convergence, this size
was preferred. It is interesting to conclude that we found that using a small rather than large PS was more beneficial
for solving RCPSPsin contrast to the opinion of the authors in [3][30].

MrGA

To analyze the effect of MrGA, COA was run with 8 different settings, i.e., 0.001, 0.01, 0.05, 0.1, adaptive from 0.05
to 0.001 (adaptive0.05−0.01), adaptive0.1−0.01, adaptive0.05−0.001 and adaptive0.1−0.001, while PS and CS were set to 10
and 50, respectively, as previously discussed. The results presented in Table 4 show that, although small values of MrGA

could lead to high convergence rates during the first 1000 fitness evaluations, COA became stuck in local solutions later.
Overall, COA performed better with adaptive reductions of MrGA, with adaptive0.05−0.001 considered the best.

Table 4: Average deviation values obtained by COA for J60 in 1000, 5000 and 50000 fitness evaluations with different values of MrGA

Dev

MrGA
Schedules Time (seconds)

1000 5000 50000
0.001 11.22 11.11 10.918 16.48
0.01 11.09 10.93 10.745 11.63
0.05 11.16 10.80 10.591 8.60
0.1 11.23 10.92 10.631 8.68

Adaptive0.05−0.01 11.14 10.79 10.589 9.22
Adaptive0.1−0.01 11.24 10.90 10.583 8.59

Adaptive0.05−0.001 11.13 10.77 10.581 8.52
Adaptive0.1−0.001 11.23 10.89 10.591 8.82
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Table 5: Average deviation values obtained by COA for J30, J60 and J120 in 1000, 5000 and 50000 fitness evaluations

Dev

Problems Schedules Time (seconds)
1000 5000 50000

J30 0.04 0.00 0.00 0.16
J60 11.13 10.77 10.581 8.52
J120 34.04 32.90 31.216 134.54

Table 6: Average deviation values obtained by COA for J120 with adaptive MrGA from 0.025 to 0.001 (COAsJ120,Adaptive0.025−0.001
)

Problems Schedules Time (seconds)
COAsJ120,Adaptive0.025−0.001

1000 5000 50000
33.68 32.35 31.23 139.54

4.2. Final COA
Based on the above analysis, COA with PS = 10, CS = 50 and MrGA adaptively reduced from 0.05 to 0.001 was

used to solve the J30 , J60 and J120 problems, with the results shown in Table 5 being slightly different from those
obtained from COA variant presented in Table 1.

A further variant was carried out to increase the convergence rate of COA when solving J120. This was done by
reducing MrGA from 0.025 to 0.001

(
COAsJ120,Adaptive0.025−0.001

)
with the results showing that it improved for1000

and 5000 schedules (Table 6). However, as this setting did not work well for the other dimensions, this variant was
considered an option for only J120.

4.3. Discussion
In this section, we try to determine which algorithm and operator were preferred for each problem.
To do this, we recorded two sets of data. The first measured how many times each algorithm, at the end of the first

cycle, had a higher probability of being used, as shown in the first subfigures in Figures 6 to 8, where blue indicates
that no MOEA was used, i.e., the optimal solution was found before applying any MOEA, red both MOEAs had the
same probability, black MOGA had a higher probability than MODE and green the opposite. The second data recorded
measured the average probability of each operator over the entire optimization process.

It can be seen in Figure 6a that for the majority of J30 test problems with high RC values, the optimal solution was
found before using any MOEA while for the other, no single MOEA was the best for all types of problems; for instance,
MOGA was preferred for a small value of RC and NC = 1.5, and MODE for NC = 1.8 and small RC values. It is also
noted that for some test problems, three cases occurred, i.e., one MOEA had a higher, equal or less probability than
the other one which meant that one algorithm might be good in some generations of the evolutionary process but poor
in others which, in fact, was consistent with the motivation of this paper.

Regarding the operators preferred for each MOEA, overall, it was difficult to conclude which GA operator was the
best, as both MOGA ones had the same probability when NC ≤ 1.8 and RC was high. For MODE, DE1 had a higher
probability than DE2, for many problems (Figure 6a).

Figure 7a shows that, for J60, MODE obtained to get a higher probability than MOGA for many problems, such as
81 to 90, 128 to 131, and 244 to 246, which all had small values of RC. However, this observation was not general, as,
for some problems in the same category, such as 123 to 127, 243, 247 and 441 to 444, MOGA was preferred. Regarding
the probability of each operator, variations occurred when RC ≤ 0.5 and NC ≤ 1.8, and RC ≤ 0.7 with NC = 2.1, with
COA preferring GA1 more to GA2, although GA2 had a higher probability when NC was high and RC small. Also,
DE1 and DE2 had close possibilities of running, especially when RC = 1.0. DE1 was slightly preferred when RC = 0.5
and NC was small, but the opposite happened when NC was high.

For J120, as depicted in Figure 8, it was found that MODE had a higher probability than MOGA for most of the
test problems. Regarding the probability of each operator, DE1 and DE2 had close possibilities of running. For MOGA,
it was clear that GA1 had a higher probability than GA2 for most problems, but GA2 was preferred for some with
RC = 0.5 and high NC.

4.4. Comparison with state-of-the-art algorithms
COA was compared with 11 algorithms: (1) DBGA [16], (2) HGA [40], (3) GA [30], (4) ACO+SS [11], (5) PSO [10],

(6) BA [46], (7) GANN [1], (8) HEDA [41], (9) GA-MBX [42], (10) SFLA [20], and (11) a PSO-based hyper-heuristic
(PSO-HH) [28]. Note that the results of those algorithms were taken from their original papers. All these algorithms
were discussed in Section 2 and comparison summaries presented in Tables 7 to 9.

From the J30 results obtained at each comparison point (1000, 5000 and 50000 fitness evaluations), COA was ranked
1st. Also, it was interesting that the average deviation it obtained in 1000 schedules was better than that of many other
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Figure 6: (a) frequency of use of each optimization algorithm and (b) and average probability of each operator for J30 activities
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Figure 7: (a) frequency of use of each optimization algorithm and (b) and average probability of each operator for J60 activities
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Figure 8: (a) frequency of use of each optimization algorithm and (b) and average probability of each operator for J120 activities

16



Table 7: Average deviation values obtained by COA and other state-of-the-art algorithms for J30

Algorithms 1000 5000 50000
COAs(this study) 0.04 0.00 0.00

GA-MBX [42] 0.14 0.04 0
GA [30] 0.06 0.02 0.01

ACO+SS [11] 0.14 0.06 0.01
PSO-HH [28] 0.26 0.04 0.01
DBGA [16] 0.12 0.04 0.02
HGA [40] 0.27 0.06 0.02
PSO [10] 0.29 0.14 0.04
BA [46] 0.42 0.19 0.04

SFLA [20] 0.36 0.21 0.18
HEDA [41] 0.38 0.14 -
GANN [1] 0.13 0.1 -

Table 8: Average deviation values obtained by COA and other state-of-the-art algorithms for J60

Algorithms 1000 5000 50000
COAs (this study) 11.13 10.77 10.58

GA-MBX [42] 11.33 10.94 10.65
SFLA [20] 11.44 10.87 10.66
GA [30] 11.72 11.04 10.67

ACO+SS [11] 11.75 10.98 10.67
DBGA[16] 11.31 10.95 10.68

PSO-HH [28] 11.74 11.13 10.68
HGA [40] 11.56 11.1 10.73
PSO [10] 12.03 11.43 11
BA [46] 12.55 12.04 11.16

HEDA [41] 11.97 11.43 -
GANN [1] 11.51 11.29 -

algorithms even when they used a higher number of fitness evaluations. This algorithm performed consistently for the
J60 problems with a large difference in deviations compared with those of the other algorithms, especially for smaller
numbers of fitness evaluations.

However, considering the J120 results, COA was outperformed by 3 other algorithms at the maximum number
of schedules, and ranked 3rd at 1000. Regarding COAsAdaptiveJ120,0.025−0.001

, which was designed to accelerate the

convergence rate (Section 4.2), the results showed that COA was ranked 2nd at 1000 and 5000 fitness evaluations, and
4th at 50000.

4.5. Effect of number of multi-operator meta-heuristics

In this section, the effect of the number of multi-operator meta-heuristics is analyzed. 5 different variants of COA were
run with the first three using a single multi-operator meta-heuristic, i.e., MOGA (COA1,MOGA) , MODE (COA2,MODE

), and MOPSO (COA1,MOPSO), the 4th (COA4) the version discussed above, which used MOGA and MODE, and the
last (COA5) used three multi-operator meta-heuristics (MOGA, MODE and MOPSO).

From the results, it was found that COA1,MOGA and COA2,MODE were better than COA3,MOPSO, and that COA4

was better than the individual algorithms used in it. For J30, although COA5 obtained better results than COA, its
results were inferior to those of COA1,MOGA and COA2,MODE . The reason for this might have been that, as one
of the algorithms used in COA5, MOPSO, performed very poorly and consumed many fitness evaluations, the other
multi-operator meta-heuristics did not have sufficient fitness evaluations to evolve compared with those used in the other
variants. COA5 did better for J60 than J30, and obtained better results than COA2,MODE and COA3,MOPSO at 5000
and 50000 fitness evaluations, respectively, and almost the same as COA1,MOGA for 50000. Generally, the framework
worked efficiently if the independent multi-operator meta-heuristics used in it were complementary, which is consistent
with the conclusion in [33]. From the results obtained, the variant with two multi-operator meta-heuristics (COA4) was
considered the best.
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Table 9: Average deviation values obtained by COA and other state-of-the-art algorithms for J120

Algorithms 1000 5000 50000
ACO+SS [11] 35.19 32.48 30.56

DBGA[16] 33.55 32.18 30.69
SFLA [20] 34.83 33.2 31.11

COAs (default) 34.04 32.90 31.22
COAsJ120,Adaptive0.025−0.001

33.68 32.35 31.23
PSO-HH [28] 35.2 32.59 31.23

HGA [40] 34.07 32.54 31.24
GA-MBX [42] 34.02 32.89 31.3

GA [30] 35.87 33.03 31.44
PSO [10] 35.71 33.88 32.89
BA [46] 37.72 36.76 34.55

HEDA [41] 35.44 33.61 -
GANN [1] 34.65 34.15 -

Table 10: Average deviation percentages obtained by different variants of COA for J30 and J60

Dev

Variants
J30 J60

Schedules Schedules
5000 50000 5000 50000

COA1,MOGA 0.02 0.00 10.78 10.61
COA2,MODE 0.01 0.00 11.06 10.71
COA3,MOPSO 0.13 0.01 11.24 10.79

COA4 0.00 0.00 10.77 10.58
COA5 0.09 0.01 10.82 10.61

5. Conclusions and Future Work

Although many methods for solving RCPSPs have been introduced, they still have some shortcomings, such as a
slow rate of convergence, and no single optimization one has proven to be the best for all problems. Even in a single
algorithm, it is tedious to select its set of operators that can perform consistently well over a wide range of RCPSPs. As
a result, in this paper, a new framework which could be considered a step toward better optimization algorithms was
proposed. The algorithm (COAs) utilized the strengths of two EAs (GA and DE), each ran with two different crossover
or mutation operators, respectively. During the evolutionary process, a mechanism was adopted to place emphasis on
the best-performing algorithm as well as its operators. Also, the benefit of an efficient heuristic was utilized to further
enhance its performance.

This algorithm was used to solve well-known benchmark problems, with 30, 60 and 120 activities, with he results
showing that it was capable of converging quickly to high-quality solutions, especially for the J30 and J60 problems.
Three parameters (CS, PS and MRGA) were analyzed. The first, the only new one introduced in the proposed design,
did not demonstrate a significant effect on the algorithm’s performance, while the other two did which led to the following
conclusions being drawn.

• It was recommended that a small value of PS, i.e., 10, be used to achieve a high convergence rate. However, if the
decision maker was concerned with only the quality of solutions for 50000 schedules, then PS = 50 would be the
best.

• MRGA had a significant effect on the algorithm’s performance, with every small value leading to low-quality
solutions, while high ones produced slow convergence rates. Generally, adaptively reducing it from 0.05 to 0.001
achieved the best performances for J30 and J60.

• For J120, to further accelerate the convergence rate, adaptively reducing MRGA from 0.025 to 0.001 was best. The
reason for using a different MRGA than that used for the other dimensions was that the characteristics of J120
were different and there was the curse of dimensionality.

We also tried to answer a question: which algorithm and operator did work well for the RCPSPs considered? The answer
was consistent with the motivation of the paper, in which no single algorithm and/or operator were the best for all
types of RCPSPs. Also, it was confirmed that one algorithm and/or operator might be good in some generations of the
evolutionary process and poor in others. However, some clues were found: (1) for J30, MOGA performed well when
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RC was small and NC = 1.5. In the case of NC ≤ 1.8 and RC high, both MOGA operators were performing almost
the same; (2) for J60, MODE was more favorable than MOGA, with DE1 slightly more preferable when RC = 0.5
and NC was small, the opposite when NC was high, and both quite similar when RC = 1.0. For MOGA, GA2 had a
higher probability when NC was high and RC small; and (3) for J120, MODE was better for solving the majority of
test problems, with DE1 and DE2 having close possibilities of running, and for MOGA, GA1 dominated GA2 for the
majority of test problems.

As COAs preferred MODE more to MOGA for many J60 and J120 problems, researchers may think of conducting
more DE research on scheduling problems, especially when we found limited research studies in the literature that used
DE to solve RCPSPs.

The results were compared with those from the state-of-the-art algorithms in terms of the quality of solutions and
showed the best performances for the J30 and J60 problems, and were very competitive for J120. Also, because the
GA operators were not complementary when solving J120, i.e., GA1 dominated GA2 for most of the test problems, the
algorithm did not demonstrate as consistent performances those that for J30 and J60.

Also, it was found that two multi-operator meta-heuristics performed better than variants with one or three sub-
algorithms. In general, the proposed algorithm could work efficiently if the independent sub-algorithms used in it
complemented each others.

In future work, further investigations are needed to accelerate the algorithm’s convergence and quality of solutions
for the J120 problems. Combining other EAs and heuristics in one framework will be an interesting aspect and solving
multi-mode RCPSPs will be considered.
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