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Abstract

Here, we propose an evolutionary algorithm (i.e., evohaity programming) for tun-
ing the weights of a chess engine. Most of the previous wotkigarea has normally
adopted co-evolution (i.e., tournaments among virtualgas) to decide which players
will pass to the following generation, depending on the onte of each game. In con-
trast, our method uses evolution to decide which virtuaygta will pass to the next
generation based on the number of positions solved from &auwf chess grand-
master games. Using a search depth of 1-ply our method caa 4081% of the
positions evaluated from chess grandmaster games (this ishigher than reported
in the previous related work). Additionally, our method &peble to solvé3.10% of
the positions using a historical mechanism that keeps adesfothe “good” virtual
players found during the evolutionary process. Our projosaalso been able to in-
crease the competition level of our search engine, whernngagainst the program
Chessmastefgrandmaster edition), our chess engine reach a ratiag(af points for
the best virtual player with supervised learning, &4d2 rating points for the best
virtual player with unsupervised learning. Finally, it is@aworth mentioning that our
results indicate that the piece material values obtainedusyapproach are similar to
the values known from chess theory.
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1. Introduction

Computer chess is considered to be had started with the wdklan Turing and
Claude Shannon in the mid and late 1940s. In 1947, Alan Ty#iBpdesigned a pio-
neer program to play chess, and in 1949 Claude Shannon [@@bped two strategies
to implement a chess engine. The first of them, called “TygecéAnsidered all pos-
sible moves to a fixed depth of the search tree, and the secaltel] “Type B,” used
chess knowledge to explore the main lines to a greater depth.

During the 1950s, chess programs played at a very basig leweby the 1960s,
chess programs could defeat amateur chess players. Dhad®¥70s, chess programs
began to use heuristics and specialized hardware to imphaierating. During the
1980s, tournaments between chess programs and humaed start

During the1990s, chess programs became powerful enough to start challgngin
chess masters. 11997, Deep Bluedefeated the world chess champion, Garry Kas-
parov, with a final score df.5 to 2.5 (Deep blue was capable of evaluatiziiy) million
positions per second). 12002, Garry Kasparov had a six games match against the
chess program that was the world champion at that teep Junior The final score
was3 to 3. In 2006, the world chess champion Vladimir Kramnik, from Russiaswa
defeated by the prograB®eep Fritz The final score was to 2 in favor of Deep Fritz

The current paper is an extended and improved contribufioanrgprevious work [27]
in which we initially provided a preliminary approach. Inigtwork, we go into the
addressed topic and propose an evolutionary algorithnpgshp evolutionary progra-
mming) to tune the weights of chess evaluation functionugtoa database of chess
grandmaster games. The main difference with the previouk isd¢hat here, we tune a
larger number of weights. Furthermore, we also add a histoeéchanism that allows
to retain “good” virtual players during the evolutionanppess. In this work, we used
33 weights and David-Tabibi et al. [8] us85 weights.

The remainder of this paper is organized as follows. In 8a@j we briefly review
the previous related work that makes use of co-evolutiomr{taments among virtual
players), and the only two works that we could find, which make of evolution
through a database of grandmaster games. In Section 3, weldethe characteris-
tics of our chess engine, and the mathematical expressmpted for the evaluation
function of our chess engine. In Section 4, we show the metlogy that we adopted
to tune the weights of our chess engine. In Section 5, we ptesg experimental re-
sults. Finally, our conclusions and some possible pathiifare research are provided
in Section 6.

2. PreviousRelated Work

First, we will briefly discuss works that do not make use of @ol@ionary algo-
rithm for tuning the weights of the evaluation function ofress engine. Thrun [24] de-
veloped the program NeuroChess which learned to play chasdfinal outcomes with
an evaluation function represented by neural networkss Woirk also included both
temporal difference learning [23] and explanation-basedrling [9]. Hsu et al. [16]
tuned the weights of their evaluation function for the cotepeep Thoughtlater



calledDeep Blug using a database of grandmaster-level games. Beal ant Binite-
termined the values of the pieces using temporal-diffezd@arning. In further work,
the concept of piece-square values was introduced intowoek [2].

Evolutionary algorithms have also been used before fontyttie evaluation func-
tion of a chess engine. Kendall and Whitwell [18] used thentdaing the evaluation
function of their chess program. Nasreddine et al. [21] psepgl a real-coded evolu-
tionary algorithm that incorporated the so-called “dynaimbundary strategy” where
the boundaries of the interval of each weight are dynamic.

BosSkovit presented three works that make use of diffeakatolution to adjust
the weights of the evaluation function of their chess progr#n their first work [4],
they tuned the chess material values and the mobility famttdhe evaluation func-
tion. The weights obtained matched the values known frons<lieeory. In a se-
cond work, Bo3kovit et al. [5] employed adaptation andagiiion-based optimization
mechanisms with co-evolution to improve the rating of tlobiess program. In a third
work, BoSkovi€ et al. [3] improved their opposition-bdsgptimization mechanisms
with a new history mechanism which uses an auxiliary popiatontaining compe-
tent individuals. This mechanism ensures that skilledviiddials are retained during
the evolutionary process.

Genetic programming has also been used for tuning the veegthhe chess eva-
luation function. Hauptman and Sipper [14] evolved strieedor playing chess end-
games. Their evolved program could drew against CRAFTY lvlsa state-of-the-art
chess engine with a rating 614 points. In a second work, Hauptman and Sipper [15]
evolved entire game-tree search algorithms to solve nmabéproblems in which the
opponent cannot avoid being mated in at mi¥stoves. It is worth noticing that this
work does not adopt the alpha-beta pruning algorithm.

Genetic algorithms have also been used for tuning the weifithe chess evalua-
tion function. David-Tabibi et al. [7] used reverse engiteg to adjust the weights
of an evaluation function. Basically, they used a granderdstel chess program for
tuning the weights of their chess program. In a second woek;iddTabibi et al. [8]
combined supervised and unsupervised learning to buildrdgnaster-level program.
This work presented the first attempt to adjust the weightsafess program by lear-
ning only from a database of games played by humans. Evolrtjoprogramming
has been used before for tuning the weights of the chessagi@ilfunction. Fogel et
al. [10] used this sort of algorithms to improve the ratingaathess program b300
points. They tuned the material values of the pieces, theepsguare values, and the
weights of three neural networks. Their computer prograsasied chess by playing
games against itself. In a second work, Fogel et al. [11]ripo@ted co-evolution,
but this time, they evolved their program durifd2 generations, reaching a rating of
2650. The resultant program was call&tbndie25 In a third work, Fogel et al. [12],
used rules for managing the time allocated per move insiglie inogramBlondie25
They achieved a rating &f635 points against the progradiritz8.0, who was rated
#5 in the world. It is noteworthy thaBlondie25was also the first machine learning
based chess program able to defeat a human chess master.

Vazquez-Fernandez et al. [26] used a database of typieescproblems to ad-
just the weights of the evaluation function of their chesgiea. Using evolutionary
programming as their search engine, they mutated only tvesghts involved in the



solution of the current problem and adapted the mutatiorhar@sm through the num-
ber of problems solved by each virtual player. With theiraidnm they obtained the

“theoretical” values of the pieces and achieved an incrgetbe strength of their chess
engine of335 points. In a further paper, Vazquez-Fernandez et al. 8@t a database
of games played by chess grandmasters to adjust the wefghtsmaterial values and
the mobility factor of the pieces. In this case, they obtditie “theoretical” values of

the pieces with their evolutionary algorithm.

There are only two works in which the selection mechanismmoéwolutionary
algorithm used to play chess is based on databases of chas$ngaster to decide
which virtual players will pass to the following generati@n the remaining works in
which evolutionary algorithms were adopted in some way,ptaposed approaches
used the final results of a game: win, loss or draw). In the itk [8], the authors
carried out the learning (called supervised) using a geradgjorithm. Additionally,
in that paper, the authors use co-evolution (called unsigest learning) to improve
the adjust of the weights of their chess engine. In the seeatdd [27], the authors
adjusted the weights of both the material values of the giacel the mobility factor
through an evolutionary algorithm. Our work differs fronisttast paper in that we
adopt a larger number of weights. Additionally, we also ddolpistoric mechanism to
allow the best virtual players to survive throughout theletronary process.

3. Our ChessEngine

To carry out our experiments, we developed a chess engirethét following
characteristics:

e The search depth adopted by our engine is

e We use the alpha-beta pruning search algorithm [19].of dynéwhich corre-
sponds to the movement of one side) for the training phaseesin [8], and of
six ply for the games among virtual players as recommendgkbin

e We incorporated a mechanism to stabilize positions throligQuiescence algo-
rithm, which takes into account the exchange of materialthadking’s checks.

¢ We use hash tables and iterative deepening [6].

Our chess program evaluates the position of the virtualgsldywith the following
expression:

22

eval = Z Weight; * f; Q)

=1
whereWeight; is one of the weights shown in Table 1, afidis the feature of

the weightWeight; for the virtual playerA. The description of the features are the
following:

e fpawn_varLuk IS the number of pawns of the virtual playér



o fxniauT.VALUE IS the number of knights of the virtual playdr
e fprsmopr.varug is the number of bishops of the virtual playér
e frook_varuk isthe number of rooks of the virtual playédr

e fouren.varLuE is the number of queens of the virtual player

e fpawN_DOUBLED.PENALTY.vALUE denotes the number of doubled pawns
of the virtual playerA.

® fPAWN_ISOLATED.PENALTY.vALUE denotes the number of isolated pawns
of the virtual playerA.

® fPAWN._BACKWARD.PENALTY.V ALUE denotes the number of backward pawns
of the virtual playerA.

e frawn_prPassep denotes the number of passed pawns of the virtual pldyer
e frawn.cenTrAL denotes the number of central pawns of the virtual player

e fxnicuT.suprorTED denotesthe number of knights (of the virtual play@r
supported or defended by one of his pawns.

o funIicHT.OPERATIONS.BASE denotes the number of knights (of the virtual
player A) in an operation’s base (it is when a knight cannot be evibiah its
position by an opponent’s pawn).

e frNnIGuT.PERIPHERY .0 denotes the number of knights (of the virtual player
A) inthe squares,,...,as, b1,...,91, h1,...,hs, andbg, ..., gs.

e fenicuT.PERIPHERY 1 denotes the number of knights (of the virtual player
A) inthe squares,, ..., br, co, ..., f2,92,...,97, ander, ..., fr.

e frnicuT.PERIPHERY 2 denotes the number of knights (of the virtual player
A) in the squaress, . .., cg, d3, es, f3, ..., f¢, anddg, . . ., €g.

e fxnicuT PERIPHERY .3 denotes the number of knights (of the virtual player
A) in the squaredy, ey, ds, e5.

e frookx.oreEN.corumn denotes the number of rooks (of the virtual playgr
in an open column.

e frook._semrioreN._coLumn denotesthe number of rooks (of the virtual player
A) in a semi-open column (a column that contains only oppdsipatvns).

e frook.crosep.corumn.seainDp denotes the number of rooks (of the vir-
tual playerA) in a closed column behind of its pawns. We defined a closed
column as the column that contains pawns of both players.

e frook.cLOSED.cOLUMN . -AHEAD denotes the number of rooks (of the virtual
playerA) in a closed column ahead of its pawns.



e frook_sevEN_rAN Kk Oenotes the number of rooks (of the virtual playgrin
the seventh rank.

e fxnicuT.MmoBILITY 1S the number of knight's moves of the virtual playér
e fersmor.moBrniTy 1S the number of bishops’ moves of the virtual player
e froorx_moprriTy IS the number of rooks’ moves of the virtual playér

e fouren_mosrriTy IS the number of queens’ moves of the virtual playler
e fxinc.moBILITy IS the number of king’s moves of the virtual playér

o frincaTTACKING.MATERIA IS the sum of the material value of the pieces
that are attacking the opposite king. We mean those piecesevmovements
act on its opposite king???s square or on its opposite kisggitfjacent squares.

e frING.DEFENDING.MATERIAL IS the sum of the material value of the pieces
that are defending its king. We mean those pieces whose nentsract on its
opposite king???s square or on its opposite king???s adlspeares.

e frxinc.casTLING IS @ binary value. Itis true if the king is castled; otherwise
it is false.

e frina_paw ns IS the number of pawns located on its king??7?s adjacentassjuar

e fprsnop_aneAp IS the number of pawns which are in front of its bishop and
obstructing its movement.

e fprsnop.pawnNs.MmMoBILITY ISthe number of movements of the pawns which
obstruct the movement of the bishop.

e fprsmop_parr IS @ binary value. Itis true if the playet has the bishop pair;
otherwise, it is false.

The main aim of the work reported here is to show that the wsighthe evalua-
tion function from eq. (1) can be tuned using evolutionarygeamming [13]. In our
approach, the training of the virtual players is conductsidg a database of games
from chess grandmaster games. Additionally, our work psepdhe use of a historic
mechanism which allows good virtual players to survive tigtoout the evolutionary
process.

4. Our Proposed Approach

As indicated before, our proposed approach is based on dntievary algorithm
(evolutionary programming [13]) which has a selection naatém based on super-
vised learning through a database of chess grandmastesgdine selection mecha-
nism allows that the virtual players which find the largesniver of movements pro-
posed by chess grandmaster pass to the next generation.ofllsevolutionary algo-
rithm has a historic mechanism that allows to recover goddai players which have
temporarily left the evolutionary process.



The evolutionary algorithm is shown in Algorithm 1. Linénitializes the weights
of NV virtual players with random values within their correspimgboundaries. Line
sets the generations counter equal to zero. In lted 5 we carry out the tuning of the
weights for theV virtual players during=max generations. In ling, a virtual player’s
score is incremented in one for each movement ofptpesitions on the database for
which the virtual player did the same action as the humanscmester. Liné applies
the selection mechanism so that only the Bés2 virtual players pass to the following
generation. Line updates the historical mechanism of virtual players in a thay
maintains in an array the best virtual players who havehefietvolutionary process. In
lines7 to 13 we obtain the second half of virtual players needed0(f« rand(0, 1) <
P, (whereP, is a control parameter defined by the user), we obtain thealiglayer
i from the historical mechanism, and if not, we mutate theusirplayer; — N/2 to
obtain the virtual playei. Finally, line14 increases the generation countet in

The procedure for computing the score of each virtual plasydescribed in Algo-
rithm 2. In linesl to 3, we establish the score counter to zero for each virtualgolay
Line 4 choose training positions from database Line 5 chooses chess grandmaster
movements for positiop. Line 6 sets the positiop (this allows to each virtual player
to calculate its next movement). Finally, each virtual plagalculates its next move
and if this movement matches movementthis virtual player increases its score hy

Algorithm 1 EvolutionaryAlgorithm()
1: intializePopulation();
2:.9=0;
3: while g++< Gmazx do

4:  scoreCalculation();

5. selection();

6. updateHistoricalMechanism();
7. fori=N/2— N-1do

8: if 100 x rand(0,1) < P, then
9 VP[i] « historicalMechanism();
10: else

11: VP[i] «+ mutate(VP[i-N/2]);
12: end if

13:  end for

14: g+t

15: end while




Algorithm 2 scoreCalculation()
1. fori=0— N—1do

2. scorei] =0;

3: end for

4: for each positiorp in database do
5. m = grandmasterMovement(p);
6: setPositiond);

7. for each virtual playei do

8: n = nextMovement);

9: if m == nthen
10: score[i]++;
11: end if
12:  end for
13: end for

4.1. Initialization

The population of our evolutionary algorithm was initigi with 20 virtual pla-
yers (L0 parents and 0 offspring in subsequent generations). The weight values fo
these virtual players were randomly generated with a umfgistribution within their
allowable bounds. The allowable bounds for each weightasvalin Table 1.

4.2. Mutation

If the condition100 * rand(0,1) < P. is true (in Algorithm 1), one offspring is
taken from the historical mechanism; otherwise, it is neddtom its corresponding
parent (the parerit- N/2 is mutated to generate the offsprindor: = N/2,..., N —
1).

The values that were mutated are shown in Table 1.

In our implementation, we adopted Michalewicz’s non-uniiomutation opera-
tor [20]. The expression to obtain the mutated We@qbfrom the previous weight/;
is the following:

v~ [Vi At UB - Vi) ifR=TRUE @
k= \ Vi — A(t,Vi, — LB) if R=FALSE

where[L B, U B] is the range of the weight;,, andR = flip(0.5) (the function
flip(p) returns TRUE with a probability). Michalewicz suggests using:

Alt,y) =y (1 — =0T 3)

wherer is a random real number in the ran@e 1), 7' is the maximum number of
generations and is a user-defined parameter. In our cdse; 5, which is the value
recommended by Michalewicz [20].

It should be noted that no crossover operator is employediircase, since we
adopted evolutionary programming (this paradigm modedsetfolutionary process at
the species level and, therefore, it does not incorporatemssover operator).



5. Experimental Results

Our experiments were carried out on a personal computerathbits architec-
ture, with3 GBytes in RAM, having two cores running at 2.8 GHz. The prowgavere
compiled usingg++ in the OpenSuse 11.4 operating system. For our virtual ptaye
we used the opening bodRlympiad.abkincluded with the graphical user interface
Arenatl

For the training of our experiments we used a databage@f games from grand-
masters in chess having a rating ab@@e0 Elo. These experiments uses the chess
engine described in Section 3.

5.1. Experiment A

In this case, we tuned the firdd weights shown in Table 1. We carried dit runs
using P. = 5,10,...,35,40 and found thatP., = 10,15, 20 produced the highest
number of positions properly solved. We carried out theof@lhg experiments:

1. 31 runs with Pr = 0 and24 weights (without the historical mechanism). These
runs are shown in Table 2.

2. 31 runs with Pr = 10 and24 weights. These runs are shown in Table 3.

3. 31 runs with Pr = 15 and24 weights. These runs are shown in Table 4.

4. 31 runs with Pr = 20 and24 weights. These runs are shown in Table 5.

The description of these tables is the following. In the fiostr rows we describe
the number of training generatior®)(), the population size2(), the number of trai-
ning positions4£000), and the value oPr employed. Next, the first and second column
describe the percentage of positions solved by the bestaViplayer at generatioh
and generatior200, respectively. The third and fourth column describe theaye
positions solved by all virtual players at generaticend generatio200, respectively.
The fifth column describes the execution time for each rurxt ifeblack represents
the run corresponding to the median of the fourth columnh(\thie legend median).
Finally, the penultimate row describes the standard dieviaif the fourth column, and
the last row describes the average execution time for adl.rbmthese tables we can see
that the positions solved for the median run at generatirwere 33.50%, 46.30%,
42.29% and 40.69% for Pr = 0, Pr = 10, Pr = 15, Pr = 20, respectively. In
Table 2 and Table 3, the weights obtained at generafiorfor the best virtual player
was calledV Py, , andV Py, 1, respectively.

In Figure 1 we can see the percentage of positions solvetiédvest virtual player
and the average positions solved by all virtual playerstierrhedian run in Table 2.
At generatiorD, the average positions solved by all virtual players w&a97%, and
21.01% for the best virtual player. At generati@i0, the average positions solved by
all virtual players was3.50%, and33.53% for the best virtual player. Note that this
value is competitive with that reported in [8] after the styimed evolution with32%
of positions solved.

http://www.playwitharena.com/
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Figure 1: Evolutionary process without the historical metbm for P = 0 with 24 weights. The plot
shows the percentage of positions solved for the medianrable 2 during200 generations. We consid-
ered a total ofl000 positions.

In Figure 2 we can see the percentage of positions solvetiédvest virtual player
and the average positions solved by all virtual playerstierrhedian run in Table 3.
At generatiorD, the average positions solved by all virtual players 2289%, and
26.49% for the best virtual player. At generati@®0, the average positions solved
by all virtual players wa€6.30%, and46.35% for the best virtual player. Since we
adopted Michalewicz’s non-uniform mutation operator [20fe percentage of posi-
tions solved was equal for the average of all virtual playerd the best virtual player
at the end of the evolutionary process (generaia).

In order to show the scalability of our method, we proceedaédpeat the previous
experiments with th&3 weights shown in Table 1. It is worth mentioning that pre-
viously, in the paper [27], also we tuned successfully thigtits of the material values
and the mobility factor of the pieces.

Again, we carried ou81 runs usingP, = 5,10,...,35,40 and found thatP,. =
10, 15,20 produced the highest number of positions properly solved. cérfried out
the following experiments:

1. 31 runs with Pr = 0 and33 weights (without the historical mechanism). These
runs are shown in Table 6.

2. 31 runs with Pr = 10 and33 weights. These runs are shown in Table 7.
3. 31 runs with Pr = 15 and33 weights. These runs are shown in Table 8.

10



Pr=10 for 24 weights
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Figure 2: Evolutionary process fd?. = 10 with 24 weights. The plot shows the percentage of positions
solved for the median run in Table 3 duri@g0 generations. We considered a total6f0 positions.

4. 31 runs with Pr = 20 and33 weights. These runs are shown in Table 9.

The description of these tables is the same as we descrilowe .alm these tables
we can see that the positions solved for the median run atggoe200 were40.81%,
53.10%, 50.12% and55.16% for Pr = 0, Pr = 10, Pr = 15, Pr = 20, respectively.
In Table 6 and Table 7, the weights obtained at generafiorfior the best virtual player
was calledV P, , andV Py, 1, respectively.

In Figure 3 we can see the percentage of positions solvetiédrest virtual player
and the average positions solved by all virtual playerstiermhedian run in Table 6.
At generatiorD, the average positions solved by all virtual players @a42%, and
30.51% for the best virtual player. At generati@n0, the average positions solved by
all virtual players wad0.81%, and40.85% for the best virtual player.

In Figure 4 we can see the percentage of positions solvetiédvest virtual player
and the average positions solved by all virtual playerstiermhedian run in Table 7.
At generatiorD, the average positions solved by all virtual players @246%, and
25.38% for the best virtual player. At generati@®0, the average positions solved
by all virtual players wa$3.10%, and53.08% for the best virtual player. Since we
adopted Michalewicz’s non-uniform mutation operator [20fe percentage of posi-
tions solved was equal for the average of all virtual players the best virtual player
at the end of the evolutionary process (generaia).

11
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Figure 3: Evolutionary process without the historical metdbm for P. = 0 with 33 weights. The plot
shows the percentage of positions solved for the medianrable 6 during200 generations. We consid-
ered a total ofl000 positions.

At the end of the evolutionary process (generafion), the percentage of positions
solved when using the historical mechanism was largn (%) than those achieved
by the version of our algorithm that does not use the hisdbritechanism33.50%).
Also, the number of positions solved with the historical megdsm is larger than the
value reported in [8].

In Table 1, we show the tuning weights for the virtual play/@rss, ;. In this table
we can see that the material values of the pieces are simithet‘theoretical” values
known from chess theory [22].

In the experiments of this section, we used a search deptheople for our chess
engine.

5.2. Experiment B

In this experiment we carried 081 runs with the33 weights shown in Table 1 for
1000, 2000 and 3000 positions from chess grandmaster games. The Table 10 shown
in the first, second and third column, respectively, thentregj case, the median of the
average positions solved by all virtual players and thedgteshdeviation for th81 runs
at generatior200 with Pr = 10. The corresponding values for the training c48e0
were taken from the previous experiment. In this table weébilhat among smaller it
is the size of the training case, minor will be the standaverdion and the of average
positions solved by all virtual players.

12



Pr=10 for 33 weights
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Figure 4: Evolutionary process fd?. = 10 with 33 weights. The plot shows the percentage of positions
solved for the median run in Table 7 duri@g0 generations. We considered a total6f0 positions.

In the experiments of this section, we used a search deptheople for our chess
engine.

5.3. Experiment C

In order to shown that the evolutionary process of our methoduces virtual pla-
yers with a higher ratlng we carried ai) games betweeW Py, ,, versusV Py .,
V P3040 VersusV PG and V Py, o, versusV P (each virtual player pIayediOO
games with white pleces and)0 with black pieces). The virtual playér P200 10
Iosses draws, and wirts 97, and103 games, respectively, versus the virtual player
V P - The virtual playet P53, |, losses, draws, and wirts 5, and195 games,
respectlvely, versus the virtual playtéd?({‘* Finally, the virtual playe¥” P2 200 o losses,
draws, and wing, 14, and186 games, respectively, versus the virtual pIaV

Based on these played games, we used the Bayesefatdoestimate the ratings
of players using a minorization-maximization algorithnY]1 The obtained ratings
are shown in Table 11. In this table, we can see that the rétintipe virtual player
V P340 Was2341, the ratlng for the virtual playe¥ P, , was2186, and the rating
for the virtual playerV P2 0.0 1 was 1685, representing an increase @ff6 rating points

http://remi.coulom.free.fr/Bayesian-Elo/
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between the evolved virtual player with the historical megbkm, and the virtual player
without evolution.

classification of the United States Chess Federatron (geendix A). From Table 15,
we can see that the strength of the virtual playerZ 200 10 (2341 rating points) is at
the level of an master in chess, the strength of the wrtwa}qﬂVP%m (2186 rating
points) is at the level of an expert in chess, and the strevfgtie virtual playei’ P’
(1685 rating points) is at the level of a class B player

Also we carried ouz00 games betweeVi sty | versus/ Py o, V Piy 1 Versus
VP andV P, 200 o versusV P33 (again each virtual player played0 games with
Whlte pieces and00 with black pieces). The virtual playér P, |, Iosses draws,
and wins0, 96, and104 games, respectively, versus the virtual pIaV 200 o- The
virtual pIayerVPgd‘0 10 losses, draws, and wirts 1, and 199 games, respectrvely,
versus the virtual pIaerPo&g Finally, the virtual pIayerVP23030 0 Iosses draws, and
winsO0, 2, and198 games, respectrvely, versus the virtual playét;. Again, we used
the Bayeselo tool to estimate the ratings of players usrngmmrzaﬂon -maximization
algorithm [17]. The obtained ratings are shown in Table I2this table, we can see
that the rating for the virtual playéf P3y, ,, was2402, the rating for the virtual player
V P35, o was2245, and the rating for the virtual playéf Pj was1509, representing
an increase 0893 rating points between the evolved virtual player with thetdrical
mechanism, and the virtual player without evolution.

Also, we carried out an additional experiment between theuai players and
Chessmastero, which is a version of the popular chess prog@hessmastggrand-
master edition) which plays @400 rating points. Specifically, we carried o2®0
games among Chessmastgs and each of the virtual playef§ Ps, 1o, V Psg 10,
VP o, andV P3,  (the number of games with white pieces and black pieces was
the same for the virtual players and the prog@hessmastefor example Chessmas-
ter played400 games with white pieces and0 with black pieces). The results are
shown in Figure 5. In this figure, we can see that Chessmagjsrlosses, draws, and
wins werel4, 169, and17, respectively, versus the virtual playgiss, 1, (denoted
as H1 in this Figure). Also, Chessmasigs’s losses, draws, and wins wete, 137,
and53, respectively, versus the virtual play€Ps, ,, (denoted as H2 in this Figure),
respectively, and so on.

Based on these played games, we used again the Bayeselo &sbihhate the rat-
ings of the virtual players and Chessmasigy. The obtained ratings are shown in
Table 13. In this table we can see that the rating for the airplayersV P33 1,

V P3i0.10: V Pio.0. andV Py o were 2397, 2344, 2249, and2194 rating points, re-
spectlvely

In the experiments of this section, we used a search deptk pliss for our chess
engine, and in the opening phase we used the daté@iigsgiad.abkncluded with the
graphical user interfaclreng.

Shttp://www.playwitharena.com/
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Figure 5: Histogram of losses, draws and wins for ChessmasteagainstV Psy, 1 (H1), V P 10
(H2), VP33, o (H3), andV P34,  (H4).

5.4. Experiment D

This experiment is divided in two stages. The first one wasanathe section 5.1,
and consisted of adjusting the weights of #tievirtual players through chess grand-
master games (this is known as supervised learning). Indgbensl stage, we apply
an evolutionary algorithm (also based on evolutionary progning [13]) to perform
a tournament between virtual players (this is known as uerstiged learning or co-
evolution).

Specifically, we carried out a tournament ameng- 20 virtual players. Initially,
the weights for this: virtual players were taken from the median run in Table 7eAft
wards, each virtual player is allowed to play2 games with randomly chosen oppo-
nents. The side (either black or white) is chosen at randoamé&3 are executed until
one of the virtual player receives checkmate or a draw cndétrises. Depending on
the outcome of the game, a virtual player obtains one poait gpoint or zero points
for awin, draw or loss, respectively. Draw conditions aregiby the rule o0 moves
(after a pawn’s move there af@ moves to give a checkmate to the opponent), by the
third repetition of the same position and by the lack of vigtoonditions (e.g., a king
and a bishop versus a king).

After finishing the tournament, the selection mechanisnmosks then /2 virtual
players having the highest number of points, and subselyuttieise virtual players
are mutated to generate the remainiry® virtual players. Finally, the evolutionary
algorithm continues running f&i0 generations.

As we saw in the section 5.1, the best virtual player obtainete first stage was
called V P33 1, and the best virtual player obtained in the second stagealkedc
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VP33,

Finally, we carried ouR00 games betweel Py, |, versusV P33, (again each
virtual player played 00 games with white pieces and0 with black pieces). The
virtual pIayerVPQ‘g(‘;‘Q10 losses, draws, and wiris, 122, and25 games, respectively,
versus the virtual playeV P3$. Again, we used the Bayeselo tool to estimate the
ratings of the virtual players. The obtained ratings arexshio Table 14.

In this table, we can see that the rating for the virtual playess, ;, was2404, and
the rating for the virtual playey P33 was2442, representing an increase3# rating
points between the virtual player obtained with supervieadning, and the virtual
player obtained with unsupervised learning.

In the experiments of this section, we used a search deptk pliss for our chess
engine, and in the opening phase we used the dat&blgsgiad.abk

5.5. Validation

With the completion of the supervised learning, we used aitiadal 4000 posi-
tions for testing. Specifically, we let the virtual playéPss, , perform a 1-ply search
on each of these positions, and the percentage of corretdydspositions wasg9.7%.
Also, we allow the virtual playe¥’ P3y, ;, perform a 1-ply search on each of these
positions, and the percentage of correctly solved positieas52.1%. This indicates
that the first4000 positions used for training cover most of the types of posiithat
can arise.

6. Conclusionsand Future Work

Most of the works that make use of evolutionary algorithmisitee the weights of a
chess engine adopt co-evolution. In these methods, theplayers hold tournaments
among them, and the virtual players which obtain a largerlenof victories acquire
the right to pass to the next generation.

Our proposed approach uses supervised learning to perf@tumning of weights
of a chess engine through a database of chess grandmastes.gaime idea of the
selection mechanism of our evolutionary algorithm is toofawvirtual players that are
able to “visualize” (or match) more movements from thosésteged in a database of
chess grandmaster games. With our proposal, and after 280 aj®ns, our virtual
players can solvd0.81% of the positions of chess grandmaster games. Additionally,
our evolutionary algorithm employs a historical mechanibat allows it to solve the
53.10% of the positions of chess grandmaster games. Note that &hie vs higher
than the value of 32.4% reported in the work of David-Tabtldle [8], who also used
supervised learning with a database of chess grandmastesgansupervised learned
(through co-evolution) and a genetic algorithm. It is natethy that our work uses
evolutionary programming, and David-Tabibi's work usesemeic algorithm. We
believe that the number of positions solved by our methoatisfactory considering
that this was achieved adopting only a depth gty in the search tree.

In the games held between our virtual players @héssmastgplaying at a rating
of 2400) we found that the best evolved virtual player witttbe historical mechanism
played at2249 rating points, and the best evolved virtual player with theidrical
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mechanism played &397 rating points. Thus, we conclude that the rating of our
chess engine is competitive with that of the versiorCboiessmasteadopted in our
study.

Aditionally, we used unsupervised learning (through anaument among virtual
players) to improve the rating obtained with supervisednieg. In this case we ob-
tained an improved di8 rating points (fron2404 to 2442 rating points).

We note that the standard deviation increases as we inctieasgze of the test
cases. Also, our results indicate that the values of theschieges obtained by our
proposed approach closely match the known values from thessy.

As part of our future work, and with the idea of creating a shgsgram that is
able to play better, we plan to add and tune more weights ireealuation function.
We also intend to add extensions to our program (e.g., pg=sed extensions, mate-
threat, among others), and we plan to use bitbases or tagglia the final phase of
the game, aiming to increase the rating of our chess engine.
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Appendix A

The ELO rating system is a method that calculates the relatiength of players
in games with two opponents, and was created by the mathgarathrpad Elo. In
Table 15 we show the classification of the USCF (United St@tesss Federation).
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Table 1: Ranges of the weights adopted in our approach arickf@ghts for the virtual pIaerngo’w.

Number | Weight Wiow | Whign | Weights forV P31
1 PAWN_VALUE 100 100 100.0
2 KNIGHT _VALUE 200 400 295.2
3 BISHOP.VALUE 200 400 315.4
4 ROOK.VALUE 400 600 489.7
5 QUEEN.VALUE 800 | 1000 921.3
6 PAWN_DOUBLED_PENALTY_VALUE —50 50 —14.3
7 PAWN_ISOLATED_PENALTY_VALUE —50 50 —23.2
8 PAWN_BACKWARD _PENALTY _VALUE —50 50 —19.5
9 PAWN_PASSED —50 100 34.3
10 PAWN_CENTRAL —50 100 19.7
11 KNIGHT _SUPPORTED —50 100 16.2
12 KNIGHT _OPERATIONSBASE —50 100 15.3
13 KNIGHT _PERIPHERYO —50 50 —10.3
14 KNIGHT _PERIPHERY 1 —50 50 14.1
15 KNIGHT _PERIPHERY2 —50 50 19.7
16 KNIGHT _PERIPHERY3 —50 50 26.4
17 ROOK OPEN.COLUMN —50 50 22.1
18 ROOK_SEMIOPENCOLUMN_BEHIND —50 50 —5.7
19 ROOK_CLOSEDCOLUMN —50 50 —11.3
20 ROOK_SEVEN RANK —50 50 49.6
21 KNIGHT _MOBILITY 0 100 27.8
22 BISHOP.MOBILITY 0 100 34.1
23 ROOKMOBILITY 0 100 37.2
24 QUEENMOBILITY 0 100 12.3
25 KING_MOBILITY 0 100 5.1
26 ROOK_SEMIOPENCOLUMN_AHEAD —50 50 9.3
27 KING _ATTACKING _MATERIAI —100 0 —67.8
28 KING _DEFENDING.MATERIAI 0 100 52.3
29 KING_CASTLING 0 100 51.2
30 KING_PAWNS 0 100 49.3
31 BISHOP.AHEAD —100 0 39.6
32 BISHOP.PAWNS MOBILITY 0 100 21.3
33 BISHOP.PAIR 0 100 27.0
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Table 2:31 runs with P, = 0 for 24 weights.

Number of generations{max): 200

Population size: 20

Number of training positions: 4000

P 0

Positions solved by the best VP (%) | Average positions solved by all VPs (%) Time (min:sec)

Generatior) Generatior200 Generatior) Generatior200
21.8 32.54 18.7 32.54 56:54
21.8 32.65 18.7 32.65 56:50
21.8 32.69 18.7 32.69 56:53
21.8 32.71 18.7 32.71 56:57
21.8 32.79 18.7 32.79 56:54
21.8 32.81 18.7 32.81 56:52
21.8 32.81 18.7 32.81 57:6
21.8 32.94 18.7 32.94 57:7
21.8 32.97 18.7 32.97 56:57
21.8 33.10 18.7 33.10 57:0
21.8 33.15 18.7 33.15 57: 4
21.8 33.20 18.7 33.20 56:54
21.8 33.24 18.7 33.24 56:55
21.8 33.29 18.7 33.29 56:55
21.8 33.47 18.7 33.47 57:1
21.85 33.61 18.70 33.61 56:50 (median)
21.8 33.62 18.7 33.62 57:2
21.8 33.63 18.7 33.63 56:50
21.8 33.64 18.7 33.64 57:3
21.8 33.76 18.7 33.76 56:56
21.8 33.85 18.7 33.85 57:1
21.8 33.87 18.7 33.87 56:52
21.8 33.95 18.7 33.95 56:50
21.8 33.99 18.7 33.99 57:7
21.8 34.24 18.7 34.24 56:53
21.8 34.31 18.7 34.31 57:5
21.8 34.36 18.7 34.36 56:58
21.8 34.46 18.7 34.46 56:56
21.8 34.50 18.7 34.50 57:2
21.8 34.59 18.7 34.59 57:7
21.8 34.60 18.7 34.60 57:3

Standard deviation of the fourth column

0.65

Average run time (min:sec):

56:58
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Table 3:31 runs with P, = 10 for 24 weights.

Number of generations{max): 200

Population size: 20

Number of training positions: 4000

Py 10

Positions solved by the best VP (%) | Average positions solved by all VPs (%) Time (min:sec)

Generatior) Generatior200 Generatior) Generatior200
21.8 45.26 20.8 45.20 57:9
18.2 45.29 16.9 45.23 57:4
23.2 45.35 19.2 45.30 56:57
24.1 45.42 20.3 45.36 56:50
20.9 45.43 19.7 45.37 57:2
27.0 45.43 24.3 45.38 57:2
19.7 45.65 16.6 45.59 56:51
22.4 45.93 20.4 45.87 57: 6
25.5 45.94 21.8 45.89 56:53
28.6 46.07 24.2 46.01 56:54
20.9 46.07 18.5 46.02 57:1
24.2 46.13 22.2 46.08 56:52
25.5 46.14 21.8 46.08 56:56
22.0 46.23 19.7 46.18 57: 4
19.3 46.32 17.6 46.27 56:50
26.49 46.35 22.39 46.30 56:51 (median)
27.6 46.37 24.2 46.31 57:5
26.2 46.41 215 46.36 57:0
26.5 46.44 21.7 46.38 56:53
28.6 46.45 20.8 46.39 57:0
31.2 46.59 24.4 46.53 57:2
23.8 46.60 21.1 46.55 56:50
20.9 46.72 19.6 46.67 57:8
26.1 46.94 20.3 46.89 57:9
25.7 46.97 21.7 46.92 56:54
24.9 47.05 21.9 46.99 56:51
23.4 47.16 22.0 47.11 57:4
24.7 47.22 22.0 47.17 57:6
20.4 47.24 18.7 47.19 57:6
22.3 47.38 18.9 47.33 57:7
26.5 47.45 24.1 47.40 56:51

Standard deviation of the fourth column

0.66

Average run time (min:sec):

56:59
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Table 4:31 runs with P, = 15 for 24 weights.

Number of generations{max): 200

Population size: 20

Number of training positions: 4000

Py 15

Positions solved by the best VP (%) | Average positions solved by all VPs (%) Time (min:sec)

Generatior) Generatior200 Generatior) Generatior200
16.8 41.19 14.9 41.21 57: 4
16.0 41.30 15.3 41.32 57:3
21.0 41.30 17.2 41.32 56:54
17.6 41.31 16.0 41.32 56:50
18.5 41.34 16.4 41.36 57:9
18.5 41.35 16.6 41.36 57:9
18.5 41.40 17.4 41.41 57:8
19.3 41.42 14.9 41.44 56:55
19.3 41.45 16.6 41.46 56:51
20.2 41.63 17.2 41.65 56:52
18.5 41.66 13.9 41.68 56:52
20.2 41.87 17.2 41.89 56:58
16.8 41.93 14.9 41.94 57:8
18.5 41.94 16.4 41.96 56:53
19.3 41.96 16.2 41.98 57:3
21.01 42.27 18.07 42.29 56:54 (median)
23.5 42.29 19.1 42.31 56:52
22.7 42.32 19.7 42.34 57:8
15.1 42.35 13.9 42.37 57:6
20.2 42.39 18.3 42.41 57:3
16.8 42.50 15.3 42.52 57:6
21.0 42.76 17.6 42.77 56:58
22.7 42.89 17.0 42.90 56:52
24.4 43.00 21.0 43.02 57:1
19.3 43.18 17.9 43.19 57:2
19.3 43.20 17.0 43.22 56:50
19.3 43.27 16.6 43.29 56:53
17.6 43.29 16.4 43.31 57:9
27.7 43.30 19.3 43.31 56:50
21.8 43.34 18.3 43.36 56:54
17.6 43.35 16.2 43.37 56:58

Standard deviation of the fourth column

0.76

Average run time (min:sec):

56:59
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Table 5:31 runs with P, = 20 for 24 weights.

Number of generations{max): 200

Population size: 20

Number of training positions: 4000

Py 20

Positions solved by the best VP (%) | Average positions solved by all VPs (%) Time (min:sec)

Generatior) Generatior200 Generatior) Generatior200
22.3 39.59 184 39.62 57: 4
23.1 39.66 20.2 39.68 56:59
23.1 39.87 20.7 39.89 57:9
19.8 39.91 18.4 39.94 56:54
215 40.06 20.2 40.08 57:1
23.1 40.08 215 40.11 57:8
215 40.10 18.8 40.12 57:6
215 40.22 19.6 40.25 57: 8
19.8 40.24 184 40.26 56:55
22.3 40.27 20.7 40.30 56:57
24.0 40.30 194 40.33 57: 4
22.3 40.45 19.8 40.47 56:55
20.7 40.51 184 40.54 56:51
18.2 40.58 16.7 40.60 57:3
22.3 40.63 20.5 40.66 57:2
23.97 40.66 21.07 40.69 56:59 (median)
24.8 40.73 22.5 40.76 57:9
24.8 40.80 20.9 40.82 56:52
23.1 40.81 194 40.83 56:59
27.3 40.99 20.9 41.01 57:6
215 41.08 19.2 41.11 57:8
24.0 41.32 19.0 41.34 56:50
24.8 41.47 21.9 41.49 57:9
19.8 41.48 184 41.50 56:56
27.3 41.54 20.7 41.57 577
24.0 41.65 21.3 41.67 56:52
20.7 41.67 19.2 41.69 56:51
19.8 41.68 19.2 41.71 57:2
23.1 41.70 20.7 41.73 57:2
215 41.72 20.7 41.74 57:7
22.3 41.73 19.6 41.75 57:8

Standard deviation of the fourth column

0.68

Average run time (min:sec):

57:1
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Table 6:31 runs with P, = 0 for 33 weights.

Number of generations{max): 200

Population size: 20

Number of training positions: 4000

P 0

Positions solved by the best VP (%) | Average positions solved by all VPs (%) Time (min:sec)

Generatiorn) Generatior200 Generatiord Generatior200
25.4 39.82 24.2 39.78 63: 0
25.4 39.84 23.3 39.81 63:1
30.5 39.87 24.6 39.83 63: 7
30.5 39.95 23.3 39.92 62:51
27.1 40.04 22.5 40.00 63: 2
27.1 40.04 24.2 40.01 62:54
28.8 40.06 22.0 40.03 62:57
30.5 40.16 24.2 40.12 62:57
28.8 40.30 21.6 40.26 63: 6
25.4 40.33 22.5 40.29 62:55
22.0 40.40 21.2 40.36 62:51
28.8 40.44 24.2 40.40 62:55
23.7 40.44 19.9 40.40 63: 6
28.8 40.59 25.0 40.56 63: 6
25.4 40.70 23.7 40.67 62:52
30.51 40.85 25.42 40.81 63: 3 (median 27)
25.4 40.86 22.5 40.83 63: 0
27.1 40.91 23.7 40.87 63: 1
32.2 41.12 27.1 41.09 63: 7
27.1 41.14 24.2 41.11 63: 7
28.8 41.24 26.7 41.21 62:50
22.0 41.40 19.9 41.37 62:57
28.8 41.46 25.4 41.43 62:55
27.1 41.49 22.9 41.46 63: 0
25.4 41.57 21.6 41.54 63: 1
25.4 41.73 20.3 41.70 63: 5
23.7 41.75 21.2 41.72 62:55
32.2 41.75 25.8 41.72 63: 2
28.8 41.76 25.0 41.72 62:53
25.4 41.81 22.9 41.77 62:51
23.7 41.81 22.0 41.78 63: 6

Standard deviation of the fourth column:0.69

Average run time (min:sec): 62:59
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Table 7:31 runs with P, = 10 for 33 weights.

Number of generations{max): 200

Population size: 20

Number of training positions: 4000

Py 10

Positions solved by the best VP (%) | Average positions solved by all VPs (%) Time (min:sec)

Generatiorn) Generatior200 Generatiord Generatior200
25.5 52.10 22.6 52.12 63: 5
25.3 52.13 22.4 52.15 63: 9
25.6 52.14 22.7 52.16 62:58
24.6 52.17 21.8 52.19 62:50
25.1 52.20 22.2 52.22 63: 5
24.9 52.23 22.0 52.25 62:53
24.8 52.29 21.9 52.31 63: 2
25.3 52.37 22.4 52.39 62:52
24.4 52.43 21.6 52.45 62:54
25.1 52.78 22.3 52.80 62:55
25.2 52.78 22.3 52.80 62:58
25.3 52.79 22.4 52.81 63: 5
25.1 52.87 22.2 52.89 62:52
24.5 52.89 21.6 52.91 63: 0
25.2 53.07 22.3 53.08 62:57
25.38 53.08 22.46 53.10 63: 9 (median 3)
25.2 53.08 22.3 53.10 63: 4
25.4 53.10 22.5 53.12 62:58
24.9 53.28 22.0 53.30 63: 4
24.5 53.31 21.7 53.33 62:54
25.3 53.45 22.4 53.47 62:54
25.4 53.48 22.5 53.50 62:58
25.0 53.53 22.2 53.55 62:57
25.2 53.54 22.3 53.56 63: 4
25.5 53.56 22.6 53.58 62:53
25.1 53.64 22.2 53.66 62:52
24.8 53.76 21.9 53.78 62:56
25.1 53.94 22.2 53.96 63: 6
25.1 53.94 22.2 53.96 63: 6
25.1 53.96 22.2 53.98 63: 7
24.8 54.17 22.0 54.19 62:50

Standard deviation of the fourth column:0.64

Average run time (min:sec): 62:59
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Table 8:31 runs with P, = 15 for 33 weights.

Number of generations{max): 200

Population size: 20

Number of training positions: 4000

Py 15

Positions solved by the best VP (%) | Average positions solved by all VPs (%) Time (min:sec)

Generatiorn) Generatior200 Generatiord Generatior200
18.0 49.15 16.0 49.07 62:58
22.0 49.16 18.0 49.08 63: 0
26.0 49.32 24.0 49.24 62:53
24.0 49.36 15.0 49.28 63: 0
23.0 49.38 0.0 49.30 62: 56
22.0 49.40 145 49.32 63:1
18.0 49.56 17.0 49.48 63: 2
22.0 49.56 0.0 49.48 63: 10
30.0 49.68 23.5 49.60 62:54
26.0 49.69 17.5 49.61 62:51
24.0 49.79 20.0 49.71 62:57
22.0 49.93 16.0 49.85 63: 8
20.0 50.03 14.0 49.95 62:55
20.0 50.08 16.0 50.00 62:50
18.0 50.11 14.5 50.03 63: 6
26.00 50.20 21.00 50.12 63: 3 (median)
24.0 50.25 17.5 50.17 62:54
24.0 50.37 19.5 50.29 62:55
18.0 50.43 14.0 50.35 63: 8
20.0 50.44 16.5 50.36 63: 7
22.0 50.56 18.0 50.48 63: 0
28.0 50.62 19.5 50.54 63: 9
24.0 50.64 18.0 50.56 62:54
22.0 50.64 19.0 50.56 62:57
18.0 50.78 155 50.70 62:54
22.0 50.80 19.5 50.72 63: 2
20.0 50.85 18.0 50.77 63: 0
22.0 50.91 16.0 50.83 63: 5
24.0 50.92 19.0 50.84 62:57
26.0 51.24 17.0 51.16 62:56
28.0 51.26 19.0 51.18 62:58

Standard deviation of the fourth column:0.63

Average run time (min:sec): 63:05
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Table 9:31 runs with P, = 20 for 33 weights.

Number of generations{max): 200

Population size: 20

Number of training positions: 4000

Py 20

Positions solved by the best VP (%) | Average positions solved by all VPs (%) Time (min:sec)

Generatior) Generatior200 Generatior) Generatior200
25.4 46.58 22.0 46.51 67:47
0.0 46.60 0.0 46.54 68:26
27.1 46.74 21.2 46.67 63:59
22.0 46.87 20.8 46.80 71:28
28.8 46.88 22.5 46.82 65:17
0.0 46.90 0.0 46.84 64:09
27.1 46.95 24.2 46.88 65:28
22.0 46.97 20.3 46.90 57:13
27.1 46.97 22.5 46.90 62:29
25.4 47.02 18.6 46.95 68: 5
20.3 47.04 19.1 46.97 67:36
23.7 47.12 22.0 47.05 63:29
23.7 47.39 21.2 47.32 59:15
27.1 47.44 24.2 47.37 67:35
23.7 47.45 22.5 47.39 68: 0
22.03 47.63 19.92 47.56 55:16 (median)
25.4 47.77 22.5 47.70 58:14
25.4 47.91 22.5 47.85 60:42
23.7 47.94 23.3 47.87 64:11
22.0 48.01 18.2 47.94 59:12
25.4 48.01 23.3 47.94 60:10
27.1 48.02 22.9 47.96 59:58
22.0 48.14 17.4 48.07 59: 8
25.4 48.19 23.3 48.13 62:48
23.7 48.21 21.6 48.15 58:44
27.1 48.27 22.0 48.20 60:20
23.7 48.28 19.5 48.21 59:41
22.0 48.46 19.9 48.39 60:59
25.4 48.55 19.9 48.48 58:43
27.1 48.59 22.5 48.52 58:40
23.7 48.61 21.2 48.54 58:49

Standard deviation of the fourth column

0.65

Average run time (min:sec):

62:58
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Table 10: It shows the median of the average positions sdiyed virtual players and the standard deviation
for 31 runs at generatioB00 and Pr = 10 with different training case.

Training case | Averagepositionssolved | Standard Deviation | Average evaluation
by all virtual players time
1000 50.87% 0.44 14 : 37
2000 51.07% 0.47 31:12
3000 52.02% 0.51 45:37
4000 53.10% 0.56 62 : 59
Table 11: Ratings fob’ P, 1o, V P35 o andV Pg.
Rank | Name Elo | + |- Games | Score | Oppo. | Draws
(%) (%)
1 VP22510’10 2341 | 26 | 25 | 400 87% 1936 26%
2 VP00 | 2186 | 24 [ 24 | 400 60% | 2014 | 28%
3 V P2} 1685 | 43 | 53 | 400 2% 2264 | 5%
Table 12: Ratings fol/ Py 1, V Pigy o andV Pis.
Rank | Name Elo | + |- Games | Score | Oppo. | Draws
(%) (%)
1 V Py 1o | 2402 | 27 | 26 | 400 88% | 1877 | 24%
2 VP§O30’O 2245 | 26 | 27 | 400 62% | 1955 25%
3 VP 1509 | 78 | 121 | 400 0% [2324 [1%

Table 13: Ratings for Chessmastgjp and the virtual players in generati@no.

Rank | Name Elo |+ |- Games | Score | Oppo. | Draws
(%) (%)

1 Chessmasterasgo | 2401 | 16 | 15 | 800 67% 2296 60%

2 VP%’O’10 2397 | 27 | 27 | 200 49% | 2401 85%

3 V Pi0.10 2344 | 29 | 29 | 200 39% | 2401 | 69%

4 VP55 o 2249 | 31 | 32 | 200 25% | 2401 | 50%

5 VPiy o 2194 | 34 | 36 | 200 19% | 2401 38%
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Table 14: Ratings fob/ P35, andV P33,

Rank | Name Elo | + |- Games | Score | Oppo. | Draws
(%) (%)
1 VP 2442 | 19 | 18 | 200 57% | 2404 | 61%
VP 1o | 2404 | 18 | 19 | 200 43% | 2442 61%

Table 15: ELO rating system

Interval Level
2400 and above| Senior Master
2200 — 2399 Master
2000 — 2199 Expert
1800 — 1999 Class A
1600 — 1799 Class B
1400 — 1599 Class C
1200 — 1399 Class D
1000 — 1199 Class E
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