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ABSTRACT The problem of assigning actions described by multiple criteria to a set of ordered classes is 
increasingly mentioned in the literature. Recently, the authors presented two new outranking-based methods 
able to integrate the treatment of multiple types of uncertainty when addressing such problem. But, as it is 
well-known, there usually is difficulty when assigning parameter values to methods based on the outranking 
approach. This difficulty raises not only on the high number of parameters and the decision maker’s 
unfamiliarity to them, but also on imperfectly known (even missing) preference parameter values and 
criterion values. Therefore, here we address: i) how to elicit the parameter values of the two new methods, 
and ii) how to incorporate imperfect knowledge during the elicitation. We follow the preference 
disaggregation paradigm and use evolutionary algorithms to solve it. Our proposal performs very well in a 
wide range of computer experiments. Some interesting findings are: i) the capacity of the method to restore 
the assignment examples reaches high values with three profiles in each limiting boundary and the same 
number of representative actions per class; and ii) the capacity to make appropriate assignments of new 
actions (not belonging to the training information) can be greatly improved by increasing the number of 
limiting profiles. 

INDEX TERMS Evolutionary algorithms; imperfect information, multiple criteria analysis, multiple 
criteria ordinal classification, outranking methods. 

I. INTRODUCTION 
Among the different types of problems addressed by the 

Multiple-criteria decision analysis (MCDA) approaches, the 
multiple-criteria ordinal classification, or sorting problem, has 
received a great interest lately given its interesting theoretical 
challenges and its applicability in real scenarios. In multiple-
criteria ordinal classification, a set of decision alternatives 
(objects of decision, actions) have to be assigned to a set of 
classes. These classes, also referred to as categories in the 
related literature, have been predefined and preferentially 
ordered by the decision maker (DM). In this paper, we are 
interested in multi-criteria ordinal classification methods 
inspired on the outranking approach. In the most popular 

methods, the definition of each class can be made through a 
reference decision action (profile) that can be used as a 
characteristic action to represent the class as in ELECTRE 
TRI-C [1] or as a limiting boundary that separates a pair of 
classes as in ELECTRE TRI-B [2]. Then, in order to perform 
the assignment of new actions, both the profiles and the 
actions-to-be-assigned are evaluated by the DM based on a set 
of conflicting criteria. With the aim to provide a better 
description of the classes, ELECTRE TRI-C, (respectively 
ELECTRE TRI-B), was extended to ELECTRE TRI-nC, 
(resp. ELECTRE TRI-nB), in [3] (resp. [4]); these extensions 
use a set of profiles in the definition of each class (resp. 
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boundary). This way, it is possible to consider more pieces of 
information regarding the relations between actions to be 
assigned and reference profiles in order to, potentially, provide 
better decision aid. 

In ELECTRE methods, the elicitation of model’s 
parameters is a real concern. When using a direct elicitation 
method, the DM, commonly aided by a decision analyst, must 
explicitly set the parameter values representing his/her 
preferences. Several authors (for example, [5]–[7]) have 
argued against the direct elicitation since: i) the DM may not 
be able to completely understand the meaning of the model’s 
parameters; and ii) the DM may not be accessible to involve 
in a long and complex process of providing appropriate 
numerical values, which usually are very unfamiliar to 
her/him; iii) the DM may be a collective entity with conflicting 
values and ill-defined preferences.  Alternatively, when using 
an indirect elicitation method, (the so-called preference 
disaggregation analysis), the DM typically uses his/her 
holistic judgments to provide/accept a set of reference 
examples inherently containing the DM’s preferences; thus, 
through a regression-inspired procedure, a process of 
extraction must be performed in order to infer the parameter 
values underlying the preferences contained in the reference 
examples. Under some strong simplifications, the extraction 
of outranking model parameters using an indirect elicitation 
method can be addressed through classical mathematical 
programming techniques as in [8]. But such an indirect 
parameter elicitation becomes a very complex optimization 
problem when veto thresholds should be inferred. In such 
cases, evolutionary algorithms should be used as in [7], [9], 
[10].  Less sophisticated metaheuristic approaches may be 
used when the preference model does not include veto, as in 
[11]. Fernández et al. [12] proposed an evolutionary algorithm 
to infer the whole set of ELECTRE TRI-nB model parameters. 
To our present knowledge, there is no indirect parameter 
elicitation method for ELECTRE TRI-nC. 

As stated in [13], indirect elicitation methods are generally 
attractive for the DM, but, to a great extent, their performance 
is degraded when there is scarce information about the DM’s 
preferences (a relatively small reference set of decision 
examples): in this case, the indirect elicitation methods often 
suggest many solutions in the parameter space [14]. All these 
distributed solutions satisfy the known preferences of the DM. 
This is imprecise information that should be modeled in an 
appropriate way. 

Thus, imprecise (maybe arbitrary) setting of the outranking 
model’s parameters may be a result of either a direct or indirect 
elicitation process. For a better model of human hesitancy, 
many extensions of outranking methods have been proposed 
that use fuzzy-based approaches (e.g., intuitionistic fuzzy sets, 
hesitant fuzzy sets, interval-valued fuzzy numbers, etc.) [15]–
[25]. It should be underlined that all these fuzzy-based 
extensions of outranking methods are devoted to solve 
choosing and ranking decision problems. To the best of our 

knowledge, there is no fuzzy extension of the ELECTRE TRI-
nC and ELECTRE TRI-nB methods. 

In order to deal with imprecise information in model 
parameters and criterion scores, Fernández et al. [26] recently 
developed two multi-criteria ordinal classification approaches, 
INTERCLASS-nB and INTERCLASS-nC, which extend 
ELECTRE TRI-nB and ELECTRE TRI-nC to the interval 
framework. As Fernández et al. [26] argue, there are situations 
where imperfect knowledge about the parameter values may 
be characterized in a natural way by interval numbers, which 
are representations of magnitudes of unknown precise values. 
Since setting a parameter value as an interval number is easier 
than as a precise value, INTERCLASS-nB and 
INTERCLASS-nC reduce the difficulty of direct elicitation of 
model parameters. However, when the DM is a mythical entity 
(e.g., the public opinion), or an inaccessible person (e.g., the 
CEO of a multinational enterprise), INTERCLASS-nB and 
INTERCLASS-nC should be complemented by an indirect 
elicitation procedure, which, (learning from decision 
examples), permits to set the model’s parameters as interval 
numbers. 

   We present in this paper an evolutionary-based approach 
to infer the parameters of both the INTERCLASS-nB and 
INTERCLASS-nC methods. Some parameters may be 
directly set as interval numbers, whereas others may be 
inferred. Thus, this paper combines two ways to reduce the 
difficulty of parameter elicitation. Our approach is extensively 
assessed, in-sample and out-of-sample, in its ability to restore 
the assignment examples and the capacity to make consistent 
assignments of new actions.  

   The novelty of this proposal rests on the following bases: 
 This is the first approach to infer preference model 

parameters of a multi-criteria ordinal classification 
method in which classes are described by 
representative actions, as in ELECTRE TRI-nC; 

 Up to now, there were two alternative ways to face 
the difficulty of eliciting the preference model 
parameters: modeling imprecision and inferring 
parameters from decision examples. This paper 
presents the first approach in which both ways are 
combined; 

 INTERCLASS-nB and INTERCLASS-nC are here 
fully characterized from a preference disaggregation 
paradigm, and the effectiveness of both methods are 
compared in a wide range of problems; interesting 
conclusions follow from such a comparison. 

Our results answer the following questions: 
- Concerning INTERCLASS-nB (respectively 

INTERCLASS-nC), which is the appropriate 
number of limiting profiles (respectively, 
characteristic or representative actions) to achieve a 
good characterization of the limiting boundary 
between adjacent classes (resp. the related class)? 
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- How much is the effectiveness of the inference 
approach depending on the number of criteria and 
classes? 

- How much is the effectiveness depending on the 
number of assignment examples? 

The first question was kept open in [26]. Since finding 
formal theoretical answers to the above questions may be 
impossible, we perform a simulation experiment in which a 
wide range of DM preferences are considered, and the 
effectiveness of the inference method is characterized for 
different instances of classes, criteria, and number of 
assignment examples. 

The rest of this document is presented as follows. In Section 
II, we make a brief description of the INTERCLASS-nB and 
INTERCLASS-nC methods as well as the interval outranking 
approach, a fundamental component of these methods. Section 
III presents our main proposals about how to infer the 
parameter values of both methods. In Section IV, we describe 
an extensive computer experiment and its results assessing our 
elicitation methods. Finally, Section V concludes this paper. 
 
II. BACKGROUND 
 
A.  FUNDAMENTAL NOTIONS ON INTERVAL NUMBERS 
The main concept of Interval Analysis Theory [27], [28] is the 
so-called interval number. Let us now present a description of 
such a concept. 
An interval number describes a not-necessarily-defined 
quantity whose actual value lies within a range of real 
numbers, 𝑰 𝐼 , 𝐼 . The limits of this range, 𝐼 , 𝐼 ∈ ℝ, are 
known. Thus, by definition, a real number 𝑟 can be represented 
by the interval number 𝑹 𝑟 , 𝑟 , where 𝑟 𝑟 𝑟 . 
Furthermore, any real number 𝑖 ∈ 𝑰 is called a realization of 
the interval number 𝑰. In order to state clearer definitions, in 
the rest of this document, interval numbers will be denoted by 
boldface italic letters. 
In order to estimate the credibility degree of an interval 
number 𝑰 𝑖 , 𝑖  being greater than or equal to another 
interval number 𝑱 𝑗 , 𝑗 , the following possibility 
function defined in [29] is used by [30]: 

𝑝 𝑰 𝑱
1 if 𝑝 𝑰𝑱 1,
0 if 𝑝 𝑰𝑱 0,

𝑝 𝑰𝑱 otherwise.
        (1) 

Where 𝑝 𝑰𝑱
 

  
 . 

Furthermore, if 𝑖 𝑖   and 𝑗 𝑗 , then  

𝑝 𝑰 𝑱 1 if 𝑖 𝑗 ,
0 otherwise.

 

The possibility function defined in (1) indicates that 𝑝 𝑰 𝑱  
is the credibility degree of the assertion “given that both 
realizations are established, 𝑖 ∈ 𝑰 is not less than 𝑗 ∈ 𝑱”. Thus, 
the possibility function denotes robustness of 𝑰 𝑱, even 
when these quantities are undetermined. 

B.  INTERVAL-BASED OUTRANKING APPROACH 

Fernández et al. [30] proposed an extension of the 
outranking approach whose main characteristic is its capacity 
to deal with the imperfect knowledge involved in the decision 
maker’s preferences and in the actions’ impacts on the criteria. 
These types of imperfect information can be modeled in such 
extension using both interval numbers and the traditional 
pseudo-criteria based on discriminating thresholds (e.g., [31], 
[32]). 

The formal definition of the interval outranking approach 
depends on the following notation. Let 𝐴 be a set of potential 
actions. Each 𝑥 ∈ 𝐴 is evaluated on a family of 𝑁 coherent 
criteria (as in the sense of [33]) 𝐺, which, without loss of 
generality, increase with preference. Now, assume that 𝐺 ⊆
𝐺 is the set of criteria whose imperfect knowledge can be 
modeled by using discriminating thresholds as it is 
traditionally done by later ELECTRE methods. And that 𝐺 ⊆
𝐺 is the set of criteria whose imperfect knowledge can be 
modeled using interval numbers; that is, each gj ∈ G2 is an 
interval number of the form gj(x) = [gj

-(x), gj
+(x)]. The interval 

outranking approach requires the assignment of appropriate 
values to the following parameters to satisfactorily reflect the 
DM’s preferences: 

 𝒘𝒋   𝑤 , 𝑤 , the weight of criterion gj;  
 𝒗𝒋   𝑣 , 𝑣 , the veto threshold of criterion gj; 

and 
 𝝀  𝜆 , 𝜆 , that reflects a majority threshold. 

Where 𝑗 1, ⋯ , 𝑁. Furthermore, it is a straightforward 
work for the DM to assign values to the preference threshold 
𝑝 ⋅ , and the indifference threshold, 𝑞 ⋅ ; 𝑝 ⋅ 𝑞 ⋅
0. As in the classical outranking approach, the interval 
outranking approach estimates a credibility index, 𝜂 𝑥, 𝑦 ∈
0,1 , between pairs of actions of the assertion “𝑥 is at least as 

good as 𝑦”, 𝑥𝑆𝑦. The detailed procedure used by the interval-
based outranking approach to estimate this credibility index is 
described in Appendix C. 

The approach assumes that the DM uses a credibility 
threshold 𝛿  0.5 such that if  𝜂 𝑥, 𝑦 𝛿 then the assertion 
“𝑥 is at least as good as 𝑦” is accepted. Using this threshold, 
the following relations are defined. 

 
Definition 1. 𝛿-𝝀-relations 
𝑥𝑆 𝛿, 𝝀 𝑦 ⇔ 𝜂 𝑥, 𝑦 𝛿 is called 𝛿-𝝀-interval 

outranking relation, 
𝑥𝑃 𝛿, 𝝀 𝑦 ⇔ 𝜂 𝑥, 𝑦 𝛿 and 𝜂 𝑦, 𝑥 𝛿 is called  𝛿-𝝀-

interval preference relation, 
𝑥𝐼 𝛿, 𝝀 𝑦 ⇔ 𝜂 𝑥, 𝑦 𝛿 and 𝜂 𝑦, 𝑥 𝛿 is called  𝛿-𝝀-

interval indifference relation, 
𝑥𝑅 𝛿, 𝝀 𝑦 ⇔ 𝜂 𝑥, 𝑦 𝛿 and 𝜂 𝑦, 𝑥 𝛿 is called 

integrated 𝛿-𝝀-interval incomparability relation. 
The concept of dominance is also extended in [30]. In that 

work, dominance is not crisp, but there is a “degree of 
credibility”, 𝛼, of the dominance.  

 
Definition 2. Extended dominance 
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Let 𝑥 𝑦 be two actions and 𝛼 ∈ ℝ; then 𝑦 is 𝛼-dominated 
by 𝑥, denoted by 𝑥𝐷  𝑦, if and only if the following 
conditions are fulfilled: 

i. gj(x) ≥ gj(y), for all gj ∈ G1, 

ii. min
gj∈G2

p gj x  ≥ gj y ≥ α ≥ 0.5. 

 

C.  THE INTERCLASS-NB METHOD 
Fernández et al. [30] proposed an extension of the outranking 
approach whose main characteristic is its capacity to deal with 
the imperfect knowledge involved in the decision maker’s 
preferences and in the actions’ impacts on the criteria. 

Condition 1. 
Let 𝐶 be a finite set of classes 𝐶 𝐶 , ⋯ , 𝐶 , ⋯ , 𝐶 , 𝑀
2, ordered in increasing preference. In INTERCLASS-nB, the 
boundaries between categories 𝐶  and 𝐶  are described by 
a set of limiting profiles, 𝐵 𝑏 , , such that for given 𝛿
0.5 and 𝝀 0.5,0.5  the following conditions are fulfilled: 

i. 𝐶  is defined through a set of reference upper 
limiting profiles, 𝐵 , and through a set of reference 
lower limiting profiles, 𝐵 . It is assumed that all 
𝑏 ,  of 𝐵  are in  𝐶  (that is, all classes are closed 
from below); 

ii. 𝐵  (respectively, 𝐵 ) is composed of the anti-ideal 
(respectively, the ideal) action; 

iii. For all 𝑘, there is no pair (𝑏 , , 𝑏 , ) such that 
𝑏 , 𝑃 𝛿, 𝝀 𝑏 , ; 

iv. For all 𝑘 and ℎ such that 𝑘 ℎ, there is no pair (𝑏 , , 
𝑏 , ) such that 𝑏 , 𝑃 𝛿, 𝝀 𝑏 , ; 

v. For all 𝑘 and for each limiting action 𝑤 in 𝐵 , there 
exists at least one action 𝑧 in 𝐵  in such a way that 
𝑧𝐷  𝑤,  𝛿; 

vi. For all 𝑘 and for each limiting action 𝑤 in 𝐵 , there 
exists at least one  𝑧 in 𝐵  in such a way that 
𝑤𝐷  𝑧,  𝛿. 

vii. For all 𝑘 and for each limiting action 𝑤 in 𝐵 , exists 
at least one  𝑧 in 𝐵  in such a way that 𝑧𝑃 𝛿, 𝝀 𝑤, 
 𝛿. 

The following relations among profiles and decision actions 
are defined by INTERCLASS-nB: 

 𝑥𝑆 𝛿, 𝝀 𝐵  if and only if, for all 𝑏 , ∈ 𝐵 , either 
x𝑅 𝛿, 𝝀 𝑏 ,  or x𝑆 𝛿, 𝝀 𝑏 ,  (the latter should hold for at 
least one 𝑏 , ); 

 𝐵 𝑃 𝛿, 𝝀 𝑥 if and only if, for all 𝑏 , ∈ 𝐵 , 𝑏 , 𝑅 𝛿, 𝝀 𝑥 
or 𝑏 , 𝐼 𝛿, 𝝀 𝑥 or 𝑏 , 𝑃 𝛿, 𝝀 𝑥 (the latter should hold for 
at least one 𝑏 , ). 

The assignment procedures constituting the INTERCLASS-
nB method are based on the following two logics: 

Pseudo-conjunctive procedure 
i. Compare 𝑥 to 𝐵  for 𝑘 𝑀 1, … , 0 until the first 

value, 𝑘, such that 𝑥𝑆 𝛿, 𝝀 𝐵 ; 

ii. Assign 𝑥 to class 𝐶 . 

Pseudo-disjunctive procedure 
i. Compare 𝑥 to 𝐵  for 𝑘 1, … , 𝑀 until the first 

value, 𝑘, such that 𝐵 𝑃 𝛿, 𝝀 𝑥; 

ii. Assign 𝑥 to class 𝐶 . 

 

D.  THE INTERCLASS-NB METHOD 

We continue using the previous notation to present now a 
description of the INTERCLASS-nC method following [30].  

In the INTERCLASS-nC method, the set of decision actions 
characterizing class 𝐶 , 𝑘 1, … , 𝑀, is denoted by 𝑅
𝑟 , ; 𝑗 1, … , 𝑐𝑎𝑟𝑑 𝑅 , where 𝑅 , 𝑅 , … , 𝑅 , 𝑅  is 

the set of all the characterizing decision alternatives (𝑅 , and 
𝑅  are composed of the anti-ideal and ideal actions, 
respectively). Assume a given 𝛿 0.5. 

Condition 2. 
Each element in 𝑅  must fulfill the following conditions: 

i. For all 𝑘 and for each action 𝑤 in 𝑅 , there is at least 
one action 𝑧 in 𝑅  such that 𝑧𝐷 𝛼 𝑤 (𝛼 𝛿). 

ii. For all 𝑘 and for each action 𝑤 in 𝑅 , there is at 
least one action 𝑧 in 𝑅  such that 𝑤𝐷 𝛼 𝑧 (𝛼 𝛿). 

iii. For all 𝑘 and for each action 𝑤 in 𝑅 , there is no 
action 𝑧 in 𝑅  such that 𝑧𝑆 0.5, 𝝀 𝑤. 

The credibility index of the outranking relation of action 𝑥 
over the subset 𝑅  is defined as follows: 

𝜂 𝑥 , 𝑅 max
,⋯,

𝜂 𝑥, 𝑟 , . 

While the credibility index of the outranking relation of subset 
𝑅  over an action 𝑥 is defined as follows: 

𝜂 𝑅 , 𝑥 max
,⋯,

𝜂 𝑟 , 𝑥 . 

Such credibility indices allow to build interval crisp 
outranking relations between decision actions and sets of 
characteristic actions as follows: 
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𝑥𝑆 𝛿, 𝝀 𝑅 ⇔ 𝜂 𝑥 , 𝑅 𝛿; 

𝑅 𝑆 𝛿, 𝝀 𝑥 ⇔ 𝜂 𝑅 , 𝑥 𝛿. 

The selection function is defined as 𝑖 𝑥 , 𝑅  
min 𝜂 𝑥 , 𝑅 , 𝜂 𝑅 , 𝑥 . 

The assignments of alternatives to classes are performed in 
INTERCLASS-nC using two joint rules, called the 
descending rule and the ascending rule, which should be used 
conjointly, as in both ELECTRE TRI-C and ELECTRE TRI-
nC. We now describe these rules. 

Descending assignment rule 
i. Compare 𝑥 to 𝑅  for 𝑘 𝑀, … , 0, until the first 

value, 𝑘, such that 𝑥𝑆 𝛿, 𝝀 𝑅 ; 

ii. For 𝑘 𝑀, select 𝐶  as a possible class to assign 
action 𝑥. 

iii. For 0 𝑘 𝑀, if 𝑖 𝑥 , 𝑅 𝑖 𝑥 , 𝑅 , then 
select 𝐶  as a possible class to assign 𝑥; otherwise, 
select 𝐶 . 

iv. For 𝑘 0, select 𝐶  as a possible class to assign 𝑥. 

Ascending assignment rule 
i. Compare 𝑥 to 𝑅  for 𝑘 1, … , 𝑀 1, until the 

first value, 𝑘, such that 𝑅 𝑆 𝛿, 𝝀 𝑥; 

ii. For 𝑘 1, select 𝐶  as a possible category to 
assign action 𝑥. 

For 1 𝑘 𝑀 1, if 𝑖 𝑥 , 𝑅 𝑖 𝑥 , 𝑅 , then select 
𝐶  as a possible class to assign 𝑥; otherwise, select 𝐶 . 

III.  AN INDIRECT ELICITATION FOR THE 
PARAMETERS OF THE INTERCLASS-NB AND 
INTERCLASS-NC METHODS 
This section details the main aspects of the approach to infer 
the parameters of both multi-criteria ordinal classification 
methods. 

 

A.  AN OPTIMIZATION-BASED INFERENCE METHOD 
OF THE INTERCLASS-NB METHOD 

The credibility index of the outranking relation of 𝑥 over 𝑦, 
𝜂 𝑥, 𝑦  depends on the values assigned to the parameters of 
the interval outranking model, 𝒫
𝒘𝟏, ⋯ , 𝒘𝒏, 𝒗𝟏, ⋯ , 𝒗𝒏, 𝝀, 𝛿 ; but setting a convenient set of 

parameters is not trivial. We present here a procedure where, 
using a set of assignment examples (reference set) provided by 
the DM, it is possible to assign appropriate values to the 
parameters of the interval outranking model to satisfactorily 
represent the DM’s preferences. We use the notation of 
Section II to define such procedure. 

Let 𝑇 be a set of decision actions. We assume that each 𝑥 ∈
𝑇 is assigned by the DM to a class 𝐶 , 𝐶

𝐶 , ⋯ , 𝐶 , ⋯ , 𝐶 , 𝑀 2. The classes in 𝐶 are ordered in 
increasing preference. The assignments of alternatives to 
classes are holistic decisions made by the DM; thus, his/her 
multi-criteria preferences are reflected in them. We assume 
these decisions might be represented by an INTERCLASS-nB 
model, 𝒫, 𝐵 , ⋯ , 𝐵 ; that is, by the parameters of the 
interval outranking model, 𝒫, and 𝑀 1 sets of limiting 
profiles. Given that 𝐵  and 𝐵  are composed, respectively, of 
the anti-ideal and the ideal actions, we are interested in finding 
only an approximation to the set of actual preference 
parameters, 𝑛𝐵 𝒫, 𝐵 , ⋯ , 𝐵 . Therefore, the 
inferred preference parameter set that is most appropriate to fit 
the assignments expressed by the DM, 𝑛𝐵∗ , is the one that 
minimizes the number of inconsistencies with respect to the 
expressed preferences. Let  

𝑥 → 𝐶  

denote that the DM has assigned 𝑥 to class 𝐶 ,  
𝑥 → 𝐶  

denote that 𝑥 is assigned to class 𝐶  using the inferred 
decision model 𝑛𝐵 , and 𝜉  be the set of models fulfilling 
Condition 1 and any constraints established by the DM. The 
optimization problem of minimizing the number of 
inconsistencies between 𝑛𝐵  and a given 𝑛𝐵  is equivalent 
to maximizing the following effectiveness measure: 

                   maximize
∈

1
𝑁𝐼 𝑛𝐵 , 𝑛𝐵

𝑐𝑎𝑟𝑑 𝑇
                      2  

where 
𝑁𝐼 𝑛𝐵 , 𝑛𝐵 ∑ 𝑁𝐼 𝑥, 𝑛𝐵 , 𝑛𝐵∈ , and 
 𝑁𝐼 𝑥, 𝑛𝐵 , 𝑛𝐵

1 if 𝑥 → 𝐶  and 𝑥 → 𝐶 𝑤𝑖𝑡ℎ 𝑘 ℎ,

0 otherwise.
 

 

B.  AN OPTIMIZATION-BASED INFERENCE METHOD 
OF THE INTERCLASS-NC METHOD 

In a similar order of the ideas presented in Subsection III.B, 
we describe here an inference method to elicit the parameter 
values of the INTERCLASS-nC method. Such method also 
uses a set of assignment examples where the DM assigns 
actions to preferentially ordered classes. Let 𝐷 be this set of 
actions, where each 𝑥 ∈ 𝐷 is assigned by the DM to one 
element of the set of classes 𝐶 𝐶 , ⋯ , 𝐶 , ⋯ , 𝐶  or to a 
range of classes when the ascending and descending 
assignments are not the same. Thus, our goal is to find a model 
of the DM’s preferences by inferring a configuration of the 
INTERCLASS-nC method, 𝑛𝐶∗ 𝒫∗, 𝑅∗, ⋯ , 𝑅∗ , that 
fulfills Condition 2 and is as consistent as possible with the 
assignments made by the DM. 

Nevertheless, defining a fitness function here is not as 
straightforward as in the previous section. This is because each 
𝑥 is not necessarily assigned to only one class but a set of 
classes. Thus, if 𝜒  is the set of classes to which the DM has 
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assigned 𝑥 and 𝜒  is the set of inferred classes, if we define 
the accuracy as 

𝐴𝑐 𝑥, 𝑛𝐶 , 𝑛𝐶
1 𝑖𝑓 𝜒  𝜒 ,
0 otherwise;

 

then, we might be too pessimistic since only one 
misclassification (perhaps among many classes) would lead to 
a total error. On the other hand, if we define 

 𝐴𝑐 𝑥, 𝑛𝐶 , 𝑛𝐶
1 𝑖𝑓 𝜒  ∩ 𝜒 ∅,
0 otherwise;

 

then we might be too optimistic. Therefore, we use here the 
so-called F1-score [34], defined through precision, P, and 
recall, R, as [35]: F1-score = 2PR/(P+R). We adapt it to define 
the following optimization problem (cf. [11]): 

 
maximize

∈

𝐴𝑐 𝑛𝐶 , 𝑛𝐶
𝑐𝑎𝑟𝑑 𝐷

, 
(1) 

where 
 𝐴𝑐 𝑛𝐶 , 𝑛𝐶 ∑ 𝐴𝑐 𝑥, 𝑛𝐶 , 𝑛𝐶∈ , and 

𝐴𝑐 𝑥, 𝑛𝐶 , 𝑛𝐶
 ∩ 

| |
. 

 

C.  AN EVOLUTIONARY ALGORITHM FOR 
ADDRESSING PROBLEMS (2) AND (3) 
Given the non-linearity of Problems (2) and (3) and the 
previous results published in several related research works 
(e.g., [7], [10], [12], [13]), we implement here a genetic 
algorithm to address these problems. Even when the main 
aspects of such algorithm are convenient for addressing both 
problems, there are some characteristics that are specific of 
each problem. Thus, we now describe the specific steps to be 
followed. As in Section II, we assume there are 𝑁 criteria and 
𝑀 classes. 

Specific steps for configuring 𝑛𝐵 : 

Individuals are represented by a real-valued vector composed 
of 𝐾 𝑁 2 𝐽 𝑀 1 1 genes as in Figure 1, where 𝐽 
is the number of profiles used to separate each pair of classes. 

 Specific steps for configuring 𝑛𝐶 : 

For 𝑛𝐶 , individuals are represented by a real-valued vector 
composed of 𝑁 2 𝑂𝑀 1 genes as in Figure 2, where 𝑂 
is the number of profiles used to characterize each class. 

D.  GENERAL STEPS OF THE EVOLUTIONARY 
ALGORITHM 
Each population used in the algorithm contains 𝑝𝑠 individuals. 
The individuals in the initial population of the algorithm are 
randomly generated fulfilling the following constraints (the 
specific values are established by the DM/analyst pair): 

𝒗𝒊 𝒗𝒊 𝒗𝒊 ,    (4) 

𝒘𝒊 1,1 , 

g g g , 

𝜆 𝝀 𝜆 . 

The generation of the weights could be in several ways. In the 
experiments below, we use the method presented in [36], 
where 𝑁 1 numbers, 𝑢 , ⋯ , 𝑢 , are uniformly randomly 
generated in 0,1 ; later, these numbers are ordered in 
ascending order to calculate 𝑁 values as 𝜔 𝑢 0, 𝜔
𝑢 𝑢  𝑖 2, ⋯ 𝑁 1  and 𝜔 1 𝑢 . Such 
method ensures ∑ 𝜔 1. Finally, the weights used in the 
integrated outranking approach could be defined as 𝒘𝒊

1 𝑤 𝜔 , 1 𝑤 𝜔 ; where 𝑤  is a value that copes with 
the imperfect knowledge in the DM’s mind about the actual 
weight of the 𝑖th criterion. 

In our algorithm, the selection of parents is by binary 
tournament, and we adopt one-point crossover. In order to 
keep consistency in the weights, we assume that all the genes 
corresponding to weights form an indivisible unit. Thus, there 
are 𝐾 𝑁 possible crossover points as shown in Figure 3 for 
configuring 𝑛𝐵  and 𝑁𝑂𝑀 1 for configuring 𝑛𝐶  as 
shown in Figure 4. Once the two selected parents are crossed 
in a randomly selected crossover point, one offspring 
individual is generated; such individual is then mutated with a 
given probability. The mutation of an individual consists in the 
random generation of each unity of genes fulfilling the 
constraints set (4). At each generation of the algorithm, 𝑝𝑠 
(population size) offspring individuals are generated and 
(possibly) mutated. All the offspring and parent individuals 
are introduced within a pool from where 𝑝𝑠 1 individuals 
are randomly selected to form the population in the next 
generation of the algorithm. We perform elitism in one 

FIGURE 1. Chromosome of individual representing 𝒏𝑩𝒊𝒏𝒇 

FIGURE 2. Chromosome of individual representing 𝒏𝑪𝒊𝒏𝒇
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individual per generation. The fitness of each individual is 
assessed from the objectives in Problem (2) or Problem (3), as 
corresponds. After a given number of generations, the 
algorithm returns the chromosome that represents the feasible 
solutions with the best fitness values in the population; let 
these solutions form a set called 𝑏𝑒𝑠𝑡 . The chromosome 
representing 𝑏𝑒𝑠𝑡  is obtained as the centroid (average of 
the parameters) of individuals within 𝑏𝑒𝑠𝑡 . If the 
centroid reaches the best fitness value already known, it is 
considered as the best solution. If not, then the solution in 
𝑏𝑒𝑠𝑡  closest to the centroid is considered as the best 
solution of the preliminary run. Such distance is calculated as 
the normalized Euclidean distance of the parameters’ central 
values. In order to reduce the effects of randomness, we 
perform twenty consecutive preliminary runs. From the 
second run, we include the best solution of the previous run in 
the initial population. 

As one of the classical algorithm configurators of the related 
literature, we use ParamILS [37] to set our own algorithm’s 
main parameters; that is, the population size, the number of 
generations, the crossover probability and the mutation 
probability. The values found by such configurator are, 
respectively, 200, 200, 60% and 2%. Thus, such values are 
used in the present work. 

This procedure is formalized in Algorithm 1. 

Algorithm 1. Genetic Algorithm proposed to address 
Problems (2) and (3). 
Require: A set of reference examples, 𝑇 
Ensure: 𝜌 , individual representing the population with 
the best fitness values 
 1: 𝑖 ← 1 
 2: 𝜌 ← 𝑛𝑢𝑙𝑙 
 3:     𝑔 ← 0 
 4:     𝑃 ← create-Initial-Population () 
{Evolving the solutions for 1000 generations} 
 5:     for 𝑔 1000 do 
 6: 𝐻 ← create-Offspring (𝑃 , selection, crossover, 
mutation) 
 7: 𝑃 ← generate-Population (𝑃 ∪ 𝐻  

 8: 𝑔 ← 𝑔 1 
 9:     end for 
10:   𝑏𝑒𝑠𝑡 ← find-Best (𝑃 ) 
11:   𝜌 ← find-Centroid (𝑏𝑒𝑠𝑡 ) 
12:  if 𝜌 is-best (𝑏𝑒𝑠𝑡 ) 
13:      𝜌 ← 𝜌 
14:  else  
15:      𝜌 ← find-closest (𝜌) 
 

IV.  NUMERICAL EXPERIMENTS 
In this section, we present the procedure used to assess our 

inference approach. Such assessment intends to demonstrate 
our approach’s ability to infer the parameter values of the 
INTERCLASS-nB and INTERCLASS-nC models by 
establishing its effectiveness to i) reproduce the DM’s 
reference examples, and ii) appropriately make new 
assignments.  

The procedure to assess our approach is, first, to simulate a 
decision maker who is compatible with the pseudo-
conjunctive INTERCLASS-nB (respectively INTERCLASS-
nC), and whose preference model parameters are known; 
second, by using the known model of preferences, to assign a 
set of reference actions to ordered classes; third, to exploit the 
evolutionary algorithm of Subsection III.C addressing 
Problems (2) or (3) in order to infer the parameter values of 
the pseudo-conjunctive INTERCLAS-nB or the 
INTERCLAS-nC methods; fourth, to obtain an in-sample 
effectiveness firstly using the inferred parameters to assign the 
reference actions to classes and, later, measuring the 
proportion of coincidences; fifth, to obtain an out-of-sample 
effectiveness by generating new actions and assigning them to 
classes using the known model parameters and the inferred 
parameters, finally measuring the proportion of coincidences. 
 

A.  EXPERIMENTAL INSTANCES 
We create a set of experimental instances that would allow us 
to obtain sound conclusions. Each instance 𝑖 used in the 
experiments below is constituted of a) an INTERCLASS-nB 
or INTERCLASS-nC model, b) a reference set 𝑇  containing 
𝑚  assignment examples. So, each instance represents 

FIGURE 3. Possible crossover points for configuring 𝒏𝑩𝒎𝒐𝒅𝒆𝒍

FIGURE 4. Possible crossover points for configuring 𝒏𝑪𝒎𝒐𝒅𝒆𝒍
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different decision maker preferences. We use 20 instances 
(𝑖 1, … , 20) to determine the results shown below. 
Furthermore, we define a wide variety of values in the 
experiment’s configuration as shown in Table 1. 

TABLE 1. Configurations of the experiments 
Aspect of the experiment’s 

configuration 
Notation Values used 

Number of criteria 𝑁 3, 5, 7 

Number of classes 𝑀 2, 3, 5 

Number of assignment examples per 
class 𝑛  3, 5, 9, 12 

Cardinality of the set of assignment 
examples 𝑐𝑎𝑟𝑑 𝑇  𝑀 ⋅ 𝑛  

Number of limiting profiles per 
boundary 

𝑐𝑎𝑟𝑑 𝐵 , 𝑘

1, ⋯ , 𝑀 1 
1, 3, 5 

Number of characterizing profiles 
per class 

𝑐𝑎𝑟𝑑 𝑅 , 𝑘

1, ⋯ , 𝑀 
1, 3, 5 

Number of out-of-sample validation 
actions 𝑛  400 

Number of simulated decision-
makers 𝑛  20 

In our experimental settings, the values of the model 
parameters, shown in the set of Equations (4), were randomly 
generated fulfilling: 

     2,2 𝒗𝒊 4,4 ,       (5) 
𝝎 𝒘𝒊 𝝎 , 

0.5,0.5 gj 7.5,7.5 , 
0.51,0.51 𝝀 0.66,0.66 . 

Where 𝝎 ⋅ 02 , ⋅ 02  and 𝝎

⋅ 02 , ⋅ 02 . 

 
The definition of limiting profiles (respectively characteristic 
actions) must fulfill Condition 1 (resp. Condition 2). 
 

B.  ASSESSMENT PROCEDURE 
We use the following assessment procedure: 
1. Use different number of criteria 𝑁 , classes 𝑀 , 

assignment examples per class 𝑛  and limiting 
profiles per boundary (for the INTERCLASS-nB, 
𝑐𝑎𝑟𝑑 𝐵 ) or characterizing actions per class (for 
the INTERCLASS-nC, 𝑐𝑎𝑟𝑑 𝑅 ); namely, 𝑁
3, 5, 7; 𝑀 2, 3, 5; 𝑛 3, 5, 9, 12; 
𝑐𝑎𝑟𝑑 𝐵 1,3,5; and 𝑐𝑎𝑟𝑑 𝑅 1,3,5. For 
each of these, follow the next steps. 

2. Use 20 instances and, for each instance, randomly 
generate an INTERCLASS-nB simulated DM 
model, 𝑛𝐵 , with five limiting profiles in each 
boundary (excepting 𝐵  and 𝐵 ) or an 
INTERCLASS-nC simulated DM model, 𝑛𝐶 , 
with ten characterizing profiles per class (excepting 
𝑅  and 𝑅 ). There will be a total of 2,160 
instances for each method. 

3. Create reference decision alternatives 𝑥 by randomly 
generating the values gi, 𝑖 2, ⋯ , 𝑁. Each gj is 
randomly generated in 0.5,7.5 . 

4. Use the DM’s set of model parameters (𝑛𝐵  or 
𝑛𝐶 ) to create the set of assignment examples (𝑇 or 
𝐷) by assigning the reference actions to classes. The 
assignment policy used by the 𝑛𝐵  model is the 
pseudo-conjunctive procedure. 

5. Obtain, using the approach of Section III, a set of 
parameters 𝑛𝐵∗  or 𝑛𝐶∗  as consistent as possible 
with the assignments made by the corresponding 
simulated DM model. The maxima consistency is 
identified with the optimal solution to Problem (2) or 
Problem (3) and the optimization is performed using 
Algorithm 1. 

6. Assign the actions in 𝑇 to classes according to 𝑛𝐵∗  
(using the pseudo-conjunctive procedure) or the 
actions in 𝐷 to classes according to 𝑛𝐶∗ . Determine 
the in-sample effectiveness of 𝑛𝐵∗  using the 
accuracy measure presented in Problem (2). 
Similarly, the in-sample effectiveness of 𝑛𝐶∗  is 
determined through Problem (3). 

7. Create a new set of potential actions and assign them 
to classes using 𝑛𝐵  and 𝑛𝐶 , and later determine 
the approach’s out-of-sample effectiveness similarly 
to step 6. 

C.  RESULTS 
Results are presented per method (INTERCLASS-nB and 
INTERCLASS-nC) and per type of experiment (in-sample 
and out-of-sample). Since the out-of-sample results can be 
considered as more illustrative of the approach effectiveness, 
we present some graphs of these results in the main text; the 
graphs for in-sample results are shown in the appendices. 

1) INTERCLASS-nB 
It is important to keep in mind that the main objective of 
eliciting preference parameters is not to find the exact values 
of such parameters (if they even exist), but to determine those 
(not necessarily unique) values that reproduce the expressed 
preferences of the DM as well as possible.  
We provide the results in terms of in-sample and out-of-
sample effectiveness in reproducing the assignments from the 
set of simulated decision-maker preferences. 

i. In-sample effectiveness 
Results are shown in Figures A.1 and A.2 of Appendix A, 
where the error bars are equivalent to twice the standard 
deviation of the corresponding averages. More concentrated 
results are given in Tables 2-5. 
TABLE 2. Average effectiveness in dependence of the 
number of criteria 

Number of criteria 
(N)

Effectivenes
s 

Standard 
deviation

3 0.997 4.0E-4
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5 0.997 4.0E-4
7 0.9961 4.0E-4

 
Given the large number of experiments, the mean values of 
effectiveness should be distributed normally. In the following, 
we use the 2-sample t-test with a level of significance of 0.05 
and with the null hypothesis “(H0:) The means of the results 
of two rows of the table are the same”. The null hypothesis 
was not rejected in comparing any pair of rows in Table 2, 
which provides evidence on the robustness of the approach 
regarding the number of criteria. 
The effectiveness in dependence of the number of classes is 
provided by Table 3. The difference between each pair of these 
effectiveness was significant. These results provide slight 
evidence indicating that increasing the number of classes has 
a negative effect on the effectiveness of the approach. 

TABLE 3. Average effectiveness in dependence of the 
number of classes 

Number of 
classes (M) 

Effectiveness 
Standard 
deviation 

2 0.9995 1.00E-04 
3 0.9987 2.00E-04 
5 0.992 6.00E-04 

 
The effectiveness in dependence of the number of assignment 
examples per class is shown in Table 4. There is a statistical 
difference among all the effectiveness values in this table, 
showing that the effectiveness is a decreasing function of the 
number of objects per class. 

TABLE 4. Average effectiveness vs the number of 
assignment examples 

Number of Objects per 
class (nclass) 

Effectiveness 
Standard 
deviation 

3 0.9992 3.00E-04 

5 0.998 4.00E-04 

9 0.9959 5.00E-04 

12 0.9938 6.00E-04 

The effectiveness of the approach in dependence of the 
number of limiting profiles is shown in Table 5. There is 
something interesting with the effectiveness values shown in 
this table. Statistical analysis shows that there is significant 
improvement in effectiveness when going from one to three 
profiles or when going from one to five. However, there is no 
evidence that increasing from three to five profiles improves 
effectiveness; therefore, the decision analyst should consider 
that it may be not worth increasing the cognitive effort of the 
DM. 

TABLE 5. Average effectiveness vs card(Bk) 
Number of profiles 

(card(Bk)) 
Effectiveness Standard deviation 

1 0.9933 6.0E-4

3 0.9985 3.0E-4
5 0.9984 3.0E-4

 
ii. Out-of-sample effectiveness 
Table 6 exhibits the effectiveness in dependence of the number 
of criteria. Statistical analyses to the values in this table show 
that the effectiveness of the approach is a decreasing function 
of the number of criteria, which is intuitive since higher 
numbers of criteria imply higher complexities of the problem. 

TABLE 6. Out-of-sample effectiveness vs number of 
criteria 

Number of 
criteria 

Effectiveness 
Standard 
deviation 

3 0.8617 0.0035 
5 0.8216 0.0042 
7 0.7862 0.0045 

Table 7 analyzes the effectiveness in dependence of the 
number of classes. There is a statistical difference between 
each pair of values in this table. Here, it is quite interesting 
how the effectiveness goes up when increasing from two to 
three classes but goes down when increasing from three to five 
classes. This behavior is maintained regardless of the number 
of profiles or the number of assignment examples (see Figures 
5 and 6). Thus, one could ask if going from two to three classes 
increases the reference information providing more learning 
capacity to the approach without considerably increasing the 
complexity of the problem, but the new reference information 
does not compensate the increment in the complexity when 
going from three to five classes. Such a hypothesis will be 
evaluated in future works. 

TABLE 7. Out-of-sample effectiveness vs number of 
classes 

Number of 
classes

Effectiveness 
Standard 
deviation 

2 0.8217 0.0047 

3 0.8758 0.0034 

5 0.7721 0.0037 

The effectiveness of the approach in dependence of the 
number of assignment examples per class is provided by Table 
8. According to the statistical analysis, the hypothesis “the 
means of the results of two rows of the table are the same” is 
rejected for all pairs of rows, except when the first two rows  
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are compared. Therefore, there is clear evidence indicating 
that the effectiveness increases as the number of objects per 
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class also increases. 

TABLE 8. Out-of-sample effectiveness vs number of 
assignment examples per class 

Number of objects per 
class 

Effectiveness 
Standard 
deviation

3 0.8061 0.0062 

5 0.8166 0.005 

9 0.8301 0.0042 

12 0.8399 0.0039 

Table 9 shows the effectiveness in dependence of the number 
of limiting profiles per boundary. There is no statistically 
significant difference between the average values in Table 9. 
To a great extent, this is a surprising result since an 
INTERCLASS-nB model with 5 profiles, although more 
complex, should “learn” better the decision policy that is 
implicit in the training set. 

TABLE 9. Out-of-sample effectiveness vs card(Bk) 
Number of 

profiles 
Effectiveness 

Standard 
deviation 

1 0.8229  0.0042 
3 0.8248 0.0042 

5 0.8218 0.0043 

Figures 5-8 present the previous results with more detail 
addressing questions like “given a number of criteria, what is 
the effectiveness of the approach in dependence on the number 
of profiles?”. 

ii. Discussion of the results on INTERCLASS-nB 

The average in-sample effectiveness reaches values very close 
to 1. This proves that the evolutionary algorithm used by the 
inference procedure behaves quite satisfactorily. The 
effectiveness is statistically independent of the number of 
criteria and is a decreasing function with the number of 
classes. It is also a decreasing function with the number of 
assignment examples per class, perhaps because the increment 
of this number increases the difficulty of the optimization 
problem related to the parameter inference. Three limiting 
profiles in each boundary gives better results than a single 
profile, but a subsequent increment is not necessary. 

Since the inferred model will be used to assign new actions, 
the analysis of the out-of-sample effectiveness is perhaps more 
relevant. We can establish the following concluding remarks: 

- The values of the effectiveness are slightly higher 
than the results reported by [12] for ELECTRE TRI-
nB. 

- The effectiveness is an increasing function of the 
number of assignment examples per class; this is 
consistent with the hypothesis of “having more 
training examples allows a better learning process”. 

- The effectiveness is degraded by the increment of the 
number of criteria; this could be a consequence of the 
increased number of model parameters and the 
difficulty to “learn” such a more complex model. 

- The dependence of the number of classes has no clear 
explanation, since it is non-monotonic; more classes 
imply more complex assignment problems, so it is 
reasonable that the effectiveness with M = 5 is lower 
than with M = 3. However, the effectiveness with M 
= 3 is higher than with M = 2. This effect may be 
related to the total number of assignment examples, 
because with M = 3, there are more training 
examples. 

- The out-of-sample effectiveness does not improve 
with the number of limiting profiles; this result 
differs from the one obtained in [9] for ELECTRE 
TRI-nB. It seems that a single “well-designed” 
limiting profile suffices to reach acceptable 
effectiveness, and more profiles do not increase the 
learning ability of the model, at least within the 
analyzed range of training examples. More research 
is needed to reach a comprehensive understanding of 
this result. 

2) INTERCLASS-nC 
This section focuses on the effectiveness of INTERCLASS-
nC. 
 

i. In-sample effectiveness 
Table 10 shows the effectiveness of the approach given 
different numbers of criteria. The null hypothesis was rejected 
when comparing all the pairs of rows in Table 10. So, the 
effectiveness does not vary monotonically with the number of 
criteria. It is degraded from N = 3 to N = 5 and improved from 
N = 5 to N = 7. 

TABLE 10. In-sample average effectiveness vs number of 
criteria 

Number of criteria Effectiveness Standard deviation 

3 0.9903 6.00E-04 

5 0.9874 7.00E-04 

7 0.9923 5.00E-04 

Table 11 shows the in-sample effectiveness depending on the 
number of classes. Again, a statistically significant difference 
was found in the comparison of all the pair of rows in Table 
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11. The in-sample effectiveness is degraded when the number 
of classes increases. 

TABLE 11. In-sample average effectiveness vs number of 
classes 

Number of classes Effectiveness Standard deviation 

2 0.9999 0 

3 0.9971 2.00E-04 

5 0.973 8.00E-04 

The effectiveness of the approach regarding the number of 
assignment examples per class is presented in Table 12. Again, 
the null hypothesis was rejected in the comparison of all the 
pair of rows in Table 12. 

TABLE 12. Effectiveness vs number of assignment 
examples per class 

Number of Objects 
per class 

Effectivenes
s 

Standard 
deviation

3 0.9974 3.00E-04 

5 0.9931 6.00E-04 

9 0.987 8.00E-04 

12 0.9826 9.00E-04 

Table 13 shows the effectiveness in dependence of the number 
of characterizing profiles per class. There is statistically 
significant difference between the average values except when 
card(Rk) = 3 and card(Rk) = 5. Therefore, the decision analyst 
could ask the DM to provide three characteristic actions per 
class, but there is no evidence that increasing this number will 
provide higher effectiveness. 

TABLE 13. Effectiveness vs number of characteristic 
actions per class 

Number of profiles Effectiveness Standard deviation 

1 0.9827 0.001 

3 0.993 6.00E-04 

5 0.9924 6.00E-04 

ii. Out-of-Sample effectiveness 
The out-of-sample effectiveness of the approach in the context 
of the number of criteria is shown in Table 14. The statistical 
analyses to the values in this table show that there is only 
difference regarding seven criteria. The increment in 
effectiveness when going to seven criteria is counterintuitive, 
although consistent with the in-sample effectiveness provided 
by Table 10. This effect is also seen when the effectiveness is 
broken down in dependence on different numbers of profiles 
and characterizing objects (see Figures 9 and 10). A more in-
depth analysis is deferred for future work. 

TABLE 14. Out-of-sample average effectiveness vs 
number of criteria 

Number of 
criteria

Effectiveness 
Standard 
deviation 

3 0.9192 0.0023 

5 0.9167 0.0023 

7 0.9384 0.0021 

Table 15 presents the effectiveness of the approach regarding 
the number of classes. The statistical tests found a statistically 
significant difference between all the pair of rows in Table 16. 
Thus, here, as in the case of INTERCLASS-nB, the 
effectiveness of the approach is a decreasing function of the 
number of classes. 

TABLE 15. Out-of-sample average effectiveness vs 
number of classes 

Number of 
classes

Effectiveness 
Standard 
deviation 

2 0.9758 0.0012 

3 0.9259 0.002 

5 0.8726 0.0021 

Table 16 shows the effectiveness in dependence on the 
number of assignment examples per class. The only pairs for 
which the difference is not significant are when nclass = 3 and 
nclass= 5, and when nclass = 9 and nclass= 12. Therefore, 
the decision analyst can consider requiring for the DM to 
assign up to nine examples per class. 

TABLE 16. Out-of-sample effectiveness vs number of 
assignment examples per class 

Number of 
Objects per 

class
Effectiveness 

Standard 
deviation 

3 0.9153 0.0033 

5 0.9194 0.0027 

9 0.9308 0.0021 

12 0.9336 0.002 

Table 17 shows how going from one to three profiles 
significatively improves the effectiveness but going from three 
to five profiles does not. 

TABLE 17. Effectiveness vs the number of characteristic 
actions per class 

Number of 
profiles

Effectiveness 
Standard 
deviation 

1 0.9117 0.0025 

3 0.9283 0.0026 

5 0.9307 0.0027 
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Figures 9-12 present the previous results with further details 
and comparisons. 

iii. Discussion of the results on INTERCLASS-nC 
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FIGURE 9. Effectiveness vs. number of profiles in the context of number of criteria
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FIGURE 10. Effectiveness vs. number of objects per class in the context of number of criteria 
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Concerning the in-sample effectiveness, we detect several 
similar features like the INTERCLASS-nB.  The average 
effectiveness reaches values very close to 1 and is a decreasing 
function with the number of classes. It is also a decreasing 
function with the number of assignment examples per class, 
maybe since having more examples makes more complex the 
optimization problem through which the model parameters are 
inferred. To use three characteristic actions per class is better 
than a single action but having more than three actions does 
not seem to be necessary. 

The out-of-sample effectiveness reaches values higher than 
0.9, clearly greater than INTERCLASS-nB. Its most 
interesting features are: 
1. It shows an increasing dependence of the number of 
assignment examples per class. This means that the learning 
capacity of the methods does not reach a plateau within the 
range of assignment examples that was analyzed in our 
experiments. 
2. The effectiveness is significantly improved when the 
number of characteristic actions increases from one to three. 
From three to five, there is no significant improvement. 
3. It is a decreasing function with the number of classes, which 
is a consequence of a higher difficulty of the assignment 
problem. 
4. The effectiveness seems to slightly increase with the 
number of criteria. This behavior is the opposite to the one 
observed on INTERCLASS-nB. Its explanation may be 
related to the way of defining the measure of effectiveness (see 
Equation 3). As the number of criteria increases, there could 
be more incomparability among actions and characteristic 
subsets Rk; therefore, 𝜒  ∩ 𝜒  could be increased, thus 
producing an improvement of the effectiveness measure in 
Equation 3. 
 

V.  CONCLUSIONS 
A novel approach has been proposed to infer the whole set of 
model’s parameters on the two recently published interval-
based multi-criteria classification INTERCLASS-nB and 
INTERCLASS-nC methods. Given a set of assignment 
examples, a regression-inspired optimization problem is 
solved by an evolutionary algorithm, which permits to handle 
the non-linear complexity of the interval outranking model; 
additionally, evolutionary optimization tools are more robust 
than conventional non-linear programming techniques when 
the number of parameters, criteria and classes increase. In this 
way, the cognitive effort required to the DM in the parameter 
elicitation process is strongly diminished.  
Two basic issues should be considered for an appropriate 
setting of the parameters of a multi-criteria classification 
model via preference disaggregation analysis: 
a) The capacity to restore the known assignment 

examples (in-sample effectiveness) 

b) The capacity to suggest new assignments that are 
considered as appropriate by the DM (out-of sample 
effectiveness). 

Most related papers concentrate on point a). Using 
evolutionary algorithms and assignment examples coming 
from simulated decision models, high values of the in-sample 
effectiveness prove that the algorithm finds solutions which 
are close to the optimal one.  Perhaps the analysis of the out-
of-sample effectiveness is even more important; it measures 
the capacity of the method “to learn” what assignments are 
considered appropriate by the DM, thus being able to suggest 
appropriate decisions on new actions, that is its real 
application. 
In this paper, the quality of solutions is characterized by 
measures of both effectiveness measures. Their dependence of 
the number of limiting profiles (in INTERCLASS-nB), the 
number of characteristic actions (in INTERCLASS-nC), the 
number of assignment examples per class, the number of 
classes, and the number of criteria, have been described.  
Some common features of both methods and their inferred 
model’s parameters are: 
A) The in-sample effectiveness reaches very high values 

using three limiting profiles and the same number of 
characteristic actions; 

B) The in-sample effectiveness decreases with the number of 
classes and the number of assignment examples per class; 

C) The out-of-sample effectiveness is improved by the 
increment of the number of assignment examples per 
class. 

Point A) is coincident with the results reported for ELECTRE 
TRI-nB by [12]. Point B) is a consequence of an increasing 
complexity of the optimization problem from which the 
model’s parameters are inferred and increasing difficulty of 
the assignment problem. Point C) confirms the premise of 
more information is usually better than less. 
Several different behaviors follow: 
1. The INTERCLASS-nC out-of-sample effectiveness seems 
to be higher than the one on INTERCLASS-nB; however, this 
comparison is not fair because the definition of effectiveness 
differs from Equation 2 to Equation 3. The definition in 
Equation 2 requires an exact coincidence between the 
assignment from the DM and the assignment from the inferred 
model, whereas the measure in Equation 3 is laxer. 
2. As one could assume, the INTERCLASS-nB out-of-sample 
effectiveness is degraded when the number of criteria 
increases, contrarily to INTERCLASS-nC; 
3. As one would wait, the INTERCLASS-nC out-of-sample 
effectiveness tends to improve with the number of 
characteristic actions; contrarily, this measure seems to be 
independent on the number of limiting actions in 
INTERCLASS-nB. 
Concerning Point 2 above, the surprising performance of 
INTERCLASS-nC could be explained by the increment of 
incomparabilities between actions and representative subsets 
of classes, as was discussed in Section IV, last paragraph. 
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Convincing quantitative explanations of the above different 
characteristics should be found by future research works.   
The question about which method preforms better in a 
preference disaggregation context is kept open as another 
avenue of future research. We should remark that 
INTERCLASS-nC uses more information than the pseudo-
conjunctive INTERCLASS-nB; this comes from two different 
outranking relations (we mean “x outranks the representative 

set Rk” and “Rk outranks x”), whereas the pseudo-conjunctive 
INTERCLASS-nB uses only “x outranks the limiting 
boundary”. Handling more information could bring a higher 
learning capacity. A fair comparison should deal with a 
limiting boundary-based method similar to INTERCLASS-
nB, but handling “x outranks the limiting boundary Bk”, and 
“Bk outranks x”, perhaps with the use of a co-joint assignment 
rule coming from descending and ascending procedures. 
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APPENDIX 

A.  IN-SAMPLE EFFECTIVENESS OF INTERCLASS-NB 
Results about the effectiveness of the approach regarding the 
in-sample effectiveness of INTERCLASS-nB are shown in 
Figures A.1 and A.2. 

B.  IN-SAMPLE EFFECTIVENESS OF INTERCLASS-NC 
Results about the effectiveness of the approach regarding the 
in-sample effectiveness of INTERCLASS-nC are shown in 
Figures B.1 and B.2. 

C.  PROCEDURE FOLLOWED BY THE INTERVAL-
BASED OUTRANKING APPROACH 
Let us assume the notation described in Subsection II.2.  
The marginal credibility index of 𝑥 being at least as good as 
action 𝑦 on the 𝑗th criterion, 𝛼 𝑥, 𝑦 , depends on the strength 
of the arguments provided by such criterion to state that “𝑥 
outranks 𝑦 on this criterion”. On the one hand, if gj ∈ 𝐺 , then 
𝛼 𝑥, 𝑦  is defined as: 

𝛼 𝑥, 𝑦

⎩
⎪
⎨

⎪
⎧

0 if gj ∈ 𝐶 𝑦𝑃𝑥 ,

gj 𝑥 gj 𝑦 𝑝 ⋅

𝑝 ⋅ 𝑞 ⋅
if gj ∈ 𝐶 𝑦𝑄𝑥 ,

1 if gj ∈ 𝐶 𝑥𝑆𝑦 .

 

The discordance coalition is defined as  𝐶 𝑦𝑃𝑥 gj ∈
𝐺 : gj 𝑦 gj 𝑥 𝑝 ⋅ ; 
𝐶 𝑦𝑄𝑥 gj ∈ 𝐺 : gj 𝑦 𝑝 ⋅ gj 𝑥 gj 𝑦
𝑞 ⋅ ; and 
𝐶 𝑥𝑆𝑦 gj ∈ 𝐺 : gj 𝑥 gj 𝑦 𝑞 ⋅ . 
On the other hand, if gj ∈ 𝐺 , then 𝛼 𝑥, 𝑦  is defined as: 

𝛼 𝑥, 𝑦 𝑝 gj 𝑥 gj 𝑦 . 
If we now consider a given credibility threshold 𝛾, then the set 
of all the criteria for which 𝛼 𝑥, 𝑦 𝛾 is true is called 𝛾-
possible concordance coalition and is denoted as 𝐶 𝑥𝑆 𝑦 . 
Conversely, all criteria in 𝐺/𝐶 𝑥𝑆 𝑦  compose the 𝛾-possible 
discordance coalition, which is denoted as 𝐷 𝑥𝑆 𝑦 . In order 
to ensure that there are some realizations of the criteria weights 
for which ∑ 𝒘𝒋 1,1  is true, the following constraints 
are imposed: 

𝑤 1, 

𝑤 1. 

The concordance index of 𝑥𝑆𝑦, 𝒄 𝑥, 𝑦
𝑐 𝑥, 𝑦 , 𝑐 𝑥, 𝑦 , is then defined as follows: 

𝑐 𝑥, 𝑦 𝑤
gj∈ 

, 

if 

𝑤
gj∈ 

 𝑤 1
gj∈

, and 

𝑤
gj∈ 

 𝑤 1
gj∈

. 

Otherwise, 𝑐 𝑥, 𝑦  is defined as  

1  𝑤
gj∈

. 

Similarly,   
 𝑐 𝑥, 𝑦 𝑤

gj∈ 

  

only if  

𝑤
gj∈ 

 𝑤 1
gj∈

, and 

𝑤
gj∈ 

 𝑤 1
gj∈

. 

Otherwise, 𝑐 𝑥, 𝑦  is  

1  𝑤
gj∈

. 

As in the classical outranking approach, its interval-based 
extension also considers the arguments against the outranking 
relation through a credibility index of the statement “the 𝑗th 
criterion vetoes the assertion 𝑥 outranks 𝑦”, which is denoted 
as 𝑑 𝑥, 𝑦  and is defined as follows. For each gj ∈ 𝐺 , 
𝑑 𝑥, 𝑦 𝑝 gj 𝑦 gj 𝑥 𝒗𝒋 , where 𝒗𝒋 is the interval 
number representing the veto power of criterion gj. For each 
gj ∈ 𝐺 , 𝑑 𝑥, 𝑦  can be calculated by one of two ways, 
depending on the information available about thresholds. First, 
if the veto power of the 𝑗th criterion is precise, that is 𝑣  is a 
real number, and there is a discordance (pre-veto) threshold, 
𝑢 𝑣 , then 𝑑 𝑥, 𝑦  is (cf. Mousseau and Dias, 2004; Roy 
and Słowiński, 2008): 

𝑑 𝑥, 𝑦

⎩
⎪
⎨

⎪
⎧

1 if gj 𝑦 gj 𝑥 𝑣 ,

gj 𝑦 gj 𝑥 𝑢

𝑣 𝑢
if 𝑢 gj 𝑦 gj 𝑥 𝑣 ,

0 if gj 𝑦 gj 𝑥 𝑢 .

 

Second, if the veto power of the 𝑗th criterion is imperfectly 
known, that is, 𝒗𝒋 is an interval number, then 𝑑 𝑥, 𝑦
𝑝 gj 𝑦 gj 𝑥 𝒗𝒋 . 
Let Γ be the set 𝛼 𝑥, 𝑦 ∈ ℝ: 𝑝 gj 𝑥 gj 𝑦
𝛼 𝑥, 𝑦 , 𝑗 1, ⋯ , 𝑁 . For each 𝛾 ∈ Γ,  x outranks y with 
marginal credibility index 𝜂 , and majority strength 𝝀
0.5,0.5 , (with -0.5) if and only if 

𝜂 min 𝛾, 𝑝 𝒄 𝑥, 𝑦 𝝀 , 1 max
gj ∈

𝑑 𝑥, 𝑦 . 

Each   is the credibility degree of the conjunction between i) 
“the 𝛾-possible concordance coalition is strong enough” and 
ii) “the 𝛾-possible discordance coalition does not exert veto”. 
 is interpreted in [30] as a marginal outranking credibility 
index. Therefore, 𝑥 outranks 𝑦 with credibility index 
𝜂 𝑥, 𝑦 ∈ 0,1 max 𝜂  (𝛾 ∈ Γ). 𝜂 𝑥, 𝑦   is the interval 
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outranking credibility index. If Γ is an empty set, then 𝜂 𝑥, 𝑦  
is zero. 
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