
 

Using evolutionary computation to infer the decision maker’s preference model in 
presence of imperfect knowledge: a case study in portfolio optimization 

Abstract 

It is usually very difficult to elicit the parameter values of models representing decision 

makers’ preferences. Consequently, some imprecision, ill-determination and arbitrariness are 

unavoidable. Moreover, such elicitation cannot be performed by traditional optimization 

techniques in a reasonable time. Therefore, we present here a novel elicitation method guided 

by a genetic algorithm whose main contribution is coping with imperfect knowledge. The 

latter is done by using interval numbers representing all the possible values that the 

parameters can attain. The assessment of the method showed its high ability to reproduce the 

decision maker’s preferences. Finally, as the method proposed in this paper is the 

complement of the authors’ previous work regarding the optimization of stock portfolios, we 

provide a case study in such a field. We use differential evolution to obtain the most 

satisfactory portfolio. The results reported here show that the best portfolio returns are 

obtained when the elicitation method is exploited, and we conclude that the new overall 

approach might be an interesting alternative to the already-existing methods. 

Keywords: Evolutionary algorithms; multi-criteria decision aiding; outranking approach; 

preferences elicitation; portfolio optimization. 

1. Introduction 

Multi-criteria decision aiding (MCDA) provides a wide range of appropriate methods for 

choosing, ranking and sorting (ordinal classification) problematics. However, the aid 

provided by MCDA is not effective unless the aggregation model appropriately represents 

the decision maker’s (DM) preferences. Generally, the MCDA models use many parameters 

to represent the DM’s preferences. The values of these parameters can be obtained either 

with direct or indirect elicitation methods. In the former, the decision maker, often aided by 

a decision analyst, has to directly assign the parameter values to the preference model. 

Whereas in indirect elicitation methods, the parameter values are deduced from a battery of 

easy-to-make decisions made by the DM. 



Eliciting the parameter values is very important in developing a multi-criteria decision aiding 

approach. Some authors (for example [1]) consider the direct elicitation method as less 

adequate relative to indirect elicitation. Some limitations of the former are the following: i) 

the preference model’s parameters are meaningless as long as the multi-criteria aggregation 

procedure in which they are used has not been specified; ii) holistic decisions made by the 

DM using his/her own judgment procedure when comparing pairs of actions and/or assigning 

actions to categories/classes are more appropriate; iii) the DM may not be accessible (e.g., 

the manager of an international company) or may be an ill-defined entity (e.g., a 

heterogeneous group); iv) the DM usually has difficulties to explicitly specify numerical 

parameters and the time and cognitive effort required to do so may be inhibitory.  

The indirect elicitation methods constitute the well-known preference disaggregation 

analysis (PDA) paradigm. PDA methods analyze decisions made by the DM in order to 

identify the aggregation model that underlies the outcome of the known decisions. The 

indirect elicitation methods infer the decision model’s parameters from holistic decisions 

provided by the DM and use regression-like methods to produce a decision model as 

consistent as possible with the set of reference (training) decisions. The PDA paradigm is of 

growing interest because it requires less cognitive effort from the DM. The main reason is 

that DMs frequently prefer making decision judgments than explaining them. 

Indirect elicitation approaches have been used for decades to build functional or utility 

decision models (e.g., [2, 3, 4]). In MCDA, Jacquet-Lagreze and Siskos [5] pioneered the 

UTA method.  Regarding the outranking approach, indirect elicitation methods are even more 

significant, because the DM must establish parameter values that are very unfamiliar to 

her/him (e.g., veto thresholds). In this frame, some important references are the works of 

Mousseau and Słowiński [6], Doumpos et al. [7], and Fernandez et al. [8]. Indirect elicitation 

approaches have been satisfactorily used by many authors in the context of financial decision 

making (e.g., [9, 10, 11, 12]) and particularly in the context of portfolio selection (e.g., [13, 

14]). All these proposals identify punctual values for the model’s parameters, which are 

supposed to be appropriate to explain or suggest new decisions. 

Despite the wide use of indirect elicitation methods, they cannot avoid certain imperfect 

information in setting the model’s parameters; the concept of what is the appropriate value 



of a decision model parameter is poorly-defined due to several reasons: a) the DM’s decision 

policy may not match with the model’s assumptions and its mathematical structure; b) the 

DM’s preferences are ill-defined (e.g., a heterogeneous group); c) the DM is a mythical or 

inaccessible person (e.g., public opinion); d) often many parameter settings  reproduce the 

known decision examples; and e) imprecise (even missing) information on criterion scores. 

Thus, there is always imprecision, uncertainty, ill-definition or arbitrariness (imperfect 

knowledge, according to Roy et al. [15]) to be handled by the PDA when it infers the values 

of the parameters.  

Recently, Fernandez et al. [16] presented an extension of the outranking approach that is able 

to deal with imperfect knowledge on the parameters of the model and on criterion scores. 

Although the DM likely feels more comfortable making a direct elicitation of model 

parameter values as interval numbers, this approach does not avoid the convenience of 

indirect setting [16]. It would be more convenient if, instead of punctual values, the indirect 

elicitation method offers the flexibility to consider the parameters as ranges of numbers, 

where imperfect knowledge is contained within intervals. Such a method would combine the 

advantages of the indirect elicitation with the flexibility of the interval outranking approach. 

The interval outranking approach was recently applied to solve a many-objective stock 

portfolio optimization problem in [17]. Such paper proposed an interesting approach to select 

the best stock portfolio considering imperfect knowledge (in the sense of [15]) that 

characterizes the DM’s implicit model of preferences, performing a pressure toward the 

DM’s most preferred portfolios; it represents the DM’s conservatism to risk, and the 

portfolios’ expected return and risk. However, a direct elicitation of the interval-outranking 

model’s parameters representing the DM’s preferences was performed there. Therefore, an 

interesting research question is if the application of evolutionary computation to the indirect 

elicitation of these parameters implies that i) the interval-outranking finds more preferred 

solutions, and/or ii) the portfolios found by the overall approach generate greater returns. Our 

main objective is thus addressing this question. We do it by proposing and assessing a novel 

method that indirectly elicits the interval-outranking model’s parameters using a set of 

judgments made by the DM. 



The rest of the paper is structured as follows. In Section 2 we briefly describe some previous 

related work. In Section 3, we present our proposal to get an approximation to the DM's 

model of preferences when the parameters are described as numerical ranges. In Section 4 

we describe some experiments to validate the proposal whose results are shown in Section 5. 

In Section 6, a case study is presented where elicited preference parameter values are used to 

select the most preferred portfolios. Finally, we conclude this paper in Section 7. 

2. Some background 

2.1 Previous related work 

The outranking approach, introduced by Roy in 1968 and firstly exploited by the ELECTRE 

family of methods (cf. e.g. [18]), is a well-known methodology used to model the preferences 

of decision makers. It is based on preference relations defined between pairs of alternatives 

(or actions) and built on the basis of the assessment of actions on a set of multiple criteria. 

Some of the most interesting features of this approach are their ability to model intransitive 

preferences, non-compensatory effects, and poorly known criterion scores. These features 

have made the outranking approach more suitable for some situations than other 

methodologies (e.g., value function approaches). Perhaps the most common criticism against 

the outranking approach is its dependence on many parameters and the common difficulty of 

directly eliciting these parameters. An interval extension of the outranking approach was 

applied in [17] to portfolio optimization, but its direct elicitation of the approach’s parameters 

is an important limitation. 

Regarding indirect elicitation of preference parameters in the context of the outranking 

approach, Mousseau and Słowiński [6] pioneered the exploitation of the preference 

disaggregation analysis to infer the parameters of an ELECTRE method. Under certain strong 

simplifications, they used a conventional mathematical programming tool to solve a highly 

complex non-linear and non-convex optimization problem. Using linear programming, 

Mousseau et al. [19] presented a proposal to infer some specific parameters (weights of 

criteria) from assignment examples. Using linear and mixed-integer linear programming 

formulations, Zheng et al. [20] and Bisdorff et al. [21] also inferred the weights of criteria. 

Through assignment examples, Ngo Te and Mousseau [22] elicited additional parameters 



(boundary profiles) for the method ELECTRE TRI. Addressing special situations, Mousseau 

et al. [23, 24] proposed to use indirect elicitation methods to infer preference parameters 

under inconsistent sets of assignment examples. 

Most of these works do not elicit all the parameters of the outranking approach 

simultaneously; particularly, they elude the inference of veto thresholds [25]. This is because 

it would imply a very complex nonlinear programming problem. To overcome the 

computational complexity of inferring more general outranking models, metaheuristics have 

been recently widely used. The tendency to use evolutionary computation in this framework, 

particularly genetic algorithms, is overwhelming (cf. [26, 27]). This is, for example, because 

of its treatment of nonlinearity and its ability to perform a global optimization in polynomial 

time [28]. Assche and De Smet [29] proposed a heuristic based on a genetic algorithm to 

identify the weights, indifference and preference thresholds but also profiles characterizing 

classes of a sorting method based on the outranking approach. Doumpos et al. [7] and 

Fernandez et al. [9] used evolutionary algorithms to infer the entire set of ELECTRE model’s 

parameters from a set of assignment the decision maker’s examples. Fernandez et al. [30] 

used NSGA-II to infer the parameters outranking approach under scarce reference 

information and effects of reinforced preference. The proposal of Sobrie et al. [31] take into 

account the structure of the problem to perform crossovers and mutations in a genetic 

algorithm when inferring the parameters of the Majority Rule Sorting procedure, a simplified 

version of the ELECTRE TRI sorting model. Covantes et al. [32] found good results by using 

a genetic algorithm to infer the parameters of the THESEUS method, an outranking-based 

approach to assign actions to preferentially ordered classes. Fernandez et al. [55] use a single-

objective optimization genetic algorithm to indirectly infer the parameters using preference 

information embedded in assignment examples. Fernandez et al. [56] also use genetic 

algorithms to infer the parameters of an outranking-based approach which is called 

ELECTRE TRI-nB and represents an interval extension of the well-known ELECTRE TRI-

B. 

Given the intensity and frequency with which genetic algorithms are used to solve problems 

similar to the one addressed in this work, as well as some preliminary results and the 



experience of the authors using this type of tools, we decided to use the classical version of 

genetic algorithms to address our research problem in Section 3.2. 

2.2 Interval numbers 

The concept of interval number was originated in the so-called Interval Analysis Theory [33, 

34]. Such a number represents a numerical quantity whose exact value is unknown. This lack 

of knowledge is encompassed in a range of numbers where the exact value is expected to be. 

Thus, an interval number represents an unspecified quantity whose value is given in a set of 

values. Let 𝜅 be a real value lying between 𝑘ା and 𝑘ି. The interval number representing 𝜅 

is therefore 𝑲 ൌ ሾ𝑘ି, 𝑘ାሿ. Any 𝑟 ∈   ሾ𝑘ି, 𝑘ାሿ is a realization of 𝑲. Furthermore, 𝑞, a real 

number, can be represented by an interval number as ሾ𝑞, 𝑞ሿ. In order to state clearer notations, 

in the rest of this document interval numbers will be denoted by boldface italic letters. 

Now, given two interval numbers 𝑲 ൌ  ሾ𝑘ି, 𝑘ାሿ and 𝑳 ൌ  ሾ𝑙ି, 𝑙ାሿ, the basic operations of 

interval numbers are as follows: 

𝑲 ൅ 𝑳 ൌ  ሾ𝑘ି  ൅  𝑙ି, 𝑘ା  ൅ 𝑙ାሿ.                

𝑲 െ 𝑳 ൌ  ሾ𝑘ି  െ  𝑙ା, 𝑘ା  െ 𝑙ିሿ.                           

𝑲 ൈ 𝑳 ൌ  ሾminሼ𝑘ି 𝑙ି, 𝑘ି 𝑙ା, 𝑘ା 𝑙ି, 𝑘ା 𝑙ାሽ , maxሼ𝑘ି 𝑙ି, 𝑘ି 𝑙ା, 𝑘ା 𝑙ି, 𝑘ା 𝑙ାሽሿ.             

𝑲 ൊ 𝑳 ൌ  ሾ𝑘ି, 𝑘ାሿ ൈ ቂ
ଵ

௟ష ,
ଵ

௟శ
ቃ.                 

There is no way to be sure about the order of interval numbers. Nevertheless, [35] proposed 

how to define a possibility grade of 𝑲 being greater than or equal to 𝑳, 𝑝ሺ𝑲 ൒  𝑳ሻ. This 

possibility function is given by 

 
𝑝ሺ𝑲 ൒  𝑳ሻ  ൌ ൝

1 if 𝑝𝑲𝑳 ൐ 1,
𝑝𝑲𝑳 if 0 ൑ 𝑝𝑲𝑳 ൑ 1,
0 if 𝑝𝑲𝑳 ൏ 0.

 
(1) 

Where 𝑝𝑲𝑳  ൌ
𝑘ା െ  𝑙ି

ሺ𝑘ା െ  𝑘ିሻ ൅ ሺ𝑙ା െ  𝑙ିሻ
. 

If 𝑘ା ൌ 𝑘ି  and 𝑙ା ൌ 𝑙ି, then  

𝑝ሺ𝑲 ൒  𝑳ሻ ൌ ቄ   1       if 𝑘ି ൒ 𝑙ି,
     0      otherwise.

 



Let 𝑘 and 𝑙 be two unsettled realizations from 𝑲 and 𝑳, respectively; 𝑝ሺ𝑲 ൒  𝑳ሻ is the 

credibility degree of the assertion “given that both realizations are established, 𝑘 is not lesser 

than 𝑙”. Thus, the possibility function denotes robustness of 𝑲 ൒  𝑳, even when these 

quantities are undetermined. 

2.3. Interval outranking  

Recently, Fernandez et al. [16] presented an extension of the outranking approach, called 

interval-based outranking, that handles imperfect knowledge on the preferences of the DM 

and the criterion scores. Their proposal uses Interval Theory as the basic component to model 

this imperfect knowledge. We now present a brief description of such extension for 

completeness of this paper. 

Let 𝑈 be the universe of actions, 𝐴 ⊆ 𝑈 a set of actions and each 𝑥 ∈ 𝑈 be evaluated on a 

family of 𝑛 criteria ℐ ൌ ሼ𝒈𝟏 , 𝒈𝟐 , ⋯ , 𝒈𝒏ሽ defined on 𝑈. In the interval outranking, each 

criterion function is an interval number. Let us assume that increasing the score of 𝑥 on 

criterion 𝑗 improves the performance of action 𝑥, for any 𝑗 ൌ 1,2, ⋯ 𝑛. Some parameters used 

by that approach are the following (note the that these parameters are defined using Interval 

Theory): 

 𝒈𝒋ሺ𝑥ሻ  ൌ  ሾ𝑔௝
ିሺ𝑥ሻ, 𝑔௝

ାሺ𝑥ሻሿ, the score of action 𝑥 ∈ 𝐴 on criterion 𝑔௝; 

 𝒘𝒋  ൌ  ൣ𝑤௝
ି, 𝑤௝

ା൧, the weight of criterion 𝑔௝;  

 𝒗𝒋  ൌ  ൣ𝑣௝
ି, 𝑣௝

ା൧, the veto threshold of criterion 𝑔௝; and 

 𝝀 ൌ  ሾ𝜆ି, 𝜆ାሿ  reflects a threshold for a sufficient strength of the concordance 

coalition. 

Where 𝑗 ൌ 1, ⋯ , 𝑛. 

Since the imperfect knowledge on the criterion scores is represented through intervals, no 

preference and indifference thresholds are used in [16]. 

As in the classical outranking approach, the interval outranking approach estimates a 

credibility index, 𝛽ሺ𝑥, 𝑦ሻ ∈ ሾ0,1ሿ, between pairs of alternatives about the assertion “𝑥 is at 

least as good as 𝑦”, 𝑥𝑆𝑦. The marginal credibility index of 𝑥 being at least as good as 𝑦 on 

criterion 𝒈𝒋 is: 



𝛼௝ሺ𝑥, 𝑦ሻ ൌ 𝑝 ቀ𝒈𝒋ሺ𝑥ሻ ൒ 𝒈𝒋ሺ𝑦ሻቁ. 

Where 𝑝ሺ⋅ሻ is the possibility function described in Eq. (1).  

The concordance coalition, 𝐶ሺ𝑥𝑆ఋ𝑦ሻ, is composed with all the criteria 𝒈𝒋 fulfilling 𝛼௝ሺ𝑥, 𝑦ሻ ൒

𝛿 for a given credibility threshold 𝛿. This concordance coalition is associated with an index 

𝛿 ൌ min൛𝛼௝ሺ𝑥, 𝑦ሻൟ such that 𝒈𝒋 ∈ 𝐶ሺ𝑥𝑆ఋ𝑦ሻ, where 𝛿 is the credibility of the statement “all 

the criteria within the concordance coalition agree with the outranking relation”. All 𝒈𝒋 that 

are not within 𝐶ሺ𝑥𝑆ఋ𝑦ሻ constitute the discordance coalition, 𝐷ሺ𝑥𝑆ఋ𝑦ሻ. The previous 

definitions are formalized as 

𝒈𝒋 ∈ 𝐶ሺ𝑥𝑆ఋ𝑦ሻ iff 𝛼௝ሺ𝑥, 𝑦ሻ ൒ 𝛿, and 

𝐷ሺ𝑥𝑆ఋ𝑦ሻ ൌ ℐ െ 𝐶ሺ𝑥𝑆ఋ𝑦ሻ. 

On the other hand, as stated by the classical outranking approach, it is necessary to ensure 

∑ 𝒘𝒋  ൌ ሾ1,1ሿ. Any realization not fulfilling this condition is not valid. Therefore, Fernandez 

et al. [16] set the following constraints to ensure validity of the model: 

 
෍ 𝑤௝

ି ൑ 1

௡

௝ୀଵ

 
(2) 

 
෍ 𝑤௝

ା ൒ 1

௡

௝ୀଵ

 
(3) 

The concordance index of 𝑥𝑆ఋ𝑦, 𝒄ሺ𝑥, 𝑦, ሻ ൌ ሾ𝑐ିሺ𝑥, 𝑦ሻ, 𝑐ାሺ𝑥, 𝑦ሻሿ, is then defined as follows: 

 𝑐ିሺ𝑥, 𝑦ሻ ൌ ෍ 𝑤௝
ି

𝒈𝒋∈ ஼ሺ௫ௌഃ௬ሻ

,  

if 

෍ 𝑤௝
ି

𝒈𝒋∈ ஼ሺ௫ௌഃ௬ሻ

൅ ෍  𝑤௝
ି ൑ 1

𝒈𝒋∈஽ሺ௫ௌഃ௬ሻ

, and 

෍ 𝑤௝
ି

𝒈𝒋∈ ஼ሺ௫ௌഃ௬ሻ

൅ ෍  𝑤௝
ା ൒ 1

𝒈𝒋∈஽ሺ௫ௌഃ௬ሻ

. 

Otherwise, 𝑐ିሺ𝑥, 𝑦ሻ is defined as  



1 െ ෍  𝑤௝
ା

𝒈𝒋∈஽ሺ௫ௌഃ௬ሻ

. 

Similarly,   

 𝑐ାሺ𝑥, 𝑦ሻ ൌ ෍ 𝑤௝
ା

𝒈𝒋∈ ஼ሺ௫ௌഃ௬ሻ

  

only if  

෍ 𝑤௝
ା

𝒈𝒋∈ ஼ሺ௫ௌഃ௬ሻ

൅ ෍  𝑤௝
ି ൑ 1

𝒈𝒋∈஽ሺ௫ௌഃ௬ሻ

, and 

෍ 𝑤௝
ା

𝒈𝒋∈ ஼ሺ௫ௌഃ௬ሻ

൅ ෍  𝑤௝
ା ൒ 1

𝒈𝒋∈஽ሺ௫ௌഃ௬ሻ

. 

Otherwise, 𝑐ାሺ𝑥, 𝑦ሻ is  

1 െ ෍  𝑤௝
ି

𝒈𝒋∈஽ሺ௫ௌഃ௬ሻ

. 

Fernandez et al. [16] show that  

 𝑐ାሺ𝑥, 𝑦ሻ ൒ 𝑐ିሺ𝑥, 𝑦ሻ,  

 if 𝐶ሺ𝑥𝑆ఋ𝑦ሻ ൌ ∅ then 𝒄ሺ𝑥, 𝑦, 𝛿ሻ ൌ ሾ0, 0ሿ, and  

 if 𝐶ሺ𝑥𝑆ఋ𝑦ሻ ൌ ℐ then 𝒄ሺ𝑥, 𝑦, 𝛿ሻ ൌ ሾ1, 1ሿ. 

Let Δ be the set ቄ𝛼௝ ∈ ℝ: 𝑝 ቀ𝒈𝒋ሺ𝑥ሻ ൒ 𝒈𝒋ሺ𝑦ሻቁ ൌ 𝛼௝ ൐ 0, 𝑗 ൌ 1, ⋯ , 𝑛ቅ. For each 𝛿 ∈ Δ, 

Fernandez et al. [16] state that x outranks y with marginal likelihood index 𝛽ఋ, and majority 

strength = -
, + (𝜆ି ൐ 0.5ሻ, if and only if 

i. 𝑝ሺ𝒄ሺ𝑥, 𝑦, ሻ ൒ 𝝀ሻ ൒ 𝜋; 

ii. 1 െ max
𝒈𝒋 ∈஽ሺ௫ௌഃ௬ሻ

൛𝑝൫𝒈𝒋ሺ𝑦ሻ ൒ 𝒈𝒋ሺ𝑥ሻ ൅ 𝒗𝒋൯ൟ ൒ 𝜋; and 

iii. 𝛽ఋ ൌ maxሼ𝜋 fulfilling i and iiሽ; 

Where 𝛿 ൒ 𝜋 ∈ ℝ and 𝑝ሺ⋅ሻ is defined in (1). Thus, 𝑥𝑆ఋ𝑦 is fulfilled with likelihood index 

𝛽ሺ𝑥, 𝑦ሻ ∈ ሾ0,1ሿ ൌ maxሼ𝛽ఋሽ and majority strength = -
, + (𝜆ି ൐ 0.5ሻ. If Δ is an empty set, 



then 𝛽ሺ𝑥, 𝑦ሻ is zero. Moreover, the model assumes that the DM uses a credibility threshold 

𝛽଴ ൐  0.5 such that if  𝛽ሺ𝑥, 𝑦ሻ ൒ 𝛽଴ then the assertion “𝑥 is at least as good as 𝑦” is accepted. 

Finally, given a set 𝒫 ൌ ሼ𝒘𝟏, ⋯ , 𝒘𝒏, 𝒗𝟏, ⋯ , 𝒗𝒏, 𝝀, 𝛽଴ሽ and for each pair ሺ𝑥, 𝑦ሻ ∈ 𝐴 ൈ 𝐴, the 

following preference relations may be defined based on the credibility index associated with 

“𝑥 is at least as good as 𝑦” and calculated on the basis of 𝒫: 

 Strict preference: 𝑥𝑃𝒫𝑦 ⇔ 𝛽ሺ𝑥, 𝑦ሻ ൒  𝛽଴ 𝑎𝑛𝑑 𝛽ሺ𝑦, 𝑥ሻ ൏  0.5, 

 Weak preference: 𝑥𝑄𝒫𝑦 ⇔ 𝛽ሺ𝑥, 𝑦ሻ ൒  𝛽଴ 𝑎𝑛𝑑 0.5 ൑ 𝛽ሺ𝑦, 𝑥ሻ ൏  𝛽଴, 

 K preference: 𝑥𝐾𝒫𝑦 ⇔ 𝛽ሺ𝑦, 𝑥ሻ ൏ 0.5 ൏ 𝛽ሺ𝑥, 𝑦ሻ ൏  𝛽଴, 

 Indifference: 𝑥𝐼𝒫𝑦 ⇔ 𝛽ሺ𝑥, 𝑦ሻ ൒  𝛽଴ 𝑎𝑛𝑑 𝛽ሺ𝑦, 𝑥ሻ ൒ 𝛽଴. 

3. Our proposal 

The imperfect knowledge that characterizes the decision maker’s (DM) implicit model of 

preferences (cf. [15]) gives rise to the idea that vague or ill-determined information should 

be considered during the modeling of the DM’s preferences (see [16]). However, it is often 

difficult for the DM to express specific values for the parameters of models representing 

her/his own preferences [6], even when these parameters are defined as ranges of numbers 

as described in the previous section. 

In this paper, we propose a novel way to infer the DM’s implicit system of preferences 

through an interval-based preference disaggregation approach. The main characteristic of the 

proposal relies in allowing the DM’s decision policy to contain imperfect knowledge. An 

indirect elicitation with this characteristic is particularly important in portfolio optimization 

where average investors tend to be not able/willing to spend much time expressing the exact 

parameter values of a model representing their preferences. The only DM’s work required by 

the proposed approach consists in the creation of a reference set containing DM’s holistic 

decisions. The DM’s decision policy is reflected by such reference set, and it is from this set 

where the proposal draws an approximation to the implicit system of preferences of the 

decision maker. 

3.1 Interval-based preference disaggregation analysis 

Let us now introduce some assumptions that are basic for presenting our proposal: 



1. There is a finite set 𝐴 of actions described by a set of criteria ℐ ൌ ሼ𝒈𝟏, ⋯ , 𝒈𝒏ሽ, where 

𝒈𝒋ሺ𝑥ሻ  ൌ  ൣ𝑔௝
ିሺ𝑥ሻ, 𝑔௝

ାሺ𝑥ሻ൧ is the interval number that represents the performance 

evaluation of action 𝑥 ∈ 𝐴 in attribute 𝒈𝒋.  

2. The DM is willing to establish a binary relation “at least as good as” on 𝑇 ൈ 𝑇, where 

T is a proper subset of A.  That is, for each ordered pair (x,y) belonging to 𝑇 ൈ 𝑇, one 

of the following statements is true: i) “x is at least as good as y”; or ii) “x is not at 

least as good as y”. 

Our goal is to find a set of parameters 𝒫∗ ൌ ሼ𝒘𝟏
∗ , ⋯ , 𝒘𝒏

∗ , 𝒗𝟏
∗ , ⋯ , 𝒗𝒏

∗ , 𝝀∗, 𝛿∗, 𝛽଴
∗ሽ (preference 

model), that permits to construct an interval outranking model as consistent as possible with 

the relation “is not worse than”, denoted by ≽. To achieve this, let’s assume that a binary 

preference relation is built for each ሺ𝑥, 𝑦ሻ ∈ 𝑇 ൈ 𝑇 for a given set of parameters 𝒫ᇱ and let 

us consider the following sets (cf. Subsection 2.3): 

𝐻௉ ൌ  ሼሺ𝑥, 𝑦ሻ: 𝑥𝑃𝒫ᇲ𝑦 with ሺ𝑥ሻ ⊁ ሺ𝑦ሻ ሽ, 

𝐻ொ ൌ  ሼሺ𝑥, 𝑦ሻ: 𝑥𝑄𝒫ᇲ𝑦 𝑜𝑟 𝑥𝐾𝒫ᇲ𝑦 with ሺ𝑥ሻ ⋡ ሺ𝑦ሻሽ, 

𝐻ூ ൌ  ሼሺ𝑥, 𝑦ሻ: 𝑥𝐼𝒫ᇲ𝑦 with ሺ𝑥ሻ ≁ ሺ𝑦ሻሽ. 

Where  

ሺ𝑥ሻ ⊁ ሺ𝑦ሻ ⇔ 𝑛𝑜𝑡 ሺ𝑥 ≽ 𝑦 𝑎𝑛𝑑 𝑛𝑜𝑡ሺ 𝑦 ≽ 𝑥ሻሻ, 

𝑥𝑦 ⇔ 𝑥 ≽ 𝑦 𝑎𝑛𝑑 𝑦 ≽ 𝑥, and  

𝑥 ≁ 𝑦 ⇔ 𝑛𝑜𝑡 ሺ𝑥𝑦ሻ. 

Our proposal to find the “best” 𝒫ᇱ is to solve the following multi-objective optimization 

problem: 

 minimize
𝒫ᇲ∈୻

ቀ𝑐𝑎𝑟𝑑ሺ𝐻௉ሻ, 𝑐𝑎𝑟𝑑൫𝐻ொ൯, 𝑐𝑎𝑟𝑑ሺ𝐻ூሻቁ (4) 

With preferential priority in lexicographical order favoring 𝑐𝑎𝑟𝑑ሺ𝐻௉ሻ. In Problem (4), Γ is 

the set of preference models that fulfill Eqs. (2) and (3) and 𝑐𝑎𝑟𝑑ሺ𝜔ሻ is the cardinality of set 

𝜔. 



3.2 A Genetic algorithm for solving Problem (4) 

Some recent research reported in the related literature (cf. Subsection 2.1) concluded that 

Genetic Algorithms present more promising results than other metaheuristics, such as 

Particle Swarm optimization, Tabu Search and Simulated Annealing, when solving 

multiobjective optimization problems similar to (4) but with real numbers. Consequently, in 

this work we use a genetic algorithm capable of dealing with parameters defined as interval 

numbers in order to search for the solution of Problem (4). 

Each chromosome in our genetic algorithm consists of the parameters of the outranking based 

on Interval Theory; that is, 𝒘𝟏, ⋯ , 𝒘𝒏, 𝒗𝟏, ⋯ , 𝒗𝒏, 𝝀, and 𝛽଴ as shown in Figure 1. Thus, each 

individual is composed of 2𝑛 ൅  2 genes. 

Figure 1. Individual representing a solution to Problem (4). 
𝒘𝟏 𝒘𝟐 … 𝒘𝒏 𝒗𝟏 𝒗𝟐 … 𝒗𝒏 𝝀 𝛽଴ 

 

There are 𝑛 ൅  2 crossing and mutation points. Furthermore, in order to fulfill consistency 

constraints (2) and (3), the weights are all considered as only one gene. The points to apply 

the crossover and mutation operators are shown in Figure 2.   

Figure 2. 𝑛 ൅  2 cutoff points for individuals. 
          1  2       𝑛          𝑛 ൅  1    𝑛 ൅  2          

        

𝒘𝟏 … 𝒘𝟑 𝒗𝟏 … 𝒗𝟑 𝝀 𝛽଴ 

 

Algorithm 1 describes the procedure. The algorithm first randomly creates an initial 

population of 𝐿 individuals, 𝑃଴. After that, and for each generation, from the current 

population 𝑃௚ the algorithm creates an offspring 𝐻௚, also of size 𝐿, using the following 

operators of Selection, Crossover and Mutation. 

The selection of parents at each generation of the genetic algorithm is done through a binary 

tournament; the different winning individuals in two independent tournaments are crossed in 

a single-point crossover to generate an offspring individual according to Table 2. 



Mutation consists of the random generation of a gene. If gene 1 is selected to mutate, then 

the set of weights would be randomly generated satisfying the consistency constraints (2) and 

(3). If gene 2 is chosen to mutate, then a random value would be generated for the veto of the 

first criterion, 𝒗𝟏. The probability with which an individual is selected to mutate is 1%. 

Since the set of weights is considered as a unique gene, there is no need to verify feasibility 

of the offspring individuals. 

The next step is the combination of parents and offspring in a pool from which the algorithm 

extracts the individuals with the best fitness. Such fitness is evaluated from the objectives in 

Problem (4), fulfilling constraints (2) and (3), and based on a reference set 𝜒௠ of cardinality 

𝑚. The individuals with the best fitness within the pool form the next generation of parents, 

𝑃௚ାଵ,. This procedure is repeated for 𝐺 generations. Later on, the algorithm returns the 

individual that represents the feasible solutions with the best fitness values in the last 

population. This vector is obtained as the centroid (average of the parameters) of individuals 

with the best fitness values. It can be demonstrated that if the centroid is obtained from a set 

of feasible solutions, then such a centroid is also feasible. In order to discard randomness in 

the procedure, we generate 𝐿 centroids. And, in order to take advantage of these centroids, 

we use them as a “seed population” for the last run of the algorithm. The centroid generated 

in this final run is recommended as the best solution to Problem (4). 

The values of parameters 𝐿 (population size), 𝐺 (number of generations), and 𝜒௠ (set of 

reference actions) should be provided by the decision maker according to the problem’s 

context. 

Algorithm 1. Genetic Algorithm proposed to solve Problem (4). 
Require: 𝐿, the size of the population; 𝐺, the number of generations; 𝜒௠, a reference set of 
cardinality 𝑚. 
Ensure: 𝜌௙௜௡௔௟, individual representing the population with the best fitness value 
 
1: 𝑖 ← 1 
2: for 𝑖 ൑ 𝐿 do 
3:     𝑔 ← 0 
4:     𝑃௚ ← createInitialPopulation() 
5:     for 𝑔 ൑ 𝐺 do 
6: 𝐻௚ ← createOffspring(𝑃௚, selection, crossover, mutation) 
7: 𝑃௚ାଵ ← bestAptitude(𝑃௚ ∪ 𝐻௚ሻ 



8: 𝑔 ← 𝑔 ൅ 1 
9:     end for 
10:   𝜌௜ ← findCentroid(𝑃௚) 
11: 𝑖 ← 𝑖 ൅ 1 
11: end for 
13: 𝑔 ← 0 
14: 𝑃௚ ← ሼ𝜌ଵ, 𝜌ଶ, ⋯ , 𝜌௅ሽ 
15: for 𝑔 ൑ 𝐺 do 
16:     𝐻௚ ← createOffspring(𝑃௚, selection, crossover, mutation) 
17:     𝑃௚ାଵ ← bestAptitude(𝑃௚ ∪ 𝐻௚ሻ 
18:     𝑔 ← 𝑔 ൅ 1 
19: end for 
20: 𝜌௙௜௡௔௟ ← findCentroid(𝑃 ) 
 
It is possible to incorporate information into the genetic algorithm that will help to reduce 

the search space. Some ways to add this type of information are the following: 

 The DM can assign values to some of the parameter boundaries. Because the 

parameters are expressed as interval numbers, it is relatively easy for the DM to assign 

the boundaries of some of these parameters. For example, the DM can provide a value 

𝜇௝ such that if the maximum difference between the score of actions 𝑦 and 𝑥 in 

criterion 𝑔௝ is equal to or greater than 𝜇௝ (that is, if 𝑔௝
ିሺ𝑦ሻ െ 𝑔௝

ାሺ𝑥ሻ ൒ 𝜇௝), then there 

is no doubt that 𝑥𝑆𝑦 must be vetoed. Therefore, it is possible to limit the search space 

of the algorithm by doing 𝑣௝
ା ൌ 𝜇௝. 

 The DM can express that criterion 𝑔௝ is more important than criterion 𝑔௜. In this case, 

the algorithm must ensure 𝑤௝
ି ൐ 𝑤௜

ା. 

 It must be satisfied that 𝜆ି ൐ 0.5 and 𝜆ା ൏ 1. 

 It must also be satisfied that 𝛽଴ ൐ 0.5 . 

4. Experiments 

This section details the experiments carried out to test the performance of the proposed 

approach and shows the validation of the parameters generated, mainly in its ability to 

reproduce the DM’s preferences. The actions used here are artificially created. 



4.1 Creating experimental instances 

To assess the proposed approach, it is necessary to simulate the DM’s decision policy and to 

generate sets of instances as test cases for evaluating the approach’s robustness. For this 

purpose, we simulate the DM’s preferences through the random generation of the parameter 

vector 𝒫. We assume a context where the DM is not able/disposed to spend a lot of time 

expressing his/her preferences (e.g., establishing a binary preference relation between each 

pair of actions within a reference set); so, we allow him/her to express his/her preferences in 

form of an ordinal classification of the actions. Each instance of the experiments consists 

then of a reference set 𝑇 containing a finite number of actions assigned to classes ordered 

according to the preferences in 𝒫. Each action 𝑥 ∈ 𝑇 is assigned to a class 𝐶௝ belonging to 

the following set: 𝐶ଷ ൌ 𝐺𝑜𝑜𝑑, 𝐶ଶ ൌ 𝐷𝑜𝑢𝑏𝑡 and 𝐶ଵ ൌ 𝐵𝑎𝑑. We denote such assignment as 

𝐶𝒫ሺ𝑥ሻ ൌ 𝑗. We assume for the experimental case that the assignments are consistent with the 

following conditions: 

𝐶𝒫ሺ𝑥ሻ െ 𝐶𝒫ሺ𝑦ሻ ൒ 2 ⇒ 𝑥𝑃𝒫𝑦, (5) 

𝐶𝒫ሺ𝑥ሻ െ 𝐶𝒫ሺ𝑦ሻ ൌ 1 ⇒ 𝑥𝑃𝒫𝑦 ∨ 𝑥𝑄𝒫𝑦 ∨ 𝑥𝐾𝒫𝑦, (6) 

𝐶𝒫ሺ𝑥ሻ െ 𝐶𝒫ሺ𝑦ሻ ൌ 0 ⇒ 𝑥𝐼𝒫𝑦 ∨ 𝑥𝑄𝒫𝑦 ∨ 𝑦𝑄𝒫𝑥 ∨ 𝑥𝐾𝒫𝑦 ∨ 𝑦𝐾𝒫𝑥, (7) 

𝑥𝑃𝒫𝑦 ⇒ 𝐶𝒫ሺ𝑥ሻ ൐ 𝐶𝒫ሺ𝑦ሻ, (8) 

𝑥𝑄𝒫𝑦 ∨ 𝑥𝐾𝒫𝑦 ⇒ 𝐶௉ ሺ𝑥ሻ ൒ 𝐶௉ሺ𝑦ሻ, (9) 

𝑥𝐼𝒫𝑦 ⇒ 𝐶𝒫ሺ𝑥ሻ ൌ 𝐶𝒫ሺ𝑦ሻ. (10) 

 

If an action cannot be assigned to one of the classes in consistency with Equations (5-10), 

then the current action is rejected and a new action is generated. This procedure continues 

until the cardinality of the reference set is satisfied. 

Sometimes the DM is not able/willing to engage in an arduous elicitation procedure, thus, 

allowing her to express her preferences as assignments of actions instead of asking her to 

specify a preference relation between each pair of actions is convenient. Such scenario is 

typical in portfolio optimization. 

The first step to create a reference set is to determine a central profile for each class. The 

central profiles of the classes are assigned in the following way. First, we randomly create a 



sufficiently large set of actions described by the criteria in ℐ. (Sets with 2000 actions are used 

in the experiments described below.) Later on, these actions are ranked through the 

outranking net flow score1 using the simulated parameter vector 𝒫. Finally, the central profile 

of a given class is defined as the action with the most representative position within the whole 

rank. For example, the central profile of the lowest class (𝐶ଵ) is close to the position ⌈2000/6⌉. 

As stated above, Equations (5-10) must always be fulfilled when assigning an action to a 

class. 

To assign the rest of actions within the reference set to the classes, we follow the next 

procedure: i) randomly create a new action described by its impact on the criteria; ii) 

determine if it can be assigned to a class (fulfilling Equations (5-10)); iii) if it cannot be 

assigned to any class, go to step i; iv) if it can be assigned to just one class, assign the solution 

to that class; v) if it can be assigned to more than one class, assign the action to the central 

class among those classes where the solution fulfills Equations (5-10). 

The bounds of 𝒈𝒊ሺ𝑥ሻ ൌ ሾ𝑔௜
ିሺ𝑥ሻ, 𝑔௜

ାሺ𝑥ሻሿ are generated as 𝑔௜
ିሺ𝑥ሻ ൌ minሼ𝑑ଵ, 𝑑ଶሽ, 𝑔௜

ାሺ𝑥ሻ ൌ

maxሼ𝑑ଵ, 𝑑ଶሽ where 𝑑௝ ൌ max൛10, min൛1, 𝜄൫̂1 െ 𝜖௝൯ൟൟ, 𝜄 ̂ ∈ ሾ1,10ሿ, 𝜖௝ ∈ ሾെ0.3,0.3ሿ, 𝑗 ൌ 1,2. 

The parameters of 𝒫 are generated as follows: First, 𝛽଴ is randomly generated in (0.5, 0.6) 

while the 𝑖-th veto is defined as 𝑣௜
ି ൌ 0.7𝑣పෝ  and 𝑣௜

ା ൌ 1.3𝑣పෝ , where 𝑣పෝ  is randomly generated 

in ሾ3, 5ሿ. We calculate the core values of the weights as 𝑤ෝ ൌ
ଵ

௡
 and the weight of criterion 𝒈𝒊 

as 𝑤௜
ି ൌ  ሺ1 െ 𝜔௜ሻ 𝑤ෝ, 𝑤௜

ା ൌ  ሺ1 ൅ 𝜔௜ሻ 𝑤ෝ , where 𝜔௜ is randomly generated in [0,0.3]. The 

lower bound of 𝜆, 𝜆ି, is randomly generated in ሾ0.51, 0.76ሿ and its upper bound is set as 

𝜆ା ൌ 1.3𝜆ି. For all cases 𝑖 ൌ 1, ⋯ , 𝑛. 

To create the individuals in the initial population of the genetic algorithm, these parameters 

are randomly generated as described above, but with wider ranges of search: 𝛽଴ and the 

bounds of 𝝀 are randomly generated in (0.5, 1), 𝜔௜ is randomly generated in [0.1,0.5], 𝑣௜
ି ൌ

0.5𝑣పෝ  and 𝑣௜
ା ൌ 1.5𝑣పෝ . 

 
1 The net flow score is commonly used to rank a set of actions (cf. [36]). If 𝛽ሺ𝑥, 𝑦ሻ is a fuzzy 
preference relation on a set 𝐴ᇱ, the net flow score associated to 𝑎 ∈ 𝐴′ is defined as 𝐹௡ሺ𝑎ሻ ൌ
∑ ሾ𝛽ሺ𝑎, 𝑐ሻ െ 𝛽ሺ𝑐, 𝑎ሻሿ௖∈஺ᇱିሼ௔ሽ  (see [37]). 



4.2 Validation procedure 

We consider that it is important to validate the effectiveness of the approach when it deals 

with 

 different decision models (e.g., when dealing with different DMs); 

 different number of criteria; 

 different number of actions in the reference set; 

 out-of-sample situations: testing the model’s capacity of generalization when 

approaching new decisions on actions out of the reference set.  

We are particularly interested in testing the proposed approach’s ability to create a decision 

model that reproduces the same preference relations as assumed from the assignments made 

by the DM. We use the following validation procedure: 

1. Use two sets of criteria with different cardinality to describe actions; namely, six and 

twelve criteria.  

2. Simulate the decision model of a DM through the random generation of the parameter 

vector 𝒫.  

3. Create five reference sets, 𝜒ଵ଴, 𝜒ଶ଴, 𝜒ଷ଴, 𝜒ସ଴, and 𝜒ହ଴, with cardinalities of 10, 20, 

30, 40 and 50, respectively, using three classes, 𝐶ଷ ൌ 𝐺𝑜𝑜𝑑, 𝐶ଶ ൌ 𝐷𝑜𝑢𝑏𝑡 and 𝐶ଵ ൌ

𝐵𝑎𝑑. We denote the assignment by the decision model 𝒫 of action 𝑥 to class 𝑗 in the 

𝑚-th reference set as 𝐶𝒫೘
ሺ𝑥ሻ ൌ 𝑗. 

4. Obtain, through the proposal in Section 3, a set of parameters 𝒫∗ as consistent as 

possible with the assignments made by the simulated DM (whose real decision model 

is 𝒫) in each reference set. The maximum consistency is identified with the best 

compromise of Problem (4) and the optimization is performed using Algorithm 1.  

5. Obtain the in-sample effectiveness of the proposal as follows: first, determine the 

preference relation for each pair of actions ሺ𝑥, 𝑦ሻ ∈ 𝜒௠ ൈ 𝜒௠, 𝑚 ∈

 ሼ10, 20, 30, 40, 50ሽ through 𝒫∗, and call it 𝑥ℛ௠
∗ 𝑦, ℛ ∈ ሼ𝑃, 𝑄, 𝐾, 𝐼ሽ ∪ ሼ𝑂ሽ. 

ሼ𝑃, 𝑄, 𝐾, 𝐼ሽ is the set of preference relations described in bullet point 4 of Section 3, 

while 𝑂 indicates that the relation between 𝑥 and 𝑦 is not in this set. It is necessary to 

note here that the definition of the preference relations does not guarantee that one of 



the four relations will occur between 𝑥 and 𝑦 for 𝒫∗. However, the way that the 

reference sets are created (see Subsection 4.1) allows one of these relations to be 

always hold between each pair of actions for 𝒫. Thus, the situation where we cannot 

set one of these relations between each ሺ𝑥, 𝑦ሻ ∈ 𝜒௠ ൈ 𝜒௠ for 𝒫∗ shall be counted as 

an inconsistency between 𝒫∗ and 𝒫. Finally, contrast the preference relation obtained 

through 𝒫ᇱ with the one inferred from the assignments made by the DM of 𝑥 and 𝑦 

to their respective classes in 𝜒௠ and calculate an error indicator for the method in 

each instance of reference set 𝜒௠ as 

𝜉௠  ൌ ෍ ൣ𝜉௉೘
ሺ𝑥, 𝑦ሻ ൅ 𝜉ொ೘

ሺ𝑥, 𝑦ሻ ൅ 𝜉௄೘
ሺ𝑥, 𝑦ሻ ൅ 𝜉ூ೘

ሺ𝑥, 𝑦ሻ ൅ 𝜉ை೘
ሺ𝑥, 𝑦ሻ൧

ሺ௫,௬ሻ∈ఞ೘ൈఞ೘

 

where 

𝜉௉೘
ሺ𝑥, 𝑦ሻ ൌ 1 if 𝑥𝑃௠

∗ 𝑦 ⇒ 𝐶𝒫೘
ሺ𝑥ሻ ൐ 𝐶𝒫೘

ሺ𝑦ሻ is false and 0 otherwise, 

𝜉ொ೘
ሺ𝑥, 𝑦ሻ ൌ 1 if 𝑥𝑄௠

∗ 𝑦 ⇒ 𝐶𝒫೘
ሺ𝑥ሻ ൒ 𝐶𝒫೘

ሺ𝑦ሻ is false and 0 otherwise,  

𝜉௄೘
ሺ𝑥, 𝑦ሻ ൌ 1 if 𝑥𝐾௠

∗ 𝑦 ⇒ 𝐶𝒫೘
ሺ𝑥ሻ ൒ 𝐶𝒫೘

ሺ𝑦ሻ is false and 0 otherwise, 

𝜉ூ೘
ሺ𝑥, 𝑦ሻ ൌ 1 if 𝑥𝐼௠

∗ 𝑦 ⇒ 𝐶𝒫೘
ሺ𝑥ሻ ൌ 𝐶𝒫೘

ሺ𝑦ሻ is false and 0 otherwise, and 

𝜉ை೘
ሺ𝑥, 𝑦ሻ ൌ 1 if 𝑥𝑂𝑦. 

Hence, the effectiveness of the method when evaluated in the context of the 

preference relations in  𝜒௠ is defined as  

 
1 െ

𝜉௠

𝜂
 

(11)

(i.e., the strict negation of the proportion of errors with respect to the number of 

preference relations); where 𝜂 ൌ
௠

ଶ
ሺ𝑚 െ 1ሻ, 𝑚 ∈  ሼ10, 20, 30, 40, 50ሽ.  

6. Obtain the out-of-sample effectiveness of the proposal as follows: first, use 𝒫 to 

assign new actions (different to the ones in the reference sets) as described in 

Subsection 4.1 (we generate sets of 100 actions). Then, use 𝒫∗ to find the binary 

preference relations between pairs of these new actions. Finally, determine the out-



of-sample effectiveness of the proposal using an equivalent validation method as the 

one used in step 5. 

One instance of the experiment consists in a simulated DM, a given cardinality of the criteria 

set, and a cardinality of the reference set. We consider 40 instances to be sufficient to perform 

a satisfactory validation of the proposed approach using the validation process described in 

steps 4-6. 

5. Results 

Here, we analyze the effectiveness of the proposed approach to state the same binary relation 

as the ones inferred from the assignments made by the simulated DM. Such analysis is 

performed both in-sample and out-of-sample with respect to the actions in the reference sets. 

We evaluate the results obtained when the actions are described by six and twelve criteria. 

5.1 Actions described by six criteria 

5.1.1 In-sample effectiveness 

Table 1 shows the average effectiveness of our approach, as calculated by Eq. (11) and its 

standard deviation for each reference set. We calculate these results from the effectiveness 

of our proposal in the 40 instances of the experiment. The Wilcoxon Signed-Ranks test for 

two paired samples indicated that the difference of each pair of average performances is 

considered to be statistically significant with a 0.95 confidence level. This means that the 

increments in the cardinality of the reference sets allowed the model to increase its 

performance and shows the number of actions that the DM should classify in order to obtain 

an expected performance. 

 

 

Table 1. Average in-sample effectiveness of the proposal relative to preference relations for 
each reference set using six criteria 

Reference 
set 

Average 
effectiveness

Standard 
deviation 

𝜒ଵ଴ 0.9822 0.0023 

𝜒ଶ଴ 0.9992 1.36Eି଴ହ 



𝜒ଷ଴ 0.9993 6.02Eି଴଺ 

𝜒ସ଴ 0.9996 2.21Eି଴଺ 

𝜒ହ଴ 0.9997 8.48Eି଴଻ 

 

Evidently, an effectiveness lower than 100% is due to the error indicator, 𝜉௠, being greater 

than zero. Each of the error types, 𝜉௉೘
, 𝜉ொ೘

, 𝜉ூ೘
, and 𝜉ை೘

, has a different level of proportion 

in the total error (see step 5 of Subsection 4.2). Table 2 shows the average ratio in 𝜉௠ of each 

of the error types. 

Table 2. Average proportion of each type of error in 𝜉௠ 
Reference 
set 

𝝃𝑷𝒎
ሺ𝒙, 𝒚ሻ 𝝃𝑸𝒎

ሺ𝒙, 𝒚ሻ 𝝃𝑲𝒎
ሺ𝒙, 𝒚ሻ 𝝃𝑰𝒎

ሺ𝒙, 𝒚ሻ 𝝃𝑶𝒎
ሺ𝒙, 𝒚ሻ 

𝜒ଵ଴ 0.43 0 0 0.14 0.43 

𝜒ଶ଴ 0.66 0 0.03 0.03 0.28 

𝜒ଷ଴ 0.64 0 0 0.16 0.20 

𝜒ସ଴ 0.61 0.01 0.03 0.07 0.28 

𝜒ହ଴ 0.59 0 0.01 0.12 0.28 

Table 2 indicates that inconsistencies respect to the strict preference provide most of the error 

encompassed in the global error. Of course, not all preference relations occur with the same 

frequency in the experiment. Actually, it is the strict preference the one with the highest 

frequency, so it is not surprising that 𝜉௉೘
 has the largest proportion in the error indicator. 

Table 3 shows the effectiveness with respect to the frequency of each preference relation. 

This effectiveness is obtained as the average number of times that the preference relation 

inferred from the simulated DM’s assignments and the preference relation found through 𝒫∗ 

coincide. For example, with cardinality equal to 50, there are 819 pairs on average in the 40 

instances where strict preference exists, according to the 𝒫∗ model. Nevertheless, the 𝜉௉೘
 

indicator was only 2 on average for strict preference (that is, there were only two times where 

𝑥𝑃ହ଴
∗ 𝑦 ⇒ 𝐶𝒫ఱబ

ሺ𝑥ሻ ൐ 𝐶𝒫೘
ሺ𝑦ሻ was false, out of the 819 opportunities where it could happen). 

Thus, for the case of strict preference, the model has an effectiveness of 99.76% in 𝜒ହ଴. 

Table 3. Average effectiveness by preference relation 
Reference 
set 

𝑷 𝑸 𝑲 𝑰 



𝜒ଵ଴ 0.9973 1.0000 0.9999 1.0000 

𝜒ଶ଴ 0.9994 1.0000 0.9999 0.9998 

𝜒ଷ଴ 0.9997 1.0000 1.0000 1.0000 

𝜒ସ଴ 0.9999 1.0000 1.000 1.0000 

𝜒ହ଴ 0.9976 1.0000 1.0000 0.9997 

 

Tables 4-7 show the comparison of the models 𝒫 and 𝒫∗ in reference sets 𝜒ଷ଴. The parameter 

values are rather similar, although there are some significant deviations. But the really 

important feature of the indirect elicited parameters is to allow making decisions consistent 

with the reference sets, even when this set of parameters is not alike the ones of the simulated 

DM.  

Table 4. Comparison of the cutting level 𝛽଴ of the simulated DM and the one found by the 
proposed approach in 𝜒ଷ଴ 

Instance
𝛽଴ 

DM PDA 
1 0.515 0.529
2 0.541 0.547
3 0.516 0.576
4 0.549 0.56
5 0.541 0.547
6 0.544 0.682
7 0.549 0.562
8 0.513 0.518
9 0.536 0.555
10 0.519 0.526

Table 5. Comparison of the cutting level 𝝀 of the simulated DM and the one found by the 
proposed approach in 𝜒ଷ଴ 
 

Instance 
𝝀 

DM PDA 
1 [0.529,0.541] [0.559,0.67] 
2 [0.512,0.523] [0.56,0.667] 
3 [0.522,0.54] [0.567,0.67] 
4 [0.515,0.523] [0.561,0.668]
5 [0.52,0.527] [0.553,0.659]
6 [0.521,0.534] [0.557,0.666]
7 [0.516,0.529] [0.557,0.661]



8 [0.522,0.536] [0.561,0.666]
9 [0.529,0.541] [0.571,0.676]
10 [0.518,0.54] [0.566,0.641]

 
Table 6. Comparison of the vector of weights of the simulated DM and the one found by the 
proposed approach in 𝜒ଷ଴ 

Instance Weights 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓 𝒘𝟔 

1 DM [0.102,0.231] [0.125,0.208] [0.104,0.23] [0.131,0.202] [0.103,0.231] [0.117,0.216]
 PDA [0.115,0.218] [0.118,0.215] [0.114,0.219] [0.117,0.216] [0.117,0.216] [0.119,0.215]

2 DM [0.086,0.247] [0.11,0.224] [0.118,0.215] [0.112,0.221] [0.098,0.236] [0.127,0.207]
 PDA [0.122,0.212] [0.116,0.217] [0.116,0.217] [0.118,0.215] [0.121,0.212] [0.112,0.221]
3 DM [0.133,0.201] [0.115,0.219] [0.11,0.223] [0.14,0.193] [0.144,0.189] [0.091,0.242]
 PDA [0.118,0.215] [0.118,0.215] [0.116,0.218] [0.115,0.219] [0.118,0.215] [0.115,0.218]

4 DM [0.093,0.241] [0.126,0.207] [0.135,0.198] [0.112,0.221] [0.098,0.235] [0.12,0.213] 
 PDA [0.118,0.215] [0.118,0.215] [0.112,0.221] [0.118,0.215] [0.124,0.21] [0.114,0.219]
5 DM [0.114,0.219] [0.088,0.245] [0.133,0.2] [0.119,0.214] [0.11,0.223] [0.136,0.197]
 PDA [0.12,0.214] [0.119,0.215] [0.113,0.22] [0.115,0.218] [0.117,0.217] [0.119,0.214]

6 DM [0.091,0.242] [0.144,0.19] [0.121,0.212] [0.116,0.217] [0.149,0.184] [0.131,0.202]
 PDA [0.117,0.216] [0.114,0.219] [0.115,0.219] [0.117,0.216] [0.116,0.217] [0.116,0.217]

7 DM [0.106,0.227] [0.135,0.198] [0.107,0.226] [0.119,0.215] [0.137,0.197] [0.092,0.242]
 PDA [0.115,0.218] [0.116,0.217] [0.117,0.217] [0.12,0.214] [0.119,0.214] [0.114,0.219]
8 DM [0.129,0.204] [0.095,0.239] [0.104,0.229] [0.122,0.211] [0.091,0.242] [0.084,0.25] 
 PDA [0.121,0.212] [0.119,0.214] [0.116,0.217] [0.119,0.215] [0.112,0.221] [0.117,0.217]
9 DM [0.112,0.221] [0.103,0.23] [0.116,0.217] [0.107,0.227] [0.12,0.213] [0.131,0.202]
 PDA [0.115,0.218] [0.118,0.216] [0.119,0.214] [0.12,0.213] [0.12,0.213] [0.118,0.215]

10 DM [0.138,0.196] [0.125,0.209] [0.095,0.238] [0.122,0.211] [0.123,0.21] [0.101,0.232]
 PDA [0.118,0.216] [0.117,0.216] [0.115,0.218] [0.12,0.213] [0.113,0.221] [0.118,0.216]

 

Table 7. Comparison of the vectors of vetoes of the simulated DM and the one generated by 
the proposed approach in 𝜒ଷ଴ 

Instance 
Veto 
thresholds

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 

1 DM [0.652,0.807] [0.663,0.842] [0.657,0.82] [0.604,0.703] [0.753,0.871] [0.757,0.864] 
 PDA [0.663,0.795] [0.635,0.745] [0.733,0.904] [0.719,0.863] [0.733,0.902] [0.733,0.915] 

2 DM [0.612,0.697] [0.616,0.786] [0.64,0.747] [0.698,0.812] [0.746,0.895] [0.755,0.835] 
 PDA [0.665,0.797] [0.718,0.875] [0.651,0.78] [0.703,0.849] [0.629,0.74] [0.735,0.9] 

3 DM [0.685,0.82] [0.686,0.793] [0.699,0.875] [0.649,0.838] [0.635,0.762] [0.616,0.761] 
 PDA [0.736,0.911] [0.676,0.807] [0.677,0.807] [0.682,0.816] [0.629,0.746] [0.653,0.788] 

4 DM [0.663,0.841] [0.678,0.783] [0.706,0.821] [0.701,0.9] [0.715,0.873] [0.732,0.873] 
 PDA [0.7,0.849] [0.713,0.854] [0.697,0.836] [0.714,0.873] [0.698,0.841] [0.735,0.897] 

5 DM [0.688,0.833] [0.647,0.808] [0.668,0.834] [0.662,0.794] [0.649,0.83] [0.656,0.781] 
 PDA [0.684,0.849] [0.692,0.828] [0.661,0.802] [0.734,0.905] [0.648,0.772] [0.707,0.863] 

6 DM [0.75,0.936] [0.661,0.842] [0.696,0.794] [0.618,0.787] [0.713,0.787] [0.705,0.818] 
 PDA [0.669,0.796] [0.723,0.889] [0.706,0.843] [0.667,0.799] [0.707,0.854] [0.633,0.746] 

7 DM [0.655,0.758] [0.709,0.911] [0.747,0.854] [0.639,0.782] [0.713,0.877] [0.76,0.838] 
 PDA [0.652,0.774] [0.706,0.868] [0.644,0.757] [0.705,0.859] [0.737,0.904] [0.727,0.893] 



8 DM [0.674,0.775] [0.731,0.866] [0.61,0.771] [0.746,0.832] [0.714,0.829] [0.689,0.858] 
 PDA [0.689,0.815] [0.73,0.907] [0.715,0.866] [0.733,0.899] [0.715,0.874] [0.654,0.784] 

9 DM [0.617,0.736] [0.626,0.778] [0.685,0.771] [0.673,0.812] [0.725,0.817] [0.707,0.853] 
 PDA [0.637,0.757] [0.685,0.82] [0.728,0.862] [0.693,0.829] [0.646,0.771] [0.648,0.77] 

10 DM [0.622,0.724] [0.725,0.867] [0.64,0.813] [0.713,0.897] [0.654,0.75] [0.616,0.689] 
 PDA [0.622,0.742] [0.674,0.811] [0.696,0.833] [0.679,0.816] [0.719,0.877] [0.644,0.763] 

 

5.1.2 Out-of-sample effectiveness 

The final goal of the PDA paradigm is to create a decision model consistent with the DM’s 

preferences; so, the decision model should suggest decisions that may be considered 

appropriate by the DM. In this subsection we assess out-of-sample the effectiveness of our 

proposal to find such model; that is, we use the decision models built by the proposed 

approach to determine binary preference relations between actions different to the ones 

within the reference sets. We analyze the proposed approach’s capability to “predict” the 

preference relation between pairs of actions described by six criteria such as the DM would 

have done it, considering a set of 100 assignments other than those in the original reference 

sets. These assignments are performed by the same simulated DMs for whom the preference 

models 𝒫∗ were created. We measure this effectiveness based on the solution generated by 

our approach in each instance per reference set using the same effectiveness measure from 

the previous section. 

Table 8 shows the average effectiveness of the proposed approach and its standard deviation 

for each cardinality of the original reference sets used to elicit 𝒫∗. Unlike the results obtained 

in the in-sample test (Table 1), here some pairs of average performances are not statistically 

different; namely, those of reference sets 𝜒ଶ଴ and 𝜒ଷ଴, and 𝜒ସ଴ and 𝜒ହ଴. Furthermore, when 

performing the same statistical test (Wilcoxon Signed-Ranks test for two paired samples with 

0.95 confidence level) between the respective reference sets of the in-sample and out-of-

sample effectiveness, we saw that the high performance of the model was not maintained. 

Table 8. Average out-of-sample effectiveness of the proposal relative to preference relations 
for each reference set using six criteria 
Reference 
set 

Average 
effectiveness 

Standard 
deviation

𝜒ଵ଴ 0.9270 0.1150 



𝜒ଶ଴ 0.9878 0.0137 

𝜒ଷ଴ 0.9891 0.0151 

𝜒ସ଴ 0.9946 0.0061 

𝜒ହ଴ 0.9947 0.008 

 

5.2 Twelve criteria  

5.2.1 In-sample effectiveness 

Here, we show the results obtained when carrying out experiments with actions described by 

twelve criteria. Table 9 shows the first results. In this table we can see that the effectiveness 

of the proposed approach when it worked with actions described by twelve criteria is actually 

not worse than with actions described by six criteria. The procedure to obtain these results is 

the same as the one stated in Section 5.1.1. 

 

Table 9. Average in-sample effectiveness of the proposal relative to preference relations for 
each reference set using twelve criteria 
Reference 
set 

Average 
effectiveness 

Standard 
deviation

𝜒ଵ଴ 0.9794 0.0018 

𝜒ଶ଴ 0.9992 5.04E-06 

𝜒ଷ଴ 0.9995 1.95E-06 

𝜒ସ଴ 0.9998 2.15E-07 

𝜒ହ଴ 0.9996 7.84E-07 

 

5.2.2 Out-of-sample effectiveness 

We show now the proposed approach’s capability to predict the preference relation between 

pairs of actions when these are different to the reference sets used by the approach to elicit 

𝒫∗. Table 10 shows the average effectiveness of the indirect elicitation proposal and its 

standard deviation for each reference set. The actions are described by twelve criteria and the 

procedure to obtain the results is stated in Section 5.1.2. 



Table 10. Average out-of-sample effectiveness of the proposal relative to preference 
relations for each reference set using twelve criteria 
Reference 
set 

Average 
effectiveness 

Standard 
deviation 

𝜒ଵ଴ 0.8634 0.1401 

𝜒ଶ଴ 0.982 0.0184 

𝜒ଷ଴ 0.9882 0.0158 

𝜒ସ଴ 0.9911 0.0125 

𝜒ହ଴ 0.9937 0.0106 

 

6. Case study: eliciting preferences in portfolio optimization 

An application in the context of portfolio optimization was performed in [17], where four 

underlying criteria (defined as interval numbers) are used to maximize stock portfolios’ 

returns. There, a direct elicitation of the model’s parameters is performed. Here, we show the 

performance of the approach proposed in Section 3 to indirectly elicit the same application’s 

preference parameter values by comparing the results of both elicitation procedures. 

6.1 Background to the case study 

Portfolio optimization is a problem that requires to select the allocation of resources that 

maximizes the impact(s) on the DM’s objective(s). Many objectives can be considered during 

portfolio optimization; from them, maximization of the portfolio return is definitely the most 

common [38, 17]. However, even when this is the only objective being optimized and, 

because of the uncertainty involved in the estimation of its impact, many underlying criteria 

are often used to underlie its estimation. We present below some perspectives on how to 

characterize portfolios; such perspectives can be used as criteria underlying the maximization 

of the portfolio return. 

6.1.1 Confidence intervals   

In [38] both the estimation of the portfolio’s return and its involved risk are incorporated into 

the optimization model in the form of confidence intervals. That work allows to consider the 

DM’s attitude in presence of risk by letting the DM to define what he/she considers the 

appropriate probability of the confidence intervals. It is also able to represent multiple points 



of the probability distribution in a single criterion; thus, it reduces the necessity of many 

criteria to satisfactorily describe such distribution.  

The main idea of that work is that the portfolios with the best chance to get high results are 

the ones whose confidence interval are most to the right of their density function. Thus, it is 

necessary to maximize, in the sense of Equation (1), such confidence intervals. Below, we 

present a formalization of this idea.  

Let 𝑥 ൌ ሾ𝑥ଵ, 𝑥ଶ, 𝑥ଷ ⋯ ሿ⊺ be a portfolio characterized by the proportion of resources assigned 

to a set of assets (e.g., stocks, funds, …). In the financial literature each 𝑥௝ could be negative 

(that is, borrowing resources), but it is common to constrain its values to ሾ0,1ሿ. Also let 𝑅ሺ𝑥ሻ 

be the return of portfolio 𝑥 and 𝑃ሺ𝜔ሻ the probability of event 𝜔. Then, the confidence interval 

around such return is defined as 𝜽𝜸ሺ𝑥ሻ ൌ ሾ𝛼, 𝛽ሿ, such that 𝑃ሺ𝛼 ൑ 𝑅ሺ𝑥ሻ ൑ 𝛽ሻ ൌ 𝛾. The 

proposal of Solares et al. [38] is to select the portfolio that solves the following multicriteria 

optimization problem: 

 maximize
௫∈୼

ቀ𝜽𝜸𝟏
ሺ𝑥ሻ, ⋯ , 𝜽𝜸𝒌

ሺ𝑥ሻቁ , (12)

where Δ is the set of feasible portfolios fulfilling and 𝑘 is the number of confidence intervals.  

Even when this proposal is interesting, it is highly important for the stock optimization model 

to allow considering additional information to the statistical one. 

6.1.2 Financial fundamental study 

One of the most well-known techniques used by stock investors is the so-called financial 

fundamental analysis. This analysis is performed on the basis of fundamental indicators 

defined as numerical proportions derived from the companies’ financial statements. Some 

relevant fundamental indicators are shown in Table 11 (cf. [39]), see [17]. 

Table 11. Some relevant fundamental indicators. 

Name Description 

Return on assets Earnings before interest and taxes divided by total assets. 
Return on equity Net income divided by shareholders equity.
Earnings Per Share Net income minus dividends on preferred stocks all 

divided by average outstanding shares.
Dividend yield Annual dividends per share divided by price per share. 



Price on earnings Market value per share divided by earnings per share 
Price on book Stock price divided by all total assets minus intangible 

assets and liabilities.
Price on sales Share price divided by revenue per share.
Price on cash Flow Share price divided by cash flow per share

 

6.1.3 Financial technical study 

The financial technical study considers the behavior of the stock markets using price and 

volume of transactions to create decision rules about the convenience of buying/selling stocks 

[40]. For example, if the decision rule related to the 𝑗th indicator presents evidence about the 

price of the 𝑖th stock rising, then 𝑖𝑡௝
௜ ൌ 1 and the DM should support the stock to eventually 

increase the return of the portfolio; otherwise, 𝑖𝑡௝
௜ ൌ 0 and there would be no evidence, 

according to this indicator, showing that the stock’s price will rise. 

Some of the most outstanding technical indicators with their corresponding rules are 

presented in Table 12 (e.g., [40, 41, 42]). See [17] for the algebraic specification of the rules 

associated with the indicators and [42] for graphical illustrations. 

Table 12. Technical indicators commonly mentioned in the related literature and their 
associated inference rules. 

Indicator Name Associated rule 

𝑖𝑡ଵ Exponential Moving 
Average (EMA) 

Price line crosses above the EMA line. 

𝑖𝑡ଶ Double Crossover (DC) EMA(11) crosses above the EMA(20) line. 

𝑖𝑡ଷ Rate of change (ROC) ROC line crosses above 0. 

𝑖𝑡ସ Relative Strength Index 
(RSI) 

RSI line crosses above 30. 

𝑖𝑡ହ Moving average 
convergence/divergence 
(MACD) 

MACD(12,26) crosses above MM(9); where 
MM is a moving average. 

𝑖𝑡଺ On Balance Volume 
(OBV)

OBV is rising simultaneously with price 
indicating an uptrend.

𝑖𝑡଻ Bollinger Band (BB) Price is simultaneously above LB(20) and 
below MM(20); where LB is MM(20) minus 2 
standard deviations.

𝑖𝑡଼ True Strength Index (TSI) TSI crosses below trigger on oversold region (-
25)



In every case, the value within parentheses represents the number of historical periods 

considered to calculate the value of the corresponding measure. 

6.1.4 Portfolio optimization with two surrogated criteria 

Using Fuzzy Logic and the interval outranking method, Fernandez et al. [17] presented an 

approach where an optimization problem with virtually any number of criteria can be 

indirectly addressed by tackling an optimization problem with only two surrogated criteria. 

Specifically, the interval outranking model is used in that work to model the preferences of 

the DM and incorporate them into the search process, while Fuzzy Logic is used to create a 

non-outranked truth degree of 𝑥 in a set of alternatives 𝐴. Let us now present the main 

characteristics of that approach. 

For each pair ሺ𝑥, 𝑦ሻ ∈ 𝐴 ൈ 𝐴, it is possible to obtain through the procedure described in 

Subsection 2.3 a credibility degree of the assertions i) “𝑥 outranks 𝑦”, denoted by 𝛽ሺ𝑥𝑆𝑦ሻ; 

ii) “𝑦 outranks 𝑥”, denoted by 𝛽ሺ𝑦𝑆𝑥ሻ; and iii) “𝑦 dominates 𝑥”, denoted by 𝑦𝐷ሺሻ𝑥. Now, 

let us make 𝐴መ ൌ 𝐴 െ ሼ𝑥ሽ and 𝑠 ൌ 𝑐𝑎𝑟𝑑൫𝐴መ൯, then the non-outranked truth degree of 𝑥 in 𝐴 is 

specified using the compensatory fuzzy logic based on the geometric mean2 as (cf. [17]): 

 
𝑁𝑆஺ሺ𝑥ሻ ൌ ට𝑁𝑆ሺ𝑥, 𝐴መሻ

ೞ
. 

 

Where 

 
𝑁𝑆൫𝑥, 𝐴መ൯ ൌ ෑ ඨሺ1 െ 𝑦𝐷ሺሻ𝑥ሻ ቆ1 െ ටቀ1 െ ൫1 െ 𝛽ሺ𝑦𝑆𝑥ሻ൯ቁ ൫1 െ 𝛽ሺ𝑥𝑆𝑦ሻ൯ቇ .

௬∈஺෠

 
 

According to Fernandez et al. [17], a high valued 𝑁𝑆஺ሺ𝑥ሻ represents that there is no evidence 

of other solutions in 𝐴 being better than 𝑥. Therefore, a high valued 𝑁𝑆஺ሺ𝑥ሻ is a necessary 

condition for 𝑥 to be the best compromise among the criteria. However, it is not a sufficient 

condition, given that 𝑥 may be incomparable with many of the solutions in 𝐴. Thus, further 

information is required to ensure superiority of 𝑥 over the other solutions. 

 
2 See Espin et al., 2014 for the definition of compensatory fuzzy logic based on the geometric 
mean. 



To achieve this, the alternative used in [17] is the net flow score (see [36, 37]), defined as 

follows. Let 𝛽ሺ𝑥𝑆𝑦ሻ be an outranking credibility on 𝑥, 𝑦 ∈ 𝐴 ൈ 𝐴, the net flow score of 𝑥 is 

𝐹௡ሺ𝑥ሻ ൌ ∑ ൫𝛽ሺ𝑥𝑆𝑦ሻ െ 𝛽ሺ𝑦𝑆𝑥ሻ൯௬∈஺ିሼ௫ሽ . Since 𝐹௡ሺ𝑥ሻ ൐ 𝐹௡ሺ𝑦ሻ indicates preference of 𝑥 over 

𝑦, the net flow score may be used to select a solution between 𝑥 and 𝑦 when both have the 

same non-outranked truth degree. Therefore, a best compromise solution is represented in 

[17] as the non-dominated set of solutions obtained from addressing the following problem: 

 maximize
௫∈ஐ

൫𝑁𝑆஺ሺ𝑥ሻ, 𝐹௡ሺ𝑥ሻ൯, (13)

with preemptive priority favoring 𝑁𝑆஺ሺ𝑥ሻ, where Ω is the set of feasible portfolios. 
 

6.2 Portfolio optimization problem 

Fernandez et al. [17] presented an original assessment of portfolios using financial analyses 

(as opposed to only evaluating individual stocks, as it is commonly done). They implemented 

Fuzzy Logic to build a truth degree for each stock being “good” with respect to the analyses; 

later on, the degrees of all the stocks within the portfolio are aggregated to produce interval 

numbers representing the quality indexes of portfolio 𝑥 being good from the fundamental and 

technical viewpoints, 𝑭ሺ𝑥ሻ and 𝑻ሺ𝑥ሻ, respectively (cf. [17] to see the construction of both 

quality indexes). 

On the other hand, Solares et al., [38] use two confidence intervals to simulate a risk-averse 

DM. One of the confidence intervals contains the portfolio return with a 70% of probability, 

𝜽𝜸𝟕𝟎
ሺ𝑥ሻ; whereas the other, contains it with the 99% of probability, 𝜽𝜸𝟗𝟗

ሺ𝑥ሻ. Furthermore, 

three constraints are used there to represent a more realistic investment scenario: budget 

constraint (how much will be invested), non-negativity constraint (no short-sales) and bounds 

on individual stocks constraints (a maximum limit of what can be invested in each stock). 

Here, as in [17] and similarly to [38], we use the following multi-criteria problem to assess 

our proposed approach described in Section 3: 

 max
௫∈ஐ

imize ቀ𝜽𝜸𝟕𝟎
ሺ𝑥ሻ, 𝜽𝜸𝟗𝟗

ሺ𝑥ሻ, 𝑭ሺ𝑥ሻ, 𝑻ሺ𝑥ሻቁ. (14)

Subject to 

∑𝑥௝ ൌ 1 ⟶ Budget constraint; 



𝑥௝ ൒ 0 ⟶ Non-negativity conditions; 

𝑥௝ ൑ 0.4 ⟶ Bounds on individual stocks. 

Where 

𝑥௝ is the proportion of resources allocated to the 𝑗th stock, 

𝜽𝟕𝟎ሺ𝑥ሻ ൌ ሼሾ𝛼଻଴, 𝛽଻଴ሿ: 𝑃ሺ𝛼଻଴ ൑ 𝑅ሺ𝑥ሻ ൑ 𝛽଻଴ሻ ൌ 0.70ሽ,  

𝜽𝟗𝟗ሺ𝑥ሻ ൌ ሼሾ𝛼ଽଽ, 𝛽ଽଽሿ: 𝑃ሺ𝛼ଽଽ ൑ 𝑅ሺ𝑥ሻ ൑ 𝛽ଽଽሻ ൌ 0.99ሽ,  

𝑅ሺ𝑥ሻ is the return of portfolio 𝑥,  

𝑭ሺ𝑥ሻ is the assessment of portfolio 𝑥 made by the fundamental analysis, 

𝑻ሺ𝑥ሻ is the assessment of portfolio 𝑥 made by the technical analysis. 

6.3 Experimental design 

We are interested in testing the performance of the proposed approach to indirectly elicit the 

parameter values that represent the DM’s decision policy. Thus, we compare the ability of 

its solutions to reproduce the DM’s decisions with that obtained using a direct elicitation. 

Specifically, we use the DM’s actual decision policy to compare our solutions with those 

obtained by Fernandez et al. [17] when solving Problem (14). 

6.3.1 Instance generation 

We first simulate the DM’s decision policy and generate sets of instances. For this purpose, 

we create 20 instances simulating the DM’s preferences through the random generation of 

the parameter vector 𝒫௜, 𝑖 ൌ 1, ⋯ ,20. 

6.3.1.1 Creating reference sets 

Each instance uses a reference set 𝑇 containing 20 portfolios assigned to classes consistently 

with Constraints (5) to (10). The assignments are also consistent with the corresponding 

decision maker’s 𝒫௜, as we could expect if the investors were real. Each portfolio is assigned 

to one of three classes: 𝐶ଷ ൌ 𝐺𝑜𝑜𝑑, 𝐶ଶ ൌ 𝐷𝑜𝑢𝑏𝑡 and 𝐶ଵ ൌ 𝐵𝑎𝑑. The assignments of 



portfolios to classes are made guaranteeing (as much as possible) a uniform number of 

portfolios among the classes according to the procedure described in Subsection 4.1. 

6.3.1.2 Simulating investors 

Aiming to create a “fair” comparison between the direct elicitation published by Fernandez 

et al. [17] and the approach presented here, we use the same parameter values of the investors 

simulated in that work. For completeness purposes, we show here the procedure followed in 

[17] to create these parameter values. 

The parameters of 𝒫 are generated as follows. First, 𝛽଴ (a real parameter) and the bounds of 

𝝀 (an interval number) are randomly generated in the interval (0.5, 0.6). Then, given that the 

simulated DMs are highly risk-averse (Subsection 6.2), it is plausible to assume that they 

require the weights related to the confidence intervals criteria to be greater than the weights 

related to the rest of criteria (cf. [17]); thus, we assign each bound of 𝒘𝟏, ⋯ , 𝒘𝟒 in ሾ0,1ሿ 

guaranteeing that i) 𝒘𝟏 ൅ 𝒘𝟐 ൒ 𝒘𝟑 ൅ 𝒘𝟒, and ii) the weights fulfill constraints (2) and (3). 

We calculate the core values of the weights as 𝑤ෝ ൌ
ଵ

ସ
 and the weight of criterion 𝒈𝒊 as 𝑤௜

ି ൌ

 ሺ1 െ 𝜔௜ሻ 𝑤ෝ, 𝑤௜
ା ൌ  ሺ1 ൅ 𝜔௜ሻ 𝑤ෝ , where 𝜔௜ is randomly generated in the range [0,0.3]. 

Finally, the bounds of the 𝑖-th veto, 𝒗𝒊 ൌ ሾ𝑣௜
ି, 𝑣௜

ାሿ, are assigned as 𝑣௜
ି ൌ 𝑟௜𝑣ప෕  and 𝑣௜

ା ൌ 𝑟௜𝑣ప෕𝑣పෝ , 

where 𝑟௜ ൌ max
௫∈஺

ሼ𝒈𝒊ሺ𝑥ሻሽ െ min
௫∈஺

ሼ𝒈𝒊ሺ𝑥ሻሽ, 𝑣ప෕  is randomly selected from the range ሾ0.3,0.38ሿ 

and 𝑣పෝ  is randomly selected from the range ሾ1.1,1.3ሿ. 

6.3.2 Dataset 

Our dataset is composed of the actual monthly returns of the stocks within the very well-

known Dow Jones Industrial Average (DJIA) index. We use the period April 2011 to March 

2016 to perform the assessment; such period was chosen given its high number of uptrends, 

downtrends and horizontal market’s movements, providing enough diversity of information 

for assessment purposes. The 20 instances described in the previous subsection are generated 

in each month of the evaluation period. 

We implement a back-testing strategy [43] of 36 months/1 month similarly to [38, 42, 44]: 

we select thirty-six months for training and one month for validation. The assessment is 



performed again every month for the rest of evaluation periods selecting a new portfolio each 

time and accumulating gains/losses. 

As in [17], the historical prices are obtained from [45], while the data used to compute the 

fundamental ratios is obtained from [46]. All this data as well as the specific results described 

below are available under request. 

6.3.3 Portfolio optimization procedure 

For each instance of the experiments, our approach uses the following procedure to select the 

best compromise portfolio. First, Montecarlo simulation is used to estimate the confidence 

intervals by defining the returns’ probability distributions. Such simulation implements 200 

statistical points (through the pseudo-random-numbers generator defined by Matsumoto and 

Nishimura [47]). After this, the assessment of the portfolio using the financial analyses is 

performed through the process presented in [17]. All this allows to estimate the portfolios’ 

fitness of a set of candidate solutions regarding Problem (14), these candidate solutions are 

presented to the 𝑖-th decision maker in order to create a reference set of holistic decisions. 

The procedure of Section 3 is then followed using such reference set to create an 

approximation to the DM’s preferences, 𝒫௜∗
. Then, the 𝒫௜∗

 vector is used to aggregate each 

portfolio’s fitness through the procedure described in Subsection 6.1.4. Finally, the 

nondominated solutions to the subrogated Problem (13) are presented to the DM as the best 

compromise solutions to Problem (14).  

Different metaheuristics have proved to be able to successfully tackle different models of 

portfolio optimization problems; particularly, swarm intelligence [48, 49] has been found to 

be robust addressing this problem. However, given that Problem (13) is a lexicographical 

optimization problem, we use differential evolution as the method addressing it. Several 

authors have found good behaviors of this metaheuristic to deal with non-linear single-

objective optimization problems (e.g., [50, 51]). The population size of differential evolution 

was set to 𝑝𝑠 ൌ 100; we use the achievement of 𝑔𝑛 ൌ 100 generations as the stopping 

criterion, while each chromosome is a real-valued vector specifying the proportions of 

resources to be assigned to the stocks. These parameters were adopted based on some 

preliminary experiments made by the authors in this and other similar works. Other additional 



control parameters of differential evolution are (cf. [38, 52]): the crossover probability, 𝐶𝑅; 

the mutation rate, 𝑝௠; the differential weight, 𝐹; and the distribution index, 𝜂. Similarly to 

the cited works, we defined these parameters as 𝐶𝑅 ൌ 1, 𝑝௠ ൌ 1/𝑝𝑠, 𝐹 ൌ 0.5, and 𝜂 ൌ 20. 

A run of the algorithm consists in obtaining a set of the best portfolios (according to the 

objectives of Problem (13)) after 𝑔𝑛 generations. In each run, the initial population involves 

the random generation of the individuals, and at least one individual is obtained as the best 

compromise solution to Problem (13). We create a “seed population” of size 𝑝𝑠 with the 

solutions found in (up to 𝑝𝑠) runs, and a final run is achieved using this seed population as 

the initial population. 

6.4 Results 

6.4.1 Assessing our approach’s performance in portfolio optimization 

6.4.1.1 Assessing the impacts on the criteria 

This Section shows the comparison of the portfolios created by our approach with the 

portfolios created by the approach proposed in [17]. The goal of the comparison is to define 

how “satisfied” the DM would be when applying the indirect elicitation defined in Section 3 

with respect to the direct elicitation performed in [17]. Thus, we calculate the proportion of 

times that one approach’s solutions are preferred to the other approach’s solutions. As stated 

in Sections 6.3.1 and 6.3.2, 20 instances are created in each experimental period and 24 

periods are considered in the whole experimentation; thus, 480 experimental points are used 

to perform the comparison. Given that both approaches use the interval outranking method 

as a model to characterize the decision maker’s preferences, such method is used to evaluate 

the DM’s satisfaction. Furthermore, the DM’s real system of preferences simulated in the 𝑖th 

instance, 𝒫௜, to compare the solutions.  

As an example of the comparison, Table 13 shows the values in 𝒫ସ (shown in the simulated 

DM row) and the corresponding values found by the elicitation procedures for the period 

April 2014, Table 14 presents the portfolios created by the approaches for the elicited 

parameters, and Table 15 provides the fitness values of these portfolios in the sense of 

Problem (14). It may not be obvious that the sets in this table do not necessarily have to 

coincide. Recall that each DM’s decision model in the experiments is simulated, in reality 



the parameter values may not be defined. Therefore, the main objective of the elicitation of 

these parameters is not to find their exact values, but to be able to reproduce the already-

expressed judgment decisions and allow new ones to be made as the DM would have. 

Table 13. Model parameters values of the simulated DM and parameter values found by the 
elicitation procedures in the period April 2014.  

Model 

parameters 
𝛽଴ 𝝀 𝒘𝟏 𝒘𝟐 𝒘𝟑 

Simulated DM 0.54 [0.52,0.57] [0.57,0.84] [0.31,0.38] [0.00,0.06]

Direct elicitation 0.51 [0.65,0.66] [0.50,1.00] [0.25,0.46] [0.00,0.04]

Our approach 0.51 [0.56,0.62] [0.62,0.85] [0.10,0.80] [0.07,0.31]

Model 

parameters 

𝒘𝟒 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 

Simulated DM [0.02,0.12] [0.04,0.05] [0.09,0.10] [0.33,0.42] [0.11,0.13]

Direct elicitation [0.02,0.10] [0.03,0.04] [0.08,0.11] [0.26,0.47] [0.09,0.09]

Our approach [0.07,0.57] [0.03,0.04] [0.08,0.10] [0.39,0.53] [0.12,0.16]

 

Table 14. Proportion of resources allocated to stocks for April 2014 using the parameter 
values of Table 13. 

Stock 
Direct 

elicitation 
Our 

Approach 

American Express Company 

(AXP) 

0 0 

Boeing Co. (BA) 0 0.018 

Caterpillar Inc. (CAT) 0 0 

Cisco Systems, Inc. (CSCO) 0 0 

Chevron Corporation (CVX) 0 0 

EI du Pont de Nemours and Co 

(DWDP) 

0.003 0 

Walt Disney Company (DIS) 0 0 

General Electric Company (GE) 0 0 

Goldman Sachs Group Inc. (GS) 0 0 

Home Depot, Inc. (HD) 0.05 0 



International Business Machines 
Corporation (IBM)

0.28 0.347 

Intel Corporation (INTC) 0 0 

Johnson and Johnson (JNJ) 0.007 0 

JPMorgan Chase and Co. (JPM) 0 0 

Coca-Cola Company (KO) 0 0 

McDonald’s Corporation (MCD) 0.315 0.376 

3M Co. (MMM) 0 0 

Merck and Co., Inc. (MRK) 0 0 

Microsoft Corporation (MSFT) 0 0 

Nike Inc. (NKE) 0 0 

Pfizer Inc. (PFE) 0 0.036 

Procter and Gamble Co. (PG) 0 0 

ATandT Inc. (T) 0.345 0.17 

Travelers Companies Inc. (TRV) 0 0 

UnitedHealth Group Inc. (UNH) 0 0 

United Technologies 

Corporation (UTX) 

0 0 

Visa Inc. (V) 0 0.053 

Verizon Communications Inc. 

(VZ) 

0 0 

Wal-Mart Stores Inc. (WMT) 0 0 

Exxon Mobil Corporation 

(XOM) 

0 0 

 

Table 15. Portfolios’ fitness built by the approaches in Problem (14). 
Criterion Direct elicitation Our Approach 

70 percent confidence 

interval 
[-0.0131, 0.0247] [-0.0087, 0.0270] 

99 percent confidence 

interval 
[-0.0417, 0.0414] [-0.0449, 0.0452] 



Fundamental analysis’ 
quality index 

[0.3719,0.3720] [0.3760,0.3761] 

Technical analysis’ quality 
index 

[0.3533,0.3534] [0.3393,0.3394] 

Let 𝑦 and 𝑥 be the portfolios of Table 14, built through the direct elicitation proposed in [17] 

and our approach, respectively; the credibility indexes of the outranking relations between 

these portfolios are shown in Table 16. 

 

Table 16. Credibility indexes of the outranking relations between the portfolios shown in 
Table 15. 𝑦 is a portfolio created using direct elicitation, 𝑥 is a portfolio created using our 
approach. 

Value Strict 
preference 

𝛽ሺ𝑥, 𝑦ሻ 0.55 Yes 

𝛽ሺ𝑦, 𝑥ሻ 0.45 No 

Of course, there is not dominance between the portfolios but, according to Table 16, the 

solution found by our approach is strictly preferred to the benchmark solution. 

Applying the same analysis to the 480 points of comparison, we obtained that at least one of 

our solutions is strictly-preferred to 10% of the solutions found by the approach presented in 

[17], while at least one of their solutions is strictly-preferred to 5% of our solutions. When 

performing Student's t-test on difference of means with the null hypothesis that these 

proportions are the same, the two-tailed P value equals 0.0032. Hence, this indicates that the 

difference is statistically significant with a 99% confidence level. This allows us to conclude 

that the indirect elicitation based on the preference disaggregation analysis proposed in 

Section 3 produced solutions that better satisfy the DM’s preferences. 

6.4.1.2 Assessing the portfolio returns obtained 

We now use four benchmarks to compare our results in the context of actual portfolio returns: 

the results presented in Ref. [17], the DJIA index, the Modern Portfolio Theory [53], and the 

Pareto Front found by MOEA/D [54]. Problem (14) is used as the multicriteria problem to 

be solved by the optimization methods (i.e., all the approaches but the DJIA index). We 

present the results in Figure 3.  



Figure 3. Accumulative monthly returns of the portfolios built by the benchmark approaches 
and the portfolios built by our approach. 

 

In Figure 3, the portfolio returns are shown accumulatively in a monthly basis. The 

accumulative returns regarding the Mean-Variance approach and MOEA/D are the average 

portfolio returns in their respective Pareto front, whereas the monthly returns published in 

[45] are used to represent the DJIA index. For the approach in [17] and the one proposed 

here, we use the average returns of the portfolio returns achieved for the 20 decision makers 

using first the direct elicitation proposed in [17], denoted as PSED, and then using our 

indirect elicitation procedure of Section 3, respectively. Undoubtedly, our approach 

outperformed all the benchmarks; however, it is important to note that even when high 

accumulative returns are obtained by our approach, which is desired, this is a result of the 

overall methodology and not only of the elicitation procedure, which is the main proposal of 

this work. Therefore, the comparison with these benchmarks in this paper is rather 

complementary. Nevertheless, we highlight that the high returns obtained are caused because 

the overall methodology i) requires the (simulated) DMs to establish which are the best 

portfolios, and ii) optimizes portfolios based on the inferred preferences; thus, high average 

of accumulative returns can be expected. Furthermore, since our approach’s results are the 

average returns of all the simulated DMs, it would be interesting to find out what are the 
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DMs’ systems of preferences that generate the greater returns; however, this is out of the 

scope of this paper and we defer it as future work. 

On the other hand, our approach’s outperformance is mainly obtained on the large downtrend 

of mid-2015; although, in the first periods, it was MOEA/D the one with the best 

performance. The good performance of MOEA/D is caused by its representation of all the 

investors’ attitudes from the solutions within the Pareto front. That is, the results of MOEA/D 

in Figure 3 are representing an average accumulative return of averse, neutral and acceptant 

behaviors in presence of risk. Thus, it can be expected that MOEA/D will have good 

performance in good market conditions (first periods of the timeframe used) and bad 

performance in bad market conditions (last periods), as Figure 3 is actually demonstrating. 

This is not the case for our approach since it is representing only risk-averse investors. Thus, 

it can be expected that our approach will not have great results in good market conditions, 

but it will protect itself in bad market conditions, as it is actually happening. This clearly 

indicates a good representation of the investor behavior in presence of risk. 

6.4.2 Validating the ability to reproduce the DM’s decisions in portfolio optimization 

Here, we evaluate the approach’s ability to define a set of preference parameters through 

which i) it is possible to establish the same preference relations as the ones inferred from the 

assignments made by the simulated DMs (see the assumptions made in Section 3); and ii) it 

is possible to suggest the same assignments as the ones made by the simulated DMs. 

6.4.2.1 Using preference relations as a benchmark 

The average effectiveness measured with the validation procedure of Subsection 4.2 and 

Equation (11) for the direct elicitation performed in [17] in the 480 experimental points is 

84%. While the average effectiveness of the approach proposed here is 96%. The difference 

is statistically significant according to student’s t test. This indicates that the approach 

proposed here was able to better reproduce the DM’s preferences in the context of binary 

preference relations. 



6.4.2.2 Using ordinal classification as a benchmark 

Now, the solutions found by the approaches are used to assign portfolios in preferentially 

ordered classes. So, the quality of the solutions is revised by contrasting the assignments 

made using the decision models created by the approaches and the decision models of the 

actual (simulated) DMs. The comparison is based on the new sets of decisions defined in the 

previous subsection. All the assignments are performed as described in Subsection 4.1. The 

effectiveness for each approach is defined as the proportion of portfolios that were assigned 

to the same class as the DMs’ assignments in the 480 experimental points. 

The effectiveness in the context of ordinal classification of the model presented in [17] is 

70%. The effectiveness of our approach is 80%. This difference is statistically significant 

according to student’s t test, indicating that the indirect elicitation procedure proposed in 

Section 3 is more effective in reproducing the DM’s assignments. 

7. Conclusions  

Our purpose in this paper is to advance the state of the art in the elicitation of the decision 

maker’s system of preferences. Our main contribution is to address the case where the 

decision maker’s preferences are imperfectly known. We assume that imperfect knowledge 

about such preferences can be coped with by interval numbers. Thus, we proposed a 

Preference Disaggregation Analysis model based on Interval Theory to indirectly elicit the 

decision maker's preference parameters.  

We extensively assessed the proposed method in several scenarios where simulated decision 

makers assigned sets of reference actions to preferentially ordered classes. Such reference 

sets were composed of 10, 20, 30, 40 and 50 actions, respectively. The results shown in 

Tables 1, 8, 9 and 10 support that the effectiveness of our proposal is high -in most cases 

superior to 99%- when the actions are described by six and twelve criteria. This effectiveness 

is measured as the average proportion of coincidences of the binary preference relation 

established by the simulated DM and the one established by the elicited decision model, for 

40 different decision makers’ systems of preferences. 

Additionally, we presented a case study where the decision maker’s preferences are indirectly 

elicited in order to perform a search towards the most preferred solutions in portfolio 



optimization. We used real historical data to perform a back-testing assessment where our 

approach’s performance to construct a reliable preference model is verified. The assessment 

procedure was extensive; we compared our approach’s performance with that of four 

benchmarks in several scenarios. We conclude from Tables 15 and 16 and the discussion of 

Subsection 6.4.1.1 that our approach demonstrated, in the context of the experiments, that 

the portfolios it allowed to find are more preferred by investors than other methodologies, 

including a recent direct elicitation method. The latter conclusion supports findings of 

important works (e.g., [1, 6, 7, 8]) remarking superiority of indirect elicitation procedures 

over direct ones. Furthermore, Figure 3 shows how the high preference on the portfolios 

found implicated a correct representation of the investors’ attitude in presence of risk and 

high accumulative returns. Such returns were superior to that of all the benchmarks. 

One interesting future research line is to use new ways to generate the reference sets; e.g., 

using different sorting methods, different cardinalities of the reference sets and the criteria 

sets, and/or a diverse number of classes. Assessing the approach’s performance on all these 

new scenarios would allow one to perform a sensitivity analysis and could identify 

opportunity areas for improving our proposed approach. 

Another interesting research line consists in modifying Constraints (5-10) to introduce new 

preference relations and/or increase the granularity of the system of relations. By doing this, 

the improved capacity of the method might allow it to better represent the decision maker’s 

system of preferences. However, this would increase the method’s complexity and the 

possibility of new sources of errors. Thus, further assessments would be required to establish 

plausibility. 

The parameters of the genetic algorithm used in Section 3.2 to elicit the preferences of the 

decision maker as well as the differential evolution used in Subsection 6.3.3 to optimize 

portfolios were selected according to the authors’ previous experiences, some preliminary 

experimentations and the related literature. It is interesting to know, however, what would be 

the approach’s performance if these parameters would have been defined according to 

systems experts in finding such parameter values. 

In view of the results obtained when assessing the portfolio returns generated by our approach 

(Subsection 6.4.1.2), it is interesting to study the effect that the investors’ preferences 



implicated on the returns. Recall that our approach’s results shown in Figure 3 are the average 

returns obtained by all the simulated DMs, so, it is interesting to know what are the DM’s 

decision policies that had the best impacts on the maximization of the portfolios returns. Such 

analysis would require classes of known DM’s decision policies and a sufficiently large 

sample of simulated DMs for each class. 
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