Use of a Self-Adaptive Penalty Approach
for Engineering Optimization Problems

Carlos A. Coello Coello!

Laboratorio Nacional de Informdtica Avanzada
Rébsamen 80, Xalapa, Veracruz 91090, México
e-mail: ccoello@zralapa.lania.mx

Abstract

This paper introduces the notion of using co-evolution to adapt the penalty factors
of a fitness function incorporated in a genetic algorithm for numerical optimiza-
tion. The proposed approach produces solutions even better than those previously
reported in the literature for other (GA-based and mathematical programming)
techniques that have been particularly fine-tuned using a normally lengthy trial
and error process to solve a certain problem or set of problems. The present tech-
nique is also easy to implement and suitable for parallelization, which is a necessary
further step to improve its current performance.

Key words: genetic algorithms, constraint handling, co-evolution, penalty
functions, self-adaptation, evolutionary optimization, numerical optimization.

1 Introduction

The importance of genetic algorithms (GAs) as a powerful tool for engineer-
ing optimization has been widely shown in the last few years through a vast
amount of applications ([1,2]). However, even when GAs have been successful
in many practical applications, the quality of the solutions that they produce
rely not only on the stochastic nature of the technique, but also on the way
in which the objective function is converted to a “fitness function” that can
“guide” the GA to the desired region of the search space. Being a heuristic
method, the GA operates really like a “black box”, completely independent

1 Part of this work was performed while the author was affiliated to the Engineering
Design Centre at the University of Plymouth, in the United Kingdom.

Preprint submitted to Elsevier Preprint 8 June 1999

from the characteristics of the problem. By using the basic Darwinian mech-
anism of “survival of the fittest”, the GA tries to evolve only those solutions
(represented by a population of “chromosomes”) that are fitter and, by apply-
ing crossover and mutation operators, it attempts to produce descendants that
are better (in terms of a certain quantitative measure that we call “fitness”)
than their parents.

One of the key problems for using GAs in practical applications is how to
design the fitness function, particularly when we do not know where is the
global optimum located. A comparative estimate of how good is a solution
turns out to be enough in most cases (e.g., the largest value has to be closer to
the global maximum if we are trying to maximize the objective function), but if
we are dealing with constrained problems, we have to find a way of estimating
also how close is an infeasible solution from the feasible region. This is not an
easy task, since most real-world problems have complex linear and non-linear
constraints, and several approaches have been proposed in the past to handle
them. From those, the penalty function seems to be yet the most popular
technique for engineering problems, but the intrinsic difficulties to define good
penalty values makes even harder the optimization process using a GA. In this
paper, a technique based on the concept of co-evolution is used to create two
populations that interact with each other in such a way that one population
evolves the penalty factors to be used by the fitness function of the main
population, which is responsible for optimizing the objective function. The
approach has been tested with several single-objective optimization problems
with linear and non-linear inequality constraints and its results are compared
with those produced by other (GA-based and mathematical programming)
approaches reported in the literature.

2 Previous Work

The most common approach in the GA community to handle constraints (par-
ticularly, inequality constraints) is to use penalties. The basic approach is to
define the fitness value of an individual ¢ by extending the domain of the
objective function f using [3]

fitness; = f;(X) £ Q; (1)

where (); represents either a penalty for an infeasible individual ¢, or a cost for
repairing such an individual (i.e., the cost for making it feasible). It is assumed

that if ¢ is feasible then @); = 0.

Ideally, the penalty should be kept as low as possible, just above the limit below
which infeasible solutions are optimal (this is called, the minimum penalty rule

[4]). Although simple, this rule is quite difficult to apply in most real-world
problems, because we normally do not know the exact location of the boundary
between the feasible and the infeasible regions.

It is known that the relationship between an infeasible individual and the
feasible part of the search space plays a significant role in penalizing such
individual. However, it is not completely clear how to exploit this relationship
to guide the search in the most desirable direction.

There are at least three main choices to define a relationship between an
infeasible individual and the feasible region of the search space [3]:

(1) an individual might be penalized just for being infeasible (i.e., we do not
use any information about how close it is from the feasible region),

(2) the ‘amount’ of its infeasibility can be measured and used to determine
its corresponding penalty, or

(3) the effort of ‘repairing’ the individual might be taken into account.

Several researchers have studied heuristics on the design of penalty func-
tions. Probably the most well-known of these studies is the one conducted
by Richardson et al. [5] from which the following guidelines were derived:

(1) Penalties which are functions of the distance from feasibility are bet-
ter performers than those which are merely functions of the number of
violated constraints.

(2) For a problem having few constraints, and few full solutions, penalties
which are solely functions of the number of violated constraints are not
likely to find solutions.

(3) Good penalty functions can be constructed from two quantities: the maz-
imum completion cost and the expected completion cost. By completion
cost it is meant the cost of making feasible an infeasible solution.

(4) Penalties should be close to the expected completion cost, but should not
frequently fall below it. The more accurate the penalty, the better will be
the solution found. When a penalty often underestimates the completion
cost, then the search may not find a solution.

Based mainly on these guidelines, several researchers have attempted to derive
good techniques to build penalty functions. Homaifar, Lai and Qi [6] proposed
an approach in which the user defines several levels of violation, and a penalty
coeflicient is chosen for each in such a way that the penalty coeflicient increases
as we reach higher levels of violation. The inconvenience of this technique is
the high number of parameters required [7]. For m constraints, this approach
requires m(2] + 1) parameters in total, where [is the number of levels de-
fined. So, if we have for example 5 constraints and 3 levels, we would need
35 parameters, which is a very high number considering the small size of the
problem.

Joines and Houck [8] proposed a technique in which dynamic penalties (i.e.,
penalties that change over time) are used. Individuals are evaluated (at gen-
eration t) using:

fitness,(X) = £,(X) + (€ x) 3 f/(X) 2)

where C, a and 3 are constants. This dynamic function increases the penalty
as we progress through generations. Some researchers [9] have argued that
dynamic penalties work better than static penalties. However, it is difficult
to derive good dynamic penalty functions in practice as it is to produce good
penalty factors for static functions. For example, in this approach the quality
of the solution found is very sensitive to changes in the values of the pa-
rameters. Even when a certain set of values for these parameters (C' = 0.5,
a = [= 2) were found by the authors of this method to be a reasonable
choice, Michalewicz [7] found that these values produce “premature conver-
gence” most of the time. Also, it was found that the technique normally either
converges to an infeasible solution or to a feasible one that is far away from
the global optimum [7,3].

Powell and Skolnick [10] incorporated a heuristic rule (suggested by Richard-
son et al. [5]) for processing infeasible solutions: evaluations of feasible so-
lutions are mapped into the interval (—oo, 1), and infeasible solutions into
the interval (1, co). This is equivalent (for ranking and tournament selection
procedures [11,12]) to the following evaluation procedure:

fitness§(X) = f(X) (3)

fitnessu(X) = 1(X) + 73 f(X) (4)

In this expression, r is a constant, and

, fitness¢(X), if X is feasible
fitness(X) = (5)
fitness,(X) + p(X,t), otherwise

p(X,t) = maz{0, maz{ fitnesss(X)}} — min{ fitness,(X)} (6)

The key concept of this approach is the assumption of the superiority of fea-
sible solutions over infeasible ones, and as long as such assumption holds, the
technique is expected to behave well [10]. However, in cases where the ratio
between the feasible region and the whole search space is too small, the tech-

nique will fail unless a feasible point is introduced in the initial population

[13].

Michalewicz and Attia [14] considered a method based on the idea of simulated
annealing [15]: the penalty coefficients are changed once in many generations
(after the convergence of the algorithm to a local optima). At every iteration
the algorithm considers active constraints only, and the pressure on infeasible
solutions is increased due to the decreasing values of the temperature of the
system.

The method of Michalewicz and Attia [14] requires that constraints are divided
into four groups: linear equalities, linear inequalities, nonlinear equalities and
nonlinear inequalities. Also, a set of active constraints A has to be created,
and all nonlinear equalities together with all violated nonlinear inequalities
have to be included there. The population is evolved using [7]:

fitness(X) = [(X) + 5= 3 f(X) (7)

An interesting aspect of this approach is that the initial population is not
really diverse, but consists of multiple copies of a single individual that satisfies
all linear constraints. At each iteration, the temperature 7 is decreased and
the new population is created using the best solution found in the previous
iteration. The process stops when a pre-defined final ‘freezing’ temperature 7
is reached.

This approach has the inconvenience of being very sensitive to the values of
its parameters, and the difficulties for choosing an appropriate cooling scheme
is a typical drawback of simulated annealing [15]. Also, the approach used to
handle linear constraints (treated separately by this technique) is very efficient,
but it requires that the user provides an initial feasible point to the algorithm.

Bean and Hadj-Alouane [16] developed a method of adapting penalties that
uses a penalty function which takes a feedback from the search process. Each
individual is evaluated by the formula:

fitness(X) = £(X) + A1) 3 F(X) ®)

where A(t) is updated every generation ¢ in the following way:

(1/61) - A1), if cases]
At+1) =13 By-A(t), if case#2 (9)
At), otherwise,

where cases #1 and #2 denote situations where the best individual in the last
k generation was always (case #1) or was never (case #2) feasible, 1, F2 >
1, and 1 # P2 (to avoid cycling). In other words, the penalty component
A(t+ 1) for the generation ¢ + 1 is decreased if all best individuals in the last &
generations were feasible or is increased if they were all infeasible. If there are
some feasible and infeasible individuals tied as best in the population, then
the penalty doesn’t change.

The obvious drawback of this dynamic penalty approach is how to choose the
generational gap (i.e., the appropriate value of k) that provides reasonable
information to guide the search, and more important, how do we define the
values of (3; and (35 to penalyze fairly a given solution.

Le Riche et al. [4] designed a segregated genetic algorithm which uses two
values of penalty parameters (for each constraint) instead of one; these two
values aim at achieving a balance between heavy and moderate penalties by
maintaining two subpopulations of individuals. The population is split into
two cooperating groups, where individuals in each group are evaluated using
either one of the two penalty parameters. The idea is to combine those 2 sub-
populations into a single one, mixing then individuals which are feasible with
those that are not. Linear ranking is used to decrease the selection pressure
that could cause premature convergence.

The problem with this approach is again the way of choosing the penalties
for each of the 2 sub-populations, and even when some guidelines have been
provided by the authors of this method [13] to define such penalties, they also
admit that it is difficult to produce generic values that can be used with this
approach.

Finally, some researchers who work with evolution strategies [17] and evolu-
tionary programming [18] have frequently used the “death penalty” approach
that consists of rejecting infeasible individuals without even looking at their
fitness values. This approach is, with no doubt, quite efficient (computation-
ally speaking), but it is expected to work well only when the feasible search
space is convex and it constitutes a reasonable part of the whole search space

[3].

(1[2]/olol1[o[1]o]1[1]o]olola[1[1]1]0]1]

Representation of the number 415.293
using binary encoding

[4]1/5]2]9] 3]

Representation of the number 415.293
using fixed point encoding

Fig. 1. Representing the same number using binary and fixed point encodings.

3 Genetic Operators

The genetic algorithm used for the experiments presented in this paper uses a
fixed-point representation [19,20], according to which a chromosome is a string
of the form (dy, ds,...,dy), where dy,ds,...,d,, are digits (numbers between
zero and nine). Consider the examples shown in Figure 1, in which the same
value is represented using binary and fixed point encoding.

Fixed point representation is faster and easier to implement, and provides a
higher precision than its binary counterpart, particularly in large domains,
where binary strings would be prohibitively long. One of the advantages of
fixed point representation is that it has the property that two points close to
each other in the representation space must also be close in the problem space,
and vice versa [12]. This is not generally true in the binary representation,
where the distance in a representation is normally defined by the number of
different bit positions. In previous work, the author has shown the usefulness
of fixed-point representation where this representation has compared favorably
to its binary counterpart [21,19,20].

For crossover, it was decided to use uniform crossover, which is a relatively
recent operator proposed by Syswerda [22], that can be seen as a generalization
of the more traditional one-point and two-point crossover operators [23,12].
In this case, for each gene (i.e., string position) in the first offspring it is
decided (with some probability p) which parent will contribute its value for
that position. The second offspring would receive the gene from the other
parent. An example of 0.5-uniform crossover can be seen in Figure 2. For the
experiments whose results are presented next, a crossover probability (p) of

Parent 1 Parent 2
314,792 6/|0]|1 5/ 3|/8|6]9,9,0)| 4

3,418,999/ 0]4 Cchild 1

Parent 1 Parent 2
3147|9260/ 1 513, 8/,6|9|9|014

5/3/7/6,2,6,0|1|Child 2

Fig. 2. Use of 0.5-uniform crossover (using 50% probability) between two chromo-
somes. Notice how half of the genes of each parent goes to each of the two children.
First, the bits to be copied from each parent are selected randomly using the prob-
ability desired, and after the first child is generated, the same values are used to
generate the second child, but inverting the source of procedence of the genes.

0.8 was chosen.

It has been argued that a non-uniform mutation operator is more useful when
optimizing with a GA because it allows us to search in different ways as needed
(i.e., exploring wider or narrower regions) over time [12]. Due to some previous
favorable experience with non-uniform mutation in the context of numerical
optimization [24] it was decided to use this approach instead of the traditional
uniform mutation operator.

To illustrate this operator, we will assume that at generation ¢, we have
a string S; = (s1, S2,...,s1). After randomly selecting a position along the
string, in generation t 4 1, the new chromosome after mutation will be S;;; =
(S1,82y -+, Sky--,81), Where:

o - sp+ A(t,9 — sg) if flip(0.5) =0 (10)

sk — A(t, sg) if flip(0.5) =1

The function flip(0.5) returns randomly and with equal probability one of
two possible values: either zero or one. The function A(t,y) returns a value in

the range [0, y] such that the probability of A(t,y) being close to 0 increases
as t increases. The expression used here for the variation of the mutation step
is the function originally suggested by Michalewicz [12]:

Aftyy) =y (1-r0H)) (11)

where 7 is a randomly generated real number in the range [0..1], T is the maxi-
mum number of generations (Gmazl or Gmaz2), and b is a system parameter
that determines the degree of dependency on the current generation number.
The value adopted for the current implementation was b = 5, as suggested
by Michalewicz [12]. The mutation rate chosen was 0.1, to allow a high ex-
ploratory behavior of the GA at earlier generations, and focus more the search
into certain regions as the GA reaches its last generations.

4 Use of Self-Adaptive Penalties

Michalewicz et al. [13] have recognized the importance of using adaptive
penalties in evolutionary optimization, and considered this approach as a
very promising direction of research on evolutionary optimization. The tech-
nique proposed in this paper aims to implement this idea using the concept of
co-evolution, under which two (or more) populations are evolved either con-
currently or interactively, and such populations exchange information in the
process. Paredis [25] has used co-evolution for constraint satisfaction (com-
binatorial optimization) problems, but not for numerical optimization. In his
approach, a population of potential solutions co-evolves with a population of
constraints: fitter solutions satisfy more constraints, whereas fitter constraints
are violated by more solutions.

The approach introduced in this paper uses a conventional penalty function
[23,19] rather than trying to handle constraints in an entirely different way (see
for example [3]). The reason is that penalty functions are still the most popular
approach to handle constraints in practical applications [7,20], whereas the
newer approaches have normally being used only to deal with very specific
(and generally unrealistic) problems.

The problem that we want to solve is:

Optimize f(X) (12)

Subject to :

Bl BZ B3 Bk Pl
A,

Bl B2 BS Bk Pl
A: - -
Ai

B, B, By B P1
P2

Fig. 3. Graphical representation of the GA-based approach to handle constraints
proposed in this paper.

Only inequality constraints are considered in this paper, since penalty func-
tions are not very suitable to handle equality constraints as hard constraints,
and there are other approaches which are more suitable to handle them [12].

In previous applications, a penalty function that included information about
both the number of constraints violated and the degree of violation of each,
has been found very effective by a number of researchers [20,3] to guide the
genetic algorithm to (at least near) optimal solutions. The expression used to
compute the fitness value of an individual for the purposes of this paper is
(assuming maximization):

fitness; = f;(X) — (coef x wy + viol x wy) (14)

where f;(X) is the value of the objective function for the given set of variable
values encoded in the chromosome 7; w; and wy are 2 penalty factors (consid-
ered as integers in this paper); coef is the sum of all the amounts by which
the constraints are violated:

cocf =3 0,(X) Vg,(X) > 0 (15)

vtol is an integer factor, initialized to zero and incremented by one for each
constraint of the problem that is violated, regardless of the amount of violation
(i.e., we only count the number of constraints violated but not the magnitude
in which each constraint is violated).

10

According to this approach, the penalty is actually split into two values (coe f
and viol), so that the GA has enough information not only about how many
constraints were violated, but also about the amounts in which such con-
straints were violated. This follows Richardson’s suggestion [5] about using
penalties that are guided by the distance to feasibility.

We will assume that we have 2 different populations P1 and P2 with corre-
sponding sizes M1 and M2. The second of these populations (P2) encodes
the set of weight combinations (w; and ws) that will be used to compute the
fitness value of the individuals in P1 (i.e., P2 contains the penalty factors
that will be used in the fitness function). The idea is to use one population
to evolve solutions (as in a conventional genetic algorithm), and another to
evolve the penalty factors w; and ws. A graphical representation of this ap-
proach may be seen in Figure 3. Notice that for each individual A; in P2
there is an instance of P1. However, the population P1 is reused for each new
element A; processed from P2.

Bach individual 4; (1 < j < M2)in P2 is decoded and the weight combination
produced (i.e., the penalty factors) is used to evolve P1 during a certain
number (Gmazl) of generations. The fitness of each individual By, (1 < k <
M1) is computed using Equation (14), keeping the penalty factors constant
for every individual in the instance of P1 corresponding to the individual A;
being processed.

After evolving each P1 corresponding to every A; in P2 (there is only one
instance of P1 for each individual in P2), we compute the best average fitness
produced using:

M1 .

. fitness;

average_fitness; =
ge- ! ; <count_feasible

) + count_feasible VX € F(16)

In Equation (16), we add the fitnesses of all feasible solutions in P1, and
obtain an average of them (the integer variable count_feasible is a counter
that indicates how many feasible solutions were found in the population). The
reason for considering only feasible individuals is that if we do not exclude
infeasible solutions from this computation, the selection mechanism of the
GA may bias the population towards regions of the search space where there
are solutions with a very low weight combination (w; and ws). Such solutions
may have good fitness values, and still be infeasible. The reason for that is
that low values of w; and wy; may produce penalties that are not big enough
to outweight the value of the objective function.

Notice also the use of count_feasible to avoid stagnation (i.e., loss of diversity
in the population) at certain regions in which only very few individuals will
have a good fitness or will be even feasible. By adding this quantity to the

11

average fitness of the feasible individuals in the population, we will be encour-
aging the GA to move towards regions in which lie not only feasible solutions
with good fitness values, but there are also a lot of them. In practice, it may be
necessary to apply a scaling factor to the average of the fitness before adding
count_feasible, to avoid that the GA gets trapped in local optima. However,
such scaling factor is not very difficult to compute because we are assuming
populations of constant size (such size must be defined before running the
GA), and the range of the fitness values can be easily obtained at each gen-
eration, because we know the maximum and minimum fitness values in the
population at each generation.

The process indicated above is repeated until all individuals in P2 have a
fitness value (the best average_fitness of their corresponding P1). Then, P2
is evolved one generation using conventional genetic operators (i.e., crossover
and mutation) and the new P2 produced is used to start the same process
all over again. It is important to notice that the interaction between P1 and
P2 introduces diversity in both populations, which keeps the GA from easily
converging to a local optimum.

5 Examples

Several examples taken from the optimization literature will be used to show
the way in which the proposed approach works. These examples have linear
and nonlinear constraints, and have been previously solved using a variety of
other techniques (both GA-based and traditional mathematical programming
methods), which is useful to determine the quality of the solutions produced
by the proposed approach.

It should be mentioned that the initial goal of this work was to reproduce
the quality of the results found with simple genetic algorithms whose fitness
functions and parameters were fine-tuned to solve a specific problem using
an empirical approach (normally by simple trial and error). However, as will
be seen later, the new technique proposed in this paper not only matched
previous results, but it improved them. In each example, a single GA was
used to encode all the design variables

5.1 FExample 1 : Design of a Pressure Vessel

A cylindrical vessel is capped at both ends by hemispherical heads as shown in
Figure 4. The objective is to minimize the total cost, including the cost of the
material, forming and welding. There are four design variables: T, (thickness

12

Fig. 4. Center and end section of the pressure vessel used for the first example.

of the shell), T}, (thickness of the head), R (inner radius) and L (length of
the cylindrical section of the vessel, not including the head). T, and T}, are
integer multiples of 0.0625 inch, which are the available thicknesses of rolled
steel plates, and R and L are continuous. Using the same notation given by
Kannan and Kramer [26], the problem can be stated as follows:

Minimize :

F(X) = 0.6224zx 2314 + 1.77812925 4 3.1661x72y + 19.842725 (17)

Subject to :
g1(X) = —z; +0.0193z3 < 0 (18)
92(X) = —z5 + 0.0095423 < 0 (19)
93(X) = —maizy — gmg + 1,296,000 < 0 (20)
94(X) =24 —240<0 (21)

5.2 FExample 2 : Welded Beam Design

A welded beam is designed for minimum cost subject to constraints on shear
stress (7), bending stress in the beam (o), buckling load on the bar (P,), end
deflection of the beam (6), and side constraints [27]. There are four design
variables as shown in Figure 5 [27]: h (1), | (22), t (23) and b (z4).

The problem can be stated as follows:

13

Fig. 5. The welded beam used for the second example.
Minimize:

F(X) = 1.10471z3z, + 0.04811z574(14.0 + z5)

Subject to:
91(X) = 7(X) — Tyae <0
32(X) = (X)) — 0pae <0
9(X) =21 —24 <0
94(X) = 0.10471z7 + 0.04811z324(14.0 + z5) — 5.0 < 0
g5(X) =0.125 — 2, < 0
96(X) = 6(X) = Gz <0

g7(X)=P—-P,(X) <0

where

T(X) — \/(7./)2+2717_//§_;+(7_//)2

(22)

(23)
(24)
(25)
(26)
(27)
(28)

(29)

(30)

(31)

AAAAAYES

— éd

Fig. 6. Tension/compression string used for the third example.

o(X) = 6PL 5(X) = APL3 (34)

z4z3’ Ex3zy

4.013E /%% zs [E
P(X) = —— Vo6 (28 [35
(X) 12 (2L 4G) (35)

P =60001b, L=141in, E =30x 10°psi, G =12 x 10° psi (36)

Tmaz = 13,600 psi, pee = 30,000 psi, Op4. = 0.25 in (37)

5.3 Ezample 3 : Minimization of the Weight of a Tension/Compression String

This problem was described by Arora [28] and Belegundu [29], and it consists of
minimizing the weight of a tension/compression spring (see Figure 6) subject
to constraints on minimum deflection, shear stress, surge frequency, limits on
outside diameter and on design variables. The design variables are the mean
coil diameter D, the wire diameter d and the number of active coils V.

Formally, the problem can be expressed as:

Minimize (N + 2)Dd? (38)
Subject to
gl(X)=1—%§0 (39)
92(X) = 1251(%3?3)(213_(; ? d*) * 51018d2 —1=0 (40)
g(X)=1-— 1?2;‘]1\]50[<0 (41)

15

5.4 Example 4 : Himmelblau’s Nonlinear Optimization Problem

This problem was originally proposed by Himmelblau [30], and it was cho-
sen to try the approach proposed here because it has been used before as a
benchmark for several other GA-based techniques that use penalties [31]. In
this problem, there are five design variables (z1, 2, 23, 24, 5), 6 nonlinear in-
equality constraints and ten boundary conditions. The problem can be stated
as follows:

Minimize f(X) = 5.3578547:1:3 + 0.8356891z 125 + 37.29329z1 — 40792.141(43)

Subject to:
91(X) = 85.334407 + 0.0056858z5z5 + 0.000262124 — 0.0022053 2325 (44)
g2(X) = 80.51249 + 0.0071317z925 + 0.0029955z125 + 0.0021813z3 (45)

g3(X) = 9.300961 + 0.0047026z 525 -+ 0.0012547z1z5 + 0.00190852524(46)

0 < g1(X) <92 (47)
90 < g»(X) < 110 (48)
20 < g3(X) <25 (49)

78 < z; < 102 (50)

33 <z, < 45 (51)
27 < 3 < 45 (52)
27 < x4 < 45 (53)
27 < x5 < 45 (54)

6 Comparison of Results

To make a fair comparison, all the following examples were solved using the
same set of parameters shown in Table 1.

16

Table 1
Parameters of the GA used to solve all the examples.

Parameter | Value
Pop_size; 60
Pop_sizes 30

Gmax; 25
Gmaxs 20

6.1 FEzxample 1

This problem was solved before by Deb [32] using GeneAS (Genetic Adaptive
Search), by Kannan and Kramer using an augmented Lagrangian Multiplier
approach [26], and by Sandgren [33] using a branch and bound technique. Their
results were compared against those produced by the approach proposed in
this paper, and are shown in Table 2. The solution shown for the technique
proposed here is the best produced after 11 runs, and using the following
ranges for the design variables and the weights: 1 < z; < 99, 1 < 25 < 99,
10.0000 < z3 < 200.0000, 10.0000 < z4 < 200.0000, 1 < wy; < 999, and
1 < wy < 999. The values for z; and z, were considered as integer multiples
of 0.0625, the weights w; and wy were considered as integers, and the values
of z3 and =, were considered with a 4-decimals precision.

The mean from the 11 runs performed was f(X) = 6293.84323196, with
a standard deviation of 7.41328537. The worst solution found was f(X) =
6308.14965192, which is better than any of the solutions previously reported
in the literature. The solution at the median was f(X) = 6290.01873568 (cor-
responding to z; = 0.8125, z; = 0.4372, z3 = 40.3302 and =4 = 200.0000),
which is still about 2% better than the best solution previously reported.

6.2 FEzxample 2

This problem was solved before by Deb [34] using a simple genetic algorithm
with binary representation, and a traditional penalty function as suggested
by Goldberg [23], and by Ragsdell and Phillips [35] using geometric program-
ming. Ragsdell and Phillips also compared their results with those produced
by the methods contained in a software package called “Opti-Sep” [36], which
includes the following numerical optimization techniques: ADRANS (Gall’s
adaptive random search with a penalty function), APPROX (Griffith and
Stewart’s successive linear approximation), DAVID (Davidon-Fletcher-Powell
with a penalty function), MEMGRD (Miele’s memory gradient with a penalty
function), SEEK1 & SEEK2 (Hooke and Jeeves with 2 different penalty func-

17

Table 2

Comparison of the results for the first example (optimization of a pressure vessel).

Design Best solution found
Variables | This paper | GeneAS [32] | Kannan [26] | Sandgren [33]
z1(Ty) 0.8125 0.9375 1.125 1.125
xo(Th) 0.4375 0.5000 0.625 0.625
z3(R) 40.3239 48.3290 58.291 47.700
z4(L) 200.0000 112.6790 43.690 117.701
g1(X) -0.034324 -0.004750 0.000016 -0.204390
g2(X) -0.052847 -0.038941 -0.068904 -0.169942
93(X) -27.105845 -3652.876838 -21.220104 54.226012
94(X) -40.00000 -127.321000 -196.310000 -122.299000
f(X) 6288.7445 6410.3811 7198.0428 8129.1036

tions), SIMPLX (Simplex method with a penalty function) and RANDOM
(Richardson’s random method).

Their results against those produced by the approach proposed in this paper,
and are shown in Table 3. In the case of Siddall’s techniques [36], only the best
solution produced by the techniques contained in “Opti-Sep” is displayed. The
solution shown for the technique proposed here is the best produced after 11
runs, and using the following ranges for the design variables and the weights:
0.1000 < z; < 2.0000, 0.1000 < z, < 10.0000, 0.1000 < z3 < 10.0000,
0.1000 < z4 < 2.0000, 1 < wy <999, and 1 < wy < 999. The values for z;
to x4 were considered with a 4-decimals precision, and the weights w; and ws
were considered as integers.

The mean from the 11 runs performed was f(X) = 1.77197269, with a stan-
dard deviation of 0.01122281. The worst solution found was f(X) = 1.7858346524,
which is better than any of the solutions produced by any of the other tech-
niques depicted in Table 3. The solution at the median was f(X) = 1.77358615
(corresponding to z; = 0.1996, z, = 3.6428, z3 = 9.0507 and z4 = 0.2100),
which is about 27% better than the best solution previously reported.

6.3 FEzample 3

This problem was solved before by Belegundu [29] using eight numerical op-
timization techniques (CONMIN, OPTDYN, LINMR, GRP-UI, SUMT, M-3,
M4, and M-5). Only the best feasible result reported by him is shown in

18

Table 3

Comparison of the results for the second example (optimal design of a welded beam).

Design Best solution found
Variables | This paper | Deb [34] | Siddall [36] | Ragsdell [35]
z1(h) 0.2088 0.2489 0.2444 0.2455
za(l) 3.4205 6.1730 6.2189 6.1960
z3(t) 8.9975 8.1789 8.2915 8.2730
x4(b) 0.2100 -0.2533 0.2444 0.2455
91(X) -0.337812 -5758.603777 | -5743.502027 | -5743.826517
g2(X) -353.902604 | -255.576901 -4.015209 -4.715097
g3(X) -0.00120 -0.004400 0.000000 0.000000
94(X) -3.411865 -2.982866 -3.022561 -3.020289
95(X) -0.08380 -0.123900 -0.119400 -0.120500
96(X) -0.235649 -0.234160 -0.234243 -0.234208
g7(X) -363.232384 | -4465.270928 | -3490.469418 | -3604.275002
f(X) 1.74830941 | 2.43311600 | 2.38154338 2.38593732

Table 4. Additionally, Arora [28] also solved this problem using a numerical
optimization technique called Constraint Correction at constant Cost (CCC).
It is important to notice that Arora’s solution is actually infeasible because it
violates one of the constraints slightly. In the experiments reported here, the
GA handled all constraints are hard, so that the solutions produced were con-
sidered valid only if all of them were fully satisfied. Nevertheless, the proposed
approach was able to find a better (feasible) solution than Arora’s technique,
as can be seen in Table 4.

The solution shown for the technique proposed here is the best produced
after 11 runs, and using the following ranges for the design variables and the
weights: 0.050000 < z; < 2.000000, 0.250000 < x5 < 1.300000, 2.000000 <
x3 < 15.000000, 1 < wy; < 999, and 1 < wy < 999. The values for z; to z4
were considered with a 6-decimals precision, and the weights w; and wy were
considered as integers.

The mean from the 11 runs performed was f(X) = 0.01276920, with a stan-
dard deviation of 3.939x 10 °. The worst solution found was f(X) = 0.0128220825,
which is better than Belegundu’s result. The solution at the median was
f(X) = 0.0127557615 (corresponding to z; = 0.051461, z, = 0.351022, and

z3 = 11.721943), which is better than the best feasible solution previously
reported.

19

Table 4
Comparison of the results for the third example (minimization of the weight of a
tension/compression spring).

Design Best solution found
Variables | This paper Arora [28] | Belegundu [29]
z1(d) 0.051480 0.053396 0.050000
z2(D) 0.351661 0.399180 0.315900
z3(N) 11.632201 9.185400 14.25000
91(X) -0.002080 0.000019 -0.000014
g2(X) -0.000110 -0.000018 -0.003782
93(X) -4.026318 -4.123832 -3.938302
94(X) -4.026318 -0.698283 -0.756067
f(X) 0.0127047834 | 0.0127302737 | 0.0128334375

6.4 FExample J

This problem was originally proposed by Himmelblau [30] and solved using the
Generalized Reduced Gradient method (GRG). Gen and Cheng [31] solved this
problem using a genetic algorithm based on both local and global reference.
The result shown in Table 5 is the best found with their approach.

Homaifar, Qi, and Lai [6] solved this problem using a genetic algorithm with
a population size of 400, and their results were previously the best reported
in the literature (see Table 5).

The solution shown for the technique proposed here is the best produced after
11 runs, and using the following ranges for the design variables and the weights:
78.0000 < z; < 102.0000, 33.0000 < z, < 45.0000, 27.0000 < z3 < 45.0000,
27.0000 < z4 < 45.0000, 27.0000 < z5 < 45.0000, 1 < wy; < 999, and
1 < wy < 999. The values for z; to x5 were considered with a 4-decimals
precision, and the weights w; and w, were considered as integers.

The mean from the 11 runs performed was f(X) = —30984.24070309, with
a standard deviation of 73.63353661.The worst solution found was f(X) =
—30792.4077377525, which is better than the best solution previously reported
in the literature. The solution at the median was f(X) = —31017.21369099
(corresponding to z; = 78.010, z; = 33.030, z3 = 27.119, z, = 45.000, and
x5 = 44.872).

20

Table 5

Comparison of the results for the fourth example (Himmelblau’s function).

Design Best solution found
Variables | This paper | Gen [31] | Homaifar [6] | GRG [30]
] 78.0495 81.4900 78.0000 78.6200
2 33.0070 34.0900 33.0000 33.4400
x3 27.0810 31.2400 29.9950 31.0700
T4 45.0000 42.2000 45.0000 44.1800
x5 44.9400 34.3700 36.7760 35.2200
g1(X) 91.997635 90.522543 90.714681 90.520761
g2(X) 100.407857 99.318806 98.840511 98.892933
93(X) 20.001911 20.060410 19.999935 20.131578
f(X) —31020.859 | —30183.576 | —30665.609 | —30373.949

7 Discussion

Despite the fact that the proposed approach requires more function evaluations
than running a GA on a single population, it could be argued that in practice
the proposed approach turns out to be more efficient because it does not
require the traditional fine-tuning of a simple GA which is normally performed
by trial and error and normally takes a considerable amount of time. In any
case, the introduction of parallel techniques (for which the approach is very
suitable) should eliminate this potential drawback in the future.

It is worth mentioning that during the development of this approach several
other variations of the same idea were tried without much success. For exam-
ple, it was attempted to encode the weights of the penalties in the string itself,
to avoid the use of another population, but the selection pressure turned out
to be too high and the GA would tend to prematurely converge unless sharing
[37] was used, and even in that case, the optimization results were normally
Very poor.

An interesting remark derived from the experiments performed was that the
direct use of the final penalty values obtained with the proposed approach did
not drive a simple GA to the solution expected even if this was run for a fairly
large number of generations or with large populations. The reason seems to
be the constant reuse of P1 that introduces different penalty factors during
the evolution process rather than using a fixed (static) set of values (as with a
simple GA). These constant changes in the penalty factors allow not only to
keep enough diversity in the population (i.e., there are enough chromosomes

21

encoding different solutions) as to encourage that better solutions emerge from
the main population (i.e., P2, which is the population responsible for optimiz-
ing the objective function) but also produce a dynamic penalty function that
is being adjusted based on its effectiveness.

Finally, several experiments were run to try to find suitable values for the four
parameters needed: Gmazl, Gmax2, M1 and M2. Initially, it was found that
in most cases a fairly small population size for P2 (< 40 chromosomes) would
suffice to find reasonable solutions (unless within a 5% vicinity of the best
solution known), but the size of P1 was much more dependent on the nature
of the problem, although in all cases it was sufficient to use sizes smaller than
those normally used with a simple GA (between 30 and 60 chromosomes).
Similarly, the effect that the maximum number of generations produced in
the results seemed to be more significant for P1 than for P2. This is not very
surprising, since P1 is really the population responsible for performing the
optimization. It is interesting to mention that in the experiments performed,
it was found that the increment of the maximum number of generations for
P1 would normally improve the quality of the solution, but there was always
a threshold after which an increment did not affect the results in a significant
manner. On the other hand, the increment of the maximum number of gener-
ations for P2 was normally not very beneficial, and that was the reason why
it was normally preferred to use smaller values for Gmaz2 than for Gmazxl.

8 Conclusions

This paper has introduced a new GA-based technique that uses co-evolution
to adjust automatically the weight factors of a penalty function to find the op-
timum of a constrained optimization problem. Due to the intrinsic limitations
of penalty functions to handle equality constraints, only inequality constraints
were considered in this work, although alternative hybrid approaches [13] may
be used in combination with the proposed technique in order to deal with
equality constraints, too.

The new technique worked well in several test problems that had been pre-
viously solved using GA-based and mathematical programming techniques,
producing in all cases results better than those previously reported in the lit-
erature. The technique was able to achieve such good results with relatively
small populations, and using a relatively low number of generations. However,
performance issues remain to be solved, and it is desirable to develop a parallel
version of this algorithm in the future.

22

9 Future Work

The first extension of this work is to develop a parallel implementation of the
algorithm, so that instead of re-using P1 (see Figure 3) for each A;, all sub-
populations required by P2 can co-evolve concurrently. In this new version of
the algorithm, currently under development, the top chromosomes (in terms
of fitness values) of each sub-population interacting with P2 will be kept to
re-start the evolution process once P2 had been evaluated. Nevertheless, there
are still some issues to be solved with this new version of the technique, mainly
with respect to the sort of interaction that will be imposed among the different
populations, which will condition the topology used for the implementation of
the corresponding distributed system.

It would also be interesting to conduct more studies of the effect of the four
parameters required to execute the new algorithm (Gmazl, Gmaz2, M1 and
M2), to draw more general conclusions about its behavior (the selection of
these parameters has been always an important issue when using a simple
genetic algorithm [23]).

10 Acknowledgments

The author would like to thank the two anonymous reviewers for their valu-
able comments that helped him improve this paper, and he also acknowledges
support from CONACyT through project number 1-29870 A.

23

References

[1]

[2]

[3]

[4]

[5]

[6]

8]

[9]

Ian Parmee, editor. The Integration of Evolutionary and Adaptive Computing
Technologies with Product/System Design and Realisation. Springer-Verlag,
Plymouth, United Kingdom, 1998.

Thomas Béck, editor. Proceedings of the Seventh International Conference on
Genetic Algorithms. Morgan Kaufmann Publishers, San Mateo, California, July
1997.

Dipankar Dasgupta and Zbigniew Michalewicz, editors. Evolutionary
Algorithms in Engineering Applications. Springer-Verlag, Berlin, 1997.

Rodolphe G. Le Riche, Catherine Knopf-Lenoir, and Raphael T. Haftka. A
Segregated Genetic Algorithm for Constrained Structural Optimization. In
Larry J. Eshelman, editor, Proceedings of the Sizth International Conference
on Genetic Algorithms, pages 558-565, San Mateo, California, July 1995.
University of Pittsburgh, Morgan Kaufmann Publishers.

Jon T. Richardson, Mark R. Palmer, Gunar Liepins, and Mike Hilliard.
Some guidelines for genetic algorithms with penalty functions. In J. David
Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 191-197, George Mason University, 1989. Morgan Kaufmann
Publishers.

A. Homaifar, S. H. Y. Lai, and X. Qi. Constrained Optimization via Genetic
Algorithms. Simulation, 62(4):242-254, 1994.

Zbigniew Michalewicz. Genetic Algorithms, Numerical Optimization, and
Constraints. In Larry J. Eshelman, editor, Proceedings of the Sixth International
Conference on Genetic Algorithms, pages 151-158, San Mateo, California, July
1995. University of Pittsburgh, Morgan Kaufmann Publishers.

J. Joines and C. Houck. On the use of non-stationary penalty functions to solve
nonlinear constrained optimization problems with GAs. In David Fogel, editor,
Proceedings of the first IEEE Conference on Evolutionary Computation, pages
579-584, Orlando, Florida, 1994. IEEE Press.

W. Siedlecki and J. Sklanski. Constrained Genetic Optimization via Dynamic
Reward-Penalty Balancing and Its Use in Pattern Recognition. In J. David
Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 141-150, San Mateo, California, jun 1989. George Mason
University, Morgan Kaufmann Publishers.

[10] David Powell and Michael M. Skolnick. Using genetic algorithms in engineering

design optimization with non-linear constraints. In Stephanie Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms, pages
424-431, San Mateo, California, jul 1993. University of Illinois at Urbana-

Champaign, Morgan Kaufmann Publishers.

24

[11] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press,
Cambridge, Massachusetts, 1996.

[12] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Ewvolution
Programs. Springer-Verlag, second edition, 1992.

[13] Zbigniew Michalewicz, Dipankar Dasgupta, R. Le Riche, and Marc Schoenauer.
Evolutionary algorithms for constrained engineering problems. Computers &
Industrial Engineering Journal, 30(4):851-870, September 1996.

[14] Z. Michalewicz and N. Attia. Evolutionary Optimization of Constrained
Problems. In Proceedings of the 3rd Annual Conference on FEvolutionary
Programming, pages 98-108. World Scientific, 1994.

[15] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220:671-680, 1983.

[16] J. C. Bean and A. B. Hadj-Alouane. A Dual Genetic Algorithm for Bounded
Integer Programs. Technical Report TR 92-53, Department of Industrial and
Operations Engineering, The University of Michigan, 1992.

[17] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley
& Sons, Great Britain, 1981.

[18] David B. Fogel and L. C. Stayton. On the Effectiveness of Crossover in
Simulated Evolutionary Optimization. BioSystems, 32:171-182, 1994.

[19] Carlos A. Coello Coello, Filiberto Santos Herndndez, and Francisco Alonso
Farrera. Optimal design of reinforced concrete beams using genetic algorithms.
Ezpert Systems with Applications : An International Journal, 12(1), January
1997.

[20] Carlos A. Coello Coello and Alan D. Christiansen. A simple genetic algorithm
for the design of reinforced concrete beams. FEngineering with Computers,

13(4):185-196, 1997.

[21] Carlos Artemio Coello Coello. An Empirical Study of Evolutionary Techniques
for Multiobjective Optimization in Engineering Design. PhD thesis, Department
of Computer Science, Tulane University, New Orleans, LA, apr 1996.

[22] Gilbert Syswerda. Uniform Crossover in Genetic Algorithms. In J. David
Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 2-9, San Mateo, California, jun 1989. George Mason
University, Morgan Kaufmann Publishers.

[23] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Co., Reading, Massachusetts, 1989.

[24] Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Herndndez Aguirre.
Using a new GA-based multiobjective optimization technique for the design of
robot arms. Robotica, 16:401-414, 1998.

25

[25] J. Paredis. Co-evolutionary Constraint Satisfaction. In Proceedings of the 3rd
Conference on Parallel Problem Solving from Nature, pages 46-55, New York,
1994. Springer Verlag.

[26] B. K. Kannan and S. N. Kramer. An Augmented Lagrange Multiplier
Based Method for Mixed Integer Discrete Continuous Optimization and Its
Applications to Mechanical Design. Journal of Mechanical Design. Transactions
of the ASME, 116:318-320, 1994.

[27] Singiresu S. Rao. Engineering Optimization. John Wiley and Sons, third edition,
1996.

[28] Jasbir S. Arora. Introduction to Optimum Design. McGraw-Hill, New York,
1989.

[29] Ashok Dhondu Belegundu. A Study of Mathematical Programming Methods
for Structural Optimization. Dept. of civil and environmental engineering,
University of lowa, lowa, lowa, 1982.

[30] David M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill, New
York, 1972.

[31] Mitsuo Gen and Runwei Cheng. Genetic Algorithms & Engineering Design.
John Wiley & Sons, Inc, New York, 1997.

[32] Kalyanmoy Deb. GeneAS: A Robust Optimal Design Technique for Mechanical
Component Design. In Dipankar Dasgupta and Zbigniew Michalewicz, editors,
Evolutionary Algorithms in Engineering Applications, pages 497-514. Springer-
Verlag, Berlin, 1997.

[33] E. Sandgren. Nonlinear integer and discrete programming in mechanical design.
In Proceedings of the ASME Design Technology Conference, pages 95-105,
Kissimine, Florida, 1988.

[34] Kalyanmoy Deb. Optimal Design of a Welded Beam via Genetic Algorithms.
AIAA Journal, 29(11):2013-2015, November 1991.

[35] K. M. Ragsdell and D. T. Phillips. Optimal Design of a Class of Welded
Structures Using Geometric Programming. ASME Journal of Engineering for
Industries, 98(3):1021-1025, 1976. Series B.

[36] James N. Siddall. Analytical Design-Making in Engineering Design. Prentice-
Hall, 1972.

[37] Kalyanmoy Deb and David E. Goldberg. An investigation of niche and species
formation in genetic function optimization. In J. David Schaffer, editor,
Proceedings of the Third International Conference on Genetic Algorithms, pages
42-50, San Mateo, California, jun 1989. George Mason University, Morgan
Kaufmann Publishers.

26

