
1

Neural Net-Enhanced Competitive Swarm Optimizer
for Large-scale Multi-objective Optimization
Lingjie Li, Yongfeng Li, Qiuzhen Lin, Member, IEEE, Songbai Liu, Junwei Zhou, Zhong Ming,

and Carlos A. Coello Coello, Fellow, IEEE

Abstract—The competitive swarm optimizer (CSO) classifies
swarm particles into loser and winner particles and then uses
the winner particles to efficiently guide the search of the loser
particles. This approach has very promising performance in solv-
ing large-scale multi-objective optimization problems (LMOPs).
However, most studies of CSOs ignore the evolution of the winner
particles, although their quality is very important for the final
optimization performance. Aiming to fill this research gap, this
paper proposes a new neural net-enhanced CSO for solving
LMOPs, called NN-CSO, which not only guides the loser particles
via the original CSO strategy, but also applies our trained
neural network (NN) model to evolve winner particles. First, the
swarm particles are classified into winner and loser particles
by the pairwise competition. Then, the loser particles and
winner particles are respectively treated as the input and desired
output to train the NN model, which tries to learn promising
evolutionary dynamics by driving the loser particles toward the
winners. Finally, when model training is complete, the winner
particles are evolved by the well-trained NN model, while the
loser particles are still guided by the winner particles to maintain
the search pattern of CSOs. To evaluate the performance of our
designed NN-CSO, several LMOPs with up to 10 objectives and
1000 decision variables are adopted, and the experimental results
show that our designed NN model can significantly improve
the performance of CSOs and shows some advantages over
several state-of-the-art large-scale multi-objective evolutionary
algorithms as well as over model-based evolutionary algorithms.

Index Terms—Competitive swarm optimizer, large-scale opti-
mization, multi-objective optimization, neural network.

I. INTRODUCTION

MULTI- objective optimization problems (MOPs) usually
contain several conflicting objectives that need to be

optimized simultaneously [1], as defined by

minimize F (x) = (f1(x), . . . , fm(x)) ,

subject to x ∈ Ω
(1)

Manuscript received xx. xx. 2023; revised xx. xx. 2023; accepted xx.
xx. 2023. This work was supported by the National Natural Science Foun-
dation of China (NSFC) under Grants 61836005 and 62272315; in part
by the Guangdong Regional Joint Foundation Key Project under Grant
2022B1515120076; in part by Natural Science Foundation of Guangdong
Province under Grant No. 2023A1515011238, and in part by the Shenzhen
Science and Technology Program under Grants JCYJ20220531101411027 and
JCYJ20190808164211203. Carlos A. Coello Coello gratefully acknowledges
support from CONACyT grant no. 2016-01-1920 (Investigación en Fronteras
de la Ciencia 2016). (Corresponding Author: Qiuzhen Lin and Zhong Ming)

L. Li, Y. Li, Q. Lin, S. Liu, and Z. Ming are affiliated with the College of
Computer Science and Software Engineering, Shenzhen University, Shenzhen
518060, China (email: qiuzhlin@szu.edu.cn).

J. Zhou is affiliated with the School of Computer Science and Artificial
Intelligence, Wuhan University of Technology, Wuhan, China.

C.A. Coello Coello is affiliated with the Department of Computer Science,
CINVESTAV-IPN (Evolutionary Computation Group), Mexico City, 07300,
MEXICO. He is also with the Faculty of Excellence of the School of Engi-
neering and Sciences, Tecnologico de Monterrey, Monterrey, N.L., MEXICO.

where x = (x1, ..., xn) denotes the n-dimensional decision
vector of a solution from the search space Ω and F (x)
defines m objective functions. Due to the conflicts that often
arise in different objectives, there is not a single optimal
solution, but a set of equally optimal solutions termed the
Pareto-optimal set (PS) for solving MOPs [2]. The mapping
of PS onto the objective space is termed the Pareto-optimal
front (PF) [2]. In particular, the problem in Equation (1)
is called a large-scale multi-objective optimization problem
(LMOP) when the number of decision variables n is no less
than 100 [3]. During the past few decades, a number of
multi-objective evolutionary algorithms (MOEAs) have been
proposed with very effective performance for solving MOPs
[4]–[6]. However, experimental results show that most of the
existing MOEAs are not efficient when solving LMOPs with
a large number of decision variables, due to their weak search
abilities [7]. To better solve LMOPs, a number of large-scale
MOEAs (LMOEAs) have been designed and most of them
can be roughly divided into three categories [3], which are
introduced sequentially as follows.

The first kind of LMOEAs applies different variable group-
ing strategies to divide the decision variables into several
groups and then optimizes each group collaboratively [8]–
[13]. For example, interdependence variable analysis and con-
trol variable analysis methods were designed in MOEA/DVA
[8] to classify the decision variables as position variables,
distance variables and mixed variables, which are then used
to fine-tune the convergence and diversity of the population.
To divide the decision variables more generically, an angle-
based clustering method was proposed in LMEA [9] to group
the decision variables as convergence-related and diversity-
related variables. Then, these two different types of variables
are optimized alternately by using different search strategies.
In addition, a reformulated decision variable analysis was
proposed in LERD [10], which reformulates decision variable
analysis process into an MOP with binary decision variables
and then optimizes each group of decision variables. An
adaptive decision variable analysis method was designed in
LSMOEA/D [11], which can balance the convergence and
diversity by adjusting a dynamic control parameter. In contrast
to the above approaches that follow similar classification prin-
ciples to consider both convergence and diversity, a variable
importance-based mechanism was designed in LVIDE [12],
which quantifies the importance of variables to the target
problem and then allocates more computational resources to
variables with higher importance. Similarly, a multipopulation
algorithm based on the contribution objective of decision
variables was presented in DVCOEA [13], which groups the
decision variables according to their contribution objectives



2

and then optimizes them independently in each subpopula-
tion. However, such LMOEAs highly depend on the adopted
grouping methods and suffer from high computational costs
when conducting variable analysis [14].

The second category of LMOEAs converts LMOPs into
small-scale problems by using problem transformation or di-
mensionality reduction techniques [15]–[18]. Then, traditional
MOEAs can be directly used to search for the optimal solution
in a smaller search space. For example, a weighted optimiza-
tion framework was designed in WOF [15], which optimizes
the weight vector for the best objective value of each solution.
Then, an efficient framework via problem reformulation was
proposed in LSMOF [16], which uses the direction vectors
and weight variables to reduce the dimensionality of the
target problem. A directed sampling strategy was adopted in
LMOEA-DS [17] to generate solutions, which provide promis-
ing search directions in the decision space, which speeds
up convergence. A pattern mining approach was proposed
in PM-MOEA [18] to detect the maximum and minimum
candidate sets of the nonzero variables of PS, aiming to limit
the dimensionality when producing offspring. However, after
problem transformation or dimensionality reduction, some
original optimal spaces are not attainable, which may cause
these LMOEAs fall into local optima. [19].

Different from the two above types of LMOEAs that reduce
the difficulty or the dimensionality of the target LMOP, the
most recent LMOEAs contain more efficient search strategies
or operators to directly solve LMOPs, and can provide stronger
search capabilities [20]–[25]. Particularly, the competitive
swarm optimizer (CSO), which is as an improved variant of
the particle swarm optimizer, is one of the most representative
methods of this type of LMOEAs, which owes its competitive-
ness in solving LMOPs to its efficient search capability and
inherent adaptability [26]. Some related works of CSOs for
solving LMOPs will be introduced in detail in Section II-B.
Unfortunately, although empirical results have shown that CSO
approaches are considered as prominent methods for solving
LMOPs [26]–[31], they still suffer from a major challenge,
i.e., most existing studies of CSOs pay more attention to
the way in which the loser particles learn from the winner
particles, but ignore the evolution of the winner particles. In
fact, the quality of the winner particles directly determines
the effectiveness of CSO-based learning which has a negative
effect on the convergence speed of the whole population,
especially when solving problems with high-dimensionality in
both the decision space and objective space [3].

Some recent studies that combine traditional evolutionary
algorithms with efficient machine learning models have at-
tracted much attention due to their promising search abilities
in the large-scale decision space. These approaches are often
termed model-based evolutionary algorithms (MBEAs) [32].
For example, generative adversarial networks (GANs) were
applied in GMOEA [33] and GAN-LMEF [34] as reproduction
operators to generate more promising offspring solutions. Two
unsupervised neural networks, i.e., a restricted Boltzmann ma-
chine and a denoising autoencoder, were used in MOEA/PSL
[35] to reduce the dimensionality of the search space. A single
layer denoising autoencoder was designed in [36] to reuse

the structured knowledge captured from previously optimized
solutions, aiming to enhance the evolutionary search. A feed-
forward neural network was implemented in AMOEA/D [14]
to accelerate the evolutionary search.

Although these MBEAs have shown superior advantages
due to their fast convergence and efficient exploitation, their
performance heavily depends on both the qualities of the
training samples and the adopted models [37], [38]. In this
regard, the CSO has a natural advantage and can be perfectly
coupled with the model training process, as its swarm is
divided into a winner particle set with good performance and
a loser particle set with poor performance by pairwise com-
petition during iteration. These particles can be directly used
as real and fake samples for model training. Inspired by this,
it is reasonable to believe that the CSO and a neural network
model can effectively cooperate with each other due to their
corresponding characteristics and advantages. Specifically, the
samples for model training can be easily obtained by using
the pairwise competition of the CSO, and a neural network
model with good training samples can learn the promising
evolutionary dynamics, which has a high potential to speed
up the convergence of the CSO and generates more promising
offspring particles for CSO.

Based on the previous discussion, this paper proposes a
new neural net-enhanced CSO, called NN-CSO, for solving
LMOPs. The main contributions of this paper are as follows:
• A three-layer neural net (NN) model with one hidden

layer is designed to learn the promising evolutionary
dynamics for CSO. More specifically, the loser and
winner particles obtained from the pairwise competition
are treated as the input and desired output samples for
training our NN model. In this way, the evolutionary
dynamics driving the losers towards the winners can be
learned with this model.

• A new NN-enhanced CSO is presented, which not only
evolves the loser particles via the original CSO learning
strategy, but also applies the above well-trained NN
model to guide the evolution of winner particles.

• The empirical results indicate that our proposed NN-CSO
can significantly improve the performance of the original
CSOs, and has a superior performance with respect to
several advanced LMOEAs and to several state-of-the-art
(SOTA) MBEAs when solving four different benchmark
suites of LMOPs.

The rest of this paper is organized as follows. Some basic
information about the neural network model, as well as a brief
review of the CSO for solving LMOPs and the motivation
for this work are introduced in Section II. The details of the
proposed method are introduced in Section III. Our experi-
mental results and their corresponding discussion are provided
in Section IV. The limitations of our work are described in
Section V. Finally, our conclusions and some possible paths
for future research are provided in Section VI.

II. PRELIMINARY

A. Neural Network Model
In 1986, Rumelhart and Meclelland et al. proposed a new

learning procedure based on the back-propagating error for



3

TABLE I
SUMMARY OF MAIN ABBREVIATIONS

Abbreviations Definition
CSO competitive swarm optimizer

LMOEA large-scale MOEA
LMOP large-scale multi-objective optimization problem

MBEAs model-based evolutionary algorithm
MOEA multi-objective evolutionary algorithm

NN neural network
PF Pareto-optimal front
PS Pareto-optimal set

TABLE II
SUMMARY OF MAIN NOTATIONS

Symbols Definition
E, Emin the current error and predefined desired minimum error
T, Tmax the current training times and maximum training times

K the number of neurons in the hidden layer
P the current population

W, W’ winner particles and trained winner particles
L, L’ loser particles and updated loser particles

NNtrained the well-trained neural net

N, M, D the population size, the number of objectives,
the number of decision variables

networks of neuron-like units [39], known as back-propagation
neural networks (BPNNs), which can repeatedly adjust the
weights of the difference between the actual output vectors and
the desired output vectors of the network. The main purpose
of training model is to find a set of weights to ensure that the
actual output vectors produced by the network are the same
as (or infinitely close to) the desired output vectors.

Generally, BPNN model training consists of two stages, in-
cluding the Feed-Forward process and the Back-Propagation
process [39]. In the first stage, the input samples are fed into
the input layer, and then transmitted to the output layer after
being processed layer by layer in several hidden layers. After
that, the actual output vectors generated by the BPNN model
are compared with the desired output vectors. Thus, the current
error E of the model is calculated by a loss function and then is
compared with the predefined desired minimum error Emin. If
and only if E is no longer larger than Emin, the model training
would be finished. Otherwise, model training enters the second
stage (i.e., the Back-propagation process), which applies E
to repeatedly adjust the related parameters of the neural net
(i.e., the weight vectors and biases) via gradient descent. For a
better understanding of the model training process, its general
flow diagram is plotted in Fig. 1.

When considering the constructed neural net (NN) model
of this paper, we adopted a simple three-layer NN model
that contains only one hidden layer. The reason behind this
is that when implementing a machine learning model into a
traditional EA, we need to consider not only the performance
of the algorithm but also the additional cost of model training.
Particularly, the numbers of neurons in the input and output
layers are equal to the number of decision variables of the
target problem, and the number of neurons (K) in the hidden
layer is suggested to be set in the range of [5,10] for compu-
tational efficiency. Note that the parameter sensitivity analysis
of K is discussed in Section IV-G2. In addition, the sigmoid
function f(x) = 2

1+e−2x − 1 is adopted as an active function
for the NN model and the mean-square error is used as the loss

NNNNNN MMMoodddeelllNN Model

InitializationSTART Samples

YES

NO

END

min

max

E E

or T T

<

>

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

Back-propagation

.

.

.

.

.

.

TTrraaiinneedd NNNNTrained NN

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 1. The general flow diagram of the NN model training including the
sampling process and the back-propagation process.

function to compute the current error rate of the NN model.

B. Related Work of Competitive Swarm Optimizer for LMOPs

In 2015, Cheng and Jin originally proposed an improved
variant of a particle swarm optimizer, called the competitive
swarm optimizer (CSO) [26], for solving LMOPs, which
introduces the concept of a competition mechanism between
particles within a single swarm [26]. Different from traditional
PSOs [40]–[42] that apply the global best and personal best
particles to guide the search direction of the swarm, CSO
introduces a pairwise competition mechanism to guide swarm
evolution. For a more intuitive understanding of the CSO,
the schematic of the pairwise competition is plotted in Fig.
A.1 of the Supplementary Material. Specifically, the swarm
is first divided into two groups according to some specific
metrics (e.g., the fitness function values and the Pareto-
dominant relationship), including the winner particle set and
the loser particle set. Then, the velocity and position of the
loser particles in CSO [26] are updated by learning from their
corresponding winner particles, formulated as follows:

Vl(t+ 1) = r1Vl(t) + r2 (Xw(t)−Xl(t))

+ϕr3

(
X̄(t)−Xl(t)

), (2)

Xl(t+ 1) = Xl(t) + Vl(t+ 1), (3)

where r1, r2 and r3 are three random real-valued vectors
ranging from (0, 1), X̄(t) is the average position of the relevant
particles at the tth iteration, and ϕ is a control parameter.

The empirical results have verified the effectiveness of
CSOs in solving single-objective large scale optimization
problems (LSOPs) [27], [28], [43], such as the two-phase
based learning swarm optimizer (TPLSO) [28], the population
entropy based swarm optimizer (DCSO) [27], and the level-
based learning swarm optimizer [43]. Recently, CSOs have
been successfully extended to solve LMOPs [29]–[31]. For
instance, to improve the search efficiency, a two-stage strategy
was suggested in LMOCSO [30] to update the position of the
particles, which first pre-updates the position of each particle
based on its previous velocity, and then updates the position
of each pre-updated particle by learning from a leader parti-
cle. A tri-competition mechanism was proposed in S-ECSO
[29], which can achieve a good trade-off between exploration
and exploitation. A strong convex sparse operator was also
implemented in S-ECSO, aiming to generate sparse particles



4

TABLE III
SUMMARY OF THE NOVELTY, ADVANTAGES, DISADVANTAGES AND THE WAY OF EVOLVING WINNER PARTICLES (W ) OF EXISTING CSOS.

Algorithms Year Novelty Advantages Disadvantages The evolution of W
CSO [26] 2015 the first work to present CSO suitable for LMOPs low convergence speed None

DCSO [27] 2016 a population entropy based method with
a two-stage evolutionary process fast convergence speed difficult to exactly divide two stages None

LMOCSO [30] 2020 a novel position update strategy efficient search capability cannot properly solve multi-modal LMOPs Mutation operator
TPLSO [28] 2021 a two-phase learning strategy fast convergence speed cannot guarantee diversity None
CCSO [31] 2022 a comprehensive competitive learning strategy good search capability high computational cost Mutation operator

S-ECSO [29] 2022 a tri-competition mechanism with a strongly
convex sparse operator effective for sparse LMOPs converges prematurely None

during the position update process. Moreover, a comprehensive
competitive learning (CCL) strategy was proposed in CCSO
[31], which uses three competition mechanisms, including
environmental, cognitive and social competitions, to guide the
particle search. Table III summarizes the novelty, advantages,
disadvantages and the evolution of winner particles of the
CSOs mentioned above.

As shown in the last column of Table III, most existing
studies of CSOs ignore the evolution of winner particles or
just apply a simple polynomial-based mutation (PM) operator
[44] to evolve them. However, high-quality winner particles
can better guide the evolutionary search process and speed
up the convergence of the entire population, especially when
solving the problems with both high-dimensional objective
space and decision space. Therefore, when designing a CSO
for solving LMOPs, we should pay attention not only to the
evolution of loser particles, but also to the method of evolving
the winner particles. Obviously, the study of the evolution of
winner particles in CSOs deserves further study.

C. Our Motivations

Here, we explain the motivations of this work, as follows:
1) As summarized in the last column of Table III, most

existing CSO-based works only focus on the way of
guiding the evolution of the loser particles, while ignoring
the evolution of the winner particles. In fact, the quality
of the winner particles greatly affects the performance
of CSO, as it determines the evolutionary directions.
Inspired by this, this paper not only uses the original
CSO search strategy to guide the evolution of the loser
particles, but also attempts to design an effective method
for evolving the winner particles.

2) NN models can extract useful information from training
samples to guide the evolutionary process. Specifically,
we expect to learn promising evolutionary dynamics to
drive the input towards the desired output, by using the
trained NN models. In this regard, CSO shows a natural
advantage because the loser particles and winner particles
obtained by pairwise competition can be directly used as
samples for model training. Therefore, it is a natural idea
to combine CSO and NN models.

3) CSO and NN models have natural complementary advan-
tages. On the one hand, following the principle of pair-
wise competition, CSO has a strong exploration ability,
but it also presents slow convergence speed to a certain
extent [31]. On the other hand, NN models used in many
existing MBEAs [14], [33], [34] have shown that they

Algorithm 1 The framework of NN-CSO
Input: MaxFes (termination criterion), N (swarm size).
Output: P (the final optimal swarm).

1: P←Initialize a particle swarm of size N;
2: NN←Initialize the network model;
3: while MaxFes is not reached do
4: W, L←Samples (P);
5: NNTrained ←Network Training (W, L);
6: W ′ ← NNTrained (W);
7: L′ ←CSO (W, L);
8: P← Environmental Selection (L′ ∪W ′ ∪ P );
9: end while

can help to speed up convergence while presenting an
efficient exploitation ability.

Based on the above analyses, this paper designs an NN-
enhanced CSO for solving LMOPs. Specifically, the loser
particles and winner particles classified in CSO can be re-
spectively used as the input and desired output samples to train
the NN model. Then, the well-trained NN model is used as
a reproduction operator to evolve the winner particles, which
can generate more promising offspring particles for CSO. In
this way, the performance and robustness of CSO in solving
LMOPs can be significantly enhanced.

III. OUR PROPOSED METHOD

A. The Complete Framework of the Proposed NN-CSO

The pseudo-code of the framework of NN-enhanced CSO is
given in Algorithm 1 and is called NN-CSO, where MaxFes
represents the (pre-defined) maximum number of evaluations
and N is the swarm size. First, the initialization process is run
in Lines 1 to 2, where the particle swarm P and the NN model
are initialized separately. After that, the algorithm enters the
main evolutionary loop. Specifically, the sampling process is
first performed in Line 4, which is used to construct the input
samples (i.e., the loser particles, denoted as L) and the desired
output samples (i.e., the winner particles, abbreviated as W)
for the NN model. More details of Samples are described in
Algorithm 2. Then, the network training process is performed
in Line 5 by using the inputs W and L. The details of Network
Training are explained in Algorithm 3. After model training
is completed, two offspring reproduction strategies, including
an NN-assisted learning strategy and a CSO-based learning
strategy, are performed in Lines 6-7, respectively. More details
of Offspring Reproduction are introduced in Section III-C.
At the end of each iteration, the environmental selection is



5

The Particle Swarm P

Final Swarm P

The Current Swarm P

Trained particles W’

Learned particles L’

Loser particles L Winner particles W

.

.

.
.
.
.

.

.

.

NN Model

Samples

CSO Guiding

Input Samples

.

.

.
.
.
.

Model Training

Output
.
.
.

START

NO

Environmental Selection

+

Termination

?
YES

END

Desired Output Samples

Trained NN

CSO-based Learning 

NN-assisted Learning

'L

'W

Fig. 2. The outline of NN-CSO including the sampling process, model train-
ing, NN-assisted learning, CSO-based learning, and environmental selection.

performed in Line 8. Without loss of generality, the adopted
CSO-based learning strategy and environmental selection can
be alternatively selected from the existing CSOs [28]–[30].
Therefore, our proposed NN-enhanced CSO framework is
extensible and versatile, as it can be embedded into most
existing CSOs. When the termination condition is reached,
the main evolutionary loop terminates. Finally, all optimal
particles in P are reported as the final optimal solution set.
The outline of the proposed NN-CSO is illustrated in Fig. 2
for an intuitive observation.

B. NN Model Training

Regarding the structure of our NN model, the simplest three-
layer network model with only one hidden layer is adopted
in this paper. The same numbers of neurons are set in the
input and output layers according to the number of decision
variables in the target LMOP. In addition, when designing an
MBEA, we should consider the cost and overhead generated
by model training. Therefore, only one hidden layer with K
neurons is adopted in our model for computational efficiency,
where K is suggested to be 5 according to our empirical
studies presented in Section IV-G2. In general, a complete
model training consists of two main steps, as follows:

1) Sampling: The sampling process is first performed to
construct the input samples and the desired output samples for
training the NN model. Algorithm 2 presents the process of
collecting samples for training the NN model with one input:
the current particle swarm P. Particularly, the procedure of
pairwise competition of CSO is performed in Lines 3-16, and
the Pareto-dominant relationship is adopted to split the swarm
into two subsets, including the winner particle set W and the
loser particle set L. That is, half of the particles with good
convergence that win the pairwise competition are added into
W and the another half is divided into L. As most solutions
in P may be mutually non-dominated at later iterations,
the Pareto-dominant relationship may be invalid. Thus, we
further adopt the shift-density-estimate (SDE) method [45] to
compare each pair of solutions when they are non-dominated,

Algorithm 2 Samples(P)
Input: P (the current particle swarm), N (the swarm size).
Output: W (the winner samples), L (the loser samples) .

1: Initialize W← ∅, L← ∅;
2: while W < N/2 do
3: randomly select two particles x1 and x2 from P;
4: if (x1 dominates x2) then
5: add x1 into W and x2 into L;
6: else if (x1 is dominated by x2) then
7: add x1 into L and x2 into W;
8: else
9: calculate the fitness values using (4);

10: if (fSDE(x1) >fSDE(x2)) then
11: add x1 into W and x2 into L;
12: else
13: add x1 into L and x2 into W;
14: end if
15: end if
16: end while

as this method can effectively reflect the diversity situation of
particles. Here, the formulation of SDE is provided as follows:

fSDE(xi) = min
xj∈PΛi 6=j

√√√√ M∑
m=1

(max {0, fm(xj)− fm(xi)})2
,

(4)
where fm(xi) denotes the mth objective value of particle xi,
and M is the number of objectives. Finally, the samples for
model training are prepared, where the particles in L and W
are treated as the input and desired output, respectively.

2) Model Training: When the above sampling is completed,
the algorithm enters the model training stage. Algorithm 3
presents the general training process of the NN model. At
first, some related parameters (i.e., the biases and the weight
vectors) of the NN model are initialized in Line 1. After that,
the training procedure is performed in Lines 2-10. The current
error rate E is computed in Line 4. Then, the weight vectors
and biases of each neuron are updated by using gradient
descent, denoted as ∂E/∂(w, v). Note that the training loop
terminates when the current error rate E of the network is
no longer larger than the predefined desired minimum error
rate Emin or when the training time T reaches the maximum
allowable training time Tmax. Finally, the properly trained
NN model, denoted as NNTrained, can learn the promising
evolutionary search direction that approximates the optima.
Thus, the final NN model can be used as a reproduction
operator to evolve the winner particles, aiming to generate
high-quality solutions for guiding the CSO search.

C. NN-Assisted Offspring Reproduction

After the model training is finished, the process of offspring
reproduction is performed. In this article, two reproduction
strategies are used for offspring generation, including an NN-
assisted learning strategy and a CSO-based learning strategy.
Fig. 3 provides a diagram of the two proposed offspring
reproduction strategies. Specifically, the NN-assisted learning



6

Algorithm 3 Network Training (W, L)
Input: W (the winner samples), L (the loser samples), Emin

(the minimum error) and Tmax (the maximum training
times).

Output: NNTrained (the trained network model).
1: initialize the biases and weight vectors for NN;
2: for all samples in W and L do
3: //Feed-Forward process:
4: calculate the current error rate E of NN;
5: if (E>Emin or T<Tmax) then
6: //Back-propagation process:
7: adjust the parameters using ∂E/∂(w, v);
8: T=T+1;
9: end if

10: end for

NN-assisted 

Learning

CSO-based 

Learning

Winner Particles

Loser Particles
Parent Particles Offspring Particles

Fig. 3. Two offspring reproduction strategies in NN-CSO: NN-assisted
learning for winner particles and CSO-based learning for loser particles.

strategy is designed for evolving the winner particles, which
applies the well-trained NN model obtained in Algorithm 3 to
guide the evolution of the winner particles. In this way, promis-
ing offspring can be generated by learning from the properly
trained NN model that can provide promising evolutionary
search direction for CSO. On the other hand, the CSO-based
learning strategy is adopted for the evolution of the loser par-
ticles, where the velocity and position of the loser particles are
updated by learning from the winner particles, which maintain
the original search pattern of CSO. As mentioned above, our
designed model can be embedded into most existing CSOs
[28]–[30], [43]. In addition, experimental results provided in
Section IV-D show that our designed NN model is scalable for
different CSOs and can significantly improve the performance
of the original CSOs in solving a variety of LMOPs.

D. Computational Complexity of NN-CSO

As presented in Algorithm 1, our proposed NN-CSO con-
sists of five main components, including the sampling process,
the training process of the neural network, the evolution of the
winner particles, the evolution of the loser particles, and the
environmental selection. Specifically, the sampling process in
Algorithm 2 has a time complexity of O(MN2), where M and
N denote the number of objectives and the population size,
respectively. In addition, the training of the neural network
in Algorithm 3 has a time complexity of O(NDEK), where
D, E and K represent the number of decision variables, the
epochs for training the neural network and the number of
neurons in the hidden layer. Furthermore, the time complexity
of the evolution of the winner particles is O(NDK), and

the evolution of the loser particles has a time complexity
of O(ND). Finally, the time complexity of environmental
selection depends on the specific selection strategy used in
the original CSO. Taking LMOCSO [30] as an example, its
environmental selection has a time complexity of O(MN2).
In summary, the overall time complexity of NN-CSO for one
generation is O(MN2 +NDEK).

IV. EXPERIMENTAL STUDIES

A. Experimental Arrangement

To empirically examine the performance of NN-CSO, three
types of experimental comparisons are conducted in this
paper. First, the effectiveness of our designed NN model for
CSO is validated by embedding the designed NN model into
three well-known CSOs (i.e., LMOCSO [30], TPLSO [28]
and S-ECSO [29]). Second, the performance of NN-CSO is
compared with respect to five advanced LMOEAs, including
MOEA/DVA [8], LSMOF [16], DGEA [20], LMEA [9] and
LSMOEA/D [11], respectively on solving several LMOPs.
Third, we conducted experimental comparisons between NN-
CSO and two SOTA MBEAs (i.e., MOEA/PSL [35] and
AMOEA/D [14]). The experiments are organized as follows:
• The effectiveness of the proposed NN model is evaluated

by embedding it into three well-known CSOs. Please note
that the related experiments are provided in Section IV-D.

• The superiority of the proposed NN-CSO over five ad-
vanced LMOEAs in solving several LMOPs is validated.
Please note that the related experimental comparisons and
analysis can be found in Section IV-E.

• The comparisons between our proposed method and two
SOTA MBEAs are provided in Section IV-F.

• Some further discussions are provided in Section IV-G,
including visualizations of the final solution sets, para-
metric analysis, execution efficiency, ablation analysis,
and performance study on super-large-scale problems.

The proposed method and all the compared algorithms ex-
cept AMOEA/D are implemented in the PlatEMO framework
using MATLAB [46], while AMOEA/D is implemented in the
jMetal framework [47] which uses JAVA. All the algorithms
are run on a personal computer with an Intel Core i7-6700
CPU, 3.40 GHZ (processor), and 20 GB of RAM.

B. Test Problems and Performance Measures

Benchmark problems: In our experimental studies, four
test suites (LSMOP1-LSMOP9 [48], UF1-UF10 [49], DTLZ1-
DTLZ7 [50], and WFG1-WFG9 [51]) are used to validate
the performance of our proposed algorithm. Regarding the
numbers of objectives (M ), we adopt M = {2, 3, 5, 8, 10} for
LSMOP1-LSMOP9, DTLZ1-DTLZ7 and WFG1-WFG9, M =
2 for UF1-UF7 and M = 3 for UF8-UF10 in our experiments.
Regarding the number of decision variables (D), we adopt D=
{100, 200, 500, 1000} for all problems.

Performance measures: To accurately reflect the quality
of the final solution set obtained by each compared algorithm,
the inverted generational distance (IGD) [52] is adopted as our
performance measure. A smaller IGD value indicates a better



7

performance of the algorithm. The set of reference points
required for calculating the IGD values is evenly sampled from
the true PF of each test problem with a size close to 10000
points. Note that all the problems are tested for 20 independent
runs, and the mean and standard deviation of the IGD values
are recorded. In addition, in order to ensure a statistically
sound conclusion, the Wilcoxon rank sum test with a 0.05
significance level and the Wilcoxon signed-rank test using the
platform KEEL [53] are also used in the experimental analysis.
Note that the symbols “+”, “-”, and “=” in tables respectively
indicate that the compared algorithms are significantly better
than, worse than and similar to our proposed approach.

C. Parameters Settings for the Compared Algorithms

For a fair comparison, some unique parameters of each
compared algorithm (i.e., search strategies and corresponding
parameter settings) are set as recommended in their original
references, as summarized in Table A.1 of the Supplementary
Material. In NN-CSO, the number of neurons in the hidden
layer K is set to 5 according to our parametric analysis, which
is discussed in Section IV-G2. For training the neural network
models, at each iteration, the learning rate α is set to 0.01,
the number of training epochs (epochs) is set to 20, and the
desired minimum error (Emin) is set to 0.01. In addition, the
population size N and the termination condition MaxFes are
set to 300 and 100000 for all test problems, respectively.

D. Results of Embedding the NN Model into Three CSOs

To verify the effectiveness of our designed NN model for
CSOs, three NN-enhanced CSO variants are presented by
embedding the proposed NN model into three well-known
CSOs (S-ECSO [29], LMOCSO [30], and TPLSO [28]),
abbreviated as NN-SECSO, NN-LMOCSO, and NN-TPLSO,
respectively. In particular, TPLSO is extended for solving
the target LMOPs by using the SDE method [45] to replace
the objective value as the performance measure. Then, the
experimental comparisons between these original CSOs and
their corresponding NN-enhanced CSOs are conducted on four
test suites of LMOPs (i.e., LSMOP, UF, DTLZ and WFG test
problems). In addition, the convergence performance of each
compared algorithm is further investigated.

1) Comparisons on UF Test Problems
The average IGD results and standard deviations obtained

by each compared algorithm on 40 UF test problems with 2-
3 objectives and 100 to 1000 decision variables are provided
in Table A. 2 of the Supplementary Material. Specifically, the
numbers of test problems that are better solved by the proposed
NN model are 30, 32 and 22 out of 40 UF test problems,
respectively for S-ECSO vs NN-SECSO, LMOCSO vs NN-
LMOCSO, and TPLSO vs NN-TPLSO, whereas only 8, 0,
and 4 cases experienced deterioration with the proposed NN
model. Therefore, the experimental results in Table A.2 have
validated the effectiveness of our proposed NN model, as it
can obviously improve the performance of the original CSOs
in solving most of the UF test problems.

2) Comparisons on LSMOP Test Problems

Due to page limitations, the average IGD results and stan-
dard deviations after 20 independent runs of the six above
algorithms on 72 LSMOP test problems with 2-objective and
3-objective and 100 to 1000 decision variables are summarized
in Table A.3 of the Supplementary Material. Note that the
better mean results for each comparison between the original
CSOs and their corresponding NN-enhanced CSOs are marked
in boldface. As observed from Table A.3, the effectiveness of
the proposed NN model is validated, as these NN-enhanced
CSOs clearly enhance the performance of the original CSOs in
solving most of the test problems adopted. More specifically,
the numbers of test problems in which performance was
improved by our NN model are 55, 68 and 61, respectively,
for S-ECSO vs NN-SECSO, LMOCSO vs NN-LMOCSO, and
TPLSO vs NN-TPLSO, whereas only in 4, 3, and 0 cases
experienced deterioration with our NN model. Therefore, the
superior performance of these NN-enhanced CSOs over their
corresponding original CSOs has shown that our NN model
can significantly improve the performance of CSOs in solving
LSMOP test problems.

3) Comparisons on the DTLZ Test Problems

The average IGD results and standard deviations of the
compared algorithms on 84 DTLZ test problems with 5 to 10
objectives and 100 to 1000 decision variables are summarized
in Table A.4 of the Supplementary Material. In Table A.4,
the NN-enhanced CSOs (i.e., NN-SECSO, NN-LMOCSO, and
NN-TPLSO) perform better than their corresponding original
CSOs (i.e., S-ECSO, LMOCSO, and TPLSO) in 58, 75 and
67 out of 84 DTLZ test problems, respectively, and are only
inferior in 26, 6 and 7 cases, respectively. Therefore, the ad-
vantages of the NN-enhanced CSOs over their corresponding
original CSOs in solving most of DTLZ test problems directly
confirm the effectiveness of our proposed NN model.

4) Comparisons on the WFG Test Problems

The average IGD results and standard deviations obtained
by each compared algorithm on 108 WFG test problems are
displayed in Table A.5 of the Supplementary Material. Accord-
ing to the results presented in Table A.5, the effectiveness of
our proposed NN-enhanced CSO is validated, as NN-SECSO,
NN-LMOCSO, and NN-TPLSO obtain better results in 92,
77 and 107 out of 108 instances from the WFG test suite,
respectively, whereas their corresponding original CSOs (S-
ECSO, LMOCSO, and TPLSO) only obtain better results in
16, 5, and 0 cases, respectively.

In summary, the experimental results of the above pairwise
comparisons (i.e., S-ECSO vs. NN-SECSO, LMOCSO vs.
NN-LMOCSO, and TPLSO vs. NN-TPLSO) show that the
three NN-enhanced CSO variants have significant advantages
over their corresponding original CSOs in solving all four
suites of LMOPs. The reason behind this is that the afore-
mentioned traditional CSOs focus only on the evolution of the
loser particles and ignore the evolution of the winner particles,
which largely limits the capability of CSOs to solve different
types of LMOPs, especially for the target problems with many
objectives and a large number of decision variables.



8

2 4 6 8 10

Number of Function Evaluations 10
4

0.05

0.1

0.15

0.2

0.25

IG
D

 V
al

u
e

LSMOP2 with 2 objectives and 100 dimensions
NN-TPLSO

TPLSO

NN-LMOCSO

LMOCSO

NN-SECSO

S-ECSO

Fig. 4. The convergence profiles of the six compared algorithms on LSMOP2
with 2 objectives and 100 decision variables.

5) Further Discussions on the Convergence Performance
Here, the convergence profiles of all the compared al-

gorithms are plotted in Fig. 4 and Fig. A.2 of the Sup-
plementary Material, for solving the following problems:
the 2-objective LSMOP2 with 100 decision variables, the
3-objective LSMOP1 with 100 decision variables, the 3-
objective LSMOP3 with 500 and 1000 decision variables, the
2-objective LSMOP8 with 500 and 1000 decision variables,
and the 2-objective LSMOP9 with 500 and 1000 decision
variables, respectively. Please note that these LSMOP test
problems have different characteristics, hence the superior
performance of our NN-enhanced CSOs with respect to their
original versions can be verified in a comprehensive manner.

From Fig. 4 and Fig. A.2, we can derive some mean-
ingful observations. First, NN-SECSO, NN-LMOCSO, and
NN-TPLSO show a faster convergence speed than their
corresponding original CSOs (i.e., S-ECSO, LMOCSO, and
TPLSO), which confirms that our proposed NN model can
accelerate the search process of the original CSOs. Second,
NN-SECSO, NN-LMOCSO, and NN-TPLSO can achieve a
promising IGD level at an early evolutionary stage, whereas
S-ECSO, LMOCSO, and TPLSO fail to achieve an acceptable
IGD level and get trapped in local optima in most cases.
This indicates that our proposed NN model has an efficient
exploitation ability which can help traditional CSOs to avoid
falling into local optima. In particular, as shown in Figs. A.2
(b)-(e), although the IGD values of NN-SECSO are the same
as those of S-ECSO, NN-SECSO exhibits a faster convergence
than S-ECSO. In summary, we can conclude that the proposed
NN model not only can speed up convergence of traditional
CSOs, but that it also helps them to avoid falling into local
optima. Therefore, the NN-enhanced CSOs show obvious
advantages in solving a variety of LMOPs when compared
to their corresponding original CSOs.

E. Comparisons with respect to Five Advanced LMOEAs

In this part, NN-LMOCSO is adopted as our representative
algorithm for performance comparison, but it is abbreviated as
NN-CSO for ease of description. To verify the effectiveness

of NN-CSO in solving several LMOPs (i.e., the LSMOP, UF,
DTLZ and WFG test problems), five competitive LMOEAs,
including LSMOF [16], DGEA [20], LMEA [9], LSMOEA/D
[11], and MOEA/DVA [8], are adopted here for comparison.

1) Comparisons on the UF Problems
In this subsection, NN-CSO is compared to LSMOF,

DGEA, LMEA, LSMOEA/D and MOEA/DVA on UF test
problems with 2-objective and 3-objective and 100 to 1000
decision variables. Due to page limitations, the average IGD
results from 20 independent runs of NN-CSO and the five
compared LMOEAs on the UF test problems are summarized
in Table A.6 of the Supplementary Material, respectively.
Compared to the five competitive LMOEAs previously indi-
cated, our proposed NN-CSO achieved the best performance
in 15 out of 40 of the UF test problems, respectively. More
specifically, NN-CSO outperformed its five competitors in 17,
40, 30, 40 and 40 out of the 40 UF problems adopted, and it
was worse in 13, 0, 10, 0 and 0 cases, respectively. Therefore,
it can be concluded that NN-CSO performs much better than
the other LMOEAs adopted in our comparative study, for most
of the UF test problems.

Similarly, based on the value of D (dimensionality of
the problem), the separate statistical results of these five
LMOEAs versus our proposed NN-CSO in solving the UF
test problems are summarized in Table IV. Clearly, NN-
CSO is significantly better than DGEA, LSMOEA/D and
MOEA/DVA on all the UF test problems. When compared
to LSMOF, DGEA, LSMOEA/D and MOEA/DVA, NN-CSO
is never outperformed by any of these competitors in each
of the dimensionalities adopted for these test problems. For
LMEA, NN-CSO shows obvious advantages in most cases
except for the UF test problems with D = 100. Therefore,
when compared to five advanced LMOEAs, our proposed NN-
CSO shows superior performance in solving UF1 to UF10 with
2-objective and 3-objective and 100 to 1000 decision variables.

2) Comparisons on the LSMOP, DTLZ and WFG Problems
Here, NN-CSO is compared with respect to LSMOF,

DGEA, LMEA, LSMOEA/D and MOEA/DVA on 180
LSMOP, 140 DTLZ and 180 WFG test problems. The average
IGD results from 20 independent runs of NN-CSO and these
five compared LMOEAs on the LSMOP, DTLZ and WFG test
problems with 100 to 1000 decision variables (D) and 2 to 10
objectives (M ) are presented in Table A.7, Table A.8 and Table
A.9 of the Supplementary Material, respectively. NN-CSO
obtained the best performance in most cases when compared
to its five competitors on the LSMOP, DTLZ and WFG test
problems, since NN-CSO performed best in 127 out of 180
LSMOP test problems, 69 out of 140 DTLZ test problems and
66 out of 180 WFG test problems, respectively. According
to the summarized results collected in the last rows of these
three tables, NN-CSO is better than LSMOF, DGEA, LMEA,
LSMOEA/D and MOEA/DVA in 118, 106, 170, 162 and 159
out of 180 LSMOP problems, respectively. In addition, NN-
CSO is better than LSMOF, DGEA, LMEA, LSMOEA/D
and MOEA/DVA in 87, 101, 108, 139 and 121 out of 140
DTLZ problems, respectively, and better than LSMOF, DGEA,
LMEA, LSMOEA/D and MOEA/DVA in 99, 107, 125, 152
and 167 out of 180 WFG problems, respectively. Therefore,



9

TABLE IV
SUMMARY OF THE COMPARISON OF RESULTS BETWEEN NN-CSO AND

ITS COMPETITORS BASED ON IGD VALUES

NN-CSO
vs

LMOEAs
D

Test Benchmark Problems
on LSMOP

+/-/=
on UF
+/-/=

on DTLZ
+/-/=

on WFG
+/-/=

LSMOF

100 2/18/7 3/4/3 11/22/2 17/22/6
200 7/31/7 4/4/2 9/21/5 15/26/4
500 7/28/10 4/4/2 8/23/4 15/23/7
1000 4/26/15 2/5/3 7/21/7 11/26/6
ALL 20/118/42 13/17/10 35/87/18 58/99/23

DGEA

100 0/19/8 0/10/0 1/22/12 5/30/10
200 0/25/20 0/10/0 0/27/8 4/31/10
500 3/28/14 0/10/0 0/24/11 7/29/9
1000 4/27/14 0/10/0 0/24/11 15/17/13
ALL 8/106/66 0/40/0 1/101/38 31/107/42

LMEA

100 4/18/5 10/0/0 31/3/1 29/7/9
200 0/45/0 0/10/0 0/35/0 10/32/3
500 0/45/0 0/10/0 0/35/0 2/43/0
1000 0/44/1 0/10/0 0/35/0 2/43/0
ALL 4/170/6 10/30/0 31/108/1 43/125/12

LSMOEA/D

100 2/21/4 0/10/0 0/35/0 3/41/1
200 1/41/3 0/10/0 0/35/0 3/41/1
500 1/41/3 0/10/0 0/35/0 4/37/4
1000 0/41/4 0/10/0 0/34/1 6/33/6
ALL 4/162/14 0/40/0 0/139/1 16/152/12

MOEA/DVA

100 0/26/1 0/10/0 0/35/0 2/43/0
200 0/44/1 0/10/0 0/35/0 2/42/1
500 6/36/3 0/10/0 4/28/3 4/40/1
1000 9/35/1 0/10/0 11/23/1 3/42/0
ALL 15/159/6 0/40/0 15/121/4 11/167/2

the experimental results in Tables A.7 to A. 9 show that NN-
CSO performs significantly better than its five competitors on
most of the LSMOP, DTLZ and WFG test problems.

Furthermore, based on the value of D, the statistical re-
sults of these five LMOEAs versus NN-CSO on solving the
LSMOP, DTLZ and WFG test problems are summarized in Ta-
ble IV. From these statistical results, NN-CSO is clearly better
than its five competitors on the LSMOP, DTLZ and WFG test
suites with varying dimensionality. Specifically, when solving
the DLTZ and WFG test problems, NN-CSO outperforms
LSMOF, DGEA, LMEA, LSMOEA/D and MOEA/DVA in
most cases, while NN-CSO only shows slight disadvantages
with respect to LMEA on the DTLZ and WFG test problems
with D = 100. When solving the LSMOP test problems, NN-
CSO outperforms its competitors in most cases. Therefore, we
can conclude that our proposed NN-CSO shows significant
advantages in solving most of the LSMOP, DTLZ and WFG
test problems when compared with five advanced LMOEAs.

3) Comparisons of the Overall Performance
To clearly show the overall performance of each algorithm

when solving the LMOPs with different dimensionalities, all
the compared algorithms are ranked by the Friedman test in
the KEEL platform. Moreover, to visualize the ranking scores
of each compared algorithm, Fig. 5 shows the ranking scores
of all algorithms based on their corresponding dimensionality.
More specifically, NN-CSO achieves the best performance in
all the dimensionalities adopted, as its scores are 1.9, 1.6, 1.5
and 1.7 for the test problems with D = 100, 200, 500 and
1000, respectively, which are much lower than those of the
other compared algorithms. As shown in Fig. 5, compared to
its five competitors, NN-CSO shows an obvious advantage for
test problems with D = 100, 200 and 500. Note that, when

100 200 500 1000 ALL

Dimension of Variables

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

P
er

fo
rm

an
ce

 R
an

k
in

g

LSMOF

DGEA

LMEA

LSMOEA/D

MOEA/DVA

NN-CSO

Fig. 5. Illustration of the average performance ranks over all test problems
for different dimensionalities (D).

D = 1000, NN-CSO is slightly better than DGEA, as the
average ranking scores of NN-CSO and DGEA are 1.8 and 2.2,
respectively. Finally, NN-CSO has the lowest average ranking
score of 1.7 for all problems for all dimensionalities, as seen
in the last column “ALL” of Fig. 5. This value is much lower
than that of the other competitors.

Furthermore, Fig. A.3 of the Supplementary Material shows
the ranking scores of each test suite for all algorithms. Ac-
cording to Fig. A.3, NN-CSO achieved the best performance
on all test suites, as it obtained the ranking scores of 2.1,
1.8, 1.4 and 1.5 on the WFG, UF, DTLZ and LSMOP
test suites, respectively. Specifically, NN-CSO shows clear
advantages on the WFG, DTLZ and LSMOP test suites,
as the ranking scores of NN-CSO on the three above test
suites are much lower than those of LSMOF, DGEA, LMEA,
LSMOEA/D and MOEA/DVA. Considering the UF test suites,
NN-CSO is much better than DGEA, LMEA, LSMOEA/D
and MOEA/DVA, but is slightly better than LSMOF, since
the average ranking scores of NN-CSO and LSMOF are 1.8
and 1.9, respectively. To conclude, as can be seen from the last
column labelled as “ALL”, NN-CSO had the lowest average
ranking score (1.7) for all the test suites adopted, while the
average ranking scores of these five LMOEAs were 2.7, 2.8,
4.6, 4.7 and 4.5, respectively.

4) Observations and Discussions
In summary, based on the above experimental results, the

following observations and conclusions can be drawn.
First, three LMOEAs based on decision variable analysis

(i.e., MOEA/DVA, LMEA and LSMOEA/D), perform poorly
in all the adopted test problems. The main reason for this
poor performance might be that they require a large num-
ber of evaluations to perform variable analysis, and in our
experiments, we allocated a low number of evaluations for
optimizing the target LMOPs. As a result, it is difficult
for them to approximate the optimal solutions with limited
computational resources. Therefore, it is critical to balance
the resource allocation between variable analysis and evolution
when solving LMOPs.

Second, the performance of DGEA on all the test problems



10

adopted with different characteristics are similar and poor.
The main reason for the poor performance of DGEA is due
to the inefficiency of its search operator. Therefore, when
designing a search operator for solving LMOPs, we should
not only consider the exploitation capability but also consider
the exploration capability of the search operator.

Third, LSMOF, which is based on problem transformation
performs relatively well in all dimensionalities due to its fast
convergence speed based on a reduction of the dimensionality
of the target problem. Nevertheless, LSMOF could not achieve
the best performance, because it may get trapped in local
optima to some extent. The reason behind this is that the
problem transformation method adopted in LSMOF narrows
down the search space, so LSMOF fails to fully explore the
original search space to obtain promising solutions.

Overall, our proposed NN-CSO performs much better than
the five above competitive LMOEAs when solving several
LMOPs with different dimensionalities. This validates that
the traditional CSOs enhanced with our NN model are more
advantageous. In addition, experimental comparisons with two
latest relevant works (i.e., PMMOEA [18] and CCSO [31]) are
conducted to further verify the superiority of our proposed
method. The experimental results on four adopted LMOPs
are presented in Table A. 10 of the Supplementary Material,
which further verifies that NN-CSO shows clear advantages
over PMMOEA and CCSO in most of the adopted cases.

F. Comparisons with Two SOTA Large-scale MBEAs

As our proposed NN-CSO is a model-based evolution-
ary algorithm (MBEA), two SOTA large-scale MBEAs (i.e.,
MOEA/PSL [35] and AMOEA/D [14]) are also adopted in our
experiments for performance comparison. Due to page limita-
tions, the IGD results obtained by each compared algorithm
for solving each type of benchmark problem are provided in
Tables A.11 to A.14 of the Supplementary Material. Table III
summarizes the final statistical comparison results for solving
all the test problems. As shown in the last column of Table
III, NN-CSO outperforms MOEA/PSL and AMOEA/D in
301 and 306 out of 540 cases, respectively, while it is only
outperformed in 123 and 168 cases. In addition, the overall
performance of each compared algorithm on solving all test
problems is evaluated by using the Friedman test, where the
performance scores for NN-CSO, MOEA/PSL and AMOEA/D
are 1.6, 2.3 and 2.1, respectively. That is, the performance
score of NN-CSO for solving all test problems is much lower
than that of the two compared MBEAs. In summary, these
empirical results further verify the superiority of NN-CSO over
these two SOTA MBEAs in most of the adopted test cases.

G. Further Discussion

1) Visualizations of the Final Solution Sets
To visually show the final solutions’ distribution in objective

space, Fig. 6 and Figs. A.4 and A.5 of the Supplementary
Material depict the final solution sets obtained by our pro-
posed NN-CSO and its seven compared algorithms on WFG8
with 2 objectives and 1000 decision variables, DTLZ5 with
5 objectives and 1000 decision variables, LSMOP4 with 2

TABLE V
SUMMARY OF THE FINAL STATISTICAL COMPARISON RESULTS OF THREE

MBEAS ON SOLVING ALL TEST PROBLEMS BASED ON IGD VALUES.

NN-CSO
vs

MBEAs

Test problems
on LSMOP

+ / - / =
on UF

+ / - / =
on DTLZ
+ / - / =

on WFG
+ / - / =

in total
+ / - / =

MOEA/PSL 19 / 96 / 65 11 / 23 / 6 41 / 86 / 13 52 / 96 / 32 123 / 301 / 116
AMOEA/D 73 / 84 / 23 1 / 38 / 1 44 / 85 / 11 50 / 99 / 31 168 / 306 / 66

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5
WFG8 with 2 objectives and 1000 dimensions

NN-CSO

MOEA/PSL

MOEA/DVA

LSMOEA/D

LMEA

DGEA

LSMOF

AMOEA/D

TruePF

Fig. 6. The final population sets obtained by the eight compared algorithms
on WFG8 with 2 objectives and 1000 decision variables.

objectives and 500 decision variables, and UF4 with 2 objec-
tives and 1000 decision variables, respectively. As shown in
these figures, the final solution sets obtained by our proposed
NN-CSO show better diversity distribution than the other
approaches. Moreover, the final solution sets obtained by NN-
CSO can approximate the true PF more closely than the others.
In Summary, NN-CSO shows significant superiority over the
other compared algorithms, which confirms the efficiency of
our proposed NN model in handing a variety of LMOPs.

2) Parameter Sensitivity Analysis of our NN Model
In this section, the sensitivity to the number of neurons K

in the hidden layer, which is a very important parameter in
NN-CSO that affects the architecture and learning ability of
the NN model, is analyzed. Specifically, four different values
of K (i.e., K={2, 5, 10, 15} are considered for solving 2-
objective LSMOP1 with 100 and 1000 decision variables.

As observed from the average IGD values and running times
of NN-CSO with different values of K in Fig. 7 and Fig. A.6
of the Supplementary Material, NN-CSO with K = 2 shows
the worst performance in solving these two LMOPs, which
indicates that a simple structure of the NN model is insufficient
for learning the evolutionary direction from the loser particles
towards the winner particles. Moreover, NN-CSO shows a
similar performance in the cases of K = {5, 10, 15}. However,
the time cost of NN-CSO increases dramatically as the value of
K increases. In other words, if the number of neurons (K) in
the hidden layer is too large, the structure of the NN model will
become complicated. Unfortunately, training such a complex
NN model is very time consuming, and it fails to significantly
improve the performance of the algorithm. Consequently, by
considering both the performance and training time cost of
NN-CSO, we suggest that the value of K should be set
between 5 and 10, and we adopt K= 5 in this paper.



11

44
47

52

60

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

30

35

40

45

50

55

60

65

2 5 10 15

A
v

er
a

g
e 

IG
D

 V
a

lu
e

R
u

n
n

in
g

 T
im

e(
S

)

Running Time IGD

K= K= K= K=

Fig. 7. Average IGD values and running time of NN-CSO with different
values of K in solving 2-objective LSMOP1 with 100 decision variables.

1
.5

1
E

+
0

1

2
.6

8
E

+
0

0

2
.3

6
E

+
0

0

9
.8

4
E

+
0

0

7
.3

9
E

+
0

0

7
.7

8
E

+
0

0

5
.9

9
E

+
0

0

6
.3

2
E

+
0

0

1
.1

2
E

+
0

1

1
.1

6
E

+
0

1

9
.4

9
E

+
0

0

1
.1

2
E

+
0

1

3
.2

7
E

+
0

0

3
.8

8
E

+
0

0

5
.7

7
E

+
0

0

9
.5

0
E

+
0

0

1
.2

3
E

+
0

1

8
.8

0
E

+
0

0

1
.9

4
E

+
0

1

3
.3

2
E

+
0

1

5
.7

0
E

+
0

1

3
.6

0
E

+
0

15
.4

8
E

+
0

1 7
.3

0
E

+
0

1

7
.0

1
E

+
0

1

9
.9

6
E

+
0

1

1
.4

5
E

+
0

1

1
.6

6
E

+
0

1

1
.0

5
E

+
0

1

1
.3

2
E

+
0

1

6
.2

8
E

+
0

1

5
.3

1
E

+
0

1

6
.2

2
E

+
0

1

5
.3

8
E

+
0

1

3
.2

5
E

+
0

0

2
.6

6
E

+
0

0

3
.4

6
E

+
0

0

5
.5

0
E

+
0

0

4
.8

1
E

+
0

1

4
.8

0
E

+
0

1

4
.7

9
E

+
0

1

4
.9

5
E

+
0

1

2-objective LSMOP1 2-objective UF3 5-objective DTLZ2 5-objective WFG1

A
v

er
ag

e 
C

P
U

 t
im

e 
(s

)

S_ECSO LMOCSO TPLSO LSMOF DGEA LMEA

LSMOEA/D MOEA/DVA MOEA/PSL AMOEA/D NN-CSO

7
.3

0
E

+
0

2

9
.5

4
E

+
0

2

Fig. 8. Average CPU times of all the compared algorithms on some LMOPs.

3) Comparisons in terms of Execution Efficiency
The training time is also an important criterion for evalu-

ating the efficiency of an algorithm, especially for an MBEA
that combines the conventional MOEA with a neural network
model. Therefore, we further investigate the execution effi-
ciency of NN-CSO and the other algorithms compared in
our experimental study. The average CPU running time of
each compared algorithm from 20 runs is plotted in Fig. 8
and Fig. A.7 on the 2-objective LSMOP1 and UF3 with 100
and 1000 decision variables, and the 5-objective DTLZ2 and
WFG1 with 100 and 1000 decision variables, respectively.

Some conclusions can be learned from Fig. 8 and Fig. A.7.
First, compared to the three original CSO variants consid-
ered here (i.e., S-ECSO, LMOCSO and TPLSO), the CPU
running times of NN-CSO are approximately three or four
times longer than those of the original CSOs. That is, our
proposed NN-enhanced CSO can significantly improve the
performance of traditional CSOs with only a small additional
time cost. Second, considering NN-CSO and two MBEAs (i.e.,
MOEA/PSL and AMOEA/D), MOEA/PSL shows the worst
execution efficiency due to its complex network structure, and
AMOEA/D has the lowest time cost, because the network
model in AMOEA/D is only trained once per iteration. Nev-
ertheless, such rough network model training fails to obtain
a network model with high precision, which may degrade
the optimization performance of the algorithm to some ex-
tent. Overall, problem transformation based methods, such as
LSMOF, have the longest running time among all competitors.
The reason behind this is that LSMOF consumes considerable
time tracking PS of LMOPs. In summary, NN-CSO not only

shows promising performance in solving several LMOPs, but
also has good execution efficiency.

4) Ablation Analysis of NN-CSO
To validate the effectiveness of each component contained

in NN-CSO, five variants of NN-CSO are implemented in
our ablation experiments. Specifically, the arrangements of the
ablation experiments are as follows:
• To study the effectiveness of the evolutionary mechanism

of NN-CSO, two variants (i.e., NN-CSO-I and NN-
CSO-II) are designed, where NN-CSO-I applies the NN-
assisted learning strategy to evolve winner particles and
loser particles, and NN-CSO-II directly uses the NN-
assisted learning strategy to evolve the entire population.

• To investigate whether the performance improvement is
attributed to the evolution of winner particles via the
NN-assisted learning strategy of NN-CSO or due to the
use of the network model, two variants (i.e., NN-CSO-
III and NN-CSO-IV) are designed, where NN-CSO-III
only performs the mutation operation rather than the
NN-assisted learning strategy on the winner particles.
Conversely, NN-CSO-IV trains the NN model by using
random samples rather than those obtained through the
pairwise competition of CSO.

• To verify the superiority of our designed NN model in
NN-CSO, a variant (i.e., AES-CSO) is designed, which
adopts the AES model proposed in AMOEA/D [14] to
replace our designed NN model.

To verify the superiority of NN-CSO over its five variants,
without loss of generality, several different test problems with
different characteristics are adopted. Table VI provides the
average IGD results for NN-CSO and its five variants when
solving a number of different benchmark problems (i.e., 5-
objective LSMOP1 and LSMOP9, 2-objective UF3 and 3-
objective UF9, 5-objective DTLZ1 and DTLZ2, 5-objective
WFG2 and WFG8) with 100 and 1000 decision variables,
which exhibit distinct characteristics and PF shapes.

As observed from Table VI, NN-CSO outperforms these five
variants in most cases. Specifically, the superiority of NN-CSO
over NN-CSO-I and NN-CSO-II shows the effectiveness of
our evolutionary mechanism, in which the winner particles are
evolved by the NN-assisted learning strategy, while the loser
particles are updated by learning from the winner particles.
Similarly, NN-CSO shows obvious advantages over NN-CSO-
III and NN-CSO-IV, which validates that the performance
improvement is due to the use of an NN-assisted learning
strategy to evolve the winner particles. Finally, NN-CSO
outperforms AES-CSO in most cases, which validates the
effectiveness of our designed NN model. In Summary, these
ablation experiments further verify the effectiveness of each
component contained in NN-CSO.

5) Performance Study on Super-large-scale Problems
In this part, we further explore the performance of our

proposed NN-CSO and other compared algorithms in solving
super-large-scale problems [54], i.e., problems with more than
5000 decision variables. Table A.15 of the Supplementary Ma-
terial provides the IGD results for all the compared algorithms
when solving the same benchmark problems as those from
Table VI with 5000 and 10000 decision variables. Obviously,



12

TABLE VI
THE IGD COMPARISON RESULTS OF NN-CSO AND ITS FIVE VARIANTS WHEN SOLVING SOME TEST PROBLEMS WITH 100, 1000 DECISION VARIABLES.

Problem M D NN-CSO-I NN-CSO-II NN-CSO-III NN-CSO-IV AES-CSO NN-CSO
LSMOP1 5 100 8.6111e-1 (3.33e-2) - 8.5873e-1 (3.21e-2) - 4.7380e-1 (3.45e-2) + 5.8532e-1 (6.48e-2) - 6.4028e-1 (5.64e-2) - 5.4001e-1 (4.78e-2)
LSMOP1 5 1000 1.0216e+0 (2.79e-2) - 1.0019e+0 (1.61e-2) - 1.4141e+0 (1.59e-1) - 9.0578e-1 (1.08e-1) = 9.4360e-1 (6.43e-2) - 8.7563e-1 (5.58e-2)
LSMOP9 5 100 1.5749e+0 (3.52e-1) - 1.4012e+0 (2.39e-1) - 9.4260e-1 (2.15e-1) = 9.9477e-1 (2.22e-1) - 8.8636e-1 (1.03e-1) = 9.2390e-1 (7.70e-2)
LSMOP9 5 1000 1.1914e+0 (3.27e-1) - 1.1563e+0 (4.32e-2) - 7.9858e+1 (5.83e+1) - 1.1741e+0 (2.07e-1) - 8.9144e-1 (1.51e-1) = 9.3546e-1 (2.02e-1)

UF3 2 100 4.9611e-1 (1.84e-2) - 4.7689e-1 (2.00e-2) - 2.3434e-1 (7.81e-3) - 1.8467e-1 (5.15e-3) = 1.7537e-1 (3.88e-3) = 1.8399e-1 (7.77e-3)
UF3 2 1000 4.6358e-1 (2.05e-2) - 4.6738e-1 (2.73e-2) - 3.2107e-1 (3.19e-3) - 1.2537e-1 (1.14e-3) = 1.2576e-1 (8.81e-4) = 1.2473e-1 (7.05e-4)
UF9 3 100 1.1675e+0 (1.16e-1) - 1.3319e+0 (1.34e-1) - 5.0372e-1 (4.06e-2) = 5.4028e-1 (1.66e-2) - 4.6222e-1 (3.67e-2) + 5.0989e-1 (4.59e-3)
UF9 3 1000 1.6891e+0 (1.79e-1) - 1.5143e+0 (1.52e-1) - 7.6722e-1 (1.35e-2) - 7.2356e-1 (4.29e-2) - 6.7230e-1 (9.01e-2) = 6.6051e-1 (1.66e-2)

DTLZ1 5 100 1.2498e+3 (2.88e+2) - 1.5054e+3 (3.15e+2) - 3.1214e+2 (4.18e+1) - 2.9975e+2 (7.00e+1) = 3.9461e+2 (3.16e+2) = 1.6925e+2 (1.38e+2)
DTLZ1 5 1000 1.3669e+4 (2.30e+3) - 1.4800e+4 (1.52e+3) - 8.3434e+3 (7.54e+2) - 3.0638e+3 (4.04e+2) - 3.4173e+3 (2.04e+3) - 2.2002e+2 (2.22e+2)
DTLZ2 5 100 3.1059e+0 (2.86e-1) - 3.1025e+0 (2.49e-1) - 4.3847e-1 (2.35e-2) + 6.2749e-1 (3.03e-2) - 6.8261e-1 (3.31e-2) - 4.9801e-1 (4.04e-2)
DTLZ2 5 1000 3.8766e+1 (5.80e+0) - 4.3752e+1 (4.08e+0) - 4.3532e+0 (5.67e-1) - 3.1633e+0 (2.21e-1) - 4.6113e+0 (6.05e-1) - 8.2565e-1 (3.53e-2)
WFG2 5 100 9.9013e-1 (8.15e-2) - 9.5370e-1 (7.83e-2) - 5.2601e-1 (2.05e-2) = 5.6887e-1 (4.27e-2) - 5.6467e-1 (2.88e-2) - 5.0634e-1 (1.48e-2)
WFG2 5 1000 1.0276e+0 (8.92e-2) - 1.0557e+0 (4.74e-2) - 7.6442e-1 (2.33e-2) - 6.3079e-1 (3.32e-2) + 6.6784e-1 (2.48e-2) + 7.2980e-1 (2.70e-2)
WFG8 5 100 1.7562e+0 (2.87e-2) - 1.7962e+0 (4.11e-2) - 1.1548e+0 (1.59e-2) = 1.2181e+0 (2.23e-2) - 1.2151e+0 (1.93e-2) - 1.1426e+0 (4.87e-3)
WFG8 5 1000 1.6040e+0 (6.82e-2) - 1.7252e+0 (3.64e-2) - 1.3328e+0 (4.49e-2) = 1.2953e+0 (5.90e-3) = 1.2133e+0 (1.28e-2) + 1.3015e+0 (1.09e-2)

+/-/= 0/16/0 0/16/0 2/9/5 1/10/5 3/7/6

the performance results summarized in Table A.15 further
validate that NN-CSO still shows significant superiority over
other compared algorithms when solving the problems with
super-large-scale dimensionality.

In addition, we also conducted a preliminary study of
the performance of LMOEAs [8], [9], [11], [16], [20] and
MBEAs [14], [35] in solving the problems in large-scale
many-objective environments, i.e., the dimensionality of the
objective space is also large-scale. From the IGD results
provided in Table A.16 of the Supplementary Material, it can
be easily observed that solving the problems in a large-scale
many-objective environment is a very large challenge for the
existing algorithms, because even after a relatively large num-
ber of iterations, their IGD values remain very large, which
means that they failed to converge in the large-scale objective
space. The reason behind this may be the limited performance
of the existing search operators, the environmental selection
methods, etc., under a large-scale many-objective environment.
Therefore, how to efficiently address problems with super-
large-scale many-objective optimization problems is still an
open issue that deserves further study.

V. LIMITATIONS

The experimental results presented above validate that the
NN model can effectively enhance traditional CSOs in solving
a variety of LMOPs and that our proposed NN-CSO has clear
advantages over several state-of-the-art LMOEAs and MBEAs.
However, our method still suffers from some limitations. First,
as analyzed in Section IV-G3, when compared to traditional
LMOEAs, our method is somewhat time-consuming as it fails
to yield the best results in terms of execution efficiency.
Second, as learned from Section IV-G5, the search capability
of NN-CSO is not sufficient when solving super-large-scale
many-objective problems.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an NN-enhanced CSO for solving
a variety of LMOPs, called NN-CSO. Specifically, CSO assists
the training of the NN model because the samples used
for model training can be easily obtained by the pairwise
competition of CSO. Then, a well-trained NN model can learn

promising evolutionary dynamics that can drive loser particles
towards winner particles, consequently boosting the conver-
gence speed of traditional CSOs. Therefore, the combination
of CSO and an NN model enables effective and complemen-
tary cooperation. The extensive experimental results verified
the validity of NN-CSO in solving four different LMOP
benchmark suites, showing that the designed NN model can
significantly improve the performance of conventional CSOs
and the proposed NN-CSO has significant advantages over
several state-of-the-art LMOEAs and MBEAs.

This study validated that an evolutionary algorithm com-
bined with a machine learning model can be considered a
promising technique for solving complex MOPs. As part of
our future research, we plan to adopt a combination of an
appropriate machine learning model and evolutionary algo-
rithm according to the characteristics of the target problem. In
addition, an emerging distributed GPU-accelerated library [55]
is believed to improve the execution efficiency of algorithms.

REFERENCES

[1] Z. Liu, H. Wang, and Y. Jin, “Performance indicator-based adap-
tive model selection for offline data-driven multiobjective evolutionary
optimization,” IEEE Transactions on Cybernetics, early access, doi:
10.1109/TCYB.2022.3170344.

[2] S. Liu, Q. Lin, J. Li, and K. C. Tan, “A survey on learn-
able evolutionary algorithms for scalable multiobjective optimization,”
IEEE Transactions on Evolutionary Computation, early access, doi:
10.1109/TEVC.2023.3250350.

[3] Y. Tian, L. Si, X. Zhang, R. Cheng, C. He, K. C. Tan, and Y. Jin,
“Evolutionary large-scale multi-objective optimization: A survey,” ACM
Computing Surveys, vol. 54, no. 8, pp. 1–34, June. 2021.

[4] K. Li and R. Chen, “Batched data-driven evolutionary multiobjective
optimization based on manifold interpolation,” IEEE Transactions on
Evolutionary Computation, vol. 27, no. 1, pp. 126–140, February. 2023.

[5] L. Li, Q. Lin, Z. Ming, K.-C. Wong, M. Gong, and C. A. C. Coello,
“An immune-inspired resource allocation strategy for many-objective
optimization,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, early access, doi: 10.1109/TSMC.2022.3221466.

[6] Y. Guo, G. Chen, M. Jiang, D. Gong, and J. Liang, “A knowledge guided
transfer strategy for evolutionary dynamic multiobjective optimization,”
IEEE Transactions on Evolutionary Computation, early access, doi:
10.1109/TEVC.2022.3222844.

[7] H. Wang, L. Jiao, R. Shang, S. He, and F. Liu, “A memetic optimization
strategy based on dimension reduction in decision space,” Evolutionary
Computation, vol. 23, no. 1, pp. 69–100, March. 2015.



13

[8] X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong, “A
multiobjective evolutionary algorithm based on decision variable analy-
ses for multiobjective optimization problems with large-scale variables,”
IEEE Transactions on Evolutionary Computation, vol. 20, no. 2, pp.
275–298, April. 2016.

[9] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-
based evolutionary algorithm for large-scale many-objective optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 1,
pp. 97–112, February. 2018.

[10] C. He, R. Cheng, L. Li, K. C. Tan, and Y. Jin, “Large-scale mul-
tiobjective optimization via reformulated decision variable analysis,”
IEEE Transactions on Evolutionary Computation, early access, doi:
10.1109/TEVC.2022.3213006.

[11] L. Ma, M. Huang, S. Yang, R. Wang, and X. Wang, “An adaptive lo-
calized decision variable analysis approach to large-scale multiobjective
and many-objective optimization,” IEEE Transactions on Cybernetics,
vol. 52, no. 7, pp. 6684–6696, July. 2022.

[12] S. Liu, Q. Lin, Y. Tian, and K. C. Tan, “A variable importance-
based differential evolution for large-scale multiobjective optimization,”
IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 13 048–13 062,
December. 2022.

[13] Y. Xu, C. Xu, H. Zhang, L. Huang, Y. Liu, Y. Nojima, and X. Zeng,
“A multi-population multi-objective evolutionary algorithm based on
the contribution of decision variables to objectives for large-scale
multi/many-objective optimization,” IEEE Transactions on Cybernetics,
early access, doi: 10.1109/TCYB.2022.3180214.

[14] S. Liu, J. Li, Q. Lin, Y. Tian, and K. C. Tan, “Learning to accelerate
evolutionary search for large-scale multiobjective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 27, no. 1, pp. 67–81,
February. 2023.

[15] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “A framework for
large-scale multiobjective optimization based on problem transforma-
tion,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 2,
pp. 260–275, April. 2018.

[16] C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, and X. Yao, “Acceler-
ating large-scale multiobjective optimization via problem reformulation,”
IEEE Transactions on Evolutionary Computation, vol. 23, no. 6, pp.
949–961, December. 2019.

[17] S. Qin, C. Sun, Y. Jin, Y. Tan, and J. Fieldsend, “Large-scale evolu-
tionary multiobjective optimization assisted by directed sampling,” IEEE
Transactions on Evolutionary Computation, vol. 25, no. 4, pp. 724–738,
August. 2021.

[18] Y. Tian, C. Lu, X. Zhang, F. Cheng, and Y. Jin, “A pattern mining-based
evolutionary algorithm for large-scale sparse multiobjective optimization
problems,” IEEE Transactions on Cybernetics, vol. 52, no. 7, pp. 6784–
6797, July. 2022.

[19] S. Liu, Q. Lin, K.-C. Wong, Q. Li, and K. C. Tan, “Evolutionary
large-scale multiobjective optimization: Benchmarks and algorithms,”
IEEE Transactions on Evolutionary Computation, early access, doi:
10.1109/TEVC.2021.3099487.

[20] C. He, R. Cheng, and D. Yazdani, “Adaptive offspring generation for
evolutionary large-scale multiobjective optimization,” IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 2, pp.
1–13, February. 2022.

[21] W. Hong, K. Tang, A. Zhou, H. Ishibuchi, and X. Yao, “A scalable
indicator-based evolutionary algorithm for large-scale multiobjective
optimization,” IEEE Transactions on Evolutionary Computation, vol. 23,
no. 3, pp. 525–537, June. 2019.

[22] Z. Li, Q. Zhang, X. Lin, and H.-L. Zhen, “Fast covariance matrix
adaptation for large-scale black-box optimization,” IEEE Transactions
on Cybernetics, vol. 50, no. 5, pp. 2073–2083, May. 2020.

[23] Q. Yang, W.-N. Chen, T. Gu, H. Zhang, J. D. Deng, Y. Li, and J. Zhang,
“Segment-based predominant learning swarm optimizer for large-scale
optimization,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp.
2896–2910, September. 2017.

[24] Z.-J. Wang, Z.-H. Zhan, S. Kwong, H. Jin, and J. Zhang, “Adaptive
granularity learning distributed particle swarm optimization for large-
scale optimization,” IEEE Transactions on Cybernetics, vol. 51, no. 3,
pp. 1175–1188, March. 2021.

[25] K. Zhang, C. Shen, and G. G. Yen, “Multipopulation-based differential
evolution for large-scale many-objective optimization,” IEEE Transac-
tions on Cybernetics, early access, doi: 10.1109/TCYB.2022.3178929.

[26] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” IEEE Transactions on Cybernetics, vol. 45, no. 2, pp.
191–204, February. 2015.

[27] W.-X. Zhang, W.-N. Chen, and J. Zhang, “A dynamic competitive
swarm optimizer based-on entropy for large scale optimization,” in

2016 Eighth International Conference on Advanced Computational
Intelligence (ICACI), 2016, pp. 365–371.

[28] R. Lan, Y. Zhu, H. Lu, Z. Liu, and X. Luo, “A two-phase learning-based
swarm optimizer for large-scale optimization,” IEEE Transactions on
Cybernetics, vol. 51, no. 12, pp. 1–10, December. 2021.

[29] X. Wang, K. Zhang, J. Wang, and Y. Jin, “An enhanced competitive
swarm optimizer with strongly convex sparse operator for large-scale
multi-objective optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 26, no. 5, October. 2022.

[30] Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient large-scale multi-
objective optimization based on a competitive swarm optimizer,” IEEE
Transactions on Cybernetics, vol. 50, no. 8, pp. 3696–3708, August.
2020.

[31] S. Liu, Q. Lin, Q. Li, and K. C. Tan, “A comprehensive competitive
swarm optimizer for large-scale multiobjective optimization,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 9,
pp. 1–14, September. 2022.

[32] J. Zhang, Z.-h. Zhan, Y. Lin, N. Chen, Y.-j. Gong, J.-h. Zhong, H. S.
Chung, Y. Li, and Y.-h. Shi, “Evolutionary computation meets machine
learning: A survey,” IEEE Computational Intelligence Magazine, vol. 6,
no. 4, pp. 68–75, November. 2011.

[33] C. He, S. Huang, R. Cheng, K. C. Tan, and Y. Jin, “Evolutionary
multiobjective optimization driven by generative adversarial networks
(GANs),” IEEE Transactions on Cybernetics, vol. 51, no. 6, pp. 3129–
3142, June. 2021.

[34] Z. Wang, H. Hong, K. Ye, G.-E. Zhang, M. Jiang, and K. C. Tan, “Man-
ifold interpolation for large-scale multiobjective optimization via gener-
ative adversarial networks,” IEEE Transactions on Neural Networks and
Learning Systems, early access, doi: 10.1109/TNNLS.2021.3113158.

[35] Y. Tian, C. Lu, X. Zhang, K. C. Tan, and Y. Jin, “Solving large-
scale multiobjective optimization problems with sparse optimal solutions
via unsupervised neural networks,” IEEE Transactions on Cybernetics,
vol. 51, no. 6, pp. 3115–3128, June. 2021.

[36] L. Feng, Y.-S. Ong, S. Jiang, and A. Gupta, “Autoencoding evolutionary
search with learning across heterogeneous problems,” IEEE Transactions
on Evolutionary Computation, vol. 21, no. 5, pp. 760–772, October.
2017.

[37] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, August. 2013.

[38] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848,
April. 2018.

[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” Readings in Cognitive Science,
vol. 323, no. 6088, pp. 399–421, 1988.

[40] X. Zhang, K.-J. Du, Z.-H. Zhan, S. Kwong, T.-L. Gu, and J. Zhang,
“Cooperative coevolutionary bare-bones particle swarm optimization
with function independent decomposition for large-scale supply chain
network design with uncertainties,” IEEE Transactions on Cybernetics,
vol. 50, no. 10, pp. 4454–4468, October. 2020.

[41] Q. Yang, W.-N. Chen, T. Gu, H. Zhang, H. Yuan, S. Kwong, and
J. Zhang, “A distributed swarm optimizer with adaptive communication
for large-scale optimization,” IEEE Transactions on Cybernetics, vol. 50,
no. 7, pp. 3393–3408, July. 2020.

[42] L. Li, Y. Li, Q. Lin, Z. Ming, and C. A. C. Coello, “A convergence
and diversity guided leader selection strategy for many-objective particle
swarm optimization,” Engineering Applications of Artificial Intelligence,
vol. 115, p. 105249, 2022.

[43] Q. Yang, W.-N. Chen, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “A level-
based learning swarm optimizer for large-scale optimization,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 4, pp. 578–594,
August. 2018.

[44] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS)
for engineering design,” Computer Science and Informatics, vol. 26, pp.
30–45, 1996.

[45] M. Li, S. Yang, and X. Liu, “Shift-based density estimation for Pareto-
based algorithms in many-objective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 18, no. 3, pp. 348–365, June. 2014.

[46] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB plat-
form for evolutionary multi-objective optimization [educational forum],”
IEEE Computational Intelligence Magazine, vol. 12, no. 4, pp. 73–87,
November. 2017.

[47] A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the JMetal multi-
objective optimization framework,” in Proceedings of the Companion



14

Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation, 2015, p. 1093–1100.

[48] R. Cheng, Y. Jin, M. Olhofer, and B. sendhoff, “Test problems for large-
scale multiobjective and many-objective optimization,” IEEE Transac-
tions on Cybernetics, vol. 47, no. 12, pp. 4108–4121, December. 2017.

[49] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, S. Tiwari et al.,
“Multiobjective optimization test instances for the CEC 2009 special ses-
sion and competition,” University of Essex, Colchester, UK and Nanyang
technological University, Singapore, special session on performance
assessment of multi-objective optimization algorithms, technical report,
vol. 264, pp. 1–30, 2008.

[50] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in Proceedings of the 2002
Congress on Evolutionary Computation, 2002, pp. 825–830.

[51] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506,
October. 2006.

[52] W. Chen, H. Ishibuchi, and K. Shang, “Fast greedy subset selection
from large candidate solution sets in evolutionary multiobjective opti-
mization,” IEEE Transactions on Evolutionary Computation, vol. 26,
no. 4, pp. 750–764, 2022.

[53] Alcalá-FdezJ., SánchezL., Garcı́aS., J. J. Del, VenturaS., M. Garrellj.,
OteroJ., RomeroC., BacarditJ., and M. Rivasv., “KEEL: a software
tool to assess evolutionary algorithms for data mining problems,” Soft
Computing - A Fusion of Foundations, Methodologies and Applications,
vol. 13, no. 3, pp. 307–318, May. 2008.

[54] Y. Tian, Y. Feng, X. Zhang, and C. Sun, “A fast clustering based
evolutionary algorithm for super-large-scale sparse multi-objective opti-
mization,” IEEE/CAA Journal of Automatica Sinica, early access, doi:
10.1109/JAS.2022.105437.

[55] B. Huang, R. Cheng, Y. Jin, and K. C. Tan, “EvoX: A distributed GPU-
accelerated library towards scalable evolutionary computation,” arXiv
preprint arXiv:2301.12457, 2023.

Lingjie Li received his B.S. degree from Shandong
Technology and Business University, Yantai, China
in 2017, and his M.S. degree and Ph.D. degree
from the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, China
in 2020 and 2023, respectively.

He is currently an assistant researcher in Guang-
dong Laboratory of Artificial Intelligence and Dig-
ital Economy (SZ). He focuses on research in the
area of evolutionary computation, including algo-
rithm researches on multi/many-objective optimiza-

tion, large-scale optimization, and application researches on feature selection,
cloud/edge computing, and remote sensing hyperspectral images.

Yongfeng Li received the B.S. degree from Dong-
guan University of Technology, Dongguan, China in
2020.

He is currently pursuing the Ph.D. degree in Col-
lege of Computer Science and Software Engineering,
Shenzhen University. His current research interests
include evolutionary large-scale optimization and
machine learning.

Qiuzhen Lin (Member IEEE) received the B.S.
degree from Zhaoqing University and the M.S. de-
gree from Shenzhen University, China, in 2007 and
2010, respectively. He received the Ph.D. degree
from Department of Electronic Engineering, City
University of Hong Kong, Kowloon, Hong Kong,
in 2014.

He is currently an associate professor in College
of Computer Science and Software Engineering,
Shenzhen University. He has published over sixty
research papers since 2008. He is an Associate

Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPU-
TATION and the IEEE TRANSACTIONS ON EMERGING TOPICS IN
COMPUTATIONAL INTELLIGENCE. His current research interests include
artificial immune system, multi-objective optimization, and dynamic system.

Songbai Liu (Member IEEE) received the B.S. de-
gree from Changsha University and the M.S. degree
from Shenzhen University, China, in 2012 and 2018,
respectively. He received the Ph.D. degree from
Department of Computer Sciences, City University
of Hong Kong, in 2022.

He is currently an assistant professor in College of
Computer Science and Software Engineering, Shen-
zhen University. His research interests include evolu-
tionary algorithms + machine learning, evolutionary
large-scale optimization, and their applications.

Junwei Zhou received the Ph.D. degree in the
department of electrical engineering from the City
University of Hong Kong. Since then, he has been
with Polytechnic University of Turin, Italy, as a
visiting scholar, with City University of Hong Kong,
Hong Kong, China, as a researcher.

He is currently an Associate Professor with the
School of Computer Science and Artificial Intel-
ligence, Wuhan University of Technology, China,
a Post-doctoral Researcher with the Pennsylvania
State University, USA. His research interests include

computer vision, information security and distributed source coding. He has
served as PC member of top conferences such as EMNLP 2023, Coling 2022,
ACL 2022, and ISSRE 2022.

Zhong Ming received the the Ph.D. degree in
Computer Science and Technology from Sun Yat-
sen University, Guangzhou, China, in 2003.

He is currently the Executive Director of the
Graduate School of Shenzhen University, and a
Professor with the National Engineering Laboratory
for Big Data System Computing Technology and
the College of Computer Science and Software En-
gineering, Shenzhen University, Shenzhen, China.
His research interests include software engineering
and artificial intelligence. He has published more

than 200 refereed international conference and journal papers (including 40+
ACM/IEEE Transactions papers). He was the recipient of the ACM TiiS 2016
Best Paper Award and some other best paper awards.

Carlos A. Coello Coello (Fellow, IEEE) received
the Ph.D. degree in computer science from Tulane
University, New Orleans, LA, USA, in 1996.

He is a Professor (CINVESTAV-3F Researcher)
with the Department of Computer Science of
CINVESTAV-IPN, Mexico City, Mexico. He has au-
thored and coauthored over 450 technical papers and
book chapters. He has also coauthored the book Evo-
lutionary Algorithms for Solving Multi-Objective
Problems (Second Edition, Springer, 2007). His pub-
lications currently report over 57 600 citations in

Google Scholar (his H-index is 95). His research interests include evolutionary
multiobjective optimization and constraint-handling techniques for evolution-
ary algorithms.

Dr. Coello Coello was a recipient of the 2007 National Research Award
from the Mexican Academy of Sciences in the area of Exact Sciences,
the 2013 IEEE Kiyo Tomiyasu Award, and the 2012 National Medal of
Science and Arts in the area of Physical, Mathematical and Natural Sciences.
He is currently the Editor-in-Chief of the IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION. He is a member of the Association for
Computing Machinery and the Mexican Academy of Science.


