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Abstract: 

In recent years, a number of multi-objective immune algorithms (MOIAs) have been proposed as 

inspired by the information processing in biologic immune system. Since most MOIAs encourage to search 

around some boundary and less-crowded areas using the clonal selection principle, they have been validated 

to show the effectiveness on tackling various kinds of multi-objective optimization problems (MOPs). The 

crowding distance metric is often used in MOIAs as a diversity metric to reflect the status of population’s 

diversity, which is employed to clone less-crowded individuals for evolution. However, this kind of cloning 

may encounter some difficulties when tackling some complicated MOPs (e.g., the UF problems with 

variable linkages). To alleviate the above difficulties, a novel MOIA with a decomposition-based clonal 

selection strategy (MOIA-DCSS) is proposed in this paper. Each individual is associated to one subproblem 

using the decomposition approach and then the performance enhancement on each subproblem can be easily 

quantified. Then, a novel decomposition-based clonal selection strategy is designed to clone the solutions 

with the larger improvements for the subproblems, which encourages to search around these subproblems. 

Moreover, differential evolution is employed in MOIA-DCSS to strength the exploration ability and also 

to improve the population’s diversity. To evaluate the performance of MOIA-DCSS, twenty-eight test 

problems are used with the complicated Pareto-optimal sets and fronts. The experimental results validate 

the superiority of MOIA-DCSS over four state-of-the-art multi-objective algorithms (i.e., NSLS, MOEA/D-

M2M, MOEA/D-DRA and MOEA/DD) and three competitive MOIAs (i.e., NNIA, HEIA, and AIMA). 
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1. Introduction

In real-world engineering problems [1], [2], it is very often to encounter the optimization problems 

related to several (often conflicting) objectives, which are called multi-objective optimization problems 

(MOPs), as formulated by 

   1 2Min , ,...,
T

mx
F x f x f x f x ,                        (1) 

where 1 2, ,..., nx x x x  is a decision vector in  (the n-dimensional decision space), and the objective 

function : mF R  gives the mapping from  to mR  (the m-dimensional objective space). The final 
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result in tackling MOPs usually gives a Pareto-optimal set (PS), which has the best trade-off for all the 

objectives. The objective function values of PS are often termed Pareto-optimal front (PF). When the 

preference information of different objectives is unavailable, there have two goals for solving MOP, i.e., a 

set of solutions with good convergence that can closely approach the true PF and with good diversity that 

can be evenly dispersed along the true PF. By this way, these final solutions can support the decision maker 

to select the appropriate solutions for different practical cases. 

In the last decades, there are a number of multi-objective evolutionary algorithms (MOEAs) proposed 

to tackle various kinds of MOPs. NSGA-II [3], SPEA2 [4], and MOEA/D [5] are widely acknowledged as 

the three well-known state-of-the-art MOEAs. NSGA-II [3] was designed with a fast nondominated sorting 

approach to ensure the convergence first and then using the crowding-distance metrics to guarantee the 

population’s diversity. SPEA2 [4] was proposed with the aim to balance convergence and diversity by using 

a fine-grained fitness assignment strategy. MOEA/D [5] was presented to decompose the target MOP into 

a set of subproblems and then to optimize them simultaneously on a cooperative manner. These well-known 

MOEAs have inspired many research studies [6], [7], [8], [9], [10], such as a new definition of dominance 

relation [11] and an integrated weight assignment strategy [12] for NSGA-II, a shift-based density 

estimation strategy [13] and an efficient reference direction-based density estimator [14] for SPEA2, an 

indicator-based method [15] and an acute angle based approach [16] for MOEA/D. Some recent research 

studies have extended MOEAs to solve many-objective optimization problems [17], [18], [19], [20]. For 

more detailed review of MOEAs, please refer to [21], [22].   

On the other hand, a number of multi-objective immune algorithms (MOIAs) have been proposed as 

inspired by the clonal selection principle in biologic immune system, showing the superiority over some 

state-of-the-art MOEAs [11], [12], [13], [14], [15], [16]. Only a small ratio of individuals showing good 

convergence and diversity capabilities are selected for clonal proliferation and then a number of clones are 

generated in MOIAs. Then, each clone is evolved by hyper-mutation, expecting to produce the superior 

offspring. This way, the individuals with high potentiality will have more clones to be evolved, aiming to 

speed up convergence or extend diversity. The first real-coded MOIA may retrospect to a nondominated 

neighbor-based immune algorithm (NNIA) [23] based on the clonal selection principle, which was 

experimentally validated to show some advantages over NSGA-II and SPEA2. After that, a larger number 

of MOIAs were also designed based on the clonal selection principle, such as HEIA [24], AIMA [25], theta-

MCSA [26], and CMIGA [27]. Most of them have demonstrated the superiorities on solving the simple 

MOPs (like ZDT [28] and DTLZ [29]). However, the experiments in [24], [25] showed that most MOIAs 

were difficult to handle the UF test problems [30] with the complicated PF or PS. This is mainly because 

most MOIAs implement the clonal selection operators only on nondominated individual according to their 

crowding distance values [23], which may cause the difficulties on these complicated MOPs [30]. This 

observation motivates us to study whether a novel clonal selection strategy can be implemented in MOIAs 

to alleviate the above problem. Therefore, in this paper, we propose a novel MOIA with a decomposition-
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based clonal selection strategy, called MOIA-DCSS. Instead of using the crowding distance metric in clonal 

selection, the proposed MOIA-DCSS exploits the decomposition approach to realize the clonal selection 

approach, which has some advantages in selecting the potential solutions for cloning and evolution. By this 

way, our algorithm is more able to maintain the balance of convergence and diversity, especially on tackling 

some complicated MOPs. Moreover, following the design of some recent MOIAs [24], [25], differential 

evolution is also used in MOIA-DCSS to improve the exploration ability and the population’s diversity. To 

have a comprehensive evaluation on the performance of MOIA-DCSS, three different test suites are used, 

i.e., the walking fish group (WFG) [31], the UF [30], and the F [32] test suites. When compared to four 

state-of-the-art multi-objective algorithms (i.e., NSLS [33], MOEA/D-M2M [34], MOEA/D-DRA [30], 

and MOEA/DD [35]) and three competitive MOIAs (i.e., NNIA [23], HEIA [24], and AIMA [25]), the 

performance of MOIA-DCSS is superior when considering the convergence speed and the population’s 

diversity. Moreover, the effectiveness of our clonal selection strategy is also experimentally studied to 

confirm its superiority. 

The rest of this paper is organized as follows. Section 2 gives some background information, such as 

some related work of MOIAs and the clonal selection principle in MOIAs. Section 3 provides the details 

of the proposed clonal selection strategy and MOIA-DCSS. Section 4 lists the experimental results of 

MOIA-DCSS with other MOEAs and MOIAs. Section 5 presents the conclusions and the future work. 

 

2. Background 

2.1 The related work of MOIAs 

The concept of antibody-antigen affinity in biologic immune system was firstly used as a fitness 

assignment mechanism for a standard genetic algorithm [36], which may be a first attempt to present an 

MOIA. Since then, a large number of MOIAs were designed in order to further enhance the performance. 

Based on the features inspired from the biologic immune system, most MOIAs can be categorized into three 

main kinds. The first class of MOIAs simulates the clonal selection principle [37] and clones the superior 

individuals with the highest affinity values, e.g., NNIA [24] and MAM-MOIA [38]. The second type of 

MOIAs maintains the population’s diversity as inspired from the immune network theory, such as VAIS 

[39] and WBMOAIS [40]. The last category of MOIAs embeds other heuristic operators into MOIAs, like 

MOGAIS [41] and MOBAIS [42] which replaces the mutation and cloning operators with a probabilistic 

model, i.e., Gaussian network and Bayesian network, respectively. 

In recent years, some competitive MOIAs have been proposed with more promising performance. For 

example, CMIGA [43] based on the model of biological immune system was presented to solve the MOPs 

with multimodel nonlinear constraints; IMADE [44] was proposed to combine a newly designed DE 

operator and simulated binary crossover (SBX); mcDMOA [45] was designed with an adaptive change 

reaction strategy to track the changing PFs; IDSMOA [46] was introduced by using various immune 

operators in two co-evolutionary populations. To combine the advantages of different evolutionary 
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strategies, a novel hybrid evolutionary framework was designed for MOIAs, which implements a hybrid 

evolutionary MOIA called HEIA [24]. The cloned individuals in HEIA are separated into several sub-

populations and then independently evolved by different evolutionary strategies (e.g., SBX and DE). More 

recently, AIMA [25] was proposed by dividing the process of evolution into three main stages (the early, 

middle and last stages). Three different DE strategies showing distinct search capabilities are sequentially 

used on these stages, as controlled by an adaptive selection strategy. Besides that, MOIAs were also studied 

to solve some constrained MOPs in [47], [48], [49], and extended to solve some real-world applications, 

such as [50], [51] for the traffic environmental problems, [52], [53] for job-shop scheduling problem, and 

[54], [55] for the dynamic optimization problem. 
 

2.2 Clonal selection in MOIAs 

Most of MOIAs [24], [25], [26], [27], [41], [44], [45], [46], [56] were designed based on the clonal 

selection principle. In order to show the running of clonal selection in MOIAs, the population’s evolution 

in one generation t of MOIAs is illustrated in Fig. 1. At first, the population Pt is evolved by the meta-

heuristic operators (e.g., SBX and polynomial-based mutation [57]) to produce the offspring population Dt. 

Then, the populations Pt and Dt are combined to update external archive, as marked by Et. At last, the clonal 

selection is further run to select some promising individuals (At) for cloning a new population (Pt+1) for the 

next generation, as shown in the procedures of selection and cloning from Fig. 1.  

Pt Dt Et+1 AtEvolution Archive update Selection

Cloning  
Fig. 1 The population evolution of MOIAs  

 

Here, the details of clonal selection in [23], [24], [25], [26], [27] are introduced. First, clonal selection 

is run, which will pick up nA solutions having the largest crowding-distance values from the external archive 

[4]. These nA solutions build the population At to be cloned. Then, based on the crowding-distance value, 

each individual  ( 1,2,..., )i Aa i n  from At is cloned proportionally, as defined by 

1 1
,An

t i i i ti
P q a a A

1i
q

1 i ii1
,

i

AnAn q aAn
i ii , ,                              (2) 

where iq  is the number of clones for ia  and  indicates to copy the individual. In most MOIAs, iq  

is computed by 

1
A

i
i n

jj

cd aq N
cd a

,                               (3) 

where icd a  indicates the crowding-distance value [4] of ia . This way, more clones will be copied for 

the solutions with larger crowding-distance values, according to the values of iq  assigned in Eq. (3). In 
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original definition [23], the crowding-distance values of boundary solutions are assigned positive infinity, 

which cannot be used in Eq. (3). Thus, it is suggested in [23] that their crowding-distance values should be 

reset to be the double of the maximum value of solutions in At except for the boundary solutions. Based on 

the above process of clonal selection, MOIAs produce more clones to search the less-crowded and boundary 

areas, thus they have shown the improved convergence speed and population’s diversity, as experimentally 

validated in [23], [24], [25], [26], [27]. 
However, when solving some complicated MOPs (e.g., the UF test problems [30] and F test problems 

[32]), this kind of clonal selection operator based on the crowding distance metric is not so effective due to 

the complicated PSs and PFs. Therefore, this paper presents a novel MOIA with a clonal selection strategy 

based on decomposition approach (MOIA-DCSS), which is expected to have a stronger exploration 

capability on tackling these complicated MOPs.  
 

3. The proposed MOIA-DCSS algorithm 

In this section, the details of the proposed MOIA-DCSS algorithm are introduced. The flow chart of 

MOIA-DCSS is provided in Fig. 2. It starts by initializing the population and setting some relevant 

parameters. Then, the individuals will undergo three important procedures, i.e., clonal selection, evolution, 

and population update, to approximate the true PF. To clarify MOIA-DCSS, the implementation details of 

these procedures are respectively introduced below. 

Algorithm Start

Initialization

Clonal Selection

Evolution

Population Update

Termination

Output Solutions

YES

NO

  

Fig. 2 The flow chart of the proposed MOIA-DCSS algorithm 

 

3.1. Initialization  

Algorithm 1  Initialization 
1: initialize t=0; 
2: initialize the weight vectors 1 2={ , }N}N ; 
3: for each subproblem i =1 to N do 
4:    randomly generate an individual ix  and ni=0; 
5:    add ix to the population Pt ; 
6:    initialize the neighbors 1 2( ) , ,..., TB i i i i to i ;                      
7: end for 
8: initialize the ideal point * 1 2, ,..., Nz z z z ; 
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    First, we initialize the generation time t in line 1 and uniformly generate a set of N weight vectors 
1 2{ ..., }N  in line 2 with the constraints 1 1im

jj  and 0i
j  for all i= {1, 2,..., N} (N is the 

size of external archive). Then, in lines 4-5, we randomly produce an initial population Pt={x1, x2,...,xN} 

and initialize the cloning number for each solution as zero. In line 6, we calculate the Euclidean distances 

of each i  and other weight vectors, and then find 1 2, ,..., Ti i i  as the T closest weight vectors for i  

which compose its neighbor set 1 2( ) , ,..., TB i i i i . After that, since the true ideal point cannot be known 

beforehand, an approximated point is used instead to find the minimum value of each objective in line 8, 

i.e., * min{ ( ) | }i i tz f x x P  for all i= {1, 2,..., m}. 
 
3.2. Clonal selection 

In our clonal selection strategy, the affinity value of an individual is assigned as the improvement on 

its associated aggregated value, which has larger probability to be improved after one generation. The 

parents  ( 1,2,..., )i Ax i n  in Pt are all cloned proportionally according to the improvement on the 

associated aggregated values. The mathematical model of proportional cloning has been defined in Eq. (2), 

while in  in Eq. (5) is the cloning number for each subproblem at each generation, as defined by 

 
0

i
i N

j
j

n N ,                                (5) 

where N is the population size and i  is the relative improvement on the aggregated values using a 

decomposition approach. Here, the Tchebycheff method is used in this paper to construct the aggregated 

functions, since it is mostly used in many MOEAs [7], [58], [59], [60], as defined by 

   * *

1
( | , ) {| ( ) | / }tch

i i ix i m
Min g x z max f x z ,                     (6) 

where 1 2, ,..., )m  is the used weight vectors, * * *
1{ ,..., }mz z z is the approximate ideal point with 

* min{ ( ) | }i i tz f x x P  for all i={1,2,...,m}, and the relative improvement value i  is defined as 
* *

1
*

1

( | , ) ( | , )
( | , )

tch i i tch i i
t t

i tch i i
t

g x z g x z
g x z

,                        (7) 

where i
tx  and 1

i
tx  respectively indicate the solutions associated to i  at t and 1t  generations, and 

( )tchg  is the Tchebycheff approach in Eq. (6). Then, a selection probability ip , which controls the clone 

number for each subproblem, is defined as 
1(1 ) (1.0 exp(20 ( / 0.5)))i min min ip p p r T ,                (8) 

where minp  is a minimum probability for each solution that can be selected for cloning, T is the neighbor 

size, and ir  is the local rank based on the relative improvement aggregated value i  among B(i). The 

subproblem with the largest improvement aggregated value i  is 1i  set as 1ir , while the subproblem 

with the smallest improvement aggregated value i  is Ti  set as ir T . According to Eq. (8), these 
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subproblems with large improvement aggregated value i  will have more probabilities to be selected for 

cloning, which can be confirmed from Fig. 3 by plotting the dynamic change of ip  according to different

ir . As shown in Fig. 3, we can easily know that the subproblem with the larger i  value will have higher 

local rank as well as larger probability value ip , which means that this solution has the higher probability 

to be selected for cloning than that with the smaller improvement aggregated values i . 

 
Fig. 3 The dynamic change of selection probability ip  according to different ir   

To clarify this procedure, the pseudo-code of decomposition-based clonal selection strategy (DCSS) 

is given in Algorithm 2, where lines 1-14 introduce the parent’s selection procedure and lines 15-17 realize 

the parent’s cloning process.  

Algorithm 2  Ct =DCSS (Pt) 
1. // Parents Selection 
2. for i=1 to N do 
3.   calculate the relative improvement value i by using Eq. (7); 
4. end for 
5. get the local rank ir of each subproblem according to the sort of i among its neighbor ; 
6. for i=1 to N do 
7.   calculate selection probability pi for each subproblem by using Eq. (8); 
8.   if (pi < rand(0,1)) then 
9.      i =0; 

10.   end if 
11. end for 
12. for i=1 to N do   
13.   calculate ni for each subproblem based on i by using Eq. (5); 
14. end for 
15. // Cloning   
16. use Eq. (2) on Pt to generate the cloned population Ct;  
17. return Ct;   

First, the relative improvement value i  is calculated by using Eq. (7) for each subproblem, as shown 

in line 3. The local rank ir  will be obtained according to the sorting of i  among its neighbors, as shown 

in line 5. The value of control parameter pi will be calculated by using Eq. (8), which is relevant to the 

relative improvement value i  and will be updated after every generation based on the local rank ir , as 

shown in line 7. Then, according to lines 8-10, the selection probability of each solution will be compared 

to a random real number uniformly sampled from [0, 1] (i.e., rand (0, 1)). Once it is smaller than rand (0, 

1), its relative improvement value i  will be reset to zero. As the solutions with high i  values can be 

easily enhanced and further optimized, they will be cloned to have more offspring in the next generation. 
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On the contrary, the solutions with lower i  values will be reset as zero. This way, these solutions with 

smaller probability value pi will not be selected in the next generation, as these solutions are hard to be 

further optimized or may have already converged to the PF. After that, as shown in line 13, the clone 

number (ni) of solutions for each subproblem in next generation will be calculated by using Eq. (5). In line 

16, the cloning process is run to duplicate the solutions for some subproblems using Eq. (2) based on the 

value of ni. At last, the new population Ct will be generated after cloning and returned in line 17. 
 

3.3. Evolution 

In MOIAs, evolution is expected to produce the superior offspring. Two evolutionary operators such 

as SBX [57] and DE [33], [61], [62] are often used in MOEAs and MOIAs. As inspired by some recently 

proposed MOIAs [24], [25], [26], [27], the DE (rand/1/bin~) operator and polynomial-based mutation [32] 

are used to produce offspring in this paper. The pseudo-code of Evolution is given in Algorithm 3 and its 

main process is introduced below. 

Algorithm 3  Evolution(Ct, B(i)) 
1. if rand(0,1)  then 
2.   selected two solutions xr1, xr2 from B(i) randomly; 
3. else 
4.   selected two solutions xr1, xr2 from Ct randomly; 
5. end if  
6. generate an offspring vi using xi, xr1, xr2 by DE 
7. execute polynomial mutation on vi to obtain a new solution yi; 
8. return yi; 

As shown in Algorithm 3, for each ith subproblem selected for evolution in lines 1-5, one random 

number is generated to compare with the parameter . If it is smaller, the neighbor set ( )B i  is selected as 

the candidate set of parents. Otherwise, the entire population Ct will be chosen. Then, in lines 6-8, the 

selected solutions as the parents are used to run the DE operator and polynomial mutation. Using two 

selected parents ( 1rx and 2rx ) and the original parent ( ix ) for the ith subproblem, the DE operator is 

executed with two control parameters CR and F, which generates a new solution 1( ,..., )i i i
nv v v  by  

1 2( ) if (0,1) or
otherwise

i r r
i j j j rand
j i

j

x F x x rand CR j j
v

x
,                   (9) 

where (0,1)rand  returns a random real number uniformly sampled in [0, 1], randj  is a random integer 

from [1, n] to ensure that at least one dimension is different from ix and 1,...,j n . After that, an offspring 

solution iy  will be produced by using polynomial-based mutation on iv , as follows. 

  ( ) if (0,1)
otherwise

i
j j j j mi

j i
j

v u l rand p
y v

,                       (10) 

 
with 

1/( 1)

1/( 1)

( 1)

2 (1 2 )( ) 1 if (0,1) 0.5

1 2 (1 2 )( ) otherwise

j i

j j
j

j i

j j

u u
r r rand

u l

u u
r r

u l

,             (11) 
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where pm and η are respectively the mutation probability and the distribution index, while jl  and ju  are 

respectively the lower and upper bounds of the jth decision variable. 

3.4. Population update  

As shown in Algorithm 4, max  is the largest relative improvement rate in Pt. The main process of 

population update is clarified in this section. After a new solution is generated, a replacement strategy for 

the subproblem should be run to update the population Pt by remaining the superior one. In MOIA-DCSS, 

one new solution only replaces one old solution for its matched subproblem, which shows the maximum 

improvement value on the aggregated function. In line 2 of Algorithm 4, the relative improvement rate i  

is calculated for each subproblem in Pt by using yi. Then, in lines 3-9, one subproblem will be found to 

have the largest improvement rate i  and its associated solution is recorded by xl, which will be renewed 

by a new solution yi. This strategy can assign the offspring to one suitable subproblem with the largest 

improvement without worsening the diversity [61]. 

Algorithm 4  Population Update(Pt, yi , ) 
1. initialize max = 0, l = 0; 
2. calculate i for each subproblem in Pt using yi; 
3. for i=1 to N do 
4.    if ( max < i ) then 
5.       max = i ; 
6.       l=i;  
7.    end if; 
8. end for  
9. replace the solution xl

 with yi in Pt; 
10. return Pt 

 
3.5. The complete algorithm of MOIA-DCSS 

Algorithm 5  The Complete Algorithm MOIA-DCSS 
1. Initialization; //( Algorithm 1) 
2. while t<tmax do   
3.    //Clonal Selection 
4.    Ct = DCSS(Pt) ; //(Algorithm 2) 
5.    for i=1 to N do 
6.      // Evolution 
7.      yi= Evolution(Ct,B(i)); //(Algorithm 3) 
8.      //Population Update 
9.      evaluate the objective values of yi ;     
10.      update the ideal point Z*; 
11.      Pt= Population Update (Pt, yi, ) //(Algorithm 4) 
12.    end for 
13.    t=t+1; 
14.  end while; 
15.  Output Pt; 

The above subsections have given the details of four main components in MOIA-DCSS, including 

initialization, clonal selection, evolutionary strategy, and population update. Here, as shown in Algorithm 

5, the remaining implementation details are introduced in the pseudo-code of MOIA-DCSS, where t and 

tmax are respectively the current generation times and the maximum generations times. ni is the clone number 

for each subproblem in Ct, which is calculated by using Eq. (5), as shown in line 13 of Algorithm 2. The 

main process of our proposed algorithm is introduced below. 
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In line 1, the initialization phase is executed as introduced in Algorithm 1. After the initialization, 

MOIA-DCSS enters the loop of the evolutionary process. In line 4, the selected parents from Pt is cloned 

by DCSS in Algorithm 2, and then a new cloned population Ct is generated. After that, as shown in line 7, 

two parent solutions xr1 and xr2 that are randomly selected from the population Ct or B(i) are respectively 

permutated using the DE operator and polynomial mutation as described in Algorithm 3, and then the 

mutant solution yi is generated and evaluated in line 9. In line 10, the ideal point z* is updated using the 

value of each objective in yi. At last, the solution yi and the population Pt are used as the input to run 

Algorithm 4, which will assign yi to one subproblem with the largest relative improvements in Pt by 

updating its old solution. The above evolutionary loop will be repeated until the preset maximum number 

of generations tmax is reached. At the end of MOIA-DCSS, the solutions in Pt are reported as the final 

approximate PF. 

 

4. Experimental studies  

4.1. The used test problems 
In our experiments, 28 unconstrained test MOPs including ten UF problems (UF1–UF10) [30], nine F 

problems (F1-F9) [32], and nine WFG problems (WFG1-WFG9) [31], are used for performance 

comparison. These used test problems have various complex characteristics and very complicated PS 

shapes. UF8–UF10 and F6 include three optimization objectives, while the remaining test problems have 

two optimization objectives. It is noted that the numbers of decision variables in F1–F5, F9 and all UF test 

problems are set to 30, while those in F6–F8 and all the WFG problems are set to 10. 
 

4.2. Performance indicators 

This paper adopts two well-known performance measures (inverted generational distance (IGD) [32] 

and hypervolume (HV) [63]) to compare the performance of different algorithms, which can reflect the 

convergence and the solution’s diversity for their final solution sets simultaneously. 

1) IGD: Let S be a set of solutions that are uniformly distributed along the true PF and let 'S  be a set 

of solutions that are found by an algorithm. The IGD value of S to 'S  ( '( , )IGD S S ) is defined by 
'| |

' 1 ( , )( , )
| |

S
i id S SIGD S S

S
,                             (12) 

where '( , )id S S  indicates the minimum Euclidean distance between iS  and the individuals in 'S  

regarding the objective space, and | |S  returns the size of S. The true PF of the target problem is assumed 

available in advance when computing IGD. A lower '( , )IGD S S  value is regarded to be better as it 

indicates that S is closer to the true PF with an even distribution along the true PF. 

2) HV: this metric calculates the volume of the objective space that is dominated by the approximation 

set S and bounded by a reference point 1 2( , ,..., )r r r r T
mz z z z . When computing HV, the reference point is set 

as dominated by all the points in the true PF. Then, HV can be computed by 
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1 1( ) ( ), ... ( ),r r
m m

x S
HV S VoI f x z f x z

x S
( )1f11( ),1( ),,1 ,                     (13) 

where VoI(.) denotes the Lebesgue measures. The points worse than the reference point on any objective 

will be removed for computing HV. In our experiments, (2.0,2.0)r Tz and (2.0,2.0,2.0)r Tz  are 

respectively set for some bi-objective test problems (UF1-UF7, F1-F5 and F7-F9) and three-objective test 

problems (UF8-UF10 and F6). Moreover, (3.0,5.0)r Tz  is set for the WFG test problems, as they have 

different scaled values for the objectives. A larger HV value indicates a better performance to approximate 

the entire true PF with even distribution. 
 
4.3. Experimental settings 

In this paper, in order to assess the performance of MOIA-DCSS, we compare MOIA-DCSS with four 

state-of-the-art multi-objective algorithms (i.e., NSLS [33], MOEA/D-M2M [34], MOEA/D-DRA [30] and 

MOEA/DD [35]), and three competitive MOIAs (i.e., NNIA [23], HEIA [24], and AIMA [25]). All these 

compared algorithms are validated to show the promising performance in solving various kinds of MOPs, 

thus the comparisons of MOIA-DCSS with these algorithms are very comprehensive and convincing. 

In jMetal [64], the implementations of some state-of-the-art MOEAs (NSLS, MOEA/D-M2M, 

MORA/D-DRA and MOEA/DD) are provided. For the compared MOIAs (HEIA, AIMA, NNIA, and 

MOIA-DCSS), they are realized by us based on the jMetal framework. In order to have a fair comparison, 

the parameters of all the compared algorithms are set as suggested in the corresponding references, which 

are summarized in Table 1. 

Table 1  
The parameter settings of all the compared algorithms 

Algorithms Parameter settings 

NSLS 100, 1/ , 20, 20, 0.9, 2, 0.5, 0.1m m rN P n T n   

MOEA/DD 100, 1.0, 30, 1/ , 20, 20, 0.9, 5.0c c m mN P P n T   
MOEA/D-DRA 100, 1/ , 20, 20, 0.9, 2m m rN P n T n   

HEIA 100, 20, 1.0, 1/ , 20, 20, 1.0, 0.5, 0.9A c m c mN N P P n CR F   
AIMA 100, 20, 1.0, 1/ , 20A c m mN N P P n   

MOEA/D-M2M 100 0.9, 1/ , 20, 20c m c mN P P n   
NNIA 100, 20, 1.0, 1/ , 20, 20A c m c mN N P P n   

MOIA-DCSS 100, 20, 1.0, 1/ , 20, 20, 0.9, 2, 0.15A c m m r minN N P P n T n P   

In Table 1, N is the population size; pc and pm are respectively the probabilities to run crossover and 

mutation; c  and m  respectively indicate the distribution indexes of SBX and Polynomial-based 

mutation. For MOEA/D-DRA, T is the neighborhood size for the used weight vectors,  controls the 

probability to select parent solutions from T neighbors, and nr is the maximum number of solution 

replacement in population update. Regarding MOEA/DD,  indicates the penalty parameter. In NSLS, 

 and  are two control parameter used in the local search process. In NNIA, HEIA, AIMA and MOIA-

DCSS, NA is the size of selected solutions for clonal proliferation.  

It is noted that the value N in Table 1 are only set for the WFG test problems with the maximum 

number of function evaluations as 25000. When tackling other test MOPs, the population size and the 
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maximum number of function evaluations are adjusted based on their difficulty and complexity. Here, for 

the more difficult bi-objective test MOPs (F1-F5, F7-F9, and UF1-UF7), their population sizes are set to 

300, while the population sizes are set to 600 for F6 and UF8-UF10 with three optimization objectives. 

Moreover, the maximum numbers of function evaluations are set to 150 000 when solving F1-F5 and F7-

F9, and set to 300 000 when tackling F6 and UF1-UF10.  

For each test problem, 30 independent runs are executed by all the compared algorithms. To easily 

observe the best performance, the best mean value for each problem is identified by boldface and gray 

background in all the comparison tables. Moreover, in order to show the statistical significance on the 

experimental results, Wilcoxon’s rank sum test is run with a 5% significance level. It is noted that “−”, “+” 

and “~” respectively indicate that the results obtained by the compared algorithm are worse than, better than 

or similar to those of MOIA-DCSS. 
 

4.4. Comparisons of MOIA-DCSS and four state-of-the-art multi-objective algorithms 

Table 2 
Performance comparisons of MOIA-DCSS and four state-of-the-art multi-objective algorithms using IGD 

Instances NSLS MOEA/D-M2M MOEA/D-DRA MOEA/DD MOIA-DCSS 
UF1 2.13e-01(1.63e-2)- 9.79e-03(2.65e-3)- 6.72e-03(1.23e-03)- 5.69e-02(2.03e-02)- 1.71e-03( 1.05e-04) 
UF2 4.91e-01(3.06e-2)- 6.72e-03(4.08e-4)- 6.70e-03(2.50e-03)~ 2.83e-02(2.18e-02)- 5.65e-03( 1.64e-03)  
UF3 3.81e-01(5.08e-3)- 1.43e-02(5.27e-3)- 3.66e-02(7.46e-02)- 2.20e-01(5.87e-02)- 3.49e-03( 3.98e-03)  
UF4 5.50e-02(3.37e-3)- 4.37e-02(7.99e-4)+ 6.08e-02(5.32e-03)- 3.80e-02(9.77e-04)+ 5.36e-02( 6.84e-03)  
UF5 1.85e+00(1.23e-1)- 2.04e-01(3.48e-2)+ 3.84e-01(1.89e-01)- 2.92e-01(1.11e-01)~ 2.49e-01( 1.76e-02)  
UF6 1.01e+00(7.28e-2)- 9.78e-02(1.36e-2)- 1.81e-01(6.66e-02)- 2.06e-01(8.38e-02)- 6.49e-02( 1.34e-02)  
UF7 2.40e-01(1.87e-2)- 8.32e-03(1.89e-3)- 4.22e-03(6.46e-04)- 1.54e-01(2.26e-01)- 2.06e-03( 1.50e-04)  
UF8 6.83e-01(4.89e-2)- 1.13e-01(4.65e-3)- 5.95e-02(3.42e-02)~ 8.75e-02(2.50e-02)- 5.28e-02( 1.25e-02)  
UF9 8.21e-01(6.51e-2)- 1.66e-01(5.52e-2)- 8.50e-02(1.06e-01)- 6.33e-02(1.15e-02)- 2.85e-02( 4.13e-03)  

UF10 5.40e+00(4.32e-1)- 9.94e-01(1.15e-1)- 4.24e-01(9.96e-02)+ 1.98e-01(5.99e-02)+ 6.10e-01( 1.43e-01)  
F1 9.36e-02(4.51e-3)- 1.99e-03(7.30e-5)- 1.64e-03(2.16e-04)- 1.62e-03(1.28e-04)- 1.29e-03( 4.85e-05)  
F2 2.13e-01(1.91e-2)- 1.51e-02(1.80e-3)- 7.10e-02(1.02e-01)- 5.98e-02(4.64e-03)- 2.60e-03( 2.38e-04)  
F3 4.81e-01(2.11e-2)- 4.44e-03(2.95e-4)- 1.54e-02(4.32e-03)- 3.03e-02(8.00e-03)- 2.62e-03( 2.18e-04)  
F4 4.37e-01(2.17e-2)- 7.25e-03(1.34e-3)- 1.82e-02(2.49e-02)- 6.31e-02(9.97e-03)- 3.10e-03( 1.37e-03)  
F5 5.04e-01(3.22e-2)- 6.68e-03(5.34e-4)+ 1.69e-02(7.60e-03)- 2.89e-02(8.78e-03)- 1.01e-02( 4.79e-03)  
F6 3.87e-01(5.05e-2)- 2.60e-01(3.60e-2)- 3.01e-02(8.63e-04)- 5.46e-02(7.23e-03)- 2.19e-02( 1.24e-04)  
F7 3.92e-01(5.25e-3)- 2.49e-03(9.49e-5)- 2.62e-03(5.90e-04)- 2.81e-01(2.36e-01)- 2.27e-03( 1.74e-03)  
F8 3.94e-01(1.14e-3)- 4.56e-03(2.95e-3)+ 1.27e-01(1.07e-01)~ 1.65e-01(5.95e-02)- 9.79e-02( 4.01e-02)  
F9 1.91e-01(8.68e-3)- 1.70e-02(9.33e-3)- 2.22e-02(2.17e-03)- 7.40e-02(4.41e-03)- 2.97e-03( 1.08e-03)  

WFG1 1.83e+00(4.13e-2)- 9.53e-01(6.98e-2)+ 1.06e+00(1.60e-01)+ 1.69e+00(5.20e-02)- 1.07e+00 (1.32e-01) 
WFG2 5.15e-01(3.32e-2)- 2.62e-02(3.41e-3)+ 7.18e-02(4.85e-02)- 9.03e-02(6.48e-03)- 4.12e-02( 4.58e-03)  
WFG3 5.25e-01(2.67e-2)- 3.09e-02(3.91e-3)- 1.50e-02(1.08e-03)~ 2.27e-02(6.08e-03)- 1.49e-02( 6.47e-04)  
WFG4 3.59e-01(2.80e-2)- 3.39e-02(4.80e-3)+ 4.55e-02(9.68e-03)+ 2.85e-02(1.43e-02)+ 6.07e-02( 5.94e-03)  
WFG5 1.65e-01(2.65e-2)- 6.80e-02(7.25e-4)- 6.73e-02(2.56e-04)- 6.89e-02(7.93e-04)- 6.71e-02( 1.63e-04)  
WFG6 4.16e-01(6.37e-2)- 1.38e-01(9.34e-2)+ 6.61e-02(3.54e-02)- 9.01e-02(3.27e-02)- 1.70e-02( 1.45e-02)  
WFG7 4.53e-01(2.87e-2)- 2.49e-02(1.60e-3)- 1.69e-02(2.64e-04)+ 2.79e-02(1.03e-02)- 1.71e-02( 2.84e-04)  
WFG8 5.34e-01(3.39e-2)- 1.19e-01(5.68e-3)+ 2.25e-01(2.68e-02)~ 2.78e-01(1.60e-02)- 2.11e-01( 4.82e-02)  
WFG9 2.50e-01(7.14e-3)- 2.80e-02(2.32e-3)+ 1.01e-01(2.52e-01)~ 2.75e-02(9.89e-03)~ 2.32e-02( 2.64e-01)  
Total 28-/0~/0+  18-/0~/10+  18-/6~/4+  23-/2~/3+   
“+\-\~” denote that the performance of corresponding algorithm is significantly better than, worse than, and similar to MOIA-DCSS 

respectively by Wilcoxon's sum test with a significance level 0.05. 
 

In this section, the performance of MOIA-DCSS is compared to four state-of-the-art multi-objective 

algorithms, i.e., NSLS [33], MOEA/D-M2M [34], MOEA/D-DRA [30] and MOEA/DD [35]. Tables 2 

provides the IGD results of all the algorithms that are obtained from 30 independent runs when solving UF, 

F and WFG test problems.  
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From Table 2, it is observed that MOIA-DCSS shows some advantages over other competitors with 

respect to IGD, as MOIA-DCSS can perform best on 17 out of all the 28 test problems, while other 

compared algorithms are only best on 4 cases. Furthermore, the comparison summaries of MOIA-DCSS 

with other competitors are provided in the last row of Table 2, which indicates the total number of test 

problems that MOIA-DCSS performs better than (−), similarly to (~), and worse than (+) the corresponding 

algorithm. By observing the results of Wilcoxon’s rank sum test, MOIA-DCSS outperforms NSLS, 

MOEA/D-M2M, MOEA/D-DRA and MOEA/DD respectively on 28, 18, 18, and 23 out of 28 test problems, 

while it underperforms NSLS, MOEA/D-M2M, MOEA/D-DRA and MOEA/DD respectively on 0, 10, 4, 

and 3 test problems. For the F1-F9 test problems with complex PSs, the advantages of MOIA-DCSS are 

obvious as MOIA-DCSS performs significantly better than other four competitors. Regarding the UF test 

problems with complicated PSs, MOIA-DCSS performs best on all the test instances except for UF4 and 

UF10, while MOEA/DD obtains the best result on UF4 and UF10. A similar conclusion can be drawn when 

considering the results on F test problems, as our proposed problem MOIA-DCSS can outperform the 

compared algorithm on 7 out of all the 9 F test problems. However, with respect to the WFG test problems 

with simple PSs, it is found that MOIA-DCSS can only obtain 2 best results and MOEA/D-M2M performs 

better than other compared algorithms as it can outperform on 5 out of all the 9 WFG test problems.  

  

  

   
Fig. 4 The plots of the approximation sets obtained by MOIA-DCSS and MOEA/D-DRA on F test problems 

 

Therefore, when considering all the UF, F and WFG test problems, the advantages of the proposed 

MOIA-DCSS are validated, as MOIA-DCSS presents a superior performance over NSLS, MOEA/D-M2M, 

MOEA/D-DRA and MOEA/DD on most cases regarding IGD.
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To visually show the performance of different compared algorithms, the plots of the approximation 

sets obtained by two representative algorithms (MOIA-DCSS and MOEA/D-DRA) are shown in Fig. 4 

when tackling six test MOPs (i.e., F2-F5, F7, and F9). Although MOIA-DCSS and MOEA/D-DRA use the 

same decomposition approach, we can observe from Fig. 4 that MOIA-DCSS obviously outperforms 

MOEA/D-DRA, as MOEA/D-DRA shows some difficulties in searching the boundary solutions. The final 

solution sets obtained by MOIA-DCSS are closer to the true PF with more even distribution when 

compared to that of MOEA/D-DRA.  

Table 3 further gives the HV results of all the compared algorithms on all the UF, F and WFG test 

problems. As observed from Table 3, the conclusions are similar to that observed from the IGD results. 

First, MOIA-DCSS is able to obtain the best results on 18 out of 28 test problems. When considering the 

UF and F test problems, the proposed algorithm can obtain the best results on all the problems except UF4, 

UF10, F7 and F8, while MOEA/DD only performs best on UF4 and UF10. MOEA/D-M2M can get the 

best results on F7 and F8. Moreover, MOIA-DCSS can get the best results on 4 out of all the 9 WFG 

problems when considering the HV values (i.e., WFG2, WFG3, WFG6 and WFG7). Thus, MOIA-DCSS 

presents the obvious advantages when compared to other competitors. Second, MOIA-DCSS is superior on 

most cases when respectively compared to NSLS, MOEA/D-M2M, MOEA/D-DRA and MOEA/DD, 

which are summarized in the last row of Table 3. Therefore, it is further confirmed by HV that the proposed 

MOIA-DCSS shows the superiority in solving all the test problems adopted. 

TABLE 3 
Performance comparisons of MOIA-DCSS and four state-of-the-art multi-objective algorithms using HV 

Instances NSLS MOEA/D-M2M MOEA/D-DRA MOEA/DD MOIA-DCSS 
UF1 3.17e+00(3.98e-2)- 3.64e+00(6.89e-3)- 3.64e+00(1.29e-02)- 3.41e+00(1.25e-01)- 3.66e+00(1.40e-03) 
UF2 2.46e+00(5.19e-2)- 3.64e+00(1.11e-2)- 3.65e+00(1.31e-02)~ 3.56e+00(1.15e-01)- 3.65e+00(4.63e-03) 
UF3 3.03e+00(7.49e-3)- 3.64e+00(7.85e-3)- 3.53e+00(3.49e-01)~ 2.78e+00(2.54e-01)- 3.65e+00(7.95e-03) 
UF4 3.19e+00(3.48e-3)- 3.21e+00(2.94e-3)+ 3.14e+00(4.59e-02)- 3.21e+00(8.32e-03)+ 3.17e+00(1.73e-02) 
UF5 1.01e-02(1.97e-2)- 2.93e+00(1.52e-1)+ 2.45e+00(5.03e-01)- 2.46e+00(3.89e-01)- 2.84e+00(7.49e-02) 
UF6 9.88e-01(1.31e-1)- 3.09e+00(1.53e-1)- 2.79e+00(1.54e-01)- 2.78e+00(2.33e-01)- 3.20e+00(2.01e-02) 
UF7 2.93e+00(3.80e-2)- 3.48e+00(7.18e-3)- 3.47e+00(8.67e-03)- 3.00e+00(7.44e-01)- 3.49e+00(2.95e-03) 
UF8 3.42e+00(2.41e-1)- 7.02e+00(5.16e-2)- 7.34e+00(5.04e-02)~ 7.08e+00(3.53e-01)- 7.35e+00(3.68e-02) 
UF9 3.57e+00(2.52e-1)- 7.15e+00(1.91e-1)- 7.44e+00(4.85e-01)- 7.44e+00(1.43e-01)- 7.63e+00(1.19e-01) 

UF10 0.00e+00(0.00e+0)- 1.95e+00(4.57e-1)- 3.74e+00(6.56e-01)+ 6.06e+00(5.77e-01)+ 3.28e+00(6.86e-01) 
F1 3.52e+00(1.21e-2)- 3.66e+00(1.25e-4)~ 3.66e+00(6.92e-04)- 3.66e+00(4.04e-04)- 3.66e+00(9.55e-05) 
F2 3.17e+00(3.71e-2)- 3.62e+00(1.92e-2)- 3.37e+00(3.43e-01)- 3.34e+00(1.73e-02)- 3.66e+00(2.09e-03) 
F3 2.47e+00(7.10e-2)- 3.65e+00(4.42e-3)- 3.61e+00(1.36e-02)- 3.52e+00(1.85e-02)- 3.66e+00(2.45e-03) 
F4 2.57e+00(5.66e-2)- 3.64e+00(8.65e-3)- 3.58e+00(1.34e-01)- 3.40e+00(1.70e-02)- 3.66e+00(2.58e-03) 
F5 2.44e+00(5.73e-2)- 3.64e+00(9.65e-3)- 3.60e+00(5.70e-02)- 3.53e+00(2.64e-02)- 3.65e+00(7.96e-03) 
F6 5.91e+00(1.46e-1)- 5.97e+00(2.59e-1)- 7.42e+00(3.25e-03)- 7.32e+00(3.46e-02)- 7.44e+00(6.10e-04) 
F7 3.00e+00(6.37e-3)- 3.66e+00(1.57e-4)+ 3.65e+00(8.41e-03)+ 2.87e+00(4.35e-01)- 3.57e+00(9.70e-02) 
F8 3.00e+00(1.37e-3)- 3.65e+00(4.79e-3)+ 3.37e+00(1.48e-01)~ 3.06e+00(1.77e-01)- 3.42e+00(9.17e-02) 
F9 2.86e+00(2.95e-2)- 3.30e+00(1.45e-2)- 3.22e+00(1.60e-02)- 2.79e+00(2.89e-02)- 3.32e+00(4.30e-03) 

WFG1 1.39e+00(2.06e-1)- 6.58e+00(3.06e-1)+ 6.10e+00(7.87e-01)+ 7.04e+00(7.86e-01)+ 5.55e+00(5.61e-02) 
WFG2 8.29e+00(2.47e-1)- 1.13e+01(3.48e-2)- 1.10e+01(8.27e-01)- 1.04e+01(3.45e-02)- 1.14e+01(1.62e-02) 
WFG3 7.82e+00(1.50e-1)- 1.08e+01(3.22e-2)- 1.09e+01(1.53e-02)~ 1.08e+01(9.54e-02)- 1.09e+01(6.98e-03) 
WFG4 6.69e+00(1.20e-1)- 8.51e+00(3.55e-2)+ 8.32e+00(8.45e-02)+ 8.53e+00(9.94e-02)+ 8.20e+00(4.11e-02) 
WFG5 7.65e+00(1.19e-1)- 8.24e+00(6.04e-3)+ 8.10e+00(8.45e-03)~ 8.09e+00(2.20e-02)- 8.11e+00(1.71e-02) 
WFG6 6.65e+00(1.42e-1)- 7.80e+00(6.19e-1)- 8.27e+00(3.06e-01)- 8.00e+00(2.58e-01)- 8.61e+00(3.29e-02) 
WFG7 5.97e+00(1.46e-1)- 8.59e+00(1.07e-2)- 8.65e+00(8.72e-03)- 8.36e+00(3.19e-01)- 8.65e+00(5.54e-03) 
WFG8 5.48e+00(1.45e-1)- 7.88e+00(3.07e-2)+ 6.95e+00(2.34e-01)~ 6.64e+00(7.17e-02)- 7.07e+00(2.40e-01) 
WFG9 6.93e+00(9.02e-2)- 8.54e+00(1.73e-2)+ 7.81e+00(1.55e+00)~ 8.15e+00(1.96e-01)~ 7.83e+00(1.56e+00) 
Total 28-/0~/0+  18-/1~/9+  16-/8~/4+  23-/1~/4+   
+\-\~denote that the performance of corresponding algorithm is significantly better than, worse than, and similar to MOIA-DCSS 

respectively by Wilcoxon's sum test with a significance level 0.05. 
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To visually show the performance on three-objective test problems, the approximation sets obtained 

by all the compared algorithms are plotted in Fig. 5 when solving F6, where one run with the 15th best IGD 

value from 30 runs is selected for illustration. It is observed from Fig. 5 that NSLS and MOEA/D-M2M 

fail to find the uniformly distributed solutions to approach the true PF of F6. Due to the use of similar 

decomposition approach in MOIA-DCSS, MOEA/D-DRA and MOEA/DD, they perform much better to 

find an approximation set for F6, while MOIA-DCSS performs even better than MOEA/D-DRA and 

MOEA/DD as its solutions are smoother to cover the entire true PF.  

 

 

Fig. 5 Comparison of approximation sets obtained by all the compared algorithms on F6 

 

The above experimental results show that MOIA-DCSS is more effective to solve the complicated test 

MOPs adopted in this paper when compared to NSLS, MOEA/D-M2M, MOEA/D-DRA and MOEA/DD. 

The outstanding performance of MOIA-DCSS is mainly due to the utilization of DCSS into MOIAs, which 

enhances the search ability in handling the complicated MOPs. 
 

4.5. Comparisons of MOIA-DCSS with three competitive MOIAs 

In this section, the performance of MOIA-DCSS is further compared to three MOIAs, i.e., NNIA [23], 

HEIA [24], and AIMA [25]. Tables 4 and 5 respectively give the IGD and HV results of all the compared 

algorithms on UF, F and WFG test problems after running 30 independent times.  

When considering the IGD results in Table 4, MOIA-DCSS also shows some advantages over other 

competitors. Among all the 28 test problems, MOIA-DCSS is the best on 21 test problems, while HEIA 

gets the best performance on 5 WFG problems and AIMA obtains the best results on UF4 and WFG2. It is 

worth noting that the proposed MOIA-DCSS performs significantly better than other MOIAs particularly 

on the UF and F test problems, while HEIA with two search models seems superior on most cases of the 
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WFG test problems. As revealed by the Wilcoxon’s rank sum test, MOIA-DCSS performs better than NNIA, 

HEIA, and AIMA, respectively on 24, 19, and 18 test problems, while it is outperformed by NNIA, HEIA, 

and AIMA, respectively on 2, 6, and 6 test problems. Therefore, it is reasonable to conclude that MOIA-

DCSS presents the obvious advantages over NNIA, HEIA, and AIMA regarding IGD when solving most 

of the test problems adopted in this paper. Since all these MOIAs are designed based on the clonal selection 

approach, this superiority of MOIA-DCSS over NNIA, HEIA, and AIMA is mainly brought by the use of 

the proposed DCSS. 

 

TABLE 4 
Performance comparisons of MOIA-DCSS and three competitive MOIAs using IGD  

Instance NNIA HEIA AIMA MOIA-DCSS 
UF1 1.70e-01 (6.68e-02) - 4.76e-02 (1.37e-02) -  2.56e-02 (5.41e-03)-   1.71e-03( 1.05e-04)   
UF2 4.74e-02 (2.24e-02) - 3.35e-02 (4.90e-03) -  1.68e-02 (2.27e-03)-   5.65e-03( 1.64e-03)   
UF3 2.41e-01 (7.91e-02) - 1.56e-01 (3.05e-02) -  9.72e-02 (3.33e-02)-   3.49e-03( 3.98e-03)   
UF4 6.60e-02 (4.72e-03) - 5.17e-02 (6.78e-03) ~  3.86e-02 (1.64e-03)+  5.36e-02( 6.84e-03)   
UF5 5.31e-01 (3.12e-01) - 4.97e-01 (2.92e-01) -  2.10e-01 (1.60e-01)~   2.49e-01( 1.76e-02)   
UF6 4.43e-01 (3.34e-01) - 2.83e-01 (1.85e-01) -  2.18e-01 (2.34e-01)-   6.49e-02( 1.34e-02)   
UF7 4.09e-01 (1.93e-01) - 2.46e-02 (1.80e-02) -  1.22e-02 (9.74e-04)-   2.06e-03( 1.50e-04)   
UF8 2.73e-01 (9.99e-02) - 2.62e-01 (6.43e-02) -  2.19e-01 (2.88e-02)-   5.28e-02( 1.25e-02)   
UF9 6.44e-01 (2.63e-01) - 5.57e-01 (1.41e-01) -  4.55e-01 (1.02e-01)-   2.85e-02( 4.13e-03)   

UF10 1.35e+00 (6.83e-01) - 1.23e+00 (8.44e-01) -  1.44e+00 (7.19e-01)-  6.10e-01( 1.43e-01)   
F1 9.75e-03 (4.12e-04) - 5.25e-03 (2.06e-04) -  1.92e-03 (5.55e-05)-   1.29e-03( 4.85e-05)   
F2 1.13e-01 (6.30e-02) - 5.02e-02 (2.89e-02) -  2.58e-02 (6.24e-03)-   2.60e-03( 2.38e-04)   
F3 6.54e-02 (4.39e-02) - 3.63e-02 (2.24e-03) -  1.87e-02 (2.79e-03)-   2.62e-03( 2.18e-04)   
F4 5.28e-02 (8.33e-03) - 3.14e-02 (3.46e-03) -  1.34e-02 (1.66e-03)-   3.10e-03( 1.37e-03)   
F5 4.51e-02 (1.98e-02) - 3.22e-02 (7.15e-03) -  1.59e-02 (1.81e-03)-   1.01e-02( 4.79e-03)   
F6 3.08e-01 (7.84e-02) - 2.52e-01 (9.94e-02) -  1.01e-01 (1.08e-02)-   2.19e-02( 1.24e-04)   
F7 2.56e-01 (2.04e-01) - 5.38e-02 (5.17e-02) -  8.01e-02 (3.25e-02)-   2.27e-03( 1.74e-03)   
F8 2.93e-01 (1.35e-01) - 1.57e-01 (4.04e-02) -  1.75e-01 (7.58e-02)-   9.79e-02( 4.01e-02)   
F9 1.82e-01 (4.20e-02) - 5.45e-02 (2.02e-02) -  3.28e-02 (8.64e-03)-   2.97e-03( 1.08e-03)   

WFG1 7.14e-01 (5.86e-01) + 1.24e-02 (4.56e-04) +  2.70e-01 (1.40e-01)+  1.07e+00 (1.32e-01) 
WFG2 6.77e-02 (2.23e-03) - 1.03e-02 (8.73e-04) +  1.02e-02 (5.76e-04)+  4.12e-02( 4.58e-03)   
WFG3 1.79e-02 (2.36e-03) - 1.30e-02 (4.82e-04) +  1.33e-02 (5.18e-04)+  1.49e-02( 6.47e-04)   
WFG4 1.49e-02 (1.03e-03) + 1.34e-02 (9.09e-04) +  1.74e-02 (3.20e-03)+  6.07e-02( 5.94e-03)   
WFG5 6.84e-02 (8.33e-04) - 6.72e-02 (3.20e-04) -  6.74e-02 (5.42e-04)~   6.71e-02( 1.63e-04)   
WFG6 7.97e-02 (4.08e-02) - 1.96e-02 (1.68e-02) ~  2.07e-02 (6.08e-03)~   1.70e-02( 1.45e-02)   
WFG7 1.66e-02 (1.61e-03) ~ 1.34e-02 (6.51e-04) +  1.37e-02 (7.66e-04)+  1.71e-02( 2.84e-04)   
WFG8 2.51e-01 (1.57e-02) - 2.22e-01 (2.15e-02) ~  2.51e-01 (6.88e-03)-   2.11e-01( 4.82e-02)   
WFG9 2.29e-02 (4.58e-03) ~ 2.07e-02 (2.97e-03) +  2.50e-02 (2.63e-01)~   2.32e-02( 2.64e-01)   
Total 24-/2~/2+ 19-/3~/6+ 18-/4~/6+   

+\-\~denote that the performance of corresponding algorithm is significantly better than, worse than, and similar to MOIA-DCSS 
respectively by Wilcoxon's sum test with a significance level 0.05. 

 

Table 5 further shows the HV results of all the compared MOIAs on solving all the test problems. 

Similar conclusions can be observed from Table 5 that MOIA-DCSS performs significantly best on most 

of the UF and F test problems, while HEIA is the best on most of the WFG test problems. Regarding all the 

28 test problems, MOIA-DCSS performs best on 20 cases, while HEIA gets the best performance on 7 

WFG problems and AIMA obtains the best results on UF4. As shown by the Wilcoxon’s rank sum test, 

MOIA-DCSS performs better than NNIA, HEIA, and AIMA, respectively on 23, 18, and 17 test problems, 

while it is outperformed by NNIA, HEIA, and AIMA, respectively on 3, 8, and 8 test problems. Therefore, 
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it is further confirmed by using HV that MOIA-DCSS shows a superior performance over other compared 

MOIAs and the proposed DCSS is effective. 

In order to have a visual observation about the performance of MOIA-DCSS, Figs. 6-8 provide the 

plots of the final approximation sets obtained by MOIA-DCSS, AIMA, HEIA and NNIA, respectively on 

tackling UF1, UF3, and UF7, where the true PFs are also plotted for performance comparison. As observed 

from Figs. 6-8, AIMA, HEIA and NNIA only find a set of solutions to reach some segments of the true PFs, 

while MOIA-DCSS performs much better to smoothly cover the entire true PFs of UF1, UF3 and UF7.  

These experimental results have validated the effectiveness of the proposed DCSS and the advantages 

of MOIA-DCSS over NNIA, AIMA, and HEIA. Although they are all designed based on the clonal 

selection principle, MOIA-DCSS runs the cloning based on the decomposition approach, while NNIA, 

AIMA, and HEIA are all cloned based on the crowding distance metric. By observing the promising 

performance of MOIA-DCSS, the advantages of DCSS over other traditional clonal selection strategies 

based on the crowding distance metric can be confirmed, which is more reasonable to assign the 

evolutionary resources by cloning. 

 

TABLE 5 
Performance comparisons of MOIA-DCSS and three competitive MOIAs using HV  

Instances NNIA HEIA AIMA MOIA-DCSS 
UF1  3.2185 (1.95e-01) -    3.5752 (7.21e-02) -    3.6200 (6.95e-03)-   3.6614( 8.11e-04)    
UF2  3.5136 (1.18e-01) -    3.5982 (5.04e-02) -    3.6398 (3.34e-02)-   3.6585( 2.53e-03)    
UF3  2.7005 (1.87e-01) -    3.3600 (2.29e-01) -    3.4903 (5.76e-02)-   3.6599( 7.69e-03)    
UF4  3.1726 (1.24e-02) ~    3.1997 (1.48e-02) +    3.2328 (5.26e-03)+   3.1814( 2.71e-02)    
UF5  1.7880 (8.22e-01) -    1.8927 (6.01e-01) -    2.7350 (7.59e-01)~   2.8959( 1.31e-01)    
UF6  2.2120 (5.46e-01) -    2.5767 (5.35e-01) -    2.8463 (8.67e-01)-   3.1978( 3.87e-02)    
UF7  2.3985 (3.18e-01) -    3.4359 (1.42e-01) -    3.4776 (2.33e-03)-   3.4945( 1.48e-03)    
UF8  6.1222 (4.15e-01) -    6.1777 (1.92e-01) -    6.2790 (4.72e-01)-   7.3789( 3.36e-02)    
UF9  4.5119 (1.71e+00) -    4.9603 (7.76e-01) -    5.8734 (4.67e-01)-   7.7380( 9.99e-03)    

UF10  0.6164 (1.48e+00) -    0.8136 (1.47e+00) -    0.0261 (8.40e-01)-   4.4533( 2.58e-01)    
F1  3.6503 (6.11e-04) -    3.6577 (4.17e-04) -    3.6634 (8.02e-05)-   3.6648( 2.65e-04)    
F2  3.3054 (1.32e-01) -    3.4993 (1.55e-01) -    3.6133 (6.40e-02)-   3.6580( 2.30e-03)    
F3  3.4918 (1.23e-01) -    3.5890 (6.29e-02) -    3.6253 (3.07e-02)-   3.6607( 1.84e-03)    
F4  3.4458 (4.44e-02) -    3.6175 (4.55e-03) -    3.6465 (2.25e-03)-   3.6615( 7.55e-04)    
F5  3.5355 (1.11e-01) -    3.5940 (5.78e-02) -    3.6403 (7.86e-03)~   3.6482( 1.05e-02)    
F6  6.3631 (4.12e-01) -    6.8702 (5.01e-01) -    7.2774 (2.05e-02)-   7.4454( 6.37e-04)    
F7  2.8280 (4.46e-01) -    3.5381 (1.11e-01) -    3.5257 (8.05e-02)-   3.6398( 3.18e-02)    
F8  2.6757 (3.32e-01) -    3.0611 (2.35e-01) -    3.2218 (1.75e-01)-   3.4096( 1.26e-01)    
F9  2.9668 (2.52e-01) -    3.2423 (8.74e-02) -    3.2736 (1.19e-02)-   3.3258( 1.87e-03)    

WFG1  8.8316 (1.80e+00) +   12.0720 (5.83e-04) +    10.4288 (8.15e-01)+   5.8014( 7.41e-01)    
WFG2  10.5952 (2.17e-02) -   11.4582 (4.13e-03) +    11.4551 (3.35e-03)+   11.4049( 9.89e-03)   
WFG3  10.8974 (2.44e-02) -   10.9379 (3.91e-03) +    10.9357 (4.73e-03)+   10.9258( 8.67e-03)   
WFG4  8.6400 (1.65e-02) +    8.6587 (1.00e-02) +    8.5996 (3.10e-02)+   8.2636( 3.75e-02)    
WFG5  8.1290 (3.06e-02) +    8.1307 (3.02e-02) +    8.1240 (7.70e-03)+   8.1103( 8.44e-03)    
WFG6  8.1315 (2.35e-01) -    8.6005 (1.41e-01) ~    8.5927 (5.58e-02)~   8.6119( 5.78e-02)    
WFG7  8.6533 (5.25e-03) -    8.6699 (2.97e-03) +    8.6687 (3.94e-03)+   8.6580( 3.41e-03)    
WFG8  6.8283 (7.87e-02) -    7.0138 (1.61e-01) ~    6.8618 (4.78e-02)-   7.0164( 2.34e-01)    
WFG9  8.2870 (2.23e-01) ~    8.3336 (3.21e-02) +    8.3092 (1.56e+00)+   8.3085( 2.40e-02)    
Total 23-/2~/3+  18-/2~/8+  17-/3~/8+   

+\-\~denote that the performance of corresponding algorithm is significantly better than, worse than, and similar to MOIA-DCSS 
respectively by Wilcoxon's sum test with a significance level 0.05. 
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Fig. 6 Comparison of final approximation sets on UF1 

    
Fig. 7 Comparison of final approximation sets on UF3 

    
Fig. 8 Comparison of final approximation sets on UF7 

 

4.6. Further discussions and analysis on MOIA-DCSS 

4.6.1. A further analysis of all the compered algorithms using the Friedman rank 

In this subsection, the Friedman’s test based on the KEEL platform [65] was applied to quantify how 

well each algorithm mentioned above performs overall. Here, Fig. 9 is plotted based on their corresponding 

average performance ranks in all the 28 test problems (i.e., UF, F and WFG test problems).  

 
Fig.9. Average rank of Friedman’s test for all the compared algorithms. 

It is easy to observe from Fig. 9 that the average performance rank of our proposed algorithm MOIA-

DCSS is 2.3929, which is much smaller than that of other competitors, while the average performance ranks 

of NSLS, MOEA/D-M2M, MOEA/D-DRA, MOEA/DD, NNIA, HEIA and AIMA are 7.8214, 3.1786, 
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3.5536, 4.75, 6.1786, 4.3393 and 3.7857, respectively. Hence, the superiority of our proposed MOIA-DCSS 

is further confirmed according to the Friedman ranks. 

4.6.2. A further discussion of DCSS 

This subsection further demonstrates the advantages of applying the proposed DCSS into traditional 

MOIA. In this section, the performance of MOIA-DCSS is further compared to its variant without using 

DCSS (MOIA-NO-DCSS). In MOIA-NO-DCSS, each solution is equally evolved without using cloning, 

while other parameters are set the same as listed in Table 1. Table 6 gives the IGD and HV results of MOIA-

DCSS and MOIA-NO-DCSS on UF, F and WFG test problems after running 30 independent times.  

TABLE 6 
Performance comparisons of MOIA-DCSS and MOIA-NO-DCSS using IGD and HV 

 IGD HV 
Instances MOIA-DCSS MOIA-NO-DCSS MOIA-DCSS MOIA-NO-DCSS 

UF1 1.71e-03( 1.05e-04)    2.62e-03 (1.18e-03)-   3.6614( 8.11e-04)     3.6559 (7.99e-03)-   
UF2 5.65e-03( 1.64e-03)    6.12e-03 (2.76e-03)-   3.6585( 2.53e-03)     3.6527 (8.94e-03)~   
UF3 3.49e-03( 3.98e-03)    1.50e-02 (7.76e-02)-   3.6599( 7.69e-03)     3.6400 (3.68e-01)-   
UF4 5.36e-02( 6.84e-03) 6.11e-02 (6.58e-03)- 3.1814( 2.71e-02) 3.1528 (2.93e-02)-
UF5 2.49e-01( 1.76e-02)    4.59e-01 (3.60e-01)-   2.8959( 1.31e-01)     2.2082 (3.67e-01)-   
UF6 6.49e-02( 1.34e-02)    4.22e-01 (3.80e-01)-   3.1978( 3.87e-02)     2.1977 (7.16e-01)-   
UF7 2.06e-03( 1.50e-04)    1.08e-02 (2.60e-02)-   3.4945( 1.48e-03)     3.3605 (2.40e-01)-   
UF8 5.28e-02( 1.25e-02)    5.06e-02 (1.71e-02)~   7.3789( 3.36e-02)     7.3595 (3.00e-02)~   
UF9 2.85e-02( 4.13e-03)    1.41e-01 (5.13e-02)-   7.7380( 9.99e-03)     7.1952 (1.83e-01)-   

UF10 6.10e-01( 1.43e-01)    4.08e-01 (6.29e-02)+  4.4533( 2.58e-01)     3.5208 (7.21e-01)~   
F1 1.29e-03( 4.85e-05)    1.40e-03 (1.31e-04)-   3.6648( 2.65e-04)     3.6646 (5.31e-04)-   
F2 2.60e-03( 2.38e-04)    3.81e-03 (2.69e-03)-   3.6580( 2.30e-03)     3.6449 (2.99e-02)-   
F3 2.62e-03( 2.18e-04)    7.71e-03 (4.77e-02)-   3.6607( 1.84e-03)     3.5935 (2.51e-01)-   
F4 3.10e-03( 1.37e-03)    2.80e-03 (8.26e-04)~   3.6615( 7.55e-04)     3.6562 (3.74e-03)~   
F5 1.01e-02( 4.79e-03)    1.24e-02 (6.77e-03)~   3.6482( 1.05e-02)     3.6448 (2.13e-02)~   
F6 2.19e-02( 1.24e-04)    2.93e-02 (1.05e-03)-   7.4454( 6.37e-04)     7.4257 (2.75e-03)-   
F7 2.27e-03( 1.74e-03)    2.41e-03 (4.89e-04)+  3.6398( 3.18e-02)     3.6501 (7.67e-03)+   
F8 9.79e-02( 4.01e-02)    1.99e-01 (4.88e-02)-   3.4096( 1.26e-01)     3.2779 (1.21e-01)-   
F9 2.97e-03( 1.08e-03)    3.89e-03 (6.20e-04)-   3.3258( 1.87e-03)     3.3182 (5.64e-03)-   

WFG1 1.07e+00 (1.32e-01)  1.03e+00 (1.43e-01)+  5.8014( 7.41e-01)     6.3008 (8.73e-01)+   
WFG2 4.12e-02( 4.58e-03)    4.31e-02 (3.41e-02)~   11.4049( 9.89e-03)     11.3895 (4.43e-01)~  
WFG3 1.49e-02( 6.47e-04)    1.52e-02 (9.32e-04)~   10.9258( 8.67e-03)     10.9085 (2.03e-02)-   
WFG4 6.07e-02( 5.94e-03)    4.18e-02 (1.31e-02)+  8.2636( 3.75e-02)     8.3337 (8.34e-02)+   
WFG5 6.71e-02( 1.63e-04)    6.76e-02 (3.06e-04)-   8.1103( 8.44e-03)     8.0983 (1.45e-02)-   
WFG6 1.70e-02( 1.45e-02)    1.93e-02 (2.71e-02)-   8.6119( 5.78e-02)     8.5786 (2.64e-01)-   
WFG7 1.71e-02( 2.84e-04)    1.69e-02 (2.03e-04)+  8.6580( 3.41e-03)     8.6557 (2.85e-03)~   
WFG8 2.11e-01( 4.82e-02)    2.27e-01 (2.91e-02)~   7.0164( 2.34e-01)     6.9008 (2.36e-01)~   
WFG9 2.32e-02( 2.64e-01)    1.21e-01 (2.64e-01)-   8.3085( 2.40e-02)     7.6056 (1.54e+00)-   
Total  17-/6~/5+   17-/8~/3+  

+\-\~denote that the performance of corresponding algorithm is significantly better than, worse than, and similar to MOIA-DCSS 
respectively by Wilcoxon's sum test with a significance level 0.05. 

 

When considering the IGD results in Table 6, MOIA-DCSS shows obvious advantages over MOIA-

NO-DCSS, as MOIA-NO-DCSS doesn’t use the proposed DCSS. Among all the 28 test problems, MOIA-

DCSS is able to perform best on 23 test problems, while the compared algorithm can only get the best 

performance on 5 test problems. MOIA-DCSS performs much better on most of the UF and F test problems, 

as the proposed MOIA-DCSS algorithm obtains the better results on all the complex UF and F test problems 

except UF10 and F7. Similar conclusions are observed from Table 6 when considering the HV results, as 

MOIA-DCSS performs better on 25 out of 28 test problems, while MOIA-NO-DCSS only obtains the better 

results on 3 test problems (F7, WFG1 and WFG4). Particularly, MOIA-DCSS shows the advantages on 

tackling the more complex test problems, as it performs best on all the UF and F test problems except F7. 
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These experimental results have validated the effectiveness of the proposed DCSS and the advantages of 

our proposed algorithm MOIA-DCSS.  

4.6.3. A further study on solving real-life problem 

In this subsection, the performance of the proposed algorithm (MOIA-DCSS) on tackling a real-life 

engineering problem is performed. The car side-impact problem [66] with three conflict objectives and ten 

constraints is employed in our experiment, which aims to simultaneously minimizing the weight of a car 

and the public force experienced by using a passenger and the average velocity of V-Pillar responsibility 

for withstanding the impact load. More details about the car side-impact real-world problem can refer to 

[66]. 

The population size and maximum number of evaluation was set as 300 and 150 000 for the car side-

impact problem, respectively. Please note that the Pareto-optimal front is unknown in advance, hence the 

reference PF is constructed by all the compared algorithms. First, all the compared algorithms are run on 

this problem independently with 10 times and 1000 generations. After that, all the non-dominated solutions 

obtained from each algorithm are combined to construct the reference PF. To visually show the final 

solution set obtained by all the compared algorithm on the car side-impact problem. Fig. 10 shows the final 

solution sets of the compared algorithm and the obtained reference PF. It is easy to draw a conclusion that 

the solutions obtained by our proposed MOIA-DCSS can cover the reference PF more evenly and closely, 

especially for the boundary solutions, while other compared algorithms have some difficulties to find a 

complete solution set that is close to the reference PF or to obtain the boundary solutions. 

 

 
Fig.10. The final solutions obtained by all the compared algorithms on the Car Side-impact problem 
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5. Conclusions and future work 

In this paper, we present a novel MOIA with a decomposition-based clonal selection strategy (MOIA-

DCSS). Based on the relative improvement on aggregated function values, the number of clones for each 

subproblem can be obtained. By this way, the potential area in objective space can be identified and will be 

assigned with more clones using the proposed DCSS to search these areas. Moreover, we also use DE in 

MOIA-DCSS to further enhance the exploration ability and the population’s diversity. When compared to 

four state-of-the-art multi-objective algorithms (NSLS, MOEA/D-M2M, MOEA/D-DRA, and MOEA/DD) 

and three MOIAs (NNIA, HEIA and AIMA), the experimental results validate that MOIA-DCSS shows 

the superiority on solving most cases of different MOPs, such as the WFG, UF and F test problems. 

Moreover, the effectiveness of DCSS is also experimentally confirmed. 

Although MOIA-DCSS can obtain the promising performance on most cases of the test problems 

adopted, there are still several research directions to be studied: 1) further enhance the performance of 

MOIA-DCSS by combining with other heuristic methods; 2) further extend MOIA-DCSS to tackle more 

complicated MOPs. 
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