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Abstract—This paper suggests a multimodal multi-objective
evolutionary algorithm with dual clustering in decision and 
objective spaces. One clustering is run in decision space to gather 
nearby solutions, which will classify solutions into multiple local 
clusters. Non-dominated solutions within each local cluster are 
first selected to maintain local Pareto sets, and the remaining 
ones with good convergence in objective space are also selected,
which will form a temporary population with more than N solu-
tions (N is the population size). After that, a second clustering is 
run in objective space for this temporary population to get N
final clusters with good diversity in objective space. Finally, a
pruning process is repeatedly run on the above clusters until each 
cluster has only one solution, which removes the most crowded 
solution in decision space from the most crowded cluster in 
objective space each time. This way, the clustering in decision 
space can distinguish all Pareto sets and avoid the loss of local 
Pareto sets, while that in objective space can maintain diversity in 
objective space. When solving all the benchmark problems from 
the competition of multimodal multi-objective optimization in
IEEE Congress on Evolutionary Computation 2019, the experi-
ments validate our advantages to maintain diversity in both 
objective and decision spaces.

Index Terms—Multi-objective optimization, Multimodal op-
timization, Evolutionary algorithm, Clustering.

I. INTRODUCTION

N recent decades, multi-objective evolutionary algorithms 
(MOEAs) have become a popular and effective approach for 

solving multi-objective optimization problems (MOPs). 
MOEAs are population-based approaches that aim to find a set 
of non-dominated solutions that approximate the Pareto front
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(PF) of an MOP with an even distribution in objective space
[1]-[3]. Then, decision makers can select one final solution
from this approximation set according to their preferences.

Generally, most MOEAs include a recombination operator 
to generate offspring and a selection operator to update the 
inferior parents. Simulated binary crossover (SBX) [4], dif-
ferential evolution (DE) [5], local or gradient based search 
strategies [6]-[8] are often used as the recombination operator, 
while three main kinds of selection criteria are employed in the 
selection operator of most MOEAs, including Pareto-based 
strategy [9]-[11], decomposition-based strategy [12]-[20], and
indicator-based strategy [21]-[23]. However, these selection 
criteria only assess performance of solutions in objective space,
but rarely consider their diversity in decision space. This de-
sign principle in MOEAs will face some challenges for solving
multimodal MOPs (MMOPs), as some Pareto optimal solution
sets (PSs) for the same PF may be missed [24].

In fact, MMOPs arise in many real-world applications, e.g., 
multi-objective knapsack optimization [25], flow shop sched-
uling [26], rocket engine optimization [27], and space mission 
design [28], among others. These MMOPs have different PSs
for the same PF or even possess some local and global PSs 
simultaneously [29]-[31]. As some uncertain factors are dif-
ficult to capture in the modeling process of real-world appli-
cations, the optimal solutions obtained by optimizing the target
MMOPs may become infeasible in practice due to environ-
mental changes or to the presence of constraints. Thus, it is 
very helpful if the optimizer can provide multiple different PSs
with the same quality in objective space or even some local 
PSs with acceptable quality as an alternative choice, which can
provide the decision maker more options to eliminate uncer-
tain risks that arise in practice [32]-[34].

As stated in [24], a diverse set of solutions should be con-
sidered in both decision and objective spaces when designing 
MOEAs for solving MMOPs. Based on this principle, some 
multimodal MOEAs (MMOEAs) [35]-[38] have been pro-
posed, which can effectively maintain a number of global PSs
for the same PF. However, theystill show some difficulties in 
saving good local PSs with acceptable quality, as global PSs
with good convergence always dominate and replace all local 
PSs. However, as mentioned above, some good local PSs with 
acceptable quality should be also provided to eliminate the risk 
in case global PSs become infeasible in practice. In the CEC 
2019 competition on MMOPs [31], it was suggested to ap-
proximate their global PSs as well as to maintain some good 
local PSs. 
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In recent years, niching methods have been the most popular
tool to maintain global and local PSs, adopting techniques 
such as fitness sharing [39]-[40], crowding [41] and clustering 
[42]-[44]. For example, density-based clustering was proposed
in [42] as a niching method to find equivalent PSs for the same 
PF, and an affinity propagation clustering was presented in [43]
as a parameter-free automatic niching method to capture the 
peaks in multimodal optimization. In [44], a hill-valley clus-
tering approach was introduced to adaptively cluster the search 
space into a number of niches, and then each of them is opti-
mized by a core search algorithm. Inspired by the above
studies of using clustering to distinguish multiple PSs, this 
paper suggests a novel MMOEA with dual clustering in deci-
sion and objective spaces, termed MMOEA/DC. Different 
from the existing MMOEAs [35-38] that focus on searching 
multiple global PSs, our algorithm can properly balance the
maintenance of global PSs and some good local PSs with 
acceptable quality during the evolutionary search. In our 
algorithm, a neighborhood-based clustering method (NCM) 
modified from DBSCAN [45] is run in decision space to
classify the union population into multiple clusters based on 
their neighborhood relationship, trying to maintain diversity in 
decision space. Then, the non-dominated solutions in each of 
these clusters are first selected to maintain good local PSs, 
while some remaining solutions with good convergence are 
further selected by applying non-dominated sorting [9] in
objective space to approximate global PSs, which composes a
temporary population with global and local PSs (its size is 
larger than the population size N). Then, a hierarchical clus-
tering method (HCM) [46]-[47] is run in objective space to
classify this temporary population into N final clusters. At last, 
the most crowded solution in decision space from the most 
crowded cluster in objective space will be removed each time
according to the harmonic averaged distance (HAD) [48]. The 
above deletion process will be repeated until each cluster has 
only one solution. This way, the final solutions in clusters can 
properly balance the maintenance of global PSs and good local
PSs with acceptable quality. After evaluating the performance 
of MMOEA/DC on all the CEC 2019 MMOPs [31], our ex-
perimental results validate the advantages of our proposed 
approach to maintain global and local PSs. Moreover, the 
search behavior of clustering on MMOPs and the impact of 
crowding-based mating selection are also discussed in order to
verify their effectiveness.

The rest of this paper is organized as follows. Section II
introduces some related background of MMOPs and clarifies 
the motivations to design MMOEA/DC. Section III introduces 
the dual clustering methods adopted in both decision and 
objective spaces, while Section IV provides the details of our 
algorithm. Section V presents our experimental results and 
their corresponding discussion. Finally, this paper is con-
cluded in Section VI.

II. RELATED BACKGROUND AND MOTIVATION

A. Multimodal Multi-objective Optimization Problems
In general, an MOP can be modeled as follows:

1min ( ) ( ( ),..., ( ))T
m

x
F x f x f x ,                     (1)

where 1( ,..., )nx x x is a variable vector in decision space
(n is the number of decision variables), and F(x) defines m
(often conflicting) objective functions 1( ),..., ( )mf x f x . Some 
MOPs from real-world scenarios may have different PSs for
the same global PF or even possess some local PSs simulta-
neously [29]-[31]. Such problems are often called multimodal 
MOPs (MMOPs). In [31], local PS, local PF, global PS, and 
global PF of MMOPs are respectively defined as follows.

Local PS and Local PF: For any solution x in a set PL, if no
neighboring solution y satisfying || ||y x ( is a small 
positive value) can dominate x, PL is called local PS and its 
mapping in objective space is called local PF.

Global PS and Global PF: For any solution x in a set PG, if 
other solution in feasible space cannot dominate x, PG is called 
global PS and its mapping in objective space is called global 
PF.

For clarity, a simple example is given in Fig. 1, which shows 
an MMOP with one local PS and two global PSs (i.e., PS1 and 
PS2). Dashed lines with blue circle dots represent local PS or 
PF, while solid lines with red stars are global PS or PF. As
suggested in [32]-[34], all global PSs and good local PSs with 
acceptable quality for MMOPs should be provided to support 
decision making in various application scenarios.

B. Related Work
In recent years, a number of MMOEAs have been proposed 

to solve MMOPs, which can be roughly classified into three
main categories: Pareto-based MMOEAs, decomposition-
based MMEAs, and others.

1) Pareto-based MMOEAs: There are two extensions from
NSGA-II [9] for solving MMOPs, i.e., Omni-optimizer [35]
and DN-NSGA-II [36]. The concept of crowding distance in
decision spacewas presented in Omni-optimizerand a decision 
space based niching method was proposed in DN-NSGA-II.
Both mechanisms are able to find multiple global PSs for the 
same PF. In [37], a niche sharing method was simultaneously 
employed for diversity maintenance in both objective and 
decision spaces, allowing to diversify solutions for solving
MMOPs. In SPEA2+ [38], two archives were adopted to 
maintain the diversity of solutions for solving MMOPs, which 
are updated according to the density of solutions respectively 
in objective space and in decision space for the environmental
selection. 

2) Decomposition-based MMOEAs: In [49], environmental
selection was conducted based on a fitness value combining 
the PBI function value [12] in objective space and two distance 
values in decision space. This way, multiple dissimilar solu-
tions can be associated to one subproblem, which helps to

x2

x1 f1

f2

Decision space Objective space

Local PF

Global PF

Local PS

Global PS1 Global PS2

Fig. 1. Illustrations of local PS, global PS, local PF and global PF.
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extend diversity for solving MMOPs. In MOEA/D-AD [50], 
each solution was associated to a subproblem with the closest 
weight vector based on the perpendicular distance and a rela-
tive neighborhood size L was set in its decision space. Then, 
each offspring only updates the original solutions associated to
the same subproblem from its L nearest individuals in decision 
space. Thus, multiple PSs can be preserved for each subprob-
lem. This idea was generalized as a framework in [34] based 
on three operations: assignment, deletion, and addition, which 
can enhance the performance of decomposition-based MOEAs
when solving MMOPs.

3) Others: There are also some other MOEAs designed for 
MMOPs, which are difficult to classify into any of the two 
above categories. A multi-objective optimizer was designed in 
[51], where local PSs can assist to find global PSs by sliding
down the multi-objective gradient hill and moving along local 
PSs.A general framework using two archives and recombina-
tion was designed in TriMOEA-TA&R [32]. The diversity 
archive uses a clustering strategy and a niche-based clearing 
strategy to maintain diversity respectively in objective space 
and decision space, while the convergence archive aims to 
maintain diverse converged solutions from independent deci-
sion subspaces. By recombining solutions in both archives, 
this algorithm is able to find multiple PSs. An MOEA using a 
convergence-penalized density method (CPDEA) was pro-
posed in [33], which transforms the distances among solutions 
in decision space based on their local convergence quality.
Using these transformed distances, the density values of solu-
tions are estimated and used as the selection criterion to 
maintain multiple PSs.

Moreover, other heuristic algorithms have alsobeen adopted
for tackling MMOPs in recent years. For example, a new par-
ticle swarm optimization (PSO) algorithm was introduced in
[52] with an index-based ring topology, which can produce
some stable niches to find a number of PSs. A self-organizing 

map network was embedded into a PSO algorithm in [53] and
into an improved pigeon-inspired optimization algorithm in 
[54], building a good neighborhood relationship in decision 
space, which helps to approximate multiple PSs for solving 
MMOPs. Please note that the non-dominated sorting method
[9] based on the special crowding distance (SCD) is used in all 
the above PSO algorithms.

C. Motivations and Contributions
However, the above algorithms only focus on maintaining

global PSs, but often neglect good local PSs with acceptable 
quality in objective space. In this subsection, the performance 
of some representative algorithms was investigated for solving 
MMOPs with coexistence of global and local PSs. Two algo-
rithms based on Pareto dominance (MMO-Clustering-PSO1

and MMOPIO [54]), two decomposition-based MOEAs 
(NSGA-III-ADA [34] and eMOEA/D-ADA [34]) and Tri-
MOEA-TA&R [32] were adopted here to solve MMF11 from
the CEC 2019 MMOPs [31]. The initial population size was
set to 100 for NSGA-III-ADA and eMOEA/D-ADA and to
200 for the other algorithms. Please note that the numbers of 
solutions are changed at each generation of NSGA-III-ADA 
and eMOEA/D-ADA and the setting in this paper will finally 
produce more than 200 solutions. All the algorithms were 
independently run 31 times with a maximum number of func-
tion evaluations of 10000. Their final solutions based on the 
median performance obtained with respect to the IGDX indi-
cator [36] in 31 runs are plotted in Fig. 2.As observed in Fig. 2, 
all the algorithms faced some difficulties in maintaining a
good local PS with acceptable quality for MMF11. In 
MMO-Clustering-PSO and MMOPIO, the non-dominated 
sorting method [9] was the primary selection criterion in 
objective space, which allows the local PS to be removed as it 
                                                          

1 http://www5.zzu.edu.cn/ecilab/info/1036/1211.htm
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is dominated by the global PS during the evolutionary process.
NSGA-III-ADA and eMOEA/D-ADA could maintain some
local PSs if they were far away from the global PS in decision 
space, but they preserved some local PSs with poor quality, 
which cannot evenly cover the true global and local PSs of 
MMF11. For TriMOEA-TA&R, the local PS was totally
missed for MMF11, as the non-dominated sorting method [9]
was used to update its diversity archive in objective space.

Based on the above experiments, it is clear that these algo-
rithms faced difficulties in maintaining a good local PS with 
acceptable quality for solvingMMF11.In fact, most MMOEAs 
[32-33,35-38,52-54]often ignore local PSs,as the maintenance
of local PSs may easily lead the algorithm to get trapped into 
the local optimal regions and local PSs are easily removed due 
to the Pareto dominance by global PSs. In order to fill this 
research gap for MMOPs, this paper suggests a new MMOEA
with dual clustering in decision and objective spaces, called
MMOEA/DC, which considers two key tasks on solving 
MMOPs: (i) locating multiple global PSs in decision space 
with the same quality in objective space; (ii) locating good 
local PSs with acceptable quality in objective space. To solve 
the tasks, one clustering is applied in decision space to gather 
nearby solutions, which will classify solutions into multiple 
local clusters, so as to maintain the local PSs. A second clus-
tering is applied in objective space so that the temporary
population selected from these local clusters can get N final 
clusters, which aims to maintain diversity in objective space.
At last, a pruning process is performed for the above clusters 
until each cluster only has one solution, by iteratively remov-
ing the most crowded solution in decision space from the most 
crowded cluster in objective space. This way, MMOEA/DC 
can strike a good balance on solving two key tasks of MMOPs.

To summarize, our main contributions which distinguish us 
from the previous works [32-38, 49-54] are the following:

1) This paper suggests a novel MMOEA with dual cluster-
ing in decision and objective spaces. An NCM is applied in
decision space to distinguish global or local PSs, while an
HCM is applied in objective space to maintain their diversity. 
This way, our environmental selection using dual clustering
can properly balance the maintenance of global PSs and good 
local PSs with acceptable quality during the evolutionary 
process.

2) A crowding-based mating selection is proposed in this 
paper, which uses a binary tournament selection strategy based 
on the HAD values in decision space. Thus, more uniformly 
distributed mating parents can be selected, which can produce 
offspring with strengthened diversity in decision space.

III. DUAL CLUSTERING IN DECISION AND OBJECTIVE SPACES

In this section, the details of the dual clustering methods
(NCM and HCM) are introduced, which are respectively
applied in decision and objective spaces. NCM aims to dis-
tinguish local or global PSs, by classifying the union of parents
and offspring into multiple clusters according to their neigh-
borhood relations in decision space. After collecting the non-
dominated solutions in each of these clusters and other re-
maining solutions with good convergence, HCM is applied in 
objective space to separate these solutions into N final clusters

(N is the population size), aiming to ensure diversity in this
space. 
A. NCM in Decision Space

For a given dataset, NCM will build a partition of this da-
taset into multiple subsets with each subset representing a 
cluster. When solving MMOPs, NCM is run to classify solu-
tions into a number of clusters. To distinguish local or global 
PSs, NCM follows the idea from DBSCAN [45] to identify 
density connected clusters. For each solution 1( ,..., )nx x x in
a solution set U and the neighborhood radius 1( ,..., )nr r r (n
is the number of decision variables), some concepts related to 
NCM are introduced as follows:

r-neighborhood: The r-neighborhood ( )B x of x is defined
as follows:

( ) { | {1,..., },| | , }i i iB x y i n x y r y U ,        (2)
where | |i ix y is the distance between the i-th variables of x
and y.

Direct density-reachable: For each solution ( )y B x , y is 
said to be direct density-reachable from x.

Density-reachable: For one solution y U , y is said to be 
density-reachable from x if and only if there exists a path with 
k solutions 1 2, ,..., kp p p ( 2k ), where the first solution 1p is 
x, the neighboring solutions are direct density-reachable, and 
the last solution kp is y.

Based on the above concepts, for each solution x U , one 
cluster is constructed in NCM to collect all solutions which are 
density-reachable from x. To clarify the way in which NCM
works, its pseudo-code is provided in Algorithm 1 with the 
inputs: U (a solution set) and 1( ,..., )nr r r (the neighborhood 
radius). At first, the neighborhood ( )B x of each solution 
x U is identified by (2) in lines 1-3. Please note that the 
scopes of these neighborhoods are determined by the neigh-
borhood radius r, which will significantly affect the clustering 
results in NCM. In lines 6-13, one cluster will be constructed 
at each iterative running, by randomly selecting a solution x
from U and then collecting all the density-reachable solutions 
from x into the K-th cluster CK, where the cluster index K is 
initialized as 1 in line 4. In this process, the solution set T in
line 10 temporarily reserves the newly found direct density-
reachable solutions of x that are also not included in the cluster 

Algorithm 1 Neighborhood-based Clustering(U, r)
Input: U, r
Output: C1,…, CK
1: for each solution x U
2: identify its r-neighborhood B(x) by (2)
3: end for
4: K = 1
5: while U is not empty
6:     randomly select one solution x from U
7:    initialize Q = CK = { x }
8:     while Q is not empty
9:         randomly select one solution x from Q
10:         T = B(x) \ CK
11:         Q = Q T and CK = CK T
12:         delete x from Q
13:     end while
14:     U = U \ CK
15:    K = K + 1
16: end while
17: return C1,…, CK
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CK, and the solution set Q in lines 8-13 is a temporary stack of 
observations, which will be visited when filling the cluster CK. 
After the cluster CK is built, its solutions should be removed 
from U as described in line 14, and the value of K is increased
by 1 in line 15 to find the next cluster. At last, when all solu-
tions in U are classified into the clusters (i.e., U will be empty 
in line 5), K clusters C1,…,CK are returned in line 17.

B. HCM in Objective Space
HCM aims to maintain diversity of solutions in objective 

space. Initially, each solution is treated as a cluster and then
two clusters are iteratively combined according to a certain 
linkage criterion. Instead of using a single linkage which tends 
to produce long thin clusters, in which nearby elements of the 
same cluster have small distances, but elements at opposite 
ends of a cluster may be much farther from each other [55], 
Ward’s linkage is used in this paper as suggested in [46]. This 
way, the sum of squared errors within the same cluster is 
minimized, while the errors between two distinct clusters are
maximized. The sum of squared errors for two clusters iH and

jH is obtained by
2( , ) || ||
( )

i j
i j i j

i j

n nd H H c c
n n

,                    (3)

where in and jn are the numbers of solutions respectively in 
clusters iH and jH , and || ||i jc c indicates the Euclidean 
distance between ic (the centroid of iH ) and jc (the centroid
of Hj) in objective space. Here, the centroid 1( ,..., )m

a a ac c c of 
a cluster Ha can be computed as follows:

( )
,  1,...,a

ip Hi
a

a

f p
c i m

H
,                        (4)

where m is the number of objectives and ( )if p is the i-th 
objective value of each solution p in cluster aH .

To clarify the way in which HCM works, its pseudo-code is 
given in Algorithm 2 with the inputs: P (a set with more than N
solutions) and N (the number of clusters). In line 1, each 
solution ix P ( 1, 2,...,| |i P ) is initialized as a cluster iH
with centroid 1( ( ),..., ( ))i i

i mc f x f x , including the objective 
values of ix as defined in (1). In line 2, S equal to |P | indicates

the number of clusters at first. Then, the procedures in lines 
3-17 will be iteratively repeated to produce N final clusters. 
Specifically, in lines 4-7, the nearest cluster to each cluster iH
is found, which will record the minimal distance to iH by 

min id H and the index of the nearest cluster to iH by 
iindex H , as follows:

                     min min ( , )i i jd H d H H ,                         (5)
                     arg min ( , )=i i j

j
index H d H H ,                           (6)

where jH can be any of the clusters excluding iH . Then, in
lines 8-13, the two most similar clusters (i.e., aH and bH ) are 
found and recorded, where a and b respectively indicate their 
indexes in the cluster set. In this process, the parameter min is 
used to record the minimal distance of two clusters in S clus-
ters. In line 14, cluster bH is combined into cluster aH and its
new centroid ca is updated by (4). Then, cluster bH is deleted 
and S is decreased by 1 in line 15. The remaining clusters will 
be renumbered as H1, …, HS in line 16.

After running the above procedures, only N final clusters 
will remain, which will be returned as the final clustering 
result obtained by HCM in line 18.

IV. THE PROPOSED ALGORITHM

In this section, the details of our algorithm are presented. 
First, our main framework is given to have an overview of
MMOEA/DC. Then, to clarify the way in which it works, the
crowding-based mating selection in decision space is de-
scribed, and the environmental selection using the above NCM 
and HCM is introduced, aiming to approximate global PSs and 
some good local PSs with acceptable quality. Finally, the
computational complexity of MMOEA/DC is analyzed.

A. Our Main Framework
Here, the pseudo-code of our main framework is provided in 

Algorithm 3 with the inputs: an MMOP with m objectives and 
n variables, N (the population size), Gmax (the pre-set maxi-
mum number of generations), (a parameter to control the 
neighborhood radius), and (the minimum number of solu-
tions in each local cluster). At first, a population P is initialized 
in line 1 by randomly generating N solutions and the genera-
tion counter G is set to 1 in line 2. Afterwards, the crowd-
ing-based mating selection (as introduced in Algorithm 4 with

Algorithm 2 Hierarchical Clustering(P, N)
Input: P, N
Output: H1,…, HN
1: initialize each xi in P as a cluster Hi and centroid ci
2: S = | P |
3: while S > N
4:     for i = 1 to S
5:         record the corresponding min id H by (5)
6:         record the corresponding iindex H by (6)
7:     end for
8:     a = b = -1, min =
9:     for i = 1 to S
10:         if min id H < min
11:             min = min id H , a = i, b = index(Hi)
12:         end if
13:     end for
14:     Ha = Ha Hb and update its centroid ca by (4)
15:     delete Hb, and S--
16:    renumber the S clusters
17: end while
18: return H1,…, HN

Algorithm 3 Main Framework of MMOEA/DC
Input: an MMOP with m objectives and n variables, 

N, Gmax, , 
Output: P
1: initialize P to have N solutions
2: G = 1
3: while G Gmax
4: P' = Crowding-based Mating Selection(P, N)

// Algorithm 4
5:     P' = Crossover(P')
6:     P' = Mutation(P')
7:     U = P P'
8: P = Environmental Selection(U, N, , )

// Algorithm 5
9:     G++
10: end while
11: return P
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the inputs P and N) is run in line 4 to select a mating parent
population P' with N solutions for offspring generation. Then, 
a crossover operator (SBX [4]) in line 5 and a mutation oper-
ator (polynomial-based mutation [4]) in line 6 are run sequen-
tially to mutate the offspring population P', which is then 
combined with P to form a union population U in line 7. At last, 
the environmental selection (as introduced in Algorithm 5 with 
the inputs U, N, , ) is run in line 8 to select the next pop-
ulation, and the generation counter G is increased by 1 in line 9.
While G is smaller than Gmax, the above iterative process in
lines 4-9 will be run. Otherwise, the final population P is 
reported as our approximate solution set in line 11.

B. Crowding-based Mating Selection
In our design, the crowding-based mating selection adopts a

binary tournament selection strategy based on the crowding
status in decision space, aiming to select solutions with good 
diversity in decision space as mating parents. Its pseudo-code 
is provided in Algorithm 4 with the inputs: P (the population)
and N (the population size). In line 1, the mating parent pop-
ulation P' is initialized as an empty set. When its size is smaller 
than N, the procedures in lines 3-11 will be run to select one 
solution into P' at each iteration. Two solutions x and y are 
randomly selected from P in line 3, which are normalized in
line 4 respectively as x and y in decision space, as follows:

min

max min
, 1,...,i i

i
i i

x xx i n
x x

,                       (7)

where ix is the i-th variable of x and normalized as ix , n is 
the number of decision variables, while min

ix and max
ix are re-

spectively the minimum and maximum values of the i-th
variable in P.

In lines 5-8, one normalized solution with a larger crowding 
distance in decision space is chosen by a binary tournament
selection and then its original solution (i.e., x or y ) will be 
added into P'. If they have the same crowding distance, one 
solution will be randomly selected in line 10. 

Here, the HAD method [48] is used to reflect the crowding
status of solutions in decision space. For a population P with N
solutions, the HAD value of its normalized solution x can be 
computed as follows:

 and 

1( )
1/ || ||y P y x

NHAD x
x y

,               (8)

where || ||x y is the Euclidean distance between the normal-
ized solutions x and y from (7) in decision space. This HAD
method considers the Euclidean distances to other normalized 
solutions,which can fairly reflect the crowding status of solu-
tions in decision space. Generally, a smaller HAD value in (8)
indicates a more crowded status of a solution in the population.

When the size of P' is equal to N in line 2, the mating parent 
population P' is returned in line 13.

C. Environmental Selection
The pseudo-code of our environmental selection is given in 

Algorithm 5 with the inputs: U (the combined population), N
(the population size), (a parameter to control the neighbor-
hood radius), and (the minimum number of solutions in each
local cluster). At first, P is initialized as an empty set in line 1
and non-dominated sorting [9] is run to find the non-domi-
nated fronts (i.e., F1,…, Ft) from U in line 2. Then, in line 3, 
the neighborhood radius with n dimensions, i.e., 1( ,..., )nr r r , 
is computed as follows:

max min( ) , 1,...,i i ir x x i n ,                    (9)
where min

ix and max
ix are respectively the minimum and maxi-

mum values of the i-th variable in U, n is the number of deci-
sion variables, and is a parameter to control the neighbor-
hood radius at each dimension. In line 4, NCM (Algorithm 1)
is run to separate U into multiple local clusters in decision 
space, which will return K clusters C1,…, CK. 

After that, some promising solutions should be selected to 
fill the temporary population P until its size is larger than N. In
lines 5-9, for each local cluster whose size is larger than ,
non-dominated sorting [9] is run on this cluster to find its own
non-dominated solutions, which are added into P to maintain 
local PSs.Afterwards, in lines 10-14, other solutions with good
convergence in U are further selected when the size of P is not 

Algorithm 4 Crowding-based Mating Selection(P, N)
Input: P, N
Output: P'
1: initialize P' as an empty set
2: while | P' |< N
3:     randomly select two solutions x and y from P
4:     normalize x, y in decision space to get x , y
5:     if HAD( x ) < HAD( y )
6:         P' = P' {y}
7:     else if HAD( x ) > HAD( y )
8:         P' = P' {x}
9:     else
10:         randomly select one from x and y, and add it into P'
11:     end if
12: end while
13: return P'

Algorithm 5 Environmental Selection(U, N, , )
Input: U, N, , 
Output: P
1: initialize P as an empty set
2: (F1,…,Ft) = Non-dominated Sorting (U)
3: set r (neighborhood radius) by (9)
4: (C1,…, CK) = Neighborhood-based Clustering(U, r)

//Algorithm 1
5: for i = 1 to K
6:     if | Ci | > 
7:         include non-dominated solutions of Ci into P
8:     end if
9: end for
10: i = 1
11: while | P | N
12:    P = P Fi
13:     i = i + 1
14: end while
15: normalize P in objective space by (10)
16: (H1,…, HN) = Hierarchical Clustering(P, N)

//Algorithm 2
17: while | P | != N
18:     identify the most crowded cluster Hc by (11)
19:     compute the HAD values of solutions in Hc by (8)
20:     find one solution x in Hc with the smallest HAD value
21:     P = P\{x}, Hc = Hc\{x}
22: end while
23: return P
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larger than N. Solutions from F1 to Ft in an ascending order but
not in P are sequentially selected to fill P until its size is larger
than N. After completing the above process, there are usually 
more than N solutions in P.

To mitigate the impact of different scaled objectives in 
MMOPs, the i-th objective value ( )if x of each solution x in P
is normalized in line 15 using

min

max min

( )( ) , 1,...,i i
i

i i

f x zf x i m
z z

,                    (10)

where ( )if x is the i-th normalized objective value, m is the 
number of objectives, while min

iz and max
iz are respectively the

minimum and maximum values of the i-th objective in P. Then, 
in line 16, HCM (Algorithm 2) is further run on P to get N
clusters H1,…, HN based on the normalized objective values.
In lines 17-22, the procedures are run to iteratively remove the
most crowded solution in decision space from the most 
crowded cluster in objective space, until the size of P is equal 
to N. In detail, the most crowded cluster Hc is selected from
H1,…, HN in line 18, with its index c found as follows:

{1,..., }
arg max{| |}i

i N
c H ,                           (11)

where | |iH returns the number of solutions in iH . If more than 
one cluster has the same maximal size of solutions, only one of 
them is randomly selected. Then, the HAD values of solutions
in Hc are computed by (8) in line 19, which reflect their 
crowded status in decision space. Also, one solution x with the 
smallest HAD value is selected from Hc in line 20, which will
be removed from P and Hc in line 21. When the size of P is 
reduced to N in line 17, P is returned in line 23 as the next 
population.

In order to show the way in which our environmental se-
lection works, a simple example is provided in Figs. 3(a)-3(d)
for solving MMOPs with local and global PSs. The union 
population has twelve solutions marked from 1 to 12 with 
various colors in Fig. 3(a), where half of the solutions should
be selected into the next generation. As shown in Fig. 3(b), 
NCM (Algorithm 1) is first used in our environmental selec-
tion to divide the union population into two local clusters in 
decision space. In each local cluster, the non-dominated solu-
tions are selected as candidates to maintain local or global PSs. 
Next, in Fig. 3(c), HCM (Algorithm 2) is applied in objective 
space to classify these candidates into N clusters (N=6 in this 
case). Based on the HAD value in (8), one solution in the most 

crowded cluster with the smallest HAD value will be removed 
iteratively until there is only one solution in each cluster. This 
way, our environmental selection can properly approximate
local and global PSs in this case, as illustrated in Fig. 3(d). 
Other traditional environmental selection methods based on
Pareto dominance [9]-[11], decomposition [12]-[20], and 
performance indicators [21]-[23] cannot maintain local PSs, 
since such local PSs are often dominated by global PSs and are 
consequently removed.

D. Computational Complexity Analysis of MMOEA/DC
The computational complexity of MMOEA/DC in one gen-

eration is mainly determined by the crowding-based mating 
selection in Algorithm 4 and the environmental selection in
Algorithm 5. As shown in Algorithm 4, the mating selection 
requires a time complexity of 2( )O nN (n is the number of 
decision variables and N is the population size) to select N
parent solutions for offspring generation. As shown in Algo-
rithm 5, the computational complexity of this environmental 
selection is mainly determined by non-dominated sorting in
line 2, the dual clustering methods (i.e., NCM in line 4 and 
HCM in line 16), and the iterative procedures of pruning P in 
lines 17-22. Non-dominated sorting requires a time complex-
ity of 2( log )mO N N (m is the number of objectives) [9] in line 
2. NCM needs a time complexity of 2( )O nN to run Algorithm 
1 in line 4, and HCM needs a time complexity of 2( )O mN to
run Algorithm 2 in line 16. In lines 17-22, the iterative pro-
cedures of pruning P need a time complexity of ( )3O nN in
the worst case. Thus, the overall worst time complexity of 
MMOEA/DC is ( )3O nN in one generation.

V. EXPERIMENTAL STUDIES

A. Benchmark Problems and Performance Indicators
In this paper, a test suite of MMOPs from the CEC 2019

competition [31] was employed. This benchmark is character-
ized for including various shapes of PSs and PFs, coexistence 
of local and global PSs, andscalable numbers of PSs,decision 
variables and objectives.

Inverted generational distances in decision space (IGDX 
[36]) and in objective space (IGDF [56]-[57])were adopted as 
performance indicators in this paper. These indicators respec-
tively reflect the performance of algorithms in decision and 
objective spaces. The smaller the values of IGDX and IGDF
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Fig. 3. An example of the way in which our environmental selection works using NCM and HCM for MMOPs with coexistence of local and global PSs.
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the better the approximations to the true PS and PF, respec-
tively. Due to page limitations, please refer to [36], [56] and 
[57] for details of IGDX and IGDF.
B. Parameters Settings for the Compared Algorithms

In this paper, five competitive algorithms (Omni-optimizer 
[35], DN-NSGA-II [36], MO_Ring_PSO_SCD [52], Tri-
MOEA-TA&R [32] and MMOPIO [54]) are included for 
performance comparison. The source codes of these compared 
algorithms were provided by their authors and our source code 
is available at https://github.com/wulinszu/MMOEA-DC.git. 
All these algorithms were implemented in MATLAB and run 
on a personal computer with an Intel (R) Core (TM) i7-7700 
CPU, 3.60GHz (processor), and 24 GB (RAM). The parame-
ters settings of the compared algorithms are listed in Table S-I
of the supplementary file, as suggested in their references. In 
DN-NSGA-II, the crowding factor (CF) is set to half of the
population size (N). In MO_Ring_PSO_SCD, the coefficients 
C1 and C2 in the velocity update equation are all set to 2.05 and
the inertia weight W is set to 0.7298. In TriMOEA-TA&R, the 
probability to select parents from the convergence archive 
( conp ), the niche radius in decision space ( niche ), the accuracy 
level ( peak ), the number of reference points (NR), the number 
of sampling solutions in control variable analysis (NCA), and 
the maximum number of trails required to judge the interaction 
(NIA) are set to 0.5, 0.1, 0.01, 100, 20 and 6, respectively. In 
MMOPIO, the maximum size of the personal best archive 

( PBAn ) is set to 5 and the archive size (A) is set to the popula-
tion size N. For MMOEA/DC, the parameter used to control
the neighborhood radius in NCM is set to 0.1, while the pa-
rameter controlling the minimum number of solutions in 
each local cluster is set to 5, the impact of which will be 
studied in Section IV.F. Please note that Omni-optimizer, 
DN-NSGA-II and MMOEA/DC use two evolutionary opera-
tors (i.e., SBX with the crossover probability 1.0cp and the 
distribution index 20c , and polynomial-based mutation
with the mutation probability 1/cp n and the distribution
index 20m , where n is the number of decision variables), 
while MO_Ring_PSO_SCD, TriMOEA-TA&R, and
MMOPIO respectively adopt a particle position update 
method, a novel recombination strategy, and an elite learning 
strategy to generate new solutions.

As suggested in [31], the population size N and the maxi-
mum number of function evaluation MaxFES for different test 
problems were set by N = 100×n and MaxFES = 5000×n, 
where n is the number of decision variables. Thus, the maxi-
mum number of generations Gmax was set to 50. All the com-
pared MMOEAs were run independently 31 times on each test 
problem. The mean values and standard deviations (included 
in brackets after the mean values) for IGDX and IGDF from 31
runs are collected for comparison. In order to obtain a statis-
tically sound conclusion, a Wilcoxon rank sum test is run with 
a significance level 0.05 , which shows the statistically 

TABLE I
COMPARISON OF RESULTS OF MMOEA/DC AND FIVE COMPETITIVE MMOEAS ON THE CEC 2019 MMOPS USING IGDX

Problem Omni-Optimizer DN-NSGA-II MO-Ring-PSO-SCD TriMOEA-TA&R MMOPIO MMOEA/DC
SYM-PART simple 4.992e+00(1.65e+00)- 4.524e+00(1.56e+00)- 1.708e-01(2.32e-02)- 2.346e-02(8.51e-03)+ 1.387e-01(2.31e-01)- 5.017E-02(3.34E-03)
SYM-PART rotated 4.630e+00(1.64e+00)- 4.118e+00(1.91e+00)- 2.610e-01(2.37e-01)- 1.725e+00(1.35e+00)- 9.579e-02(1.79e-02)- 8.169E-02(6.09E-03)

Omni-test 1.548e+00(2.10e-01)- 1.456e+00(1.53e-01)- 3.919e-01(7.86e-02)- 2.665e-01(1.73e-01)- 3.185e-01(1.17e-01)- 1.013E-01(3.77E-03)
MMF1 9.360e-02(1.46e-02)- 9.758e-02(1.58e-02)- 4.905e-02(2.27e-03)- 7.116e-02(8.30e-03)- 4.189e-02(1.95e-03)+ 4.561E-02(1.99E-03)

MMF1_z 7.616e-02(2.42e-02)- 8.265e-02(1.28e-02)- 3.560e-02(1.44e-03)- 6.967e-02(1.14e-02)- 3.102e-02(2.07e-03)~ 3.102E-02(1.39E-03)
MMF1_e 1.265e+00(5.45e-01)- 1.213e+00(5.47e-01)- 5.267e-01(1.30e-01)~ 1.782e+00(7.15e-01)- 4.055e-01(1.17e-01)+ 5.397E-01(2.50E-01)
MMF2 1.056e-01(6.81e-02)- 1.098e-01(7.05e-02)- 4.181e-02(1.19e-02)- 6.484e-02(2.64e-02)- 1.618e-02(6.45e-03)+ 1.978E-02(6.50E-03)
MMF3 9.915e-02(4.43e-02)- 8.647e-02(3.22e-02)- 3.229e-02(1.37e-02)~ 9.342e-02(3.76e-02)- 1.206e-02(2.58e-03)+ 3.267E-02(6.44E-03)
MMF4 8.658e-02(3.10e-02)- 8.590e-02(1.83e-02)- 2.742e-02(1.83e-03)~ 1.038e-01(1.46e-01)- 2.787e-02(3.68e-03)~ 2.646E-02(2.73E-03)
MMF5 1.683e-01(1.33e-02)- 1.688e-01(1.86e-02)- 8.527e-02(3.95e-03)- 1.142e-01(1.15e-02)- 8.343e-02(9.25e-03)- 7.834E-02(2.70E-03)
MMF6 1.464e-01(1.50e-02)- 1.417e-01(1.79e-02)- 7.266e-02(3.98e-03)- 9.165e-02(9.98e-03)- 7.036e-02(4.32e-03)- 6.727E-02(3.22E-03)
MMF7 5.171e-02(1.35e-02)- 5.179e-02(1.07e-02)- 2.645e-02(1.43e-03)+ 4.775e-02(2.24e-02)- 2.210e-02(1.87e-03)+ 2.867E-02(2.84E-03)
MMF8 2.682e-01(1.07e-01)- 2.720e-01(1.08e-01)- 6.836e-02(5.86e-03)~ 3.501e-01(9.97e-02)- 6.214e-02(9.72e-03)+ 7.200E-02(1.48E-02)
MMF9 2.147e-02(1.10e-02)- 2.311e-02(1.29e-02)- 7.987e-03(5.00e-04)- 3.127e-03(8.43e-05)+ 6.732e-03(1.24e-03)~ 6.629E-03(2.52E-04)

MMF10 1.753e-01(3.49e-02)- 1.448e-01(3.73e-02)- 1.037e-01(4.18e-02)- 2.014e-01(7.04e-05)- 1.595e-01(3.50e-02)- 3.620E-02(6.18E-02)
MMF11 2.502e-01(3.82e-04)- 2.506e-01(4.18e-04)- 2.112e-01(2.61e-02)- 2.524e-01(8.18e-05)- 2.481e-01(1.48e-03)- 7.570E-03(2.98E-04)
MMF12 2.431e-01(1.20e-02)- 2.465e-01(6.20e-04)- 1.862e-01(4.18e-02)- 2.478e-01(6.01e-04)- 2.327e-01(3.03e-02)- 3.137E-03(1.83E-04)
MMF13 2.840e-01(8.73e-03)- 2.871e-01(1.32e-02)- 2.399e-01(1.51e-02)- 2.726e-01(6.24e-03)- 2.575e-01(8.06e-03)- 9.026E-02(2.81E-02)
MMF14 9.207e-02(7.75e-03)- 9.651e-02(8.39e-03)- 5.390e-02(1.66e-03)- 3.655e-02(4.91e-04)+ 5.975e-02(2.67e-03)- 5.130E-02(1.32E-03)

MMF14_a 1.107e-01(8.03e-03)- 1.189e-01(8.02e-03)- 6.075e-02(1.50e-03)+ 5.655e-02(1.75e-03)+ 6.649e-02(3.00e-03)+ 7.716E-02(3.69E-03)
MMF15 2.355e-01(2.92e-02)- 2.247e-01(2.62e-02)- 1.533e-01(1.35e-02)- 2.711e-01(2.94e-04)- 1.699e-01(2.65e-02)- 5.356E-02(1.46E-03)

MMF15_a 2.137e-01(1.38e-02)- 2.107e-01(1.59e-02)- 1.619e-01(1.28e-02)- 2.195e-01(2.65e-03)- 1.696e-01(1.42e-02)- 1.002E-01(2.23E-02)
best/all 0/22 0/22 0/22 4/22 6/22 12/22
+/–/~ 0/22/0 0/22/0 2/16/4 4/18/0 7/12/3 – –

“+”, “–“, and “~” indicate that the results of the compared algorithms are significantly better than, worse than, and similar to that of MMOEA/DC respectively by 
Wilcoxon’s rank sum test with 0.05 . In addition, the best metric values are highlighted in bold face.
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significant differences on the results of MMOEA/DC and 
other algorithms. In the following tables, the symbols “+”, “–“, 
and “~” indicate that the results of other algorithms are sig-
nificantly better than, worse than, and similar to those of 
MMOEA/DC, respectively.

C. Comparison with Five Competitive MMOEAs
1) Comparison of Results on MMOPs

The detailed IGDX and IGDF results are listed in Table I
and Table II, respectively. In the second to last row of each 
table, the numbers of problems in which the compared algo-
rithms performed best are summarized. From this table, it can 
be seen that MMOEA/DC performed best on 12 out of 22 
cases regarding both IGDX and IGDF. Thus, MMOEA/DC 
showed the best overall performance. In the last row of each 
table, a summary of the significance test was also provided for
the compared algorithms, using the symbol “+/–/~” to summa-
rize the numbers of problems in which other algorithms re-
spectively performed better than, worse than and similarly to
MMOEA/DC. From these summarized results, MMOEA/DC
also performed significantly better than the other algorithms
when solving most of the test problems adopted, in terms of 
both IGDX and IGDF. Thus, it is reasonable to conclude that 
MMOEA/DC showed a superior performance over the five
competitors for solving most of the MMOPs adopted. More-
over, in order to visually show the distributions of these results,

the box plots of these IGDX and IGDF results for all the 
compared algorithms are respectively provided in Figs. S-1
and S-2 of the supplementary file, due to page limitations.

For MMOPs with coexistence of local and global PSs, i.e., 
MMF10, MMF11, MMF12, MMF13, MM15 and MMF15_a,
MMOEA/DC offered some advantages as it obtained the best 
results in all cases regarding IGDX and IGDF. As NCM is run 
in decision space, MMOEA/DC can distinguish more local 
and global PSs, which can strengthen diversity in both deci-
sion and objective spaces. Omni-optimizer and DN-NSGA-II
used the non-dominated sorting method, which preferred to
select the solutions with better convergence in objective space.
Thus, local PSs of these problems hardly survived during the 
evolutionary process. MO_Ring_PSO_SCD and MMOPIO
considered the diversity of solutions in decision space for the 
problems with multiple PSs for the same PF, while paying
little attention to local PSs. Although two archives and re-
combination strategies were adopted, TriMOEA-TA&R still 
gave priority to the solutions with better convergence in ob-
jective space. Thus, the above compared algorithms can well 
approximate global PSs, but ignore local PSs in their evolu-
tionary search.

For other MMOPs with multiple PSs to the same global PF,
MMOEA/DC also showed advantages in the cases having a
larger number of PSs. MMOEA/DC achieved the best results 
on SYM-PART rotated, Omni-test, MMF1_z, and MMF4-6

TABLE II
COMPARISON OF RESULTS OF MMOEA/DC AND FIVE COMPETITIVE MMOEAS ON THE CEC 2019 MMOPS USING IGDF

Problem Omni-Optimizer DN-NSGA-II MO-Ring-PSO-SCD TriMOEA-TA&R MMOPIO MMOEA/DC
SYM-PART simple 1.223e-02(1.61e-03)- 1.295e-02(1.67e-03)- 4.070e-02(5.55e-03)- 3.328e-02(5.39e-03)- 1.423e-02(1.83e-03)- 1.106E-02(1.19E-03)
SYM-PART rotated 1.300e-02(1.55e-03)+ 1.534e-02(2.19e-03)+ 4.722e-02(5.12e-03)- 2.810e-02(4.49e-03)- 1.646e-02(2.61e-03)~ 1.700E-02(2.66E-03)

Omni-test 6.939e-03(5.29e-04)+ 7.774e-03(4.92e-04)+ 4.051e-02(4.11e-03)- 1.803e-02(3.85e-03)+ 1.098e-02(1.65e-03)+ 2.330E-02(1.24E-03)
MMF1 3.663e-03(4.40e-04)~ 4.476e-03(6.12e-04)- 3.738e-03(1.77e-04)- 5.046e-03(1.33e-03)- 2.748e-03(1.00e-04)+ 3.499E-03(1.44E-04)

MMF1_z 3.141e-03(4.12e-04)+ 4.012e-03(1.49e-03)- 3.594e-03(2.00e-04)- 4.380e-03(9.02e-04)- 2.597e-03(1.30e-04)+ 3.325E-03(3.45E-04)
MMF1_e 2.144e-02(1.59e-02)- 2.230e-02(1.21e-02)- 1.190e-02(1.41e-03)- 7.900e-03(3.17e-03)- 6.047e-03(1.02e-03)~ 5.627E-03(6.89E-04)
MMF2 2.043e-02(1.96e-02)~ 2.562e-02(1.56e-02)- 2.185e-02(6.92e-03)- 2.361e-02(8.31e-03)- 8.308e-03(1.82e-03)+ 1.039E-02(3.23E-03)
MMF3 1.781e-02(1.35e-02)- 1.958e-02(1.07e-02)- 1.666e-02(4.97e-03)- 4.829e-02(6.74e-02)- 6.828e-03(1.28e-03)+ 9.109E-03(1.40E-03)
MMF4 2.881e-03(1.68e-04)~ 3.223e-03(2.59e-04)~ 3.551e-03(2.12e-04)- 3.588e-02(6.85e-02)~ 2.690e-03(1.34e-04)~ 2.982E-03(6.39E-04)
MMF5 3.338e-03(4.66e-04)+ 3.821e-03(5.75e-04)- 3.720e-03(1.79e-04)- 4.837e-03(2.05e-03)- 2.719e-03(1.13e-04)+ 3.542E-03(1.42E-04)
MMF6 3.245e-03(2.85e-04)+ 3.727e-03(3.31e-04)- 3.507e-03(1.64e-04)~ 4.379e-03(1.77e-03)- 2.608e-03(8.89e-05)+ 3.529E-03(1.41E-04)
MMF7 3.093e-03(2.50e-04)+ 4.019e-03(4.27e-04)- 3.690e-03(2.39e-04)~ 4.385e-03(1.38e-03)~ 2.673e-03(6.87e-05)+ 3.560E-03(5.25E-04)
MMF8 3.269e-03(3.34e-04)- 3.960e-03(5.16e-04)- 4.831e-03(2.56e-04)- 5.797e-03(7.34e-03)- 3.043e-03(1.94e-04)- 2.779E-03(3.63E-04)
MMF9 1.277e-02(9.10e-04)- 1.422e-02(1.76e-03)- 1.575e-02(1.76e-03)- 6.992e-02(4.05e-03)- 1.248e-02(1.24e-03)- 1.032E-02(5.82E-04)

MMF10 1.929e-01(3.60e-02)- 1.867e-01(4.05e-02)- 1.345e-01(1.64e-02)- 2.283e-01(4.90e-03)- 1.549e-01(2.77e-02)- 3.891E-02(4.90E-02)
MMF11 9.604e-02(9.94e-04)- 9.874e-02(2.18e-03)- 8.653e-02(7.74e-03)- 1.628e-01(8.42e-03)- 9.195e-02(5.04e-03)- 2.089E-02(6.02E-04)
MMF12 8.448e-02(5.76e-03)- 8.330e-02(3.01e-04)- 6.865e-02(1.39e-02)- 8.589e-02(1.30e-03)- 8.052e-02(1.01e-02)- 3.881E-03(1.13E-04)
MMF13 1.472e-01(2.39e-03)- 1.511e-01(2.93e-03)- 1.000e-01(2.25e-02)- 2.435e-01(7.31e-03)- 1.166e-01(2.56e-02)- 2.242E-02(3.42E-03)
MMF14 9.996e-02(4.73e-03)- 1.109e-01(7.50e-03)- 8.056e-02(2.77e-03)- 8.631e-02(1.12e-03)- 8.067e-02(2.48e-03)- 6.673E-02(1.99E-03)

MMF14_a 1.047e-01(6.05e-03)- 1.191e-01(6.62e-03)- 7.823e-02(1.73e-03)- 7.894e-02(1.31e-03)- 7.731e-02(2.25e-03)- 6.731E-02(2.23E-03)
MMF15 2.020e-01(8.82e-03)- 2.148e-01(8.31e-03)- 1.736e-01(2.77e-03)- 2.066e-01(7.90e-04)- 1.735e-01(3.58e-03)- 1.004E-01(1.76E-03)

MMF15_a 2.058e-01(8.10e-03)- 2.240e-01(9.12e-03)- 1.734e-01(3.27e-03)- 1.945e-01(3.99e-03)- 1.751e-01(3.20e-03)- 1.392E-01(1.35E-02)
best/all 2/22 0/22 0/22 0/22 8/22 12/22
+/–/~ 6/13/3 2/19/1 0/20/2 1/19/2 8/11/3 – –

“+”, “–“, and “~” indicate that the results of the compared algorithms are significantly better than, worse than, and similar to that of MMOEA/DC respectively by 
Wilcoxon’s rank sum test with 0.05 . In addition, the best metric values are highlighted in bold face.
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using IGDX, and on SYM-PART simple, MMF1_e, MMF8, 
MMF9, MMF14, and MMF14_a using IGDF. However, using 
IGDX, MMOEA/DC was outperformed by TriMOEA-TA&R 
on 4 cases (e.g., SYM-PART simple and MMF9) and by 
MMOPIO on 7 cases (e.g., MMF1_e and MMF1-3). 
MMOPIO achieved the best results on MMF1, MMF1_z, and 
MMF2-7 using IGDF, while Omni-optimizer was best on 
SYM-PART simple and Omni-test. MMOEA/DC performed 
relatively worse on the above mentioned cases. This is rea-
sonable as some noise in the evolutionary search may cause
two poor clustering cases, i.e., solutions that should approxi-
mate multiple PSs for the same PF may be classified into one 
cluster and solutions with poor performance maybe all classi-
fied into one cluster. In the first case, it will be difficult for our 
environmental selection to select solutions that can evenly
cover the true PSs,whereas in the second case, solutions with 
poor performance will be always maintained by our environ-
mental selection. Moreover, the impact of the neighborhood 
radius r also disturbs NCM to distinguish multiple PSs for the 
same PF, which may partially lose some local or global PSs.

Based on the above analysis and discussions, it is obvious 
that MMOEA/DC showed some advantages on solving most
of the MMOPs adopted, especially on MMOPs with coexist-
ence of local and global PSs. An NCM was applied in decision 
space to maintain local or global PSs and an HCM was applied
in objective space to maintain diversity of local and global PFs, 
which could properly approximate local and global PSs during
the evolutionary search. MMOPIO obtained the best results on
MMF1, MMF2, MMF3 and MMF7 using IGDX and IGDF, 
but its local PSs were still lost during the evolutionary search. 
TriMOEA-TA&R achieved the best results on SYM-PART 
simple, MMF14 and MMF14_a using IGDX, as its conver-
gence and diversity archives can cooperatively solve MMOPs, 
but could not show advantages for other kinds of MMOPs. 
MO_Ring_PSO_SCD showed a median performance on most 
MMOPs, because its special crowding distance in decision and 
objective spaces cannot distinguish between local and global 
PSs. Even though Omni-optimizer and DN-NSGA-II consid-
ered the crowding distance in decision space, they still em-
ployed non-dominated sorting to select solutions in objective 
space, which results in poor performance on most cases. 

Moreover, to quantify the overall performance of each al-
gorithm, their performance ranks obtained from Friedman’s 
test [58] on all the test problems are illustrated by boxplots in
Fig. 4(a) on IGDX and Fig. 4(b) on IGDF. Note that the red 
lines represent their median performance ranks in boxplots,
while the blue rectangles indicate their average performance 
ranks. Obviously, the median and average performance ranks 
of MMOEA/DC are much smaller than those of other com-
petitors on both IGDX and IGDF, which confirms the ad-
vantages of our proposed approach when solving all the test 
problems. Moreover, the p-values obtained from Bonferro-
ni-Dunn’s and Holm’s post hoc procedure in the software tool 
KEEL [59] are provided in Table S-II and Table S-III of the 
supplementary file, which show the significant differences of
the IGDX and IGDF results among these compared algorithms. 
Please note that a p-value closer to 0 means a more significant 
difference on the results. Most p-values in Tables S-II and 
S-III are very close to 0, indicating that MMOEA/DC showed
a superior performance with statistical significance over its 
competitors.

To show the actual runtime of all the compared algorithms,
their average running times (in seconds: s) from 31 runs are
plotted in Fig. S-3 of the supplementary file for all the test 
problems. Obviously, TriMOEA-TA&R showed the fastest 
speed, as only NA (the number of peak solutions) plus ND (the 
size of diversity archive) solutions were maintained during the 
evolutionary search, which offers a significant advantage in 
terms of computational efficiency. Omni-optimizer and 
DN-NSGA-II used the same framework from NSGA-II,
showing a similar running speed. MO_Ring_PSO_SCD and 
MMOPIO showed the worst running speed on most cases, as 
they used a complex density metric to maintain diversity in 
decision space. Although MMOEA/DC used two clustering 
methods (NCM and HCM), it still showed a median running 
speed in most cases. However, for the problems with three
decision variables or three objectives like MMF13, MMF14,
MMF14_a, MMF15 and MMF15_a in Fig. S-3,MMOEA/DC
had the slowest execution speed as more time was required to 
run the clustering methods for MMOPs with high-dimensional 
decision or objective spaces.
2) A Further Discussion and Analysis on MMOEA/DC
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Fig. 4. The boxplots of the performance ranks of Friedman’s test on IGDX and IGDF.
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To visually show the performance of the compared algo-
rithms, the final solution sets with the median IGDF values
from 31 runs are plotted in Fig. 5 for SYM-PART simple and
in Fig. 6 for MMF12.

For SYM-PART simple in Fig. 5, Omni-optimizer and 
DN-NSGA-II could not find the whole PSs, which lost some 
PSs during the evolutionary search. MO_Ring_PSO_SCD and 
MMOPIO were able to maintain all the PSs for the same PF in
objective space, mainly due to their special crowding distance
mechanism. However, there is plenty of room for improving 
their diversity in decision space, as their approximate solutions 

did not uniformly cover the true PSs. TriMOEA-TA&R and 
MMOEA/DC could obtain the better approximate PSs in
decision space, while MMOEA/DC even outperformed Tri-
MOEA-TA&R in objective space.

Moreover, for the problems with coexistence of local and 
global PSs, MMOEA/DC showed the obvious advantages as 
its competitors did not consider maintaining local PSs in their 
design. When solving MMF12 with coexistence of discon-
nected local and global PSs in Fig. 6, MMOEA/DC was the 
only one that could find a good approximation for discon-
nected local and global PSs, while other compared algorithms
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Fig. 5. The final solutions obtained by different MMOEAs on SYM-PART simple.

0 0.5 1 1.5
Objective space

-0.5

0

0.5

1

1.5

2 Omni-Optimizer on MMF12

Obtained PS/PF
True PS/PF

0 0.2 0.4 0.6

Decicion space

0

0.5

1

0 0.5 1 1.5
Objective space

-0.5

0

0.5

1

1.5

2
DN-NSGA-II on MMF12

Obtained PS/PF
True PS/PF

0 0.2 0.4 0.6

Decision space

0

0.5

1

0 0.5 1 1.5
Objective space

-0.5

0

0.5

1

1.5

2 MO-Ring-PSO-SCD on MMF12

0 0.2 0.4 0.6

Decision space

0

0.5

1

Obtained PS/PF
True PS/PF

0 0.5 1 1.5
Objective space

-0.5

0

0.5

1

1.5

2
TriMOEA-TA&R on MMF12

0 0.2 0.4 0.6

Decision space

0

0.5

1

Obtained PS/PF
True PS/PF

0 0.5 1 1.5
Objective space

-0.5

0

0.5

1

1.5

2
MMOPIO on MMF12

0 0.2 0.4 0.6

Decision space

0

0.5

1

Obtained PS/PF
True PS/PF

0 0.5 1 1.5
Objective space

-0.5

0

0.5

1

1.5

2
MMOEA/DC on MMF12

Obtained PS/PF

True PS/PF

0 0.2 0.4 0.6

Decision space

0

0.5

1

Fig. 6. The final solutions obtained by different MMOEAs on MMF12.
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always lost local PSs, as they were only designed to seek for 
multiple global PSs for the same PF.

Moreover, in order to further study the search behavior of
MMOEA/DC, the process of NCM, which plays a crucial role 
to maintain diversity in decision space, is visually depicted in 
Fig. 7, where solutions are marked by black color when the 
number of solutions in their cluster is less than , while other 
clusters are identified with different colors. Please note that 
solutions of the union population U in line 7 of Algorithm 3 are 
all plotted in Fig. 7, and the true PSs are all marked by blue 
color in Figs. 7(c) and 7(f). SYM-PART simple and MMF12 
are selected as examples to show the evolutionary behavior of 
NCM in MMOEA/DC for tackling MMOPs. In these experi-
ments, the population size is 400 and the maximum number of
function evaluation is 2000. With the growth of the population, 
the solutions will be very crowded. Thus, the parameter in
NCM is adjusted to 0.05 to get a suitable neighborhood radius.
As shown in Figs. 7(a) and 7(d), at the early stage of the 
evolutionary process on SYM-PART simple and MMF12, it is
difficult for NCM to divide the local clusters based on their
neighborhood relationships, as solutions are randomly distrib-
uted in decision space. With the running of generations, solu-
tions in decision space tend to approach the true PSs. For 
example, as shown in Figs. 7(b) and 7(e), in the median stage 
of evolution, more local clusters can be obtained by NCM in 
environmental selection, which maintains diversity in decision 
space. Specifically, on SYM-PART simple with nine PSs
mapping to the same PF, non-dominated solutions in each 
local cluster will be selected in priority, which helps to ap-
proach all global PSs. As depicted in Fig. 7(c), MMOEA/DC
can approximate all global PSs of SYM-PART simple at a

later stage of the evolutionary process. Moreover, for MMF12 
with coexistence of local and global PSs, NCM also plays a 
critical role to approximate local and global PSs, as they are 
classified into different clusters in Fig. 7(f), which will be 
selected simultaneously for the next generation in the envi-
ronmental selection. 

D. Comparison with the winner algorithm at the CEC 2019 
competition on MMOPs

During the review process of this paper, the winner algo-
rithm (MMO-Clustering_PSO) at the CEC 2019 competition
on MMOPs was announced1 and its source code was provided 
to us by its authors. Here, MMOEA/DC was compared with 
MMO-Clustering_PSO using the same population size and 
maximum number of function evaluation adopted in this paper. 
Due to page limitations, their detailed IGDX and IGDF results
from 31 runs on all the CEC 2019 MMOPs are listed in Table 
S.IV of the supplementary file. From the summary of the 
significance test in the last row, MMOEA/DC had a competi-
tive performance with respect to MMO-Clustering_PSO.
MMOEA/DC was slightly better on IGDF but slightly worse 
on IGDX. However, it was found that MMO-Clustering_PSO
also lost local PSs, as it was worse than MMOEA/DC on 
MMOPs with coexistence of local and global PSs (i.e.,
MMF10, MMF11, MMF12, MMF13, MM15 and MMF15_a). 
Moreover, MMO-Clustering_PSO performed relatively worse 
on MMOPs with a large number of global PSs (i.e., 
SYM-PART simple, SYM-PART rotated and Omni-test). To 
visually show their performance comparison on these kinds of 
MMOPs, their final solution sets with respect to the median 
                                                          

1 http://www5.zzu.edu.cn/ecilab/info/1036/1211.htm
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Fig. 7. The process of NCM on SYM-PART simple and MMF12 during different evolutionary stages.
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IGDF values from 31 runs are plotted for five low-dimensional
cases in the supplementary file, i.e., MMF10, MMF11 and 
MMF12 in Fig. S-4, and SYM-PART simple and SYM-PART 
rotated in Fig. S-5. It can be easily observed that 
MMO-Clustering_PSO almost missed all the local PSs for 
solving MMF10, MMF11 and MMF12, and could not evenly 
cover the global PSs for solving SYM-PART simple and 
SYM-PART rotated. These experiments further confirm the
advantages of our proposed approach in maintaining global
PFs and some good local PFs.

E. The Impact of the Crossover Operator and Mating Selec-
tion 

First, to study the impact of crossover operator, BLX-alpha
[60] was embedded into MMOEA/DC to replace SBX. Their 
summarized results are collected in Table III, while the mean 
values and the corresponding standard deviations of IGDX and 
IGDF are provided in Table S-V of the supplementary file.
From the experimental results, the use of SBX in 
MMOEA/DC was more effective as it performed better or 
similarly in 15 and 21 out of 22 cases regarding IGDX and 
IGDF, respectively.

Second, to study the impact of mating selection, our algo-
rithm was compared to its variant with random mating selec-
tion. Their summarized results are collected in Table III, while 
the mean values and standard deviations of IGDX and IGDF
are provided in Table S-VI and Table S-VII of the supple-
mentary file. The effectiveness of crowding-based mating 
selection in MMOEA/DC was validated, as it performed better
or similarly on 19 out of 22 cases regarding both of IGDX and 
IGDF.

F. Parameter Sensitivity Analysis of MMOEA/DC
In order to study the impact of parameter (indicating the 

minimum number of solutions in each local cluster) and 
(controlling the neighborhood radius) in environmental selec-
tion, more comparative experiments were performed. Due to 
page limitations, our summarized results using different pa-
rameters are collected in Table III, while the mean values and 
standard deviations of IGDX and IGDF are provided in Tables
S-VI to S-IX of the supplementary file.

First, keeping the same parameters settings as introduced in 
Section V.B, MMOEA/DC with different values from 
{1,5,10,20} were experimentally compared. As observed from
Tables III, MMOEA/DC using =5 had statistically similar 
IGDX results with respect to those using =1 , =10 and

=20 , respectively on 15, 18 and 18 out of 22 cases, and 
showed statistically similar IGDF results with respect to those
using =1 , =10 and =20 , respectively on 20, 21 and 19
out of 22 cases. It seems that MMOEA/DC is not so sensitive 
to the setting of when considering all the adopted MMOPs. 
However, a too large value may cause a loss of diversity in 
decision space, as only few clusters can be obtained, while a
too small value may produce lots of isolated clusters, which 
may highly exceed the actual number of discrete PSs. To
guarantee diversity in decision space and get a reasonable 
number of clusters, =5 is suggested for MMOEA/DC in this 
paper when solving all the adopted MMOPs.

Second, also keeping the same parameters settings as before, 
MMOEA/DC with different values from {0.02, 0.05, 0.08, 
0.1, 0.15, 0.2} were compared. From Tables III, MMOEA/DC 
using 0.1 obtained significantly better or statistically sim-
ilar IGDX results than those using 0.02 , 0.05 ,
0.08 , 0.15 and 0.2 , respectively on 20, 16, 20, 17 and 
18 out of 22 cases, and achieved significantly better or statis-
tically similar IGDF results than those using 0.02 ,

0.05 , 0.08 , 0.15 and 0.2 , respectively on 19, 
16, 17, 19 and 20 out of 22 cases. From these summarized 
results, it is found that a too large value (e.g., 0.2 ) or a
too small value (e.g., 0.02 or 0.05 ) will result in a
failure to correctly classify local or global PSs by NCM. This 
is mainly because a too large value may lead to a loss of local 
PSs, while a too small value may induce difficulties to con-
verge.Thus, values around 0.1 are suggested in MMOEA/DC
when solving all the MMOPs adopted in this paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel MMOEA with dual clustering in de-
cision and objective spaces (called MMOEA/DC) has been 
proposed. It runs dual clustering (NCM in decision space and 
HCM in objective space) to maintain diversity in both spaces,
and it is able to approximate both global PSs and good local
PSs with acceptable quality for solving MMOPs. When 
compared to five competitive algorithms (Omni-optimizer, 
DN-NSGA-II, MO_Ring_PSO_SCD, TriMOEA-TA&R and 
MMOPIO), MMOEA/DC showed some advantages, espe-
cially for solving MMOPs with coexistence of local and global 
PSs, which is mainly due to the use of dual clustering to ef-
fectively distinguish global PSs and good local PSs. Moreover, 
some experiments have been run to validate the effect of 
clustering and crowding-distance mating selection in 
MMOEA/DC. The impact of two parameters (indicating
the minimum number of solutions in local clusters) and 
(controlling the neighborhood radius) in environmental selec-
tion are also studied.

In our future work, we will further study the performance of 
our algorithm on more complicated problems since the test 
MMOPs adopted in this paper only have low dimensionality in
both decision and objective spaces. We will further enhance 
the performance of dual clustering by adaptively controlling 
the neighborhood radius, trying to reduce its time complexity
especially for solving MMOPs with a large number of decision 

Table III
THE SUMMARIZED RESULTS OF MMOEA/DC AND ITS VARIANTS

Different Parameters setting +/-/~(IGDX) +/-/~(IGDF)
Random Mating Selection VS

Crowding-based Mating Selection 3/14/5 3/9/10

BLX-alpha VS SBX 7/12/3 1/20/1
1 VS 5 5/2/15 1/1/20

10 VS 5 1/3/18 1/0/21
20 VS 5 0/4/18 2/1/19

0.02 VS 0.1 2/15/5 3/17/2
0.05 VS 0.1 6/13/3 6/10/6
0.08 VS 0.1 2/5/15 5/6/11
0.15 VS 0.1 5/5/12 3/5/14
0.2 VS 0.1 4/10/8 2/8/12
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variables and/or objectives. Moreover, we will also extend our 
algorithm for solving some real-world engineering problems.

REFERENCES

[1] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. 
New York, NY, USA: John Wiley & Sons, Inc., 2001

[2] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algo-
rithms in multiobjective optimization,” Evol. Comput., vol. 7, no. 3, pp. 
205–230, 1995.

[3] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of 
multiobjective evolutionary algorithms based on decomposition,” IEEE 
Trans. Evol. Comput., vol. 21, no. 3, pp. 440-462, 2017.

[4] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” in Complex Syst., Apr. 1995, vol. 9, pp. 115–148.

[5] H. Li, and Q. Zhang, “Multiobjective optimization problems with 
complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol. 
Comput., vol. 13, no. 2, pp. 284–302, 2009.

[6] O. Schütze, A. Martín, A. Lara, S. Alvarado, E. Salinas, and C. A. Coello, 
“The directed search method for multi-objective memetic algorithms,” 
Computational Optimization and Applications, vol. 63, no. 2, pp. 
305-332, 2016.

[7] O. Schuetze, G. Sanchez, and C. A. Coello, “A new memetic strategy for 
the numerical treatment of multi-objective optimization problems,” in
Proceedings of the 10th annual conference on Genetic and evolutionary 
computation, 2008, pp. 705-712.

[8] F. Daolio, A. Liefooghe. S. Verel, H. Aguirre, and K. Tanaka, “Global vs 
Local Search on Multi-objective NK-Landscapes: Contrasting the Im-
pact of Problem Features,” in Proceedings of the 2015 Annual Confer-
ence on Genetic and Evolutionary Computation, 2015, pp. 369-376.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist 
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Com-
put., vol. 6, no. 2, pp. 182–197, 2002.

[10] K. Deb, and H. Jain, “An evolutionary many-objective optimization 
algorithm using reference-point based non-dominated sorting approach, 
part I: solving problems with box constraints,” IEEE Trans. Evol. 
Comput. vol. 18, no. 4, pp. 577–601, 2014.

[11] Y. Tian, R. Cheng, X. Zhang, Y. Sun, and Y. Jin, “A strengthened 
dominance relation considering convergence and diversity for evolu-
tionary many-objective optimization,” IEEE Trans. Evol. Comput., vol.
23, no. 2, pp. 331–345, 2019.

[12] Q. F. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary 
algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11,
no. 6, pp. 712–731, 2007.

[13] X. Ma, Q. Zhang, G. Tian, J. Yang, and Z. Zhu, “On Tchebycheff 
decomposition approaches for multi-objective evolutionary optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 22, no. 2, pp. 226–244, 2018.

[14] M. Wu, K. Li, S. Kwong, Q. Zhang, and J. Zhang, “Learning to de-
compose: A paradigm for decomposition-based multiobjective optimi-
zation,” IEEE Trans. Evol. Comput., vol. 23, no. 3, pp. 376-390, 2019.

[15] Q. Lin, G. Jin, Y. Ma et al., “A diversity-enhanced resource allocation 
strategy for decomposition-based multiobjective evolutionary algo-
rithm,” IEEE Trans. Cybern., vol. 48, no. 8, pp. 2388–2401, 2018.

[16] R. Wang, Z. B. Zhou, and H. Ishibuchi, “Localized weighted sum 
method for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 22, no. 1, pp. 3-18, 2018.

[17] S. Jiang, S. Yang, Y. Wang, and X. Liu, “Scalarizing functions in 
decomposition-based multiobjective evolutionary algorithms,” IEEE 
Trans. Evol. Comput., vol. 22, no. 2, pp. 296–313, 2018.

[18] H. Xu, W. Zeng, and D. Zhang, “MOEA/HD: A multiobjective evolu-
tionary algorithm based on hierarchical decomposition,” IEEE Trans. 
Cybern., vol. 49, no. 2, pp. 517–526, 2019.

[19] M. Wu, K. Li, S. Kwong, and Q. Zhang, “Evolutionary many-objective 
optimization based on adversarial decomposition,” IEEE Trans. Cybern.,
vol. 50, no. 2, pp. 753-764, 2020.

[20] X. He, Y. Zhou, Z. Chen, and Q. Zhang, “Evolutionary many-objective 
optimization based on dynamical decomposition,” IEEE Trans. Evol. 
Comput., vol. 23, no. 3, pp. 361–375, 2019.

[21] J. Bader and E. Zitzler, “Hype: An algorithm for fast hypervolume-based
many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp. 45–76,
Mar. 2011.

[22] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “A indicator-based 
multiobjective evolutionary algorithm with reference point adaptation 
for better versatility,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 
609–622, 2017.

[23] T. Pamulapati, R. Mallipeddi, and P. Suganthan, “ISDE
+ - An indicator for 

multi and many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 23, no. 2, pp. 346–352, 2019.

[24] R. Tanabe, and H. Ishibuchi, “A review of evolutionary multimodal
multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 24, no. 1,
pp. 193–200, 2020.

[25] A. Jaszkiewicz, “On the performance of multiple-objective genetic local
search on the 0/1 knapsack problem-a comparative experiment,” IEEE 
Trans. Evol. Comput., vol. 6, no. 4, pp. 402–412, 2002.

[26] Y. Han, D. Gong, Y. Jin, and Q. Pan, “Evolutionary multiobjective 
blocking lot-streaming flow shop scheduling with machine break-
downs,” IEEE Trans. Cybern., vol. 49, no. 1, pp. 184-197, 2019.

[27] F. Kudo, T. Yoshikawa and T. Furuhashi, “A study on analysis of design 
variables in Pareto solutions for conceptual design optimization problem 
of hybrid rocket engine,” in IEEE Congress on Evolutionary Computa-
tion, New Orleans, LA, 2011, pp. 2558-2562.

[28] O. Schütze, M. Vasile, and C. A. C. Coello, Computing the set of
epsilon-efficient solutions in multiobjective space mission design,”
Journal of Aerospace Computing, Information, and Communication, vol. 
8, no. 3, pp. 53–70, 2011.

[29] C. T. Yue, B. Y. Qu, K. J. Yu, J. J. Liang, and X. D. Li. “A novel scalable 
test problem suite for multimodal multiobjective optimization,” Swarm 
and Evolutionary Computation, vol. 48, pp. 62–71, 2019.

[30] H. Ishibuchi, Y. Peng and K. Shang, “A Scalable Multimodal Multi-
objective Test Problem,” in IEEE Congress on Evolutionary Computa-
tion, Wellington, New Zealand, 2019, pp. 310-317.

[31] J. J. Liang, B. Y. Qu, D. W. Gong, C. T. Yue. Problem Definitions and 
Evaluation Criteria for the CEC 2019 Special Session on Multimodal 
Multiobjective Optimization. Technical Report, Computational Intelli-
gence Laboratory, Zhengzhou University, Zhengzhou, China, Mar. 2019. 
DOI: 10.13140/RG.2.2.33423.64164.

[32] Y. Liu, G. G. Yen, and D. Gong, “A multi-modal multi-objective 
evolutionary algorithm using two-archive and recombination strategies,” 
IEEE Trans. Evol. Comput., vol. 23, no. 4, pp. 660–674, 2019.

[33] Y. Liu, H. Ishibuchi, G. G. Yen, Y. Nojima and N. Masuyama, “Han-
dling imbalance between convergence and diversity in the decision 
space in evolutionary multimodal multiobjective optimization,” IEEE 
Trans. Evol. Comput., vol. 24, no. 3, pp. 551–565, 2020.

[34] R. Tanabe, and H. Ishibuchi, “A Framework to Handle Multi-modal
Multi-objective Optimization in Decomposition-based Evolutionary 
Algorithms,” IEEE Trans. Evol. Comput., DOI:
10.1109/TEVC.2019.2949841.

[35] K. Deb and S. Tiwari, “Omni-optimizer: A procedure for single and 
multi-objective optimization,” in Proc. Int. Conf. Evol. Multi Criterion
Optim., 2005, pp. 47–61.

[36] J. J. Liang, C. T. Yue, and B. Y. Qu, “Multimodal multi-objective
optimization: A preliminary study,” in IEEE Congress on Evolutionary
Computation, Vancouver, BC, 2016, pp. 2454–2461.

[37] Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and K. Shang, “A
double-niched evolutionary algorithm and its behavior on Poly-
gon-based problems,” in PPSN, 2018, pp. 262–273.

[38] M. Kim, T. Hiroyasu, M. Miki, and S. Watanabe, “SPEA2+: Improving
the performance of the strength Pareto evolutionary algorithm 2,” in
PPSN, 2004, pp. 742–751.

[39] R. K. Ursem, “Multinational evolutionary algorithms,” in IEEE Con-
gress on Evolutionary Computation, Washington, DC, USA, 1999, pp. 
1633–1640.

[40] D. E. Goldberg, J. Richardson et al., “Genetic algorithms with sharing
for multimodal function optimization,” in Proc. of the Second Interna-
tional Conference on Genetic Algorithms, Hillsdale, NJ: Lawrence 
Erlbaum, 1987, pp. 41–49.

[41] R. Thomsen, “Multimodal optimization using crowding-based differen-
tial evolution,” in IEEE Congress on Evolutionary Computation, Port-
land, OR, USA, 2004, pp. 1382–1389.

[42] O. Kramer, and H. Danielsiek, “DBSCAN-based multiobjective niching 
to approximate equivalent Pareto-subsets,” in Proc. of 2010 Genetic and
Evolutionary Computation Conference, 2010, pp. 503-510.

[43] Z. Wang, Z. Zhan, Y. Lin, W. Yu, H. Wang, S. Kwong, and J. Zhang, 
“Automatic niching differential evolution with contour prediction ap-
proach for multimodal optimization problems,” IEEE Trans. Evol. 
Comput., vol. 24, no. 1, pp. 114–128, 2020.

[44] S. C. Maree, T. Alderliesten, D. Thierens, and P. A. N. Bosman, “Re-
al-valued evolutionary multi-modal optimization driven by hill-valley 
clustering,” in Proceedings of the Genetic and Evolutionary Computa-
tion Conference, Kyoto, Japan, 2018, pp. 857-864.



15

[45] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,” in 
Proc. Int. Conf. Knowl. Disc. Data Min., 1996, pp. 226–231.

[46] Y. Hua, Y. Jin, K. Hao, “A clustering-based adaptive evolutionary
algorithm for multiobjective optimization with irregular Pareto fronts,”
IEEE Trans. Cybern., vol. 49, no. 7, pp. 2758–2770, 2019.

[47] Q. Lin, S. Liu, K. C. Wong, M. Gong, C. Ceollo, J. Yomg, and J. Zhang, 
“A clustering-based evolutionary algorithm for many-objective optimi-
zation problems,” IEEE Trans. Evol. Comput., vol. 23, no. 3, pp. 
391–405, 2019.

[48] V. L. Huang, P. N. Suganthan, K. Qin, and S. Baskar, “Differential 
evolution with external archive and harmonic distance-based diversity 
measure,” 2008, https://www.researchgate.net/publication/228967624.

[49] C. Hu and H. Ishibuchi, “Incorporation of a decision space diversity
maintenance mechanism into MOEA/D for multi-modal multi-objective
optimization,” in GECCO (Companion), 2018, pp. 1898–1901.

[50] R. Tanabe and H. Ishibuchi, “A decomposition-based evolutionary
algorithm for multi-modal multi-objective optimization,” in PPSN, 2018, 
pp. 249–261.

[51] C. Grimme, P. Kerschke, and H. Trautmann, “Multimodality in mul-
ti-objective optimization-more boon than bane?” International Confer-
ence on Evolutionary Multi-Criterion Optimization, 2019, pp. 126-138.

[52] C. Yue, B. Qu, and J. Liang, “A multi-objective particle swarm opti-
mizer using ring topology for solving multimodal multi-objective 
problems,” IEEE Trans. Evol. Comput., vol. 22, no. 6, pp. 805-817, 
2018.

[53] J. Liang and Q. Guo, et al, “A self-organizing multi-objective particle 
swarm optimization algorithm for multimodal multi-objective prob-
lems,” Int. Conf. on Swarm Intelligence, 2018, pp. 550-560.

[54] Y. Hu, J. Wang, J. Liang, K. Yu, H. Song, Q. Guo, C. Yue, and Y. Wang, 
“A self-organizing multimodal multi-objective pigeon-inspired optimi-
zation algorithm,” SCIENCE CHINA Information Sciences, vol. 62, no. 
7, pp. 1–17, 2019.

[55] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster analysis (5th 
edition). Chichester, UK: John Wiley&Sons, Ltd, 2011. 

[56] P. A. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 7, no. 2, pp. 174–188, 2003.

[57] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A regularity model-based
multiobjective estimation of distribution algorithm,” IEEE Trans. Evol.
Comput., vol. 12, no. 1, pp. 41–63, 2008.

[58] M., Friedman, “A comparison of alternative tests of significance for the 
problem of m rankings,” Ann. Math. Statist., vol. 11, no. 1, pp. 86-92,
1940.

[59] J. Alcalá-Fdez, L. Sánchez, S. García, et al, “KEEL: a software tool to 
assess evolutionary algorithms for data mining problems,” Soft Comput.,
vol. 13, pp. 307–318, 2009.

[60] M. Takahashi and H. Kita, “A crossover operator using independent 
component analysis for real-coded genetic algorithms,” in IEEE Con-
gress on Evolutionary Computation, Seoul, South Korea, 2001, pp. 
643-649.

Qiuzhen Lin received the B.S. degree from 
Zhaoqing University and the M.S. degree from 
Shenzhen University, China, in 2007 and 2010, 
respectively. He received the Ph.D. degree from 
Department of Electronic Engineering, City 
University of Hong Kong, Kowloon, Hong Kong, 
in 2014.

He is currently an associate professor in College 
of Computer Science and Software Engineering, 
Shenzhen University. He has published over 
twenty research papers since 2008. His current 

research interests include artificial immune system, multi-objective optimiza-
tion, and dynamic system.

Wu Lin received the B.S. degree from Hubei Uni-
versity of Technology, Wuhan, China, in 2017, and 
received the M.S. degree from Shenzhen University, 
Shenzhen, China, in 2020.

He is currently a Research Assistant in College of 
Computer Science and Software Engineering, Shen-
zhen University. His current research interests are in
evolutionary computation, multimodal mul-
ti-objective optimization, machine learning and 
transfer optimization.

Zexuan Zhu (M’12-SM’20) received the B.S. 
degree in computer science and technology from 
Fudan University, China, in 2003 and the Ph.D. 
degree in computer engineering from Nanyang 
Technological University, Singapore, in 2008. He 
is currently a Professor with the College of Com-
puter Science and Software Engineering, Shenzhen 
University, China. His research interests include 
computational intelligence, machine learning, and 
bioinformatics. Dr. Zhu is an Associate Editor of 
IEEE Transactions on Evolutionary Computation 

and IEEE Transactions on Emerging Topics in Computational Intelligence. He 
is also the Chair of the IEEE CIS Emergent Technologies Task Force on 
Memetic Computing.

Maoguo Gong (M’07–SM’14) received the B.S. 
and Ph.D. degrees in electronic science and tech-
nology from Xidian University, Xi’an, China, in 
2003 and 2009, respectively. Since 2006, he has 
been a Teacher with Xidian University. In 2008 and 
2010, he was promoted as an Associate Professor 
and a Full Professor, respectively, both with ex-
ceptive admission. His current research interests 
include computational intelligence with applica-
tions to optimization, learning, data mining, and 
image understanding.

Dr. Gong was a recipient of the Prestigious National Program for the sup-
port of Top-Notch Young Professionals from the Central Organization
Department of China, the Excellent Young Scientist Foundation from the
National Natural Science Foundation of China, and the New Century Excel-
lent Talent in University from the Ministry of Education of China. He is the 
Vice Chair of the IEEE Computational Intelligence Society Task Force on 
Memetic Computing, an Executive Committee Member of the Chinese 
Association for Artificial Intelligence, and a Senior Member of the Chinese 
Computer Federation. He is also an Associate Editor of the IEEE TRANS-
ACTIONS ON EVOLUTIONARY COMPUTATION.

Jianqiang Li received his B.S. and Ph.D. Degree
in automation major from South China University
of Technology, Guangzhou, China, in 2003 and
2008, respectively.

He is a professor at the College of Computer and 
Software Engineering of Shenzhen University. He 
led a project of the National Natural Science 
Foundation, and a project of the Natural Science 
Foundation of Guangdong Province, China. His 
major research interests include embedded systems 
and Internet of Things.

Carlos A. Coello Coello (M’98-SM’04-F’11)
received Ph.D. degree in computer science from 
Tulane University, New Orleans, LA, USA, in 
1996. 

He is a Professor (CINVESTAV-3F Researcher) 
with the Department of Computer Science of 
CINVESTAV-IPN, Mexico City, México. He has 
authored and co-authored over 450 technical 
papers and book chapters. He has also co-authored 
the book Evolutionary Algorithms for Solving 
Multi-Objective Problems (Second Edition, 

Springer, 2007). His publications currently report over 48,900 citations in 
Google Scholar (his h-index is 80). His research interests include evolutionary 
multiobjective optimization and constraint-handling techniques for evolu-
tionary algorithms.

Dr. Coello Coello was a recipient of the 2007 National Research Award 
from the Mexican Academy of Sciences in the area of Exact Sciences, the 
2013 IEEE Kiyo Tomiyasu Award and the 2012 National Medal of Science 
and Arts in the area of Physical, Mathematical and Natural Sciences. He is an 
Associate Editor of IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
and serves on the editorial board of 12 other international journals. He is a 
member of the Association for Computing Machinery, Sigma Xi, and the 
Mexican Academy of Science.


