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Abstract— The selection of swarm leaders (i.e., the personal 

best and global best), is important in the design of a mul-
ti-objective particle swarm optimization (MOPSO) algorithm. 
Such leaders are expected to effectively guide the swarm to ap-
proach the true Pareto optimal front. In this paper, we present a 
novel external archive-guided MOPSO algorithm (AgMOPSO), 
where the leaders for velocity update are all selected from the 
external archive. In our algorithm, multi-objective optimization 
problems (MOPs) are transformed into a set of sub-problems 
using a decomposition approach, and then each particle is as-
signed accordingly to optimize each sub-problem. A novel ar-
chive-guided velocity update method is designed to guide the 
swarm for exploration, and the external archive is also evolved 
using an immune-based evolutionary strategy. These proposed 
approaches speed up the convergence of AgMOPSO. The exper-
imental results fully demonstrate the superiority of our proposed 
AgMOPSO in solving most of the test problems adopted, in terms 
of two commonly used performance measures. Moreover, the 
effectiveness of our proposed archive-guided velocity update 
method and immune-based evolutionary strategy is also experi-
mentally validated on more than thirty test MOPs. 
 

Index Terms—Particle swarm optimization, multi-objective 
optimization problems, evolutionary algorithm 
 

I. INTRODUCTION 

N many real-world engineering applications, we normally 
face problems in which we aim to simultaneously optimize 

multiple (possibly conflicting) objectives [1]. They are termed 
multi-objective optimization problems (MOPs). Due to the 
natural conflicts arising among the objectives, the improvement 
of one objective may deteriorate the others. As a consequence, 
a set of trade-off solutions is generated (i.e., solutions in which 
it is not possible to improve one objective without worsening 
another). This is called the Pareto Optimal Set (POS) and their 
corresponding mapping in objective space is termed Pareto 
Optimal Front (POF). In order to provide solutions that are of 
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practical use, it is desirable to obtain a set of uniformly dis-
tributed solutions that are as close as possible to the true POF. 

Multi-objective evolutionary algorithms (MOEAs) have 
been substantially studied to tackle MOPs in recent years. They 
have been found to provide a very promising performance in 
solving different types of MOPs [2]-[12]. Based on the selec-
tion mechanisms they adopt, most of the existing MOEAs can 
be classified into the following three classes. The first class 
consists of Pareto-based MOEAs, which incorporate the Pareto 
optimality concept into their selection process. Two repre-
sentative MOEAs are NSGA-II [2] and SPEA2 [3]. The second 
class consists of indicator-based MOEAs, which use a perfor-
mance indicator (e.g., hypervolume [4]) as their density esti-
mator to guide the search. Two MOEAs that are representative 
of this category are IBEA [5] and SMS-EMOA [6]. The last 
class consists of decomposition-based MOEAs, which trans-
form an MOP into a set of sub-problems and then optimize 
them in a collaborative manner. Approaches in this category 
include MOEA/D [7] and MOEA/D-IR [8]. More recently, 
some hybridized algorithms based on both Pareto dominance 
and decomposition approach have also been proposed, such as 
MMOPSO [9], ND/DPP [10], MOEA/DD [11] and BCE [12]. 
A survey of decomposition-based MOEAs recently published 
can be found in [13]. 

Particle swarm optimization (PSO) has also been studied to 
tackle MOPs in recent years. Almost all types of PSO ap-
proaches are designed by mimicking the social cooperative and 
competitive behavior of bird flocking and fish schooling [14]. 
In its origins, PSO was mostly applied to solve single-objective 
optimization problems (SOPs), due to its fast convergence 
speed and easy implementation [15] [16]. The promising results 
of PSO in solving SOPs validated its effectiveness and effi-
ciency of locating the optima, especially in a large and complex 
problem landscape. This also motivated researchers to extend 
PSO for tackling MOPs. However, when designing a mul-
ti-objective PSO (MOPSO) algorithm, there are two particular 
issues to be addressed. 

The first issue is the selection of the global best (gbest) and 
the personal best (pbest) in an MOPSO algorithm. This is 
mainly due to the fact that, no a single best solution but rather a 
set of Pareto optimal solutions exist in tackling MOPs. In sin-
gle-objective PSO (SOPSO), the swarm leaders (i.e., gbest and 
pbest) can be easily marked, since gbest and pbest are the best 
values respectively visited by the entire swarm and each parti-
cle so far. However, in an MOPSO algorithm, multiple candi-
dates (i.e., all the nondominated solutions) can be nominated as 
gbest and pbest. As the search direction of each particle is 
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simultaneously guided by gbest and pbest, the selection of them 
has a significant impact on the performance of an MOPSO 
algorithm. The second one is the rapid loss of diversity due to 
its fast convergence speed, as pointed out in [17]. Such be-
havior may lead to premature convergence or get stuck in local 
optima, not only in SOPSO, but even more seriously in an 
MOPSO algorithm. In order to address this issue, some existing 
MOPSOs have adopted a perturbation operator on each particle 
[9] [18], as well as the adaptive control of the acceleration 
coefficients in the velocity update formula [19], and different 
selection mechanisms for pbest and gbest, with the aim to better 
guide the swarm without experiencing a quick loss of popula-
tion diversity [20]. 

Based on the above issues, one key problem in an MOPSO 
algorithm is to choose the swarm leaders, i.e., gbest and pbest, 
in order to provide a correct search direction for all the particles. 
This helps to speed up the convergence, and also to maintain 
the population diversity if properly selected. Inspired from the 
direction-guided search approaches in [21]-[24], useful direc-
tion information can be extracted from the external archive to 
better guide the search of a particle swarm optimizer. We be-
lieve that such approaches may be very suitable to select the 
swarm leaders in MOPSOs. Therefore, in this paper, we pro-
pose an external archive guided MOPSO algorithm (Ag-
MOPSO) that uses the information of external archive to guide 
the particle swarm to search. In our approach, all the swarm 
leaders (i.e., pbest and gbest) are appropriately selected from 
the external archive. To maintain diversity, a decomposition 
approach [7] is used in AgMOPSO to transform an MOP into a 
set of SOPs and then each SOP is accordingly optimized by 
using one particle. Each particle will be guided by three swarm 
leaders, i.e., pbest, local best (lbest) and gbest, taken from the 
external archive. To promote the convergence speed, the indi-
viduals in the external archive are firstly evolved by an im-
mune-based evolutionary strategy, which is helpful to guide the 
particles using a PSO-based search. Comparing to the existing 
MOPSO algorithms, the novel aspects of our proposed Ag-
MOPSO are listed as follows: 
(1) An archive-guided velocity update approach is designed in 

AgMOPSO, which is aimed to exploit information related 
to defining a search direction from the external archive. As 
a decomposition approach is used to transform MOPs into 
a set of sub-problems, each particle is guided by three 
leaders selected from the external archive, in order to op-
timize the corresponding sub-problem. 

(2) An immune-based evolutionary strategy is run on the ex-
ternal archive. It helps to speed up the convergence using 
the clonal selection paradigm, as the swarm leaders are all 
taken from the external archive. Therefore, the improve-
ment of individuals in the external archive will be condu-
cive to guide the PSO-based search, thus providing a fast 
approximation to the true POF. 

(3) The selection of pbest, lbest and gbest is re-defined in 
AgMOPSO. Generally, pbest, lbest and gbest are respec-
tively the best values visited by each particle, the local 
swarm, and the entire swarm. However, in AgMOPSO, as 
a decomposition approach is exploited to transform MOPs 

into a set of sub-problems, our purpose is to optimize all 
the sub-problems simultaneously. Therefore, pbest, lbest 
and gbest are regarded to be the best values in each 
sub-problem, the neighboring sub-problems and all the 
sub-problems, respectively. In this way, AgMOPSO is 
devoted to optimizing each sub-problem by using the 
proposed velocity update approach. 

The rest of this paper is organized as follows. Section II in-
troduces the related background, including the basic concepts 
related to MOPs, decomposition approaches, multi-objective 
immune algorithms (MOIAs), some existing MOPSOs and 
direction-guided evolutionary algorithms (EAs). In Section III, 
the details of AgMOPSO are given, where the immune-based 
evolutionary strategy, PSO-based search and archive update are 
respectively described in detail. Our experimental studies are 
presented in Section IV, which compares AgMOPSO to two 
current MOPSOs and three state-of-the-art MOEAs. Moreover, 
the advantages of our proposed immune-based evolutionary 
strategy and archive-guided velocity update approach are also 
validated in Section IV. Section V presents an extension of 
AgMOPSO to handle constraints and to solve a real word en-
gineering problem. Finally, our conclusions and future work 
are provided in Section VI. 

II. RELATED BACKGROUND 

In this section, the related background of our work is intro-
duced. First, a brief introduction to MOPs and decomposition 
approaches is provided. Since our external archive is further 
evolved by an immune-based evolutionary strategy, some rel-
evant MOIAs are introduced with their advantages to speed up 
the convergence. Finally, some representative MOPSOs and 
direction-guided EAs are also briefly reviewed to illustrate the 
novelties of our proposed approach. 

A. MOPs 

Generally, an MOP can be formulated as follows. 

 
1 2minimize : ( ) ( ( ), ( ),..., ( ))

subject to ( ) 0, 1,...,

( ) 0, 1,...,
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where J and K are the numbers of inequality and equality con-
straints, respectively. 1 2( , ,..., )nx x x x  is an n-dimensional 
decision vector bounded in decision space  . The mapping 
function : mF R  defines m objective functions and mR  is 
called the objective space. Due to the conflicts among the ob-
jectives, no single solution can optimize all the objectives 
simultaneously. The best trade-off solutions can be found using 
the definitions of Pareto dominance. A solution x is said to 
dominate another solution y (denoted as x yf ) if and only if 

{1, 2,.., }i m  , ( ) ( )i if x f y  and at least {1,2,.., }j m  , 
( ) ( )j jf x f y . A solution x is said to be Pareto optimal if and 

only if :y y x  f . 

B. Decomposition Approach 

Decomposition approaches adopted in MOEAs include the 
weighted sum, Tchebycheff and boundary intersection ap-
proaches. As discussed in [7], the boundary intersection 
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method has shown certain advantages over the other two ap-
proaches, so it is used in our algorithm for decomposing MOPs. 
This approach uses the pre-defined weighted vectors   and a 
penalty value   to minimize the distance d1 to the utopian 
vector and the direction error to the weighted vector d2 from the 
solution in objective space, as defined by 
 *

1 2minimize : ( | , )g x z d d     (2) 

where *z  is the vector including the minimum value of each 
objective, and 1 2,d d  are calculated as follows. 

*

1

( ( ) )TF x z
d






  and *

2 1( ( ) )d F x z d



    

C. Relevant MOIAs 

The fact that the external archive in our algorithm is evolved 
using the clonal selection mechanism helps to speed up its 
convergence [25] [26]. Thus, some representative MOIAs that 
incorporate clonal selection are briefly reviewed. 

In [27], a multi-objective immune system algorithm (MISA) 
was proposed based on the clonal selection principle to produce 
the clones of the individuals with high affinities. In [28], an 
immune dominance clonal multi-objective algorithm (IDCMA) 
was reported, by using the concept of the antibody-antibody 
affinity to reflect the similarity among individuals. It was also 
applied to solve dynamic MOPs in [29] and was further im-
proved by using a novel non-dominated neighbor-based selec-
tion mechanism in [30]. In [31], a novel evolutionary MOIA, 
named EMOIA, was presented with a novel clonal selection 
scheme based on the diversity of the evolving population.  

Recently, several MOIAs have been reported with a faster 
convergence and better mechanisms to maintain diversity. For 
example, a hybrid immune multi-objective optimization algo-
rithm (HIMO) [32] was designed to combine Gaussian and 
polynomial-based mutations. It was further enhanced by an 
adaptive mutation operator [33] and a novel adaptive differen-
tial evolution (DE) operator [34] with a fine-grained selection 
mechanism. A novel immune clonal algorithm (NICA) [26] 
was put forward to solve complex MOPs, using a full cloning 
scheme and a novel antibody population updating operation. A 
novel MOIA called IMADE was designed in [35], presenting a 
novel DE based recombination as the search paradigm used 
after clonal selection. In [25], a hybrid evolutionary framework 
for MOIAs was reported to evolve subpopulations using mul-
tiple evolutionary strategies. 

Some experimental results with the above MOIAs have 
validated that the clonal selection mechanism used for evolu-
tion helps to speed up the convergence, particularly in some 
simple MOPs without variable dependence. These results mo-
tivated us to use an immune-based evolutionary strategy for 
evolving the individuals in the external archive of our proposed 
approach. These enhanced individuals in the external archive 
will in turn help to effectively guide the PSO-based search.  

D. Existing MOPSOs 

Particle swarm optimization was originally designed to 
tackle SOPs and showed a fast convergence speed. Most mul-
ti-objective extensions of PSO rely on Pareto ranking and a few 

on decomposition methods. Thus, most existing MOPSOs can 
be classified into these two categories: Pareto-based MOPSOs 
and decomposition-based MOPSOs. 

The first type of MOPSOs adopts Pareto ranking to deter-
mine pbest and gbest. The gbest particle is generally assigned 
with one of the non-dominated solutions found from the entire 
swarm and it is used to guide the swarm to approach the POF. 
MOPSO [18], OMOPSO [36], SMPSO [37], MOCLPSO [38], 
2LB-MOPSO [39], CMPSO [40] and pccsAMOPSO [17], 
belong to this category. In [18], MOPSO was designed by using 
the Pareto dominance relationship and an adaptive grid to up-
date the external archive. OMOPSO was reported in [36] to 
adopt the concept of   dominance and crowding-distance 
information to identify the list of leaders. To avoid the so-called 
“swarm explosion” effect in OMOPSO, SMPSO was presented 
with a velocity constriction procedure during the particles 
movement [37]. In [38], Pareto dominance concept and exter-
nal archive technique were integrated in MOCLPSO to handle 
MOPs, and 2LB-MOPSO [39] was proposed to run a fi-
ne-grained search around the vicinity of the best found fronts. 
In [40], CMPSO was reported with a novel coevolutionary 
technique for PSO to solve MOPs and pccsAMOPSO [17] was 
designed based on a parallel cell coordinate system. 

The second kind of MOPSOs adopts a decomposition ap-
proach to transform an MOP into a set of SOPs and then a 
SOPSO can be directly applied for each SOP. Such MOPSOs 
include MOPSO/D [41], SDMOPSO [42], and dMOPSO [43]. 
MOPSO/D may be the first attempt to embed a decomposition 
approach into an MOPSO. To tackle the drawback of MOPSO/ 
D, SDMOPSO was proposed to fully exploit the salient prop-
erties of neighborhood relations in PSO. In [43], dMOPSO was 
presented as an approach that fully relies on decomposition. A 
set of gbest particles, which can give the best scalar aggregated 
values for all sub-problems, are used to update the position of 
each particle. However, as pointed out by Moubayed et al. [20], 
the absence of Pareto dominance in dMOPSO may lead to a 
failure in covering the entire POF in some complex MOPs. 

Recently, some MOPSOs, such as D2MOPSO [20] and 
MMOPSO [9], have been designed by combining Pareto 
dominance and decomposition approach. The original version 
of D2MOPSO was proposed in [44], attempting to use a hy-
bridization of Pareto dominance and decomposition approach 
for solving MOPs. An enhanced version of D2MOPSO was also 
presented by the same authors [20]. This approach introduces a 
new mechanism to select leaders and a novel archiving tech-
nique to maintain the non-dominated particles based on the 
crowding-distance values [2] in both objective and decision 
spaces. Following the framework of D2MOPSO, MMOPSO 
was introduced in [9] to use two search strategies for velocity 
update, aiming to concurrently promote the convergence speed 
and maintain the population diversity. Moreover, an evolu-
tionary search strategy is further applied to each individual of 
the external archive for speeding up the convergence. 

E. Direction-guided EAs 

Steering the optimization process is an effective and efficient 
way to design an MOEA. Among the numerous search strate-
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gies currently available, direction-guided search, which drives 
the population to explore some interesting areas, has been 
found to be quite promising [24]. To tackle SOPs, a neighbor 
guided selection scheme and a direction induced mutation 
strategy were designed in [21] to respectively exploit the 
neighborhood and direction information from the population. 
In [22], the reproduction mechanism was also enhanced 
through an evolutionary path. This evolutionary path can be 
cumulatively learned during the evolutionary process and it is 
exploited to produce a new solution among its central area. 

To tackle MOPs, a direction-based MOEA (named DMEA 
[45]) was designed to guide a population for evolving using the 
directions of improvement. Then, several new features were 
further embedded into DMEA to make it more robust (named 
DMEA-II [46]), and a new niching method was designed for 
DMEA in [47]. In [48], an evolutionary multi-objective simu-
lated annealing algorithm (EMOSA) with a two-phase strategy 
was designed to maintain the diversity of the search directions. 
This strategy uses fixed and adaptive search directions, re-
spectively, in the first and second search phases, in order to 
search the objective space more effectively. Recently, a new 
DE variant for MOPs was studied in [24]. This approach uses 
the information across generations to model the search direc-
tions as guidance, such that both the convergence and the di-
versity during the evolution can be steered. 

According to our survey, although additional archives are 
used in some direction-guided MOEAs, little attention has been 
paid to study the use of direction information to guide the par-
ticle swarm in MOPSOs. Therefore, in each iteration of Ag-
MOPSO, the archive is firstly evolved by an immune-based 
evolutionary strategy, and then this evolved archive can be used 
to guide the particle swarm for further exploration. 

III. THE PROPOSED ALGORITHM 

In this section, the details of our proposed AgMOPSO algo-
rithm are introduced. The distinct feature of this algorithm is 
the use of an external archive containing all the elitist individ-
uals as the swarm leaders for the particles. To speed up the 
convergence, this external archive is firstly evolved using an 
immune-based evolutionary strategy. The algorithmic frame-
work of AgMOPSO is shown in Fig. 1, where P, A, and S re-
spectively denote the particle swarm, the external archive, and a 
temporary population after immune-based evolutionary search. 
After initialization, three main procedures are iteratively run in 
AgMOPSO, i.e., an immune-based evolutionary search, a 
PSO-based search, and an archive update. Please note that the 
immune-based evolutionary search is only performed on the 
external archive, and then the renewed individuals in the ex-
ternal archive are used to guide the swarm for exploration. 
Once the termination condition is satisfied, the individuals in 
the external archive are reported as the final result. 

A. Initialization 

The pseudo-code for the initialization is described in Algo-
rithm 1, where fes denotes the count for function evaluation. 

As no prior knowledge of the search landscape is available, an 
initial swarm 1{ ,..., }NP x x  is randomly sampled in decision 
space  . To decompose an MOP into a set of SOPs using (2), 
a set of weight vectors 1{ ,..., }NW    is uniformly sampled 
from a unit simplex using the approach in [49]. Each weight 
vector is associated with a sub-problem, thus the number of 
weight vectors is equal to the population size. After that, the 
Euclidean distances between any two weight vectors are 
computed and the neighborhood set 1{ ,..., }i TB i i  for each 
weight vector i ( {1,..., }i N ) is built. Moreover, in (2), the 
ideal objective vector used in this paper is approximated by 
using the minimum value of each objective in current swarm, 
i.e., * min{ ( ) |i iz f x  }x P , for all {1,..., }i m . At last, the 
external archive A is updated by adding all the non-dominated 
solutions in P to A. 

B. Immune-based evolutionary search 

The immune-based evolutionary search is composed of two 
steps. First, the less crowded solutions in archive A are pro-
portionally cloned to get the mating population E. As shown in 
Fig. 2(a), the selected solutions in  2 4 51 3, , , ,aPC a a a a  rep-
resent the sparse areas that need to be searched. Second, the 
mating population undergoes recombination and mutation to 
get the child population S. This proportional clonal principle 
will lead to the result that the less crowded area in the archive is 
assigned with more clones and of course more computational 
resources are allocated to these areas. As shown in Fig. 2(b), the 
solutions a1, a2, a3, a4, a5 with different crowding degrees will 
respectively get 8, 3, 4, 2 and 8 clones of solutions. The details 
of the cloning operator and the evolutionary operators are re-
spectively introduced below. 
1) Cloning Operator 

Algorithm 1: Initialization
1 A={}, fes = 0
2 for i=1 to N 
3    randomly generate a particle xi and evaluate the objectives of xi 
4    add xi to the population P 
5 end for 
6 initialize N weight vectors 1 , ..., N   
7 set * }min{ ( ) |i iz f x x P   for {1, ..., }i m  
8 for i=1 to N 
9    Bi = {i1,…,iT}   // where 1 , ...,

i
Ti   are the T closest to 

i  
10 end for 
11 copy all the non-dominated solutions from P to A 

Output A

Start

[P, A]=Initialization

S=Immune_Search(A)

P=PSO_Search(P)

A=Archive_Update(S, A)

A=Archive_Update(P, A)

Termination?

Yes

No

 
Fig. 1 The algorithmic framework of AgMOPSO 
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It is assumed that the population after cloning is E with size 
N and the elitist population used for cloning is PC with size NC. 
Please note that NC is smaller than N, usually set as N/5 [34]. At 
first, NC individuals with the largest values of crowding degree 
are selected from the external archive A, to build the elitist 
population  1, , NCPC a a  . Then, cloning is activated and 
the cloned population E is generated, as follows. 
 1{

NC
i iE q   }ia  (3) 

where operation iq  ia  means to duplicate ai with the number 
of qi, and qi stands for the number of clones corresponding to 
each individual ai (i=1,2,…,NC), calculated by 

 
1

( )

( )
i

i NC

jj

CD a
q N

CD a


 
  
 
 

 (4) 

where CD(ai) is the crowding-degree value of individual ai 
(i=1,2,…,NC). The estimation of the crowding degree can use 
the crowding distance method in NSGA-II [2] or the niching 
method in BCE [12]. As studied in [52], the crowding distance 
method is more suitable to estimate the crowding status in 
bi-objective problems, while the niching method may be more 
effective to reflect the crowding degree for MOPs with more 
than 2 objectives. Note that once the individuals are located in 
the boundary of objective space, their crowding degrees are set 
as twice of the maximal crowding degree except for the 
boundary individuals. 

The pseudo-code of this operator is shown in Algorithm 2, 
where NC is the size of the elite population for cloning and the 
function CrowdingDegreeAssignment(P) calculates the value 
of crowding degree for each individual in P using (4). Another 
function PC = SelectforClone(PC) will return NC individuals 
with the largest values of crowding degree in PC. 
2)  Evolutionary Operators 

As shown in [25], the cloning operator helps to speed up the 
convergence, especially on some simple MOPs without varia-
ble dependence. After cloning, this cloned population E will 
undergo two evolutionary operators, i.e., simulated binary 
crossover (SBX) and polynomial-based mutation (PM) [50]. To 
clearly introduce the immune-based evolutionary strategy, its 
pseudo-code is illustrated in Algorithm 3, where SBX(Ei, Ej) 
means to apply SBX on parent solutions Ei and Ej; C1 and C2 are 
the resultant children solutions generated from SBX; PM(Ck) 
indicates the execution of PM on Ck. Note that there is a small 
probability to select two same individuals for running SBX. In 
this case, the PM operator will further perturb the parent to 

produce a new offspring, even though SBX does nothing. After 
that, a new solution set S is generated, which will be added into 
the external archive using the archive update operation as in-
troduced in Section III-D. 

C. PSO-based Search 

In original PSO algorithm, the velocities of the particles are 
usually updated using the positional information of the pbest 
and gbest particles. However, the selection of pbest and gbest is 
particularly difficult when using PSO to tackle MOPs, as mul-
tiple equally-optimal solutions (i.e., nondominated solutions) 
are available. Here, a novel velocity update approach is pre-
sented, aiming to optimize all the sub-problems, as follows. 

1 2( 1) ( ) ( ( )) ( )i i i i i iv t w v t F pbest x t F lbest gbest          (5) 

where xi is the current evolved particle in P, and t indicates the 
iteration number; pbesti is the individual in the external archive 
A that can give the best result for the sub-problem i, lbesti is the 
individual in the external archive A that can give the best result 
for a random sub-problem selected from the neighboring set Bi 
(as defined in line 9 of Algorithm 1), and gbesti is randomly 
selected from the external archive A. 

After the update of velocity, the position of particle ix  is 
renewed as follows. 
 ( 1) ( ) ( 1)i i ix t x t v t      (6) 

There are three parts in our new PSO search method. First, 
( )iw v t  is the “inertial” part same as other PSO search meth-

ods. The second part is 1 ( ( ))i iF pbest x t  , which guides the 
current particle to approach the best individual for the current 
sub-problem i. The step size F1 is set as d1 in (2), which indi-
cates the distance of pbest from the current subproblem. That is 
to say, if pbest is far away from the current subproblem, the step 
size is set to be large; otherwise, it is set to be small. The last 
part is 2 ( )i iF lbest gbest  , which is the differential vector 
similar to “DE/rand/1” [51]. In this way, the proposed velocity 
update method in (5) not only has the search pattern of PSO, but 
also inherits the effective search behaviors of DE. 

D. Archive Update 

After finishing the immune-based evolutionary search or the 

Algorithm 2: E=CloneOperator(A) 
1 PC = A
2 if (|PC| > NC)
3   CrowdingDegreeAssignment(PC) 
4   PC = Sort(PC) //sort PC according to crowding distance
5    PC = SelectforClone(PC) 
6 end if
7 for i=1 to |PC|
8   calculate qi according to (4) 
9   clone qi individuals of ai and add them to E 
10 end for
11 return E 

 
Algorithm 3: S = Immune_Search(A) 
1 E = CloneOperator(A) (Algorithm 2) 
2 for i=1 to |E|
3   generate a random integer j in [1, |E|] 
4   {C1, C2} = SBX(Ei, Ej)
5   generate a random integer k in [1,2] 
6    Si = PM(Ck) 
7 end for
8 return S

a1

a2

a3

a4

a5

6

5

4

3

2

1
0 0.2 0.4 0.6 0.8

A

PC

6

5

4

3

2

1
0 0.2 0.4 0.6 0.8

Search area

Search a1

1.0 1.0

Search a2

Search a3

Search a4

Search a5

 
(a)                                                        (b) 

Fig. 2 The procedure of immune-based evolutionary search 
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PSO-based search, the newly found non-dominated solutions 
are collected into the external archive. Given the finite size of 
the external archive, a proper selection mechanism is necessary 
for updating it since the number of non-dominated solutions 
may be very large. Such selection mechanism has significant 
impact on performance, as it helps to guide the search towards 
the true POF. In this paper, a popular archive update mecha-
nism [9] [20] [52] is used. This selection mechanism is de-
signed based on both Pareto dominance and the crowding de-
gree. Assuming that the newly generated solution set is S and 
the external archive is A, the pseudo-code of the archive up-
dating mechanism can be briefly described in Algorithm 4. 
The function CheckDominance(x,y) returns the Pareto domi-
nance relationship between solutions x and y. If the function 
returns 1, it means that x dominates y. Otherwise, the function 
returns 1 when y dominates or is equal to x. Another function 
CrowdingDegreeAssignment(A) will calculate the value of 
crowding degree for each solution in A. 

E. The Complete Algorithm of AgMOPSO 

The above subsections have introduced the main components 
of AgMOPSO, i.e., immune-based evolutionary strategy, 
PSO-based search, and archive update operator. Other imple-
mentation details are further clarified in the pseudo-code of 
AgMOPSO, as illustrated in Algorithm 5, where fes and 
max-fes respectively denote the count of current function 
evaluation and the maximum number of function evaluation. 

At first, the initialization is processed in line 1 of AgMOPSO, 
as described in Algorithm 1. After that, AgMOPSO starts the 
loop of evolutionary process in lines 2-22. In the first search 
phase, the immune-based evolutionary strategy is operated on 
the external archive A (in line 3), and a children population S is 
produced. The pseudo-code of this procedure was described in 
Algorithm 3. After that, the objective function values of all the 
individuals in S are computed in line 4, and they are coupled 
with the external archive A to run Algorithm 4 for the archive 
update procedure (in line 5). Then, the reference point *z  used 
in (2) is updated (in line 6). In the PSO-based search phase, the 
selection of pbesti, lbesti and gbesti from the external archive A 
is performed in lines 7-15, as introduced in Section III-C. After 
that, each particle ix  is evolved by the PSO-based search pat-

tern, as illustrated in lines 16-17, and its new objective func-
tions are evaluated in line 18. Also, the updated particle swarm 
P and external archive A are used to run Algorithm 4 (line 20), 
and the reference point *z  is updated again in line 21. The 
above evolutionary phase will be repeated until the pre-defined 
maximum number of function evaluation, max-fes, is reached. 
At the end of this algorithm, the external archive A is reported 
as the final POF. 

F. Discussion 

Based on the implementation of AgMOPSO described above, 
this section discusses the differences between AgMOPSO and 
some existing algorithms, such as D2MOPSO [20], MMOPSO 
[9], and BCE-MOEA/D [12], as they all adopt the similar idea 
of combining Pareto dominance and decomposition approaches. 
Please note that, as described in Section I, the novel aspects of 
AgMOPSO include an immune-based evolutionary strategy to 
enhance the solution’s quality in external archive and an ar-
chive-guided velocity update approach to guide the PSO-based 
search. These two search patterns are mutually cooperated in 
AgMOPSO to speed up the convergence, which is the essential 
difference with D2MOPSO, MMOPSO and BCE-MOEA/D. 
Their detail differences are further clarified as follows. 
1) Differences between AgMOPSO and D2MOPSO 
 In D2MOPSO, evolutionary search is not run to enhance the 

archive. However, immune-based search is performed in 
AgMOPSO to evolve the archive, which aims to search the 
least crowded areas and results in a better diversity and 
convergence in the archive as discussed in Section III-B. 

 The PSO-based search behavior in D2MOPSO is different 
from that driven by (5) in Section III-C. That is to say, the 
pbest and lbest in D2MOPSO are both selected dependent on 
the current sub-problem, which may ignore some useful in-
formation from the local and global neighbors. As discussed 
in Section III-C, the PSO-based search of AgMOPSO in (5) 
is driven by three parts, i.e., the inertial part, the sub-problem 
guided part and the differential vector part. In this way, pbest, 

Algorithm 4: A = Archive_Update(S, A) 
1 for i=1 to |S| 
2    for j=1 to |A| 
3       flag = CheckDominance(Si,Aj) 
4       if flag == 1 // Aj is dominated by Si 
5          mark Aj as a dominated solution 
6       else 
7          break 
8       end if 
9    end for 
10    delete the marked dominated solutions from A 
11    if flag != 1 // if any individual in A does not dominate Si 
12       add Si to A 
13       if |A| > N 
14          CrowdingDegreeAssignment(A) 
15          delete the most crowded one 
16       end if 
17    end if 
18 end for 
19 return A 

Algorithm 5: The complete algorithm  of AgMOPSO
1 Initialization (Algorithm 1) 
2 while fes < max-fes
3   S = Immune_Search (A) (Algorithm 3) 
4   evaluate S and set fes = fes + |S| 
5    A = Archive_Update(S, A) (Algorithm 4) 
6   update the reference point *z  
7   for i=1 to N
8      i ipbest A      //Selection for ipbest  
9      for j=2 to |A|
10         if ( | , ) ( | , )

i i

jig pbest w z g A w z
   

11             jipbest A  
12         end if
13      end for
14      select ilbest from the neighbors of sub-problem i
15      randomly select igbest  from archive A 
16      calculate iv use (5)
17      calculate ix use (6)
18      evaluate the new particle xi and set fes = fes +1
19   end for
20   A = Archive_Update(P, A) (Algorithm 4) 
21   update the reference point *z  
22 end while
23 Output A 
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lbest and gbest in AgMOPSO are respectively selected based 
on the different sub-problems in the archive. 

 For D2MOPSO, two archives, i.e., the leaders archive and the 
external archive, are adopted. The leaders archive is used to 
collect the elite particles with larger crowding distances 
based on both objective and decision spaces. However, in 
AgMOPSO, only the external archive is used to keep the 
swarm leaders. 

2) Differences between AgMOPSO and MMOPSO 
 Although both algorithms evolve the archive, they use dif-

ferent evolutionary operators. MMOPSO only adopts a 
general evolutionary operator (SBX+PM), while AgMOPSO 
performs an additional cloning operator. Such operator em-
phasizes the search on sparse areas in objective space, as il-
lustrated in Fig. 2. 

 In MMOPSO, the velocity update formulations are com-
posed by two aspects, i.e., local search and global search, 
which are controlled by a parameter δ. This search pattern is 
totally different from the archive-guided PSO-based search 
method in (5). 

3) Differences between AgMOPSO and BCE-MOEA/D 
 In BCE-MOEA/D, although a further search is also launched 

on the archive (i.e., Pareto Criteria (PC) population in 
BCE-MOEA/D [12]), it behaves differently than the im-
mune-inspired search in AgMOPSO. Both of them are en-
couraged to search the less crowded area, but the individuals 
with different crowding degrees in BCE-MOEA/D are all 
assigned with the same search strength. Whereas, in Ag-
MOPSO, due to the use of the proportional cloning operator, 
the individuals with lower crowding degrees will be allo-
cated with more clones which will result in a stronger search 
bias in that area. 

 In AgMOPSO, the elite archive is exploited to guide the PSO 
swarm for searching; whereas, in BCE-MOEA/D, such in-
formation from the archive is not exploited at all to guide the 
search behavior of the Non-Pareto Criateria (NPC) popula-
tion. 

 The decomposition-based method (i.e., MOEA/D algorithm 
[7]) in BCE-MOEA/D is used to evolve the NPC population 
as replacement will be activated if the new solution is better. 
However, in AgMOPSO, the decomposition-based module 
is only used to select pbest, lbest and gbest from the archive. 

IV. EXPERIMENTAL STUDIES 

A. Test Problems 

Comprehensive and diverse test problems were employed in 
order to assess the performance of AgMOPSO. First, the ZDT 
test problems were adopted. As some complicated features, 
such as variable linkages and objective function modality, are 
absent in the ZDT problems, they are not very challenging for 
most multi-objective algorithms. Thus, two other kinds of more 
difficult MOPs, i.e., the bi-objective WFG and the UF test 
problems were also used in light of their complicated features, 
including convexity, concavity, discontinuity, non-uniformity 
and the existence of many local POFs. To further examine the 

performance of AgMOPSO in tackling MOPs with three ob-
jectives, the DTLZ test problems and UF8-UF10 were used in 
this paper. Moreover, the DTLZ and WFG test problems with 5 
and 10 objectives were also used to further study the scalability 
of AgMOPSO. For ZDT1-ZDT3 and all the UF test problems, 
30 decision variables were used; ZDT4 and ZDT6 were used 
with 10 decision variables; WFG1-WFG9 were used with 
2 ( -1)m  position parameters and 20 distance parameters. For 
details on the ZDT, WFG, UF and DTLZ test problems, please 
refer to [53], [54], [55], and [56], respectively. 

B. Performance Measures 

The goal of MOPs is to find a uniformly distributed set that is 
as close to the true POF as possible. In order to assess the 
performance among different compared algorithms, two per-
formance measures, i.e., inverted generational distance (IGD) 
[57] and hyper-volume (HV) [58] were adopted here. It is be-
lieved that these two performance indicators can not only ac-
count for convergence, but also the distribution of final solu-
tions. The true POFs for computing IGD were downloaded 
from http://jmetal.sourceforge.net/problems.html. The refer-
ence point for HV calculation was set to 1.1 times the nadir 
point of the true POF, i.e., 1.1×(0.5,…,0.5) for DTLZ1, 
1.1×(1.0,…,1.0) for DTLZ2-DTLZ4, 1.1×(1.0,…,1.0, 2.0×m) 
for DTLZ7, 1.1×(1.0,…,1.0,2.0×m) for WFG1-WFG9 (where 
m is the number of objectives). 

C. Experimental Settings 

In the experiments, in order to validate the performance of 
AgMOPSO in a convincing way, it was compared to three 
competitive MOEAs, i.e., NSGA-II [2], EAG-MOEA/D [59], 
BCE-MOEA/D [12], and two current MOPSOs (D2MOPSO 
[20] and MMOPSO [9]). 

To allow a fair comparison, the related parameters in all the 
compared algorithms were set according to their original ref-
erences, as summarized in Table I. In Table I, N denotes the 
population size for all the algorithms; pc and pm are respectively 
the crossover and mutation probabilities; c  and m  are the 
distribution indexes of SBX and PM, respectively. w, c1, c2 are 
the parameters used for the velocity update equations of 
MOPSO algorithms. For EAG-MOEA/D, BCE-MOEA/D and 
AgMOPSO, T defines the size of the neighborhood regarding 
the weight vectors. The decomposition method in (2) is also 
adopted in the original paper of D2MOPSO and MMOPSO. As 
the original EAG-MOEA/D was designed for combinatorial 

TABLE I 
PERAMETERS SETTINGS OF THE COMPARED ALGORITHMS 

Algorithms Parameter settings

NSGA-II 100, 0.9, 1 / , 20, 20
c m c m

N p p n        

EAG-MOEA/D 100, 0.9, 1 / , 20, 20, 20
c m c m

N p p n T        

BCE-MOEA/D
100, 1.0, 1 / , 20, 20, 10

c m c m
N p p n T N      

100 , 3Nnr k   

D2MOPSO 
100, 0.9, 1 / , 20, 20,

c m c m
N p p n      

1 2
[0.1, 0.5], [1.5, 2.0], [1.5, 2.0]w c c    

MMOPSO 
100, 0.9, 1 / , 20, 20,

c m c m
N p p n      

1 2
[0.1, 0.5], [1.5, 2.0], [1.5, 2.0], 0.9w c c      

AgMOPSO 
100, 0.9, 1 / , 20, 20,

c m c m
N p p n      

2[0.1, 0.5], 0.5, 20w F T    
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optimization, the evolutionary operators and decomposition 
method in AgMOPSO were applied to EAG-MOEA/D, to 
make it more effective for continuous optimization and to 
achieve a more fair comparison. 

Please note that the settings of N listed in Table I are only 
applicable for bi-objective test problems. Moreover, N is set to 
105 for three-objective test problems, to 210 for five-objective 
test problems, and to 220 for ten-objective test problems. The 
maximum numbers of function evaluation were set to 250×N 
for ZDT, to 500×N for WFG and DTLZ, and to 3,000×N for UF 
(N is the population size). In general, the size of the external 
archive is set the same as N. All the experiments were inde-
pendently run 30 times. The mean values and the standard 
deviations (std) on IGD and HV were collected in the corre-
sponding tables for performance comparison. Moreover, in 
order to ascertain statistical significances, the Wilcoxon’s rank 
sum test was further performed to examine the statistical sig-
nificance of the difference between the results obtained by 
AgMOPSO and those obtained by the other algorithms at the 
significance level 0.05  . 

D. Comparisons of AgMOPSO with Various Algorithms 

1) Comparisons of AgMOPSO with NSGA-II, EAG-MOEA/D, 
D2MOPSO and MMOPSO 

Please note that all the compared algorithms use the same 
crowding distance method [2] to estimate their crowding status 
among the solutions and adopt the same archive update method 

(Algorithm 4), in order to allow a fair comparison. This pop-
ulation update method [52] is an improved version of the ap-
proach in NSGA-II to prune the non-dominated solutions and is 
also used in the original implementation of D2MOPSO and 
MMOPSO. 

Table II lists the mean and standard deviation (std) results of 
all the algorithms on the 31 test problems in terms of IGD. The 
best result obtained for each test problem was marked with 
boldface. As observed from Table II, AgMOPSO performs the 
best and presents a clear advantage over the other four algo-
rithms on the majority of the test instances. More specifically, 
AgMOPSO obtains the best IGD results on 17 out of 31 test 
instances. The proportions of the test instances on which 
AgMOPSO performs better than NSGA-II, EAG-MOEA/D, 
D2MOPSO and MMOPSO are 22/31, 22/31, 26/31 and 22/31, 
respectively. Conversely, the proportions on which AgMOPSO 
is defeated by the peer algorithms are 5/31, 5/31, 3/31 and 2/31, 
respectively for NSGA-II, EAG-MOEA/D, D2MOPSO and 
MMOPSO. Especially, D2MOPSO shows poor performance on 
the test MOPs with many local POFs, such as ZDT4, DTLZ1 
and DTLZ3. This is mainly because D2MOPSO only performs 
the PSO search method, which may easily fall into local optima. 
MMOPSO and AgMOPSO can overcome this shortcoming by 
further evolving the archive using other search patterns, and 
AgMOPSO performs even better with the use of immune-based 
evolutionary strategy. For DTLZ5 and DTLZ6 which have a 
degenerated curve, EAG-MOEA/D, MMOPSO and Ag-

TABLE II 
PERFORMANCE COMPARISONS OF IGD VALUES 

Problems NSGA-II EAG-MOEA/D D2MOPSO MMOPSO AgMOPSO
ZDT1 4.976E3 (1.73E4)  3.757E3 (1.02E4)  1.038E2 (6.07E3)  3.936E3 (4.56E5)  3.701E3 (2.83E5)
ZDT2 5.102E3 (1.79E4)  2.113E2 (8.19E2)  4.904E1 (2.45E1)  2.414E2 (1.11E1)  3.828E3 (3.15E5)
ZDT3 6.408E3 (5.41E3)  3.142E2 (3.73E2)  1.404E2 (4.34E3)  4.413E3 (4.28E5)  4.367E3 (5.23E5)
ZDT4 7.654E3 (2.45E3) + 2.357E2 (3.18E2)  3.203E+0 (2.06E+0)  2.342E2 (4.42E2)  7.942E3 (2.23E2)
ZDT6 9.088E3 (1.00E3)  3.132E3 (2.13E4)  1.423E2 (8.14E3)  3.635E3 (2.31E4)  2.997E3 (9.51E5)
WFG1 7.374E1 (2.75E1)  5.039E1 (9.55E2)  9.037E1 (6.57E2)  3.652E1 (3.72E2)  3.261E1 (6.38E2)
WFG2 7.628E2 (3.08E2)  9.998E2 (7.85E2)  1.130E1 (4.84E2)  4.645E2 (2.71E2)  1.363E2 (5.34E3)
WFG3 3.930E1 (3.62E3)  3.861E1 (7.74E4)  3.874E1 (1.93E3)  3.848E1 (8.47E4)  3.841E1 (3.75E4)
WFG4 1.753E2 (1.27E3)  3.279E2 (6.38E3)  4.818E2 (7.57E3)  1.455E2 (1.52E3)  1.369E2 (1.13E3)
WFG5 6.963E2 (5.84E4)  6.649E2 (5.96E4) + 6.889E2 (3.13E4)  6.696E2 (1.47E4)  6.650E2 (5.98E5)
WFG6 6.270E2 (9.08E3) ≈ 5.528E2 (2.80E2) ≈ 4.527E2 (1.18E2) ≈ 4.702E2 (1.12E2) ≈ 6.987E2 (4.16E2)
WFG7 1.795E2 (1.70E3)  1.303E2 (2.91E4)  1.280E2 (1.87E4)  1.216E2 (1.57E4) ≈ 1.214E2 (1.65E4)
WFG8 1.161E1 (4.31E3)  1.040E1 (4.52E3) + 1.285E1 (7.94E3)  1.125E1 (4.87E3) ≈ 1.116E1 (3.41E3)
WFG9 9.916E2 (4.59E2) + 7.401E2 (4.86E2) + 1.220E1 (1.50E2)  1.171E1 (2.71E2)  1.137E1 (3.18E2)
UF1 7.872E2 (2.12E2)  1.936E1 (1.26E1)  8.940E2 (1.64E3)  3.349E2 (5.01E3)  1.018E2 (9.48E4)
UF2 3.264E2 (7.26E3)  8.008E2 (3.96E2)  5.547E2 (1.28E2)  1.205E2 (1.23E3)  1.063E2 (9.46E4)
UF3 1.588E1 (3.41E2)  3.069E1 (2.66E2)  3.240E1 (1.18E2)  2.767E1 (3.80E2)  4.188E2 (1.39E2)
UF4 4.561E2 (7.75E4)  6.419E2 (3.21E3)  8.230E2 (8.42E3)  4.184E2 (1.56E3) + 4.410E2 (2.96E3)
UF5 2.454E1 (6.11E2) ≈ 4.667E1 (1.12E1)  4.627E1 (1.94E1)  4.809E1 (2.43E1)  2.839E1 (1.07E1)
UF6 2.377E1 (6.86E2) ≈ 5.494E1 (1.19E1)  1.574E1 (1.16E1) + 3.932E1 (2.00E1) ≈ 3.334E1 (1.84E1)
UF7 1.341E1 (1.48E1)  4.156E1 (1.77E1)  4.057E2 (5.01E4) + 1.244E1 (1.81E1)  4.937E2 (1.51E1)
UF8 1.905E1 (6.03E2)  3.244E1 (2.26E1)  1.388E1 (3.98E3)  2.223E1 (6.75E2)  1.115E1 (3.55E2)
UF9 2.589E1 (8.13E2) ≈ 2.210E1 (2.48E2) ≈ 1.447E1 (4.17E2) + 2.379E1 (3.89E2) ≈ 2.742E1 (8.91E2)

UF10 5.098E1 (1.50E1) + 4.612E1 (1.22E1) + 7.078E1 (2.22E1) ≈ 5.201E1 (1.47E1) + 6.104E1 (1.86E1)
DTLZ1 2.544E2 (3.02E3)  2.582E2 (3.14E3)  1.515E+0 (2.22E+0)  2.754E2 (2.56E2)  2.183E2 (5.60E4)
DTLZ2 6.725E2 (2.74E3)  5.930E2 (1.73E3)  6.078E2 (1.53E3)  6.354E2 (1.82E3)  5.133E2 (2.50E4)
DTLZ3 1.525E1 (2.52E1) + 1.505E1 (1.78E1) + 4.505E+1 (2.49E+1)  1.929E+0 (1.61E+0)  3.619E1 (5.79E1)
DTLZ4 6.181E2 (6.24E3)  1.872E1 (1.47E1)  6.261E2 (3.36E3)  6.325E2 (4.55E3)  3.304E2 (4.63E4)
DTLZ5 5.217E3 (2.69E4)  3.876E3 (8.97E5) ≈ 6.072E3 (1.12E3)  3.825E3 (9.45E5) ≈ 3.868E3 (8.12E5)
DTLZ6 1.733E2 (1.38E2)  3.730E3 (1.05E4) ≈ 1.392E2 (2.06E3)  3.756E3 (1.57E4)  3.670E3 (1.27E4)
DTLZ7 7.405E2 (3.00E3) + 4.100E1 (2.49E1)  8.312E2 (5.29E3)  7.712E2 (4.40E3) ≈ 7.846E2 (5.48E3)
+//≈ 5/22/4 5/22/4 3/26/2 2/22/7 //

“+” indicates that the peer algorithm significantly improves AgMOPSO at a 0.05 level by the Wilcoxon’s rank sum test, where “” indicates the op-
posite, i.e., AgMOPSO shows significant improvements over the peer algorithm. If no significant difference is detected, it will be marked by the symbol 
“≈”. They have the same meanings in other tables. 
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MOPSO show a similar performance and are able to find good 
approximations of true POF as their corresponding mean values 
of IGD are under an accuracy level of 10-3. 

The HV results of all the 31 test problems are provided in 
Table S-I of the supplementary file. Similar observations from 
the IGD results can be found in the HV results. AgMOPSO also 
performs best on most of test instances, such as ZDT1-ZDT4, 
ZDT6, WFG1-WFG5, WFG7, UF1-UF3, UF8, DTLZ1, 
DTLZ2, DTLZ4 and DTLZ7. As indicated in the last row of 
Table S-I, the proportions on which AgMOPSO performs better 
than or similarly to NSGA-II, EAG-MOEA/D, D2MOPSO and 
MMOPSO, are 27/31, 26/31, 29/31 and 29/31, respectively. 

Based on these IGD and HV comparison results, it is suffi-
cient to conclude that AgMOPSO shows a better performance 
than NSGA-II, EAG-MOEA/D, D2MOPSO and MMOPSO on 
solving these test instances. 
2) Comparison of AgMOPSO with BCE-MOEA/D 

As BCE-MOEA/D also combines Pareto dominance and 
decomposition approach to keep the archive and the NPC 
population, it is also compared to AgMOPSO for solving dif-
ferent test MOPs with various objectives. The main differences 
of AgMOPSO and BCE-MOEA/D were clarified in Section 
III-F. As studied in [60], the performance of the compared 
algorithms will be significantly different when different density 
estimators are used. For this consideration, we use the same 
density estimator with BCE-MOEA/D in order to have a fair 
comparison, and this variant is called AgMOPSO-niche. 

Table III presents their performance comparisons in terms of 
HV, when tackling ZDT, WFG, UF and DTLZ test problems 
with different numbers of objectives. The best mean result of 
each problem was highlighted in boldface. As observed from 
Table III, AgMOPSO-niche obtains a better performance in 47 
out of 63 test instances. According to the Wilcoxon’s rank sum 
test, AgMOPSO-niche performs similarly to BCE-MOEA/D on 
10 test instances. For the simple ZDT and the more complicated 
WFG test problems with two objectives, AgMOPSO-niche is 
found to have a significantly better performance, which is 
mainly brought by the use of immune-inspired evolutionary 
strategy, as this approach is more effective on simple MOPs 
without variable dependence [25]. Regarding UF1-UF7 with 
complicated POS, AgMOPSO-niche also shows a superior 
performance as it performs better than BCE-MOEA/D on 
UF1-UF3, UF7 and similarly to BCE-MOEA/D on UF4-UF6. 
This is mainly due to the use of archive-guided PSO search 
approach, in which each particle is used to optimize one par-
ticular subproblem as guided by the elitist individuals from the 
external archive. About the test MOPs with more than three 
objectives, AgMOPSO also performs better on most cases, 
while BCE-MOEA/D is only better on UF9 and DTLZ1 with 
three objectives, on DTLZ2 and WFG5 with five objectives, 
and on DTLZ3, WFG2, WFG4, WFG5 and WFG8 with ten 
objectives. In summary, as observed from the last row of Table 
IV, AgMOPSO performs better or similarly to BCE-MOEA/D 
on 53 out of 63 test instances. Conversely, AgMOPSO-niche is 
only defeated by BCE-MOEA/D on 10 test instances. From the 
above discussion, it is reasonable to conclude that AgMOPSO 

also shows a superior performance over BCE-MOEA/D on 
tackling most of test instances adopted. 

TABLE III 
PERFORMANCE COMPARISONS OF AgMOPSO AND BCE-MOEA/D 

m Problems BCE-MOEA/D AgMOPSO-niche

2 

ZDT1 0.91458 (1.56E4)  0.91545 (2.34E5)
ZDT2 0.83077 (4.75E4)  0.83212 (2.66E5)
ZDT3 1.19957 (1.68E2)  1.20378 (2.57E5)
ZDT4 0.91047 (2.71E3) + 0.90751 (2.31E2)
ZDT6 0.75305 (1.10E3)  0.76048 (2.15E6)
WFG1 0.45826 (2.96E2)  0.70446 (1.54E2)
WFG2 0.70700 (9.96E3)  0.76172 (3.22E3)
WFG3 0.72582 (9.25E4)  0.72955 (2.03E4)
WFG4 0.57487 (8.60E4)  0.57719 (4.09E4)
WFG5 0.54157 (3.95E4)  0.54729 (2.72E3)
WFG6 0.54877 (6.22E3)  0.56085 (1.49E2)
WFG7 0.57644 (6.29E4)  0.57866 (6.77E5)
WFG8 0.51485 (1.77E3)  0.53656 (1.51E3)
WFG9 0.53712 (1.82E2) ≈ 0.51911 (1.11E2)
UF1 0.85045 (2.78E2)  0.91238 (1.02E3)
UF2 0.88492 (1.74E2)  0.91128 (2.08E3)
UF3 0.67227 (3.42E2)  0.90348 (6.38E3)
UF4 0.80477 (1.72E3) ≈ 0.80415 (1.37E3)
UF5 0.62667 (8.32E2) ≈ 0.64143 (9.17E2)
UF6 0.64205 (6.96E2) ≈ 0.61528 (9.89E2)
UF7 0.71026 (1.13E1)  0.86556 (5.83E3)

3 

UF8 0.86635 (4.95E2)  0.88000 (4.63E2)
UF9 0.89719 (3.45E2) + 0.87667 (3.05E2)
UF10 0.60713 (1.39E1) ≈ 0.56462 (1.46E1)

DTLZ1 0.97381 (2.85E4) + 0.97380 (6.49E5)
DTLZ2 0.92635 (7.35E4)  0.92678 (1.56E4)
DTLZ3 0.88568 (1.72E1) ≈ 0.64348 (3.42E1)
DTLZ4 0.92609 (8.45E4)  0.92689 (1.31E4)
DTLZ5 0.76271 (2.18E4)  0.76288 (2.75E5)
DTLZ6 0.73989 (8.19E3)  0.76297 (1.01E5)
DTLZ7 0.47884 (3.31E3)  0.48081 (6.04E4)

5 

DTLZ1 0.00740 (4.05E2)  0.97302 (1.20E3)
DTLZ2 0.80205 (3.40E3) + 0.76888 (3.71E3)
DTLZ3 0.00000 (0.00E+0) ≈ 0.03290 (1.25E1)
DTLZ4 0.77906 (1.06E2) ≈ 0.77896 (3.57E3)
DTLZ5 0.19217 (2.94E2)  0.21185 (8.69E3)
DTLZ6 0.05154 (3.62E2)  0.22608 (9.22E3)
DTLZ7 0.70153 (3.31E3)  0.70378 (1.72E3)
WFG1 0.36437 (1.30E2)  0.47102 (3.48E2)
WFG2 0.93324 (8.53E2)  0.98602 (2.97E3)
WFG3 0.58887 (2.78E2)  0.60791 (1.88E2)
WFG4 0.72162 (1.18E2)  0.75320 (9.51E3)
WFG5 0.71482 (5.39E3) + 0.70759 (8.07E3)
WFG6 0.68672 (2.07E2)  0.70225 (4.53E3)
WFG7 0.74102 (1.36E2)  0.77542 (4.69E3)
WFG8 0.58781 (1.52E2)  0.63144 (8.64E3)
WFG9 0.60360 (1.15E2) ≈ 0.60888 (1.55E2)

10 

DTLZ1 0.21092 (3.97E1)  0.82372 (2.00E1)
DTLZ2 1.00000 (3.12E8)  1.0000 (4.72E15)
DTLZ3 0.21042 (3.93E1)  0.0000 (0.00E+0)
DTLZ4 0.99996 (1.58E4)  1.0000 (2.55E15)
DTLZ5 0.95551 (3.53E2)  0.99722 (5.46E4)
DTLZ6 0.90823 (8.48E-2)  0.99687 (8.12E-4)
DTLZ7 0.59510 (9.04E-3)  0.61304 (2.23E-2)
WFG1 0.30804 (1.14E-2)  0.46823 (3.76E-2)
WFG2 0.98096 (3.72E-2) + 0.97673 (1.36E-2)
WFG3 0.45915 (9.84E-2)  0.56517 (3.05E-2)
WFG4 0.77387 (2.44E-2) + 0.74334 (4.48E-2)
WFG5 0.79392 (1.42E-2) + 0.60060 (2.86E-2)
WFG6 0.68492 (3.33E-2)  0.82041 (3.98E-3)
WFG7 0.85337 (2.12E-2)  0.88458 (1.43E-2)
WFG8 0.66419 (3.58E-2) + 0.61088 (3.38E-2)
WFG9 0.52131 (5.40E-2) ≈ 0.53882 (6.14E-2)

+//≈ 10/43/10 //
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E. Effectiveness of the proposed approaches 

There are two search modules used in AgMOPSO, such as 
immune-based evolutionary search and PSO-based search. In 
order to study their effectiveness, AgMOPSO was further 
compared to two variants of AgMOPSO, i.e., AgMOPSO-I and 
AgMOPSO-II. AgMOPSO-I only runs the PSO-based search 
on the particle swarm as shown in Fig 3 (a), while AgMOP-
SO-II only uses the immune-based evolutionary search on the 
external archive as shown in Fig. 3 (b).  

The IGD comparison results of AgMOPSO-I, AgMOPSO-II 
and AgMOPSO on all the 31 test problems are listed in Table 
IV. As observed from Table IV, AgMOPSO performs best on 
21 out of 31 test problems regarding IGD when compared to 
AgMOPSO-I and AgMOPSO-II. The Wilcoxon’s rank sum test 
results also reveals that AgMOPSO obtains better IGD results 
than AgMOPSO-I and AgMOPSO-II on 30 and 21 test prob-
lems, respectively. Moreover, AgMOPSO performs similarly 
to AgMOPSO-I on 1 test problem and to AgMOPSO-II on 7 
test problems. In other words, AgMOPSO performs better than 
or similarly to AgMOPSO-I and AgMOPSO-II on 31 and 28 
out of 31 test problems regarding IGD. These experimental 
results clearly justify the usefulness of the evolution on the 
external archive as well as the effectiveness of the ar-
chive-guided PSO search in AgMOPSO. 

As observed from Table IV, the performance of AgMOP-
SO-I seems very poor when compared to AgMOPSO. This is 
mainly because the proposed PSO-based search has to be 
driven by the elite individuals from external archive. When the 
archive cannot provide the guiding particles with good diver-
sity and good convergence, the performance of PSO-based 
search in (5) won’t work well. AgMOPSO-I may search for 
some undesirable sub-problems, as the archive didn’t provide 
good leader information for the particle swarm. Especially for 
the problems with many local POFs, such as ZDT4, DTLZ1, 
DTLZ3, AgMOPSO-I is unable to jump out from the local 
optimal only using PSO-based search, and this leads to a pretty 
poor performance on these test problems. Due to the use of 
immune-based evolutionary search, AgMOPSO-II focuses on 
the sparse area, which helps to keep the archive with good 
properties of convergence and diversity. From the above dis-
cussion, it is concluded that the two search modules compen-
sate each other and get better performance when they are 
evolved cooperatively. Actually, the immune-based evolu-
tionary search is a general evolutionary module that can also 
enhance the performance of other multiobjective metaheuristic 

algorithms, as supported by the experiments in Section II of the 
supplementary file. 

F. Comparison of Running Times 

In order to evaluate the computational efficiency of the 
compared algorithms, the actual running time (in seconds: s) on 
the WFG1-WFG9 test problems was recorded in Fig. 4. Please 
note that all the compared algorithms were implemented in Sun 
JAVA using a personal computer with an i7-6700 CPU running 
at 3.40GHz (processor) and 20.0 GB in RAM. Clearly, 
D2MOPSO consumes significantly more time than the other 
competitors, as its leaders archive is updated based on the 
crowding distances on both decision and objective spaces. 
Therefore, the running time of D2MOPSO is greatly lengthened 
as the number of variables in the WFG test problems is 24, 
which is significantly larger than the number of objectives. For 

TABLE IV 
PERFORMANCE COMPARISONS OF AgMOPSO AND TWO VARIANTS 

Problems AgMOPSO-I AgMOPSO-II AgMOPSO
ZDT1 6.47E1 (2.5E1)  4.01E3 (2.9E4)  3.70E3 (2.8E5)
ZDT2 2.22E+0 (7.4E1)  4.05E3 (1.6E4)  3.82E3 (3.1E5)
ZDT3 5.52E1 (1.9E1)  4.41E3 (4.6E5)  4.36E3 (5.2E5)
ZDT4 3.60E+1 (1.2E+1)  1.04E2 (2.3E2)  7.94E3 (2.2E2)
ZDT6 6.69E1 (1.7E+0)  3.00E3 (1.0E4) ≈ 2.99E3 (9.5E5)
WFG1 1.23E+0 (1.2E2)  4.96E1 (1.4E1)  3.26E1 (6.3E2)
WFG2 2.92E1 (6.3E2)  9.81E2 (4.4E2)  1.36E2 (5.3E3)
WFG3 5.51E1 (9.0E2)  3.97E1 (1.0E2)  3.84E1 (3.7E4)
WFG4 1.22E1 (1.3E2)  1.12E2 (2.8E4) + 1.36E2 (1.1E3)
WFG5 6.76E2 (2.0E3)  6.64E2 (3.8E4) ≈ 6.65E2 (5.9E5)
WFG6 1.32E1 (1.5E1)  6.04E2 (1.3E2) ≈ 6.98E2 (4.1E2)
WFG7 1.30E1 (2.5E2)  1.22E2 (2.0E4) ≈ 1.21E2 (1.6E4)
WFG8 3.16E1 (2.8E2)  1.14E1 (5.2E3)  1.11E1 (3.4E3)
WFG9 1.22E1 (8.0E3) ≈ 1.04E1 (4.0E2) + 1.13E1 (3.1E2)
UF1 3.03E1 (9.1E2)  6.37E2 (4.2E2)  1.01E2 (9.4E4)
UF2 1.29E1 (1.9E2)  2.82E2 (1.5E2)  1.06E2 (9.4E4)
UF3 5.61E1 (4.0E2)  1.85E1 (5.1E2)  4.18E2 (1.3E2)
UF4 8.20E2 (1.0E2)  4.97E2 (3.7E3)  4.41E2 (2.9E3)
UF5 3.13E+0 (4.5E1)  2.80E1 (1.1E1) ≈ 2.83E1 (1.0E1)
UF6 1.25E+0 (2.4E1)  4.43E1 (1.8E1)  3.33E1 (1.8E1)
UF7 3.82E1 (1.9E1)  1.58E1 (1.9E1)  4.93E2 (1.5E1)
UF8 4.42E1 (1.4E1)  1.97E1 (4.5E2)  1.11E1 (3.5E2)
UF9 5.50E1 (9.5E2)  3.22E1 (7.1E2)  2.74E1 (8.9E2)

UF10 4.47E+0 (1.0E+0)  7.67E1 (1.8E1)  6.10E1 (1.8E1)
DTLZ1 1.23E+1 (6.9E+0)  2.62E2 (2.6E3)  2.18E2 (5.6E4)
DTLZ2 6.45E2 (2.0E3)  6.78E2 (3.7E3)  5.13E2 (2.5E4)
DTLZ3 8.24E+1 (4.0E+1)  1.12E1 (1.7E1) + 3.61E1 (5.7E1)
DTLZ4 7.50E2 (2.3E2)  7.44E2 (6.5E2)  3.30E2 (4.6E4)
DTLZ5 5.11E3 (1.4E3)  3.89E3 (9.6E5) ≈ 3.86E3 (8.1E5)
DTLZ6 4.42E1 (6.7E1)  7.48E2 (3.3E2)  3.67E3 (1.2E4)
DTLZ7 1.10E+0 (8.8E1)  7.99E2 (4.8E3) ≈ 7.84E2 (5.4E3)
+//≈ 0/30/1 3/21/7 //

 
Fig. 3 Two variants of AgMOPSO 
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Fig. 4 The running times of all the compared algorithms on WFG test problems
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NSGA-II, EAG-MOEA/D, MMOPSO and AgMOPSO, they 
show similar running times, as they all adopt the same archive 
updated method, which is the main factor affecting the running 
time. 

G. More discussions about AgMOPSO 

Due to page limitations, further discussions were provided in 
the supplementary file of this paper, in order to further study the 
performance of AgMOPSO on many-objective optimization 
problems, the effectiveness of the immune-based evolutionary 
search and the cloning operator, and the parameter sensitivity 
analysis of AgMOPSO on T, w, and F. 

V. HANDLING CONSTRAINTS 

After demonstrating the superiority of AgMOPSO for solv-
ing unconstrained MOPs (i.e., only with box constraints on 
decision variables), this section extends AgMOPSO (denoted 
as C-AgMOPSO) to solve constrained MOPs. 

In case of the presence of infeasible solutions, some modi-
fications are suggested to the archive update procedure of 
AgMOPSO, which is aimed to give more emphasis on feasible 
solutions. The other components of AgMOPSO keep un-
touched, as introduced in Algorithm 5. An individual with a 
lower constraint violation value is considered first and the 
population diversity should be maintained at the same time. 

A. Modifications on the Archive Update Procedure 

As suggested in [61], the constraint violation value of a so-
lution x, denoted as CV(x), is calculated by the following form. 

 
1 1

( ) ( ) ( )
J K

j k
j k

CV x g x h x
 

     (7) 

where the bracket operator   returns the absolute value of 
  if 0  , and returns 0 otherwise. It is obvious that a 
smaller value of CV(x) indicates the better quality of x, and a 
feasible solution x always has a CV(x) value as 0. 

The pseudo-code of this modified archive update procedure 
is given in Algorithm 6. At first, the archive A and the off-
spring population S are combined (in line 1). Then, the feasible 
and infeasible solutions in the union population are identified 
(in lines 3-9). If the number of feasible solutions is larger than 
N, the update procedure is the same as Algorithm 4 (in line 11). 
Otherwise, the feasible solutions are added to the archive first 
(in lines 13-15) and then the infeasible solutions are sorted in 
descending order according to the CV values using (7). The 
corresponding subproblem k nearest to the individual with the 
lowest CV value is found. If this subproblem k is not marked, 
this solution is added to the archive and the subproblem k is also 
marked. This procedure will go on until the archive size reaches 
N (in lines 17-25). Please note that when evaluating the quality 
of infeasible solutions, its constraint violation value and the 
population diversity in the archive are simultaneously consid-
ered in Algorithm 6. 

B. Experiments 

In order to validate the performance of C-AgMOPSO in 
solving constrained MOPs, C-AgMOPSO was further com-
pared to C-MOEA/DD [11] on tackling 14 benchmark con-

strained MOPs, including 10 CF problems proposed in the CEC 
2009 test suite [55] and 4 constrained test instances in [61] 
(C1-DTLZ1, C2-DTLZ2, C3-DTLZ1 and C3-DTLZ4). The 
population size was set to 100 for the bi-objective test problems 
and to 105 for the three-objective ones. The maximum numbers 
of generation were set to 3000 for the CF problems and to 500 
for the constrained DTLZ problems. The reference points for 
HV are set to 1.1 times the nadir points of the true POFs, i.e. 
1.1×(0.5,…,0.5) for C1_DTLZ1, 1.1×(1.0,…,1.0) for 
CF1-CF10, C2_DTLZ2, C3_DTLZ1, and 1.1×(2.0,…,2.0) for 
C3-DTLZ4. Other parameters settings were set the same as 
introduced in Section IV-C. 
1) Comparison of C-AgMOPSO and C-MOEA/DD 

Table V shows the HV results obtained from 30 independent 
runs on 14 test instances. The better results were marked with 
boldface. These statistical results were obtained based on fea-
sible non-dominated solutions that dominate the reference point 
for each problem. As observed from Table V, C-AgMOPSO 
significantly outperforms C-MOEA/DD on two-objective 

TABLE V 
COMPARISON RESULTS ON CONSTRAINED TEST PROBLEMS 

Problems C-MOEA/DD C-AgMOPSO
CF1 0.84031 (4.25E3)  0.86803 (1.46E4)
CF2 0.60237 (1.34E1)  0.90273 (7.92E5)
CF3 0.49492 (5.27E2)  0.59908 (1.06E1)
CF4 0.71891 (5.26E2)  0.78686 (6.98E2)
CF5 0.54987 (4.39E2)  0.61858 (4.46E2)
CF6 0.83861 (3.19E2)  0.88888 (1.76E2)
CF7 0.63973 (1.04E1)  0.70051 (5.19E2)
CF8 0.82826 (4.62E1)  0.85325 (1.63E1)
CF9 0.90171 (4.89E3)  0.91671 (2.99E3)
CF10 0.43362 (8.12E2)  0.17342 (3.23E1)

C1-DTLZ1 0.97030 (2.84E3)  0.97231 (3.07E3)
C2-DTLZ2 0.91883 (1.17E3)  0.91979 (2.86E4)
C3-DTLZ1 0.97621 (2.20E3) ≈ 0.97608 (1.83E3)
C3-DTLZ4 0.91971 (1.34E4) + 0.91839 (1.24E4)

+//≈ 2/11/1 

Algorithm 6: A = Archive_Update_Constraint(S, A)
1 U A S 
2 I={}, O={}
3 for each x U
4   if CV(x) > 0 // x is infeasible solution 
5       I I x   
6  else
7     O O x 
8  end if
9 end for
10 if |O| > N
11    Archive_Update(O, A); // use O to update A (Algorithm 4) 
12 else
13   for i=1 to |O| // add the feasible solutions 
14      add Oi to A
15   end for
16   sort I in descending order according to CV 
17    while (|A| < N)    //add the infeasible solutions 
18     for i=1 to |I|
19        find the subproblem k that is nearest to I(i)
20         if subproblem k is not marked 
21            add I(i) to A
22         end if
23          mark subproblem k 
24      end for
25   end while
26 end if
25 return A
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constrained test instances (CF1-CF7). Moreover, for the 
three-objective constrained test instances, C-MOEA/DD per-
forms better only on CF10 and C3-DTLZ4, while 
C-AgMOPSO performs better on CF8, CF9, C1-DTLZ1 and 
C2-DTLZ2. For C3-DTLZ1, C-AgMOPSO and C-MOEA/DD 
shows statistically similar performance. From the last row in 
Table V, C-AgMOPSO performs better than C-MOEA/DD on 
10 out of 14 test instances. Therefore, it is concluded that 
C-AgMOPSO presents some advantages over C-MOEA/DD in 
solving these constrained test problems.  

To visually show the performance, the best final solution sets 
obtained by C-MOEA/DD and C-AgMOPSO on CF1-CF6, and 
C1-DTLZ1, C2-DTLZ2, C3-DTLZ1, and C3-DTLZ4 were 
plotted in Fig. S-1 of the supplementary file. 
2) Further study on tackling a real world problem 

Here, a real world engineering problem (car side-impact 
problem [61]) was also included to validate the performance of 
AgMOPSO. This problem has three objectives and ten con-
straints, which aims at minimizing the weight of a car and 
simultaneously minimizing the public force experienced by a 
passenger and the average velocity of the V-Pillar responsibil-
ity for withstanding the impact load. More details about this 
problem can be found in [61]. 

For this problem, the population size N was set to 210 and the 
maximum number of generation was set to 2000. All other 
experimental configurations were set the same as introduced in 
Section III-C. Fig. 5 illustrates the final solutions obtained by 
C-AgMOPSO, where the generated approximated POF using 
the classical generative procedure (i.e., the fmincon function in 
MATLAB) is marked with small circles while the approxi-
mated POF obtained by C-AgMOPSO is identified with bigger 
circles. Apparently, as observed from Fig. 5, all the points 
found by C-AgMOPSO are uniformly distributed over the 
entire surface formed by the classical generative procedure. To 
investigate the closeness of our found solutions with that ob-
tained by the classical generative procedure, the convergence 
metric (i.e., the average distance from our points to that found 
by the classical generative procedure) is computed and its value 
is 3.59×10-3. This value is very small and it clearly indicates 
that the solutions obtained by C-AgMOPSO can closely ap-
proach the approximated POF of this problem. Moreover, the 
spread of solutions is also demonstrated visually in Fig. 5. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, a novel MOPSO algorithm with an ar-
chive-guided velocity update method was presented, which is 
based on a decomposition approach to transform MOPs into a 
set of aggregated sub-problems. The pbest, lbest and gbest 
particles are all properly selected from the external archive. 
Additionally, an immune-based evolutionary strategy is further 
applied on some individuals that are selected from the external 
archive for being located in sparse areas of the search space. 
The evolution on the external archive was verified to promote 
the convergence speed and keep the diversity, which can help to 
guide the swarm to do the PSO-based search. In this way, the 
performance of AgMOPSO was enhanced to enable it tackle 
various types of MOPs. The effectiveness of the proposed 
immune-based search and archive-guided PSO search ap-
proaches was also justified by experimental results. When 
compared to three state-of-the-art MOEAs and two competitive 
MOPSOs, our experimental results confirmed that AgMOPSO 
showed a competitive performance in solving most of the test 
problems adopted. Moreover, the extensions of AgMOPSO to 
solve constrained optimization problems, many-objective op-
timization problems, and a real world engineering problem 
were also conducted in this paper to show its potential in tack-
ling different types of optimization problems. 

As part of our future work, the performance of AgMOPSO in 
tackling many-objective optimization problems will be further 
studied and the applications of AgMOPSO for more practical 
problems will also be studied. 
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