
 1

Abstract— The selection of swarm leaders (i.e., the personal

best and global best), is important in the design of a mul-
ti-objective particle swarm optimization (MOPSO) algorithm.
Such leaders are expected to effectively guide the swarm to ap-
proach the true Pareto optimal front. In this paper, we present a
novel external archive-guided MOPSO algorithm (AgMOPSO),
where the leaders for velocity update are all selected from the
external archive. In our algorithm, multi-objective optimization
problems (MOPs) are transformed into a set of sub-problems
using a decomposition approach, and then each particle is as-
signed accordingly to optimize each sub-problem. A novel ar-
chive-guided velocity update method is designed to guide the
swarm for exploration, and the external archive is also evolved
using an immune-based evolutionary strategy. These proposed
approaches speed up the convergence of AgMOPSO. The exper-
imental results fully demonstrate the superiority of our proposed
AgMOPSO in solving most of the test problems adopted, in terms
of two commonly used performance measures. Moreover, the
effectiveness of our proposed archive-guided velocity update
method and immune-based evolutionary strategy is also experi-
mentally validated on more than thirty test MOPs.

Index Terms—Particle swarm optimization, multi-objective
optimization problems, evolutionary algorithm

I. INTRODUCTION

N many real-world engineering applications, we normally
face problems in which we aim to simultaneously optimize

multiple (possibly conflicting) objectives [1]. They are termed
multi-objective optimization problems (MOPs). Due to the
natural conflicts arising among the objectives, the improvement
of one objective may deteriorate the others. As a consequence,
a set of trade-off solutions is generated (i.e., solutions in which
it is not possible to improve one objective without worsening
another). This is called the Pareto Optimal Set (POS) and their
corresponding mapping in objective space is termed Pareto
Optimal Front (POF). In order to provide solutions that are of

This work was supported by the National Natural Science Foundation of

China under Grant 61402291, and CONACyT grant no. 221551.
Q.L. Zhu, Q.Z. Lin, and J.Y. Chen are with the College of Computer Science

and Software Engineering, Shenzhen University, Shenzhen, 518060 China
(e-mail of Qiuzhen Lin: qiuzhlin@szu.edu.cn)

W.N. Chen and J. Zhang are with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510006,
China.

K.-C. Wong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

C.A. Coello Coello is with the Department of Computer Science,
CINVESTAV-IPN (Evolutionary Computation Group), México, D.F. 07300,
MÉXICO.

practical use, it is desirable to obtain a set of uniformly dis-
tributed solutions that are as close as possible to the true POF.

Multi-objective evolutionary algorithms (MOEAs) have
been substantially studied to tackle MOPs in recent years. They
have been found to provide a very promising performance in
solving different types of MOPs [2]-[12]. Based on the selec-
tion mechanisms they adopt, most of the existing MOEAs can
be classified into the following three classes. The first class
consists of Pareto-based MOEAs, which incorporate the Pareto
optimality concept into their selection process. Two repre-
sentative MOEAs are NSGA-II [2] and SPEA2 [3]. The second
class consists of indicator-based MOEAs, which use a perfor-
mance indicator (e.g., hypervolume [4]) as their density esti-
mator to guide the search. Two MOEAs that are representative
of this category are IBEA [5] and SMS-EMOA [6]. The last
class consists of decomposition-based MOEAs, which trans-
form an MOP into a set of sub-problems and then optimize
them in a collaborative manner. Approaches in this category
include MOEA/D [7] and MOEA/D-IR [8]. More recently,
some hybridized algorithms based on both Pareto dominance
and decomposition approach have also been proposed, such as
MMOPSO [9], ND/DPP [10], MOEA/DD [11] and BCE [12].
A survey of decomposition-based MOEAs recently published
can be found in [13].

Particle swarm optimization (PSO) has also been studied to
tackle MOPs in recent years. Almost all types of PSO ap-
proaches are designed by mimicking the social cooperative and
competitive behavior of bird flocking and fish schooling [14].
In its origins, PSO was mostly applied to solve single-objective
optimization problems (SOPs), due to its fast convergence
speed and easy implementation [15] [16]. The promising results
of PSO in solving SOPs validated its effectiveness and effi-
ciency of locating the optima, especially in a large and complex
problem landscape. This also motivated researchers to extend
PSO for tackling MOPs. However, when designing a mul-
ti-objective PSO (MOPSO) algorithm, there are two particular
issues to be addressed.

The first issue is the selection of the global best (gbest) and
the personal best (pbest) in an MOPSO algorithm. This is
mainly due to the fact that, no a single best solution but rather a
set of Pareto optimal solutions exist in tackling MOPs. In sin-
gle-objective PSO (SOPSO), the swarm leaders (i.e., gbest and
pbest) can be easily marked, since gbest and pbest are the best
values respectively visited by the entire swarm and each parti-
cle so far. However, in an MOPSO algorithm, multiple candi-
dates (i.e., all the nondominated solutions) can be nominated as
gbest and pbest. As the search direction of each particle is

An External Archive-Guided Multi-objective
Particle Swarm Optimization Algorithm

Qingling Zhu, Qiuzhen Lin, Weineng Chen, Member, IEEE, Ka-Chun Wong, Carlos A. Coello Coello,
Fellow, IEEE, Jianyong Chen, Member, IEEE, and Jun Zhang, Fellow, IEEE

I

 2

simultaneously guided by gbest and pbest, the selection of them
has a significant impact on the performance of an MOPSO
algorithm. The second one is the rapid loss of diversity due to
its fast convergence speed, as pointed out in [17]. Such be-
havior may lead to premature convergence or get stuck in local
optima, not only in SOPSO, but even more seriously in an
MOPSO algorithm. In order to address this issue, some existing
MOPSOs have adopted a perturbation operator on each particle
[9] [18], as well as the adaptive control of the acceleration
coefficients in the velocity update formula [19], and different
selection mechanisms for pbest and gbest, with the aim to better
guide the swarm without experiencing a quick loss of popula-
tion diversity [20].

Based on the above issues, one key problem in an MOPSO
algorithm is to choose the swarm leaders, i.e., gbest and pbest,
in order to provide a correct search direction for all the particles.
This helps to speed up the convergence, and also to maintain
the population diversity if properly selected. Inspired from the
direction-guided search approaches in [21]-[24], useful direc-
tion information can be extracted from the external archive to
better guide the search of a particle swarm optimizer. We be-
lieve that such approaches may be very suitable to select the
swarm leaders in MOPSOs. Therefore, in this paper, we pro-
pose an external archive guided MOPSO algorithm (Ag-
MOPSO) that uses the information of external archive to guide
the particle swarm to search. In our approach, all the swarm
leaders (i.e., pbest and gbest) are appropriately selected from
the external archive. To maintain diversity, a decomposition
approach [7] is used in AgMOPSO to transform an MOP into a
set of SOPs and then each SOP is accordingly optimized by
using one particle. Each particle will be guided by three swarm
leaders, i.e., pbest, local best (lbest) and gbest, taken from the
external archive. To promote the convergence speed, the indi-
viduals in the external archive are firstly evolved by an im-
mune-based evolutionary strategy, which is helpful to guide the
particles using a PSO-based search. Comparing to the existing
MOPSO algorithms, the novel aspects of our proposed Ag-
MOPSO are listed as follows:
(1) An archive-guided velocity update approach is designed in

AgMOPSO, which is aimed to exploit information related
to defining a search direction from the external archive. As
a decomposition approach is used to transform MOPs into
a set of sub-problems, each particle is guided by three
leaders selected from the external archive, in order to op-
timize the corresponding sub-problem.

(2) An immune-based evolutionary strategy is run on the ex-
ternal archive. It helps to speed up the convergence using
the clonal selection paradigm, as the swarm leaders are all
taken from the external archive. Therefore, the improve-
ment of individuals in the external archive will be condu-
cive to guide the PSO-based search, thus providing a fast
approximation to the true POF.

(3) The selection of pbest, lbest and gbest is re-defined in
AgMOPSO. Generally, pbest, lbest and gbest are respec-
tively the best values visited by each particle, the local
swarm, and the entire swarm. However, in AgMOPSO, as
a decomposition approach is exploited to transform MOPs

into a set of sub-problems, our purpose is to optimize all
the sub-problems simultaneously. Therefore, pbest, lbest
and gbest are regarded to be the best values in each
sub-problem, the neighboring sub-problems and all the
sub-problems, respectively. In this way, AgMOPSO is
devoted to optimizing each sub-problem by using the
proposed velocity update approach.

The rest of this paper is organized as follows. Section II in-
troduces the related background, including the basic concepts
related to MOPs, decomposition approaches, multi-objective
immune algorithms (MOIAs), some existing MOPSOs and
direction-guided evolutionary algorithms (EAs). In Section III,
the details of AgMOPSO are given, where the immune-based
evolutionary strategy, PSO-based search and archive update are
respectively described in detail. Our experimental studies are
presented in Section IV, which compares AgMOPSO to two
current MOPSOs and three state-of-the-art MOEAs. Moreover,
the advantages of our proposed immune-based evolutionary
strategy and archive-guided velocity update approach are also
validated in Section IV. Section V presents an extension of
AgMOPSO to handle constraints and to solve a real word en-
gineering problem. Finally, our conclusions and future work
are provided in Section VI.

II. RELATED BACKGROUND

In this section, the related background of our work is intro-
duced. First, a brief introduction to MOPs and decomposition
approaches is provided. Since our external archive is further
evolved by an immune-based evolutionary strategy, some rel-
evant MOIAs are introduced with their advantages to speed up
the convergence. Finally, some representative MOPSOs and
direction-guided EAs are also briefly reviewed to illustrate the
novelties of our proposed approach.

A. MOPs

Generally, an MOP can be formulated as follows.

1 2minimize : () ((), (),..., ())

subject to () 0, 1,...,

() 0, 1,...,

T
m

j

k

F x f x f x f x

g x j J

h x k K

 (1)

where J and K are the numbers of inequality and equality con-
straints, respectively. 1 2(, ,...,)nx x x x is an n-dimensional
decision vector bounded in decision space . The mapping
function : mF R defines m objective functions and mR is
called the objective space. Due to the conflicts among the ob-
jectives, no single solution can optimize all the objectives
simultaneously. The best trade-off solutions can be found using
the definitions of Pareto dominance. A solution x is said to
dominate another solution y (denoted as x yf) if and only if

{1, 2,.., }i m , () ()i if x f y and at least {1,2,.., }j m ,
() ()j jf x f y . A solution x is said to be Pareto optimal if and

only if :y y x f .

B. Decomposition Approach

Decomposition approaches adopted in MOEAs include the
weighted sum, Tchebycheff and boundary intersection ap-
proaches. As discussed in [7], the boundary intersection

 3

method has shown certain advantages over the other two ap-
proaches, so it is used in our algorithm for decomposing MOPs.
This approach uses the pre-defined weighted vectors and a
penalty value to minimize the distance d1 to the utopian
vector and the direction error to the weighted vector d2 from the
solution in objective space, as defined by
 *

1 2minimize : (| ,)g x z d d (2)

where *z is the vector including the minimum value of each
objective, and 1 2,d d are calculated as follows.

*

1

(())TF x z
d

 and *

2 1(())d F x z d

C. Relevant MOIAs

The fact that the external archive in our algorithm is evolved
using the clonal selection mechanism helps to speed up its
convergence [25] [26]. Thus, some representative MOIAs that
incorporate clonal selection are briefly reviewed.

In [27], a multi-objective immune system algorithm (MISA)
was proposed based on the clonal selection principle to produce
the clones of the individuals with high affinities. In [28], an
immune dominance clonal multi-objective algorithm (IDCMA)
was reported, by using the concept of the antibody-antibody
affinity to reflect the similarity among individuals. It was also
applied to solve dynamic MOPs in [29] and was further im-
proved by using a novel non-dominated neighbor-based selec-
tion mechanism in [30]. In [31], a novel evolutionary MOIA,
named EMOIA, was presented with a novel clonal selection
scheme based on the diversity of the evolving population.

Recently, several MOIAs have been reported with a faster
convergence and better mechanisms to maintain diversity. For
example, a hybrid immune multi-objective optimization algo-
rithm (HIMO) [32] was designed to combine Gaussian and
polynomial-based mutations. It was further enhanced by an
adaptive mutation operator [33] and a novel adaptive differen-
tial evolution (DE) operator [34] with a fine-grained selection
mechanism. A novel immune clonal algorithm (NICA) [26]
was put forward to solve complex MOPs, using a full cloning
scheme and a novel antibody population updating operation. A
novel MOIA called IMADE was designed in [35], presenting a
novel DE based recombination as the search paradigm used
after clonal selection. In [25], a hybrid evolutionary framework
for MOIAs was reported to evolve subpopulations using mul-
tiple evolutionary strategies.

Some experimental results with the above MOIAs have
validated that the clonal selection mechanism used for evolu-
tion helps to speed up the convergence, particularly in some
simple MOPs without variable dependence. These results mo-
tivated us to use an immune-based evolutionary strategy for
evolving the individuals in the external archive of our proposed
approach. These enhanced individuals in the external archive
will in turn help to effectively guide the PSO-based search.

D. Existing MOPSOs

Particle swarm optimization was originally designed to
tackle SOPs and showed a fast convergence speed. Most mul-
ti-objective extensions of PSO rely on Pareto ranking and a few

on decomposition methods. Thus, most existing MOPSOs can
be classified into these two categories: Pareto-based MOPSOs
and decomposition-based MOPSOs.

The first type of MOPSOs adopts Pareto ranking to deter-
mine pbest and gbest. The gbest particle is generally assigned
with one of the non-dominated solutions found from the entire
swarm and it is used to guide the swarm to approach the POF.
MOPSO [18], OMOPSO [36], SMPSO [37], MOCLPSO [38],
2LB-MOPSO [39], CMPSO [40] and pccsAMOPSO [17],
belong to this category. In [18], MOPSO was designed by using
the Pareto dominance relationship and an adaptive grid to up-
date the external archive. OMOPSO was reported in [36] to
adopt the concept of dominance and crowding-distance
information to identify the list of leaders. To avoid the so-called
“swarm explosion” effect in OMOPSO, SMPSO was presented
with a velocity constriction procedure during the particles
movement [37]. In [38], Pareto dominance concept and exter-
nal archive technique were integrated in MOCLPSO to handle
MOPs, and 2LB-MOPSO [39] was proposed to run a fi-
ne-grained search around the vicinity of the best found fronts.
In [40], CMPSO was reported with a novel coevolutionary
technique for PSO to solve MOPs and pccsAMOPSO [17] was
designed based on a parallel cell coordinate system.

The second kind of MOPSOs adopts a decomposition ap-
proach to transform an MOP into a set of SOPs and then a
SOPSO can be directly applied for each SOP. Such MOPSOs
include MOPSO/D [41], SDMOPSO [42], and dMOPSO [43].
MOPSO/D may be the first attempt to embed a decomposition
approach into an MOPSO. To tackle the drawback of MOPSO/
D, SDMOPSO was proposed to fully exploit the salient prop-
erties of neighborhood relations in PSO. In [43], dMOPSO was
presented as an approach that fully relies on decomposition. A
set of gbest particles, which can give the best scalar aggregated
values for all sub-problems, are used to update the position of
each particle. However, as pointed out by Moubayed et al. [20],
the absence of Pareto dominance in dMOPSO may lead to a
failure in covering the entire POF in some complex MOPs.

Recently, some MOPSOs, such as D2MOPSO [20] and
MMOPSO [9], have been designed by combining Pareto
dominance and decomposition approach. The original version
of D2MOPSO was proposed in [44], attempting to use a hy-
bridization of Pareto dominance and decomposition approach
for solving MOPs. An enhanced version of D2MOPSO was also
presented by the same authors [20]. This approach introduces a
new mechanism to select leaders and a novel archiving tech-
nique to maintain the non-dominated particles based on the
crowding-distance values [2] in both objective and decision
spaces. Following the framework of D2MOPSO, MMOPSO
was introduced in [9] to use two search strategies for velocity
update, aiming to concurrently promote the convergence speed
and maintain the population diversity. Moreover, an evolu-
tionary search strategy is further applied to each individual of
the external archive for speeding up the convergence.

E. Direction-guided EAs

Steering the optimization process is an effective and efficient
way to design an MOEA. Among the numerous search strate-

 4

gies currently available, direction-guided search, which drives
the population to explore some interesting areas, has been
found to be quite promising [24]. To tackle SOPs, a neighbor
guided selection scheme and a direction induced mutation
strategy were designed in [21] to respectively exploit the
neighborhood and direction information from the population.
In [22], the reproduction mechanism was also enhanced
through an evolutionary path. This evolutionary path can be
cumulatively learned during the evolutionary process and it is
exploited to produce a new solution among its central area.

To tackle MOPs, a direction-based MOEA (named DMEA
[45]) was designed to guide a population for evolving using the
directions of improvement. Then, several new features were
further embedded into DMEA to make it more robust (named
DMEA-II [46]), and a new niching method was designed for
DMEA in [47]. In [48], an evolutionary multi-objective simu-
lated annealing algorithm (EMOSA) with a two-phase strategy
was designed to maintain the diversity of the search directions.
This strategy uses fixed and adaptive search directions, re-
spectively, in the first and second search phases, in order to
search the objective space more effectively. Recently, a new
DE variant for MOPs was studied in [24]. This approach uses
the information across generations to model the search direc-
tions as guidance, such that both the convergence and the di-
versity during the evolution can be steered.

According to our survey, although additional archives are
used in some direction-guided MOEAs, little attention has been
paid to study the use of direction information to guide the par-
ticle swarm in MOPSOs. Therefore, in each iteration of Ag-
MOPSO, the archive is firstly evolved by an immune-based
evolutionary strategy, and then this evolved archive can be used
to guide the particle swarm for further exploration.

III. THE PROPOSED ALGORITHM

In this section, the details of our proposed AgMOPSO algo-
rithm are introduced. The distinct feature of this algorithm is
the use of an external archive containing all the elitist individ-
uals as the swarm leaders for the particles. To speed up the
convergence, this external archive is firstly evolved using an
immune-based evolutionary strategy. The algorithmic frame-
work of AgMOPSO is shown in Fig. 1, where P, A, and S re-
spectively denote the particle swarm, the external archive, and a
temporary population after immune-based evolutionary search.
After initialization, three main procedures are iteratively run in
AgMOPSO, i.e., an immune-based evolutionary search, a
PSO-based search, and an archive update. Please note that the
immune-based evolutionary search is only performed on the
external archive, and then the renewed individuals in the ex-
ternal archive are used to guide the swarm for exploration.
Once the termination condition is satisfied, the individuals in
the external archive are reported as the final result.

A. Initialization

The pseudo-code for the initialization is described in Algo-
rithm 1, where fes denotes the count for function evaluation.

As no prior knowledge of the search landscape is available, an
initial swarm 1{ ,..., }NP x x is randomly sampled in decision
space . To decompose an MOP into a set of SOPs using (2),
a set of weight vectors 1{ ,..., }NW is uniformly sampled
from a unit simplex using the approach in [49]. Each weight
vector is associated with a sub-problem, thus the number of
weight vectors is equal to the population size. After that, the
Euclidean distances between any two weight vectors are
computed and the neighborhood set 1{ ,..., }i TB i i for each
weight vector i ({1,..., }i N) is built. Moreover, in (2), the
ideal objective vector used in this paper is approximated by
using the minimum value of each objective in current swarm,
i.e., * min{ () |i iz f x }x P , for all {1,..., }i m . At last, the
external archive A is updated by adding all the non-dominated
solutions in P to A.

B. Immune-based evolutionary search

The immune-based evolutionary search is composed of two
steps. First, the less crowded solutions in archive A are pro-
portionally cloned to get the mating population E. As shown in
Fig. 2(a), the selected solutions in 2 4 51 3, , , ,aPC a a a a rep-
resent the sparse areas that need to be searched. Second, the
mating population undergoes recombination and mutation to
get the child population S. This proportional clonal principle
will lead to the result that the less crowded area in the archive is
assigned with more clones and of course more computational
resources are allocated to these areas. As shown in Fig. 2(b), the
solutions a1, a2, a3, a4, a5 with different crowding degrees will
respectively get 8, 3, 4, 2 and 8 clones of solutions. The details
of the cloning operator and the evolutionary operators are re-
spectively introduced below.
1) Cloning Operator

Algorithm 1: Initialization
1 A={}, fes = 0
2 for i=1 to N
3 randomly generate a particle xi and evaluate the objectives of xi
4 add xi to the population P
5 end for
6 initialize N weight vectors 1 , ..., N
7 set * }min{ () |i iz f x x P for {1, ..., }i m
8 for i=1 to N
9 Bi = {i1,…,iT} // where 1 , ...,

i
Ti are the T closest to

i
10 end for
11 copy all the non-dominated solutions from P to A

Output A

Start

[P, A]=Initialization

S=Immune_Search(A)

P=PSO_Search(P)

A=Archive_Update(S, A)

A=Archive_Update(P, A)

Termination?

Yes

No

Fig. 1 The algorithmic framework of AgMOPSO

 5

It is assumed that the population after cloning is E with size
N and the elitist population used for cloning is PC with size NC.
Please note that NC is smaller than N, usually set as N/5 [34]. At
first, NC individuals with the largest values of crowding degree
are selected from the external archive A, to build the elitist
population 1, , NCPC a a . Then, cloning is activated and
the cloned population E is generated, as follows.
 1{

NC
i iE q }ia (3)

where operation iq ia means to duplicate ai with the number
of qi, and qi stands for the number of clones corresponding to
each individual ai (i=1,2,…,NC), calculated by

1

()

()
i

i NC

jj

CD a
q N

CD a

 (4)

where CD(ai) is the crowding-degree value of individual ai
(i=1,2,…,NC). The estimation of the crowding degree can use
the crowding distance method in NSGA-II [2] or the niching
method in BCE [12]. As studied in [52], the crowding distance
method is more suitable to estimate the crowding status in
bi-objective problems, while the niching method may be more
effective to reflect the crowding degree for MOPs with more
than 2 objectives. Note that once the individuals are located in
the boundary of objective space, their crowding degrees are set
as twice of the maximal crowding degree except for the
boundary individuals.

The pseudo-code of this operator is shown in Algorithm 2,
where NC is the size of the elite population for cloning and the
function CrowdingDegreeAssignment(P) calculates the value
of crowding degree for each individual in P using (4). Another
function PC = SelectforClone(PC) will return NC individuals
with the largest values of crowding degree in PC.
2) Evolutionary Operators

As shown in [25], the cloning operator helps to speed up the
convergence, especially on some simple MOPs without varia-
ble dependence. After cloning, this cloned population E will
undergo two evolutionary operators, i.e., simulated binary
crossover (SBX) and polynomial-based mutation (PM) [50]. To
clearly introduce the immune-based evolutionary strategy, its
pseudo-code is illustrated in Algorithm 3, where SBX(Ei, Ej)
means to apply SBX on parent solutions Ei and Ej; C1 and C2 are
the resultant children solutions generated from SBX; PM(Ck)
indicates the execution of PM on Ck. Note that there is a small
probability to select two same individuals for running SBX. In
this case, the PM operator will further perturb the parent to

produce a new offspring, even though SBX does nothing. After
that, a new solution set S is generated, which will be added into
the external archive using the archive update operation as in-
troduced in Section III-D.

C. PSO-based Search

In original PSO algorithm, the velocities of the particles are
usually updated using the positional information of the pbest
and gbest particles. However, the selection of pbest and gbest is
particularly difficult when using PSO to tackle MOPs, as mul-
tiple equally-optimal solutions (i.e., nondominated solutions)
are available. Here, a novel velocity update approach is pre-
sented, aiming to optimize all the sub-problems, as follows.

1 2(1) () (()) ()i i i i i iv t w v t F pbest x t F lbest gbest (5)

where xi is the current evolved particle in P, and t indicates the
iteration number; pbesti is the individual in the external archive
A that can give the best result for the sub-problem i, lbesti is the
individual in the external archive A that can give the best result
for a random sub-problem selected from the neighboring set Bi
(as defined in line 9 of Algorithm 1), and gbesti is randomly
selected from the external archive A.

After the update of velocity, the position of particle ix is
renewed as follows.
 (1) () (1)i i ix t x t v t (6)

There are three parts in our new PSO search method. First,
()iw v t is the “inertial” part same as other PSO search meth-

ods. The second part is 1 (())i iF pbest x t , which guides the
current particle to approach the best individual for the current
sub-problem i. The step size F1 is set as d1 in (2), which indi-
cates the distance of pbest from the current subproblem. That is
to say, if pbest is far away from the current subproblem, the step
size is set to be large; otherwise, it is set to be small. The last
part is 2 ()i iF lbest gbest , which is the differential vector
similar to “DE/rand/1” [51]. In this way, the proposed velocity
update method in (5) not only has the search pattern of PSO, but
also inherits the effective search behaviors of DE.

D. Archive Update

After finishing the immune-based evolutionary search or the

Algorithm 2: E=CloneOperator(A)
1 PC = A
2 if (|PC| > NC)
3 CrowdingDegreeAssignment(PC)
4 PC = Sort(PC) //sort PC according to crowding distance
5 PC = SelectforClone(PC)
6 end if
7 for i=1 to |PC|
8 calculate qi according to (4)
9 clone qi individuals of ai and add them to E
10 end for
11 return E

Algorithm 3: S = Immune_Search(A)
1 E = CloneOperator(A) (Algorithm 2)
2 for i=1 to |E|
3 generate a random integer j in [1, |E|]
4 {C1, C2} = SBX(Ei, Ej)
5 generate a random integer k in [1,2]
6 Si = PM(Ck)
7 end for
8 return S

a1

a2

a3

a4

a5

6

5

4

3

2

1
0 0.2 0.4 0.6 0.8

A

PC

6

5

4

3

2

1
0 0.2 0.4 0.6 0.8

Search area

Search a1

1.0 1.0

Search a2

Search a3

Search a4

Search a5

(a) (b)

Fig. 2 The procedure of immune-based evolutionary search

 6

PSO-based search, the newly found non-dominated solutions
are collected into the external archive. Given the finite size of
the external archive, a proper selection mechanism is necessary
for updating it since the number of non-dominated solutions
may be very large. Such selection mechanism has significant
impact on performance, as it helps to guide the search towards
the true POF. In this paper, a popular archive update mecha-
nism [9] [20] [52] is used. This selection mechanism is de-
signed based on both Pareto dominance and the crowding de-
gree. Assuming that the newly generated solution set is S and
the external archive is A, the pseudo-code of the archive up-
dating mechanism can be briefly described in Algorithm 4.
The function CheckDominance(x,y) returns the Pareto domi-
nance relationship between solutions x and y. If the function
returns 1, it means that x dominates y. Otherwise, the function
returns 1 when y dominates or is equal to x. Another function
CrowdingDegreeAssignment(A) will calculate the value of
crowding degree for each solution in A.

E. The Complete Algorithm of AgMOPSO

The above subsections have introduced the main components
of AgMOPSO, i.e., immune-based evolutionary strategy,
PSO-based search, and archive update operator. Other imple-
mentation details are further clarified in the pseudo-code of
AgMOPSO, as illustrated in Algorithm 5, where fes and
max-fes respectively denote the count of current function
evaluation and the maximum number of function evaluation.

At first, the initialization is processed in line 1 of AgMOPSO,
as described in Algorithm 1. After that, AgMOPSO starts the
loop of evolutionary process in lines 2-22. In the first search
phase, the immune-based evolutionary strategy is operated on
the external archive A (in line 3), and a children population S is
produced. The pseudo-code of this procedure was described in
Algorithm 3. After that, the objective function values of all the
individuals in S are computed in line 4, and they are coupled
with the external archive A to run Algorithm 4 for the archive
update procedure (in line 5). Then, the reference point *z used
in (2) is updated (in line 6). In the PSO-based search phase, the
selection of pbesti, lbesti and gbesti from the external archive A
is performed in lines 7-15, as introduced in Section III-C. After
that, each particle ix is evolved by the PSO-based search pat-

tern, as illustrated in lines 16-17, and its new objective func-
tions are evaluated in line 18. Also, the updated particle swarm
P and external archive A are used to run Algorithm 4 (line 20),
and the reference point *z is updated again in line 21. The
above evolutionary phase will be repeated until the pre-defined
maximum number of function evaluation, max-fes, is reached.
At the end of this algorithm, the external archive A is reported
as the final POF.

F. Discussion

Based on the implementation of AgMOPSO described above,
this section discusses the differences between AgMOPSO and
some existing algorithms, such as D2MOPSO [20], MMOPSO
[9], and BCE-MOEA/D [12], as they all adopt the similar idea
of combining Pareto dominance and decomposition approaches.
Please note that, as described in Section I, the novel aspects of
AgMOPSO include an immune-based evolutionary strategy to
enhance the solution’s quality in external archive and an ar-
chive-guided velocity update approach to guide the PSO-based
search. These two search patterns are mutually cooperated in
AgMOPSO to speed up the convergence, which is the essential
difference with D2MOPSO, MMOPSO and BCE-MOEA/D.
Their detail differences are further clarified as follows.
1) Differences between AgMOPSO and D2MOPSO
 In D2MOPSO, evolutionary search is not run to enhance the

archive. However, immune-based search is performed in
AgMOPSO to evolve the archive, which aims to search the
least crowded areas and results in a better diversity and
convergence in the archive as discussed in Section III-B.

 The PSO-based search behavior in D2MOPSO is different
from that driven by (5) in Section III-C. That is to say, the
pbest and lbest in D2MOPSO are both selected dependent on
the current sub-problem, which may ignore some useful in-
formation from the local and global neighbors. As discussed
in Section III-C, the PSO-based search of AgMOPSO in (5)
is driven by three parts, i.e., the inertial part, the sub-problem
guided part and the differential vector part. In this way, pbest,

Algorithm 4: A = Archive_Update(S, A)
1 for i=1 to |S|
2 for j=1 to |A|
3 flag = CheckDominance(Si,Aj)
4 if flag == 1 // Aj is dominated by Si
5 mark Aj as a dominated solution
6 else
7 break
8 end if
9 end for
10 delete the marked dominated solutions from A
11 if flag != 1 // if any individual in A does not dominate Si
12 add Si to A
13 if |A| > N
14 CrowdingDegreeAssignment(A)
15 delete the most crowded one
16 end if
17 end if
18 end for
19 return A

Algorithm 5: The complete algorithm of AgMOPSO
1 Initialization (Algorithm 1)
2 while fes < max-fes
3 S = Immune_Search (A) (Algorithm 3)
4 evaluate S and set fes = fes + |S|
5 A = Archive_Update(S, A) (Algorithm 4)
6 update the reference point *z
7 for i=1 to N
8 i ipbest A //Selection for ipbest
9 for j=2 to |A|
10 if (| ,) (| ,)

i i

jig pbest w z g A w z

11 jipbest A
12 end if
13 end for
14 select ilbest from the neighbors of sub-problem i
15 randomly select igbest from archive A
16 calculate iv use (5)
17 calculate ix use (6)
18 evaluate the new particle xi and set fes = fes +1
19 end for
20 A = Archive_Update(P, A) (Algorithm 4)
21 update the reference point *z
22 end while
23 Output A

 7

lbest and gbest in AgMOPSO are respectively selected based
on the different sub-problems in the archive.

 For D2MOPSO, two archives, i.e., the leaders archive and the
external archive, are adopted. The leaders archive is used to
collect the elite particles with larger crowding distances
based on both objective and decision spaces. However, in
AgMOPSO, only the external archive is used to keep the
swarm leaders.

2) Differences between AgMOPSO and MMOPSO
 Although both algorithms evolve the archive, they use dif-

ferent evolutionary operators. MMOPSO only adopts a
general evolutionary operator (SBX+PM), while AgMOPSO
performs an additional cloning operator. Such operator em-
phasizes the search on sparse areas in objective space, as il-
lustrated in Fig. 2.

 In MMOPSO, the velocity update formulations are com-
posed by two aspects, i.e., local search and global search,
which are controlled by a parameter δ. This search pattern is
totally different from the archive-guided PSO-based search
method in (5).

3) Differences between AgMOPSO and BCE-MOEA/D
 In BCE-MOEA/D, although a further search is also launched

on the archive (i.e., Pareto Criteria (PC) population in
BCE-MOEA/D [12]), it behaves differently than the im-
mune-inspired search in AgMOPSO. Both of them are en-
couraged to search the less crowded area, but the individuals
with different crowding degrees in BCE-MOEA/D are all
assigned with the same search strength. Whereas, in Ag-
MOPSO, due to the use of the proportional cloning operator,
the individuals with lower crowding degrees will be allo-
cated with more clones which will result in a stronger search
bias in that area.

 In AgMOPSO, the elite archive is exploited to guide the PSO
swarm for searching; whereas, in BCE-MOEA/D, such in-
formation from the archive is not exploited at all to guide the
search behavior of the Non-Pareto Criateria (NPC) popula-
tion.

 The decomposition-based method (i.e., MOEA/D algorithm
[7]) in BCE-MOEA/D is used to evolve the NPC population
as replacement will be activated if the new solution is better.
However, in AgMOPSO, the decomposition-based module
is only used to select pbest, lbest and gbest from the archive.

IV. EXPERIMENTAL STUDIES

A. Test Problems

Comprehensive and diverse test problems were employed in
order to assess the performance of AgMOPSO. First, the ZDT
test problems were adopted. As some complicated features,
such as variable linkages and objective function modality, are
absent in the ZDT problems, they are not very challenging for
most multi-objective algorithms. Thus, two other kinds of more
difficult MOPs, i.e., the bi-objective WFG and the UF test
problems were also used in light of their complicated features,
including convexity, concavity, discontinuity, non-uniformity
and the existence of many local POFs. To further examine the

performance of AgMOPSO in tackling MOPs with three ob-
jectives, the DTLZ test problems and UF8-UF10 were used in
this paper. Moreover, the DTLZ and WFG test problems with 5
and 10 objectives were also used to further study the scalability
of AgMOPSO. For ZDT1-ZDT3 and all the UF test problems,
30 decision variables were used; ZDT4 and ZDT6 were used
with 10 decision variables; WFG1-WFG9 were used with
2 (-1)m position parameters and 20 distance parameters. For
details on the ZDT, WFG, UF and DTLZ test problems, please
refer to [53], [54], [55], and [56], respectively.

B. Performance Measures

The goal of MOPs is to find a uniformly distributed set that is
as close to the true POF as possible. In order to assess the
performance among different compared algorithms, two per-
formance measures, i.e., inverted generational distance (IGD)
[57] and hyper-volume (HV) [58] were adopted here. It is be-
lieved that these two performance indicators can not only ac-
count for convergence, but also the distribution of final solu-
tions. The true POFs for computing IGD were downloaded
from http://jmetal.sourceforge.net/problems.html. The refer-
ence point for HV calculation was set to 1.1 times the nadir
point of the true POF, i.e., 1.1×(0.5,…,0.5) for DTLZ1,
1.1×(1.0,…,1.0) for DTLZ2-DTLZ4, 1.1×(1.0,…,1.0, 2.0×m)
for DTLZ7, 1.1×(1.0,…,1.0,2.0×m) for WFG1-WFG9 (where
m is the number of objectives).

C. Experimental Settings

In the experiments, in order to validate the performance of
AgMOPSO in a convincing way, it was compared to three
competitive MOEAs, i.e., NSGA-II [2], EAG-MOEA/D [59],
BCE-MOEA/D [12], and two current MOPSOs (D2MOPSO
[20] and MMOPSO [9]).

To allow a fair comparison, the related parameters in all the
compared algorithms were set according to their original ref-
erences, as summarized in Table I. In Table I, N denotes the
population size for all the algorithms; pc and pm are respectively
the crossover and mutation probabilities; c and m are the
distribution indexes of SBX and PM, respectively. w, c1, c2 are
the parameters used for the velocity update equations of
MOPSO algorithms. For EAG-MOEA/D, BCE-MOEA/D and
AgMOPSO, T defines the size of the neighborhood regarding
the weight vectors. The decomposition method in (2) is also
adopted in the original paper of D2MOPSO and MMOPSO. As
the original EAG-MOEA/D was designed for combinatorial

TABLE I
PERAMETERS SETTINGS OF THE COMPARED ALGORITHMS

Algorithms Parameter settings

NSGA-II 100, 0.9, 1 / , 20, 20
c m c m

N p p n

EAG-MOEA/D 100, 0.9, 1 / , 20, 20, 20
c m c m

N p p n T

BCE-MOEA/D
100, 1.0, 1 / , 20, 20, 10

c m c m
N p p n T N

100 , 3Nnr k

D2MOPSO
100, 0.9, 1 / , 20, 20,

c m c m
N p p n

1 2
[0.1, 0.5], [1.5, 2.0], [1.5, 2.0]w c c

MMOPSO
100, 0.9, 1 / , 20, 20,

c m c m
N p p n

1 2
[0.1, 0.5], [1.5, 2.0], [1.5, 2.0], 0.9w c c

AgMOPSO
100, 0.9, 1 / , 20, 20,

c m c m
N p p n

2[0.1, 0.5], 0.5, 20w F T

 8

optimization, the evolutionary operators and decomposition
method in AgMOPSO were applied to EAG-MOEA/D, to
make it more effective for continuous optimization and to
achieve a more fair comparison.

Please note that the settings of N listed in Table I are only
applicable for bi-objective test problems. Moreover, N is set to
105 for three-objective test problems, to 210 for five-objective
test problems, and to 220 for ten-objective test problems. The
maximum numbers of function evaluation were set to 250×N
for ZDT, to 500×N for WFG and DTLZ, and to 3,000×N for UF
(N is the population size). In general, the size of the external
archive is set the same as N. All the experiments were inde-
pendently run 30 times. The mean values and the standard
deviations (std) on IGD and HV were collected in the corre-
sponding tables for performance comparison. Moreover, in
order to ascertain statistical significances, the Wilcoxon’s rank
sum test was further performed to examine the statistical sig-
nificance of the difference between the results obtained by
AgMOPSO and those obtained by the other algorithms at the
significance level 0.05 .

D. Comparisons of AgMOPSO with Various Algorithms

1) Comparisons of AgMOPSO with NSGA-II, EAG-MOEA/D,
D2MOPSO and MMOPSO

Please note that all the compared algorithms use the same
crowding distance method [2] to estimate their crowding status
among the solutions and adopt the same archive update method

(Algorithm 4), in order to allow a fair comparison. This pop-
ulation update method [52] is an improved version of the ap-
proach in NSGA-II to prune the non-dominated solutions and is
also used in the original implementation of D2MOPSO and
MMOPSO.

Table II lists the mean and standard deviation (std) results of
all the algorithms on the 31 test problems in terms of IGD. The
best result obtained for each test problem was marked with
boldface. As observed from Table II, AgMOPSO performs the
best and presents a clear advantage over the other four algo-
rithms on the majority of the test instances. More specifically,
AgMOPSO obtains the best IGD results on 17 out of 31 test
instances. The proportions of the test instances on which
AgMOPSO performs better than NSGA-II, EAG-MOEA/D,
D2MOPSO and MMOPSO are 22/31, 22/31, 26/31 and 22/31,
respectively. Conversely, the proportions on which AgMOPSO
is defeated by the peer algorithms are 5/31, 5/31, 3/31 and 2/31,
respectively for NSGA-II, EAG-MOEA/D, D2MOPSO and
MMOPSO. Especially, D2MOPSO shows poor performance on
the test MOPs with many local POFs, such as ZDT4, DTLZ1
and DTLZ3. This is mainly because D2MOPSO only performs
the PSO search method, which may easily fall into local optima.
MMOPSO and AgMOPSO can overcome this shortcoming by
further evolving the archive using other search patterns, and
AgMOPSO performs even better with the use of immune-based
evolutionary strategy. For DTLZ5 and DTLZ6 which have a
degenerated curve, EAG-MOEA/D, MMOPSO and Ag-

TABLE II
PERFORMANCE COMPARISONS OF IGD VALUES

Problems NSGA-II EAG-MOEA/D D2MOPSO MMOPSO AgMOPSO
ZDT1 4.976E3 (1.73E4) 3.757E3 (1.02E4) 1.038E2 (6.07E3) 3.936E3 (4.56E5) 3.701E3 (2.83E5)
ZDT2 5.102E3 (1.79E4) 2.113E2 (8.19E2) 4.904E1 (2.45E1) 2.414E2 (1.11E1) 3.828E3 (3.15E5)
ZDT3 6.408E3 (5.41E3) 3.142E2 (3.73E2) 1.404E2 (4.34E3) 4.413E3 (4.28E5) 4.367E3 (5.23E5)
ZDT4 7.654E3 (2.45E3) + 2.357E2 (3.18E2) 3.203E+0 (2.06E+0) 2.342E2 (4.42E2) 7.942E3 (2.23E2)
ZDT6 9.088E3 (1.00E3) 3.132E3 (2.13E4) 1.423E2 (8.14E3) 3.635E3 (2.31E4) 2.997E3 (9.51E5)
WFG1 7.374E1 (2.75E1) 5.039E1 (9.55E2) 9.037E1 (6.57E2) 3.652E1 (3.72E2) 3.261E1 (6.38E2)
WFG2 7.628E2 (3.08E2) 9.998E2 (7.85E2) 1.130E1 (4.84E2) 4.645E2 (2.71E2) 1.363E2 (5.34E3)
WFG3 3.930E1 (3.62E3) 3.861E1 (7.74E4) 3.874E1 (1.93E3) 3.848E1 (8.47E4) 3.841E1 (3.75E4)
WFG4 1.753E2 (1.27E3) 3.279E2 (6.38E3) 4.818E2 (7.57E3) 1.455E2 (1.52E3) 1.369E2 (1.13E3)
WFG5 6.963E2 (5.84E4) 6.649E2 (5.96E4) + 6.889E2 (3.13E4) 6.696E2 (1.47E4) 6.650E2 (5.98E5)
WFG6 6.270E2 (9.08E3) ≈ 5.528E2 (2.80E2) ≈ 4.527E2 (1.18E2) ≈ 4.702E2 (1.12E2) ≈ 6.987E2 (4.16E2)
WFG7 1.795E2 (1.70E3) 1.303E2 (2.91E4) 1.280E2 (1.87E4) 1.216E2 (1.57E4) ≈ 1.214E2 (1.65E4)
WFG8 1.161E1 (4.31E3) 1.040E1 (4.52E3) + 1.285E1 (7.94E3) 1.125E1 (4.87E3) ≈ 1.116E1 (3.41E3)
WFG9 9.916E2 (4.59E2) + 7.401E2 (4.86E2) + 1.220E1 (1.50E2) 1.171E1 (2.71E2) 1.137E1 (3.18E2)
UF1 7.872E2 (2.12E2) 1.936E1 (1.26E1) 8.940E2 (1.64E3) 3.349E2 (5.01E3) 1.018E2 (9.48E4)
UF2 3.264E2 (7.26E3) 8.008E2 (3.96E2) 5.547E2 (1.28E2) 1.205E2 (1.23E3) 1.063E2 (9.46E4)
UF3 1.588E1 (3.41E2) 3.069E1 (2.66E2) 3.240E1 (1.18E2) 2.767E1 (3.80E2) 4.188E2 (1.39E2)
UF4 4.561E2 (7.75E4) 6.419E2 (3.21E3) 8.230E2 (8.42E3) 4.184E2 (1.56E3) + 4.410E2 (2.96E3)
UF5 2.454E1 (6.11E2) ≈ 4.667E1 (1.12E1) 4.627E1 (1.94E1) 4.809E1 (2.43E1) 2.839E1 (1.07E1)
UF6 2.377E1 (6.86E2) ≈ 5.494E1 (1.19E1) 1.574E1 (1.16E1) + 3.932E1 (2.00E1) ≈ 3.334E1 (1.84E1)
UF7 1.341E1 (1.48E1) 4.156E1 (1.77E1) 4.057E2 (5.01E4) + 1.244E1 (1.81E1) 4.937E2 (1.51E1)
UF8 1.905E1 (6.03E2) 3.244E1 (2.26E1) 1.388E1 (3.98E3) 2.223E1 (6.75E2) 1.115E1 (3.55E2)
UF9 2.589E1 (8.13E2) ≈ 2.210E1 (2.48E2) ≈ 1.447E1 (4.17E2) + 2.379E1 (3.89E2) ≈ 2.742E1 (8.91E2)

UF10 5.098E1 (1.50E1) + 4.612E1 (1.22E1) + 7.078E1 (2.22E1) ≈ 5.201E1 (1.47E1) + 6.104E1 (1.86E1)
DTLZ1 2.544E2 (3.02E3) 2.582E2 (3.14E3) 1.515E+0 (2.22E+0) 2.754E2 (2.56E2) 2.183E2 (5.60E4)
DTLZ2 6.725E2 (2.74E3) 5.930E2 (1.73E3) 6.078E2 (1.53E3) 6.354E2 (1.82E3) 5.133E2 (2.50E4)
DTLZ3 1.525E1 (2.52E1) + 1.505E1 (1.78E1) + 4.505E+1 (2.49E+1) 1.929E+0 (1.61E+0) 3.619E1 (5.79E1)
DTLZ4 6.181E2 (6.24E3) 1.872E1 (1.47E1) 6.261E2 (3.36E3) 6.325E2 (4.55E3) 3.304E2 (4.63E4)
DTLZ5 5.217E3 (2.69E4) 3.876E3 (8.97E5) ≈ 6.072E3 (1.12E3) 3.825E3 (9.45E5) ≈ 3.868E3 (8.12E5)
DTLZ6 1.733E2 (1.38E2) 3.730E3 (1.05E4) ≈ 1.392E2 (2.06E3) 3.756E3 (1.57E4) 3.670E3 (1.27E4)
DTLZ7 7.405E2 (3.00E3) + 4.100E1 (2.49E1) 8.312E2 (5.29E3) 7.712E2 (4.40E3) ≈ 7.846E2 (5.48E3)
+//≈ 5/22/4 5/22/4 3/26/2 2/22/7 //

“+” indicates that the peer algorithm significantly improves AgMOPSO at a 0.05 level by the Wilcoxon’s rank sum test, where “” indicates the op-
posite, i.e., AgMOPSO shows significant improvements over the peer algorithm. If no significant difference is detected, it will be marked by the symbol
“≈”. They have the same meanings in other tables.

 9

MOPSO show a similar performance and are able to find good
approximations of true POF as their corresponding mean values
of IGD are under an accuracy level of 10-3.

The HV results of all the 31 test problems are provided in
Table S-I of the supplementary file. Similar observations from
the IGD results can be found in the HV results. AgMOPSO also
performs best on most of test instances, such as ZDT1-ZDT4,
ZDT6, WFG1-WFG5, WFG7, UF1-UF3, UF8, DTLZ1,
DTLZ2, DTLZ4 and DTLZ7. As indicated in the last row of
Table S-I, the proportions on which AgMOPSO performs better
than or similarly to NSGA-II, EAG-MOEA/D, D2MOPSO and
MMOPSO, are 27/31, 26/31, 29/31 and 29/31, respectively.

Based on these IGD and HV comparison results, it is suffi-
cient to conclude that AgMOPSO shows a better performance
than NSGA-II, EAG-MOEA/D, D2MOPSO and MMOPSO on
solving these test instances.
2) Comparison of AgMOPSO with BCE-MOEA/D

As BCE-MOEA/D also combines Pareto dominance and
decomposition approach to keep the archive and the NPC
population, it is also compared to AgMOPSO for solving dif-
ferent test MOPs with various objectives. The main differences
of AgMOPSO and BCE-MOEA/D were clarified in Section
III-F. As studied in [60], the performance of the compared
algorithms will be significantly different when different density
estimators are used. For this consideration, we use the same
density estimator with BCE-MOEA/D in order to have a fair
comparison, and this variant is called AgMOPSO-niche.

Table III presents their performance comparisons in terms of
HV, when tackling ZDT, WFG, UF and DTLZ test problems
with different numbers of objectives. The best mean result of
each problem was highlighted in boldface. As observed from
Table III, AgMOPSO-niche obtains a better performance in 47
out of 63 test instances. According to the Wilcoxon’s rank sum
test, AgMOPSO-niche performs similarly to BCE-MOEA/D on
10 test instances. For the simple ZDT and the more complicated
WFG test problems with two objectives, AgMOPSO-niche is
found to have a significantly better performance, which is
mainly brought by the use of immune-inspired evolutionary
strategy, as this approach is more effective on simple MOPs
without variable dependence [25]. Regarding UF1-UF7 with
complicated POS, AgMOPSO-niche also shows a superior
performance as it performs better than BCE-MOEA/D on
UF1-UF3, UF7 and similarly to BCE-MOEA/D on UF4-UF6.
This is mainly due to the use of archive-guided PSO search
approach, in which each particle is used to optimize one par-
ticular subproblem as guided by the elitist individuals from the
external archive. About the test MOPs with more than three
objectives, AgMOPSO also performs better on most cases,
while BCE-MOEA/D is only better on UF9 and DTLZ1 with
three objectives, on DTLZ2 and WFG5 with five objectives,
and on DTLZ3, WFG2, WFG4, WFG5 and WFG8 with ten
objectives. In summary, as observed from the last row of Table
IV, AgMOPSO performs better or similarly to BCE-MOEA/D
on 53 out of 63 test instances. Conversely, AgMOPSO-niche is
only defeated by BCE-MOEA/D on 10 test instances. From the
above discussion, it is reasonable to conclude that AgMOPSO

also shows a superior performance over BCE-MOEA/D on
tackling most of test instances adopted.

TABLE III
PERFORMANCE COMPARISONS OF AgMOPSO AND BCE-MOEA/D

m Problems BCE-MOEA/D AgMOPSO-niche

2

ZDT1 0.91458 (1.56E4) 0.91545 (2.34E5)
ZDT2 0.83077 (4.75E4) 0.83212 (2.66E5)
ZDT3 1.19957 (1.68E2) 1.20378 (2.57E5)
ZDT4 0.91047 (2.71E3) + 0.90751 (2.31E2)
ZDT6 0.75305 (1.10E3) 0.76048 (2.15E6)
WFG1 0.45826 (2.96E2) 0.70446 (1.54E2)
WFG2 0.70700 (9.96E3) 0.76172 (3.22E3)
WFG3 0.72582 (9.25E4) 0.72955 (2.03E4)
WFG4 0.57487 (8.60E4) 0.57719 (4.09E4)
WFG5 0.54157 (3.95E4) 0.54729 (2.72E3)
WFG6 0.54877 (6.22E3) 0.56085 (1.49E2)
WFG7 0.57644 (6.29E4) 0.57866 (6.77E5)
WFG8 0.51485 (1.77E3) 0.53656 (1.51E3)
WFG9 0.53712 (1.82E2) ≈ 0.51911 (1.11E2)
UF1 0.85045 (2.78E2) 0.91238 (1.02E3)
UF2 0.88492 (1.74E2) 0.91128 (2.08E3)
UF3 0.67227 (3.42E2) 0.90348 (6.38E3)
UF4 0.80477 (1.72E3) ≈ 0.80415 (1.37E3)
UF5 0.62667 (8.32E2) ≈ 0.64143 (9.17E2)
UF6 0.64205 (6.96E2) ≈ 0.61528 (9.89E2)
UF7 0.71026 (1.13E1) 0.86556 (5.83E3)

3

UF8 0.86635 (4.95E2) 0.88000 (4.63E2)
UF9 0.89719 (3.45E2) + 0.87667 (3.05E2)
UF10 0.60713 (1.39E1) ≈ 0.56462 (1.46E1)

DTLZ1 0.97381 (2.85E4) + 0.97380 (6.49E5)
DTLZ2 0.92635 (7.35E4) 0.92678 (1.56E4)
DTLZ3 0.88568 (1.72E1) ≈ 0.64348 (3.42E1)
DTLZ4 0.92609 (8.45E4) 0.92689 (1.31E4)
DTLZ5 0.76271 (2.18E4) 0.76288 (2.75E5)
DTLZ6 0.73989 (8.19E3) 0.76297 (1.01E5)
DTLZ7 0.47884 (3.31E3) 0.48081 (6.04E4)

5

DTLZ1 0.00740 (4.05E2) 0.97302 (1.20E3)
DTLZ2 0.80205 (3.40E3) + 0.76888 (3.71E3)
DTLZ3 0.00000 (0.00E+0) ≈ 0.03290 (1.25E1)
DTLZ4 0.77906 (1.06E2) ≈ 0.77896 (3.57E3)
DTLZ5 0.19217 (2.94E2) 0.21185 (8.69E3)
DTLZ6 0.05154 (3.62E2) 0.22608 (9.22E3)
DTLZ7 0.70153 (3.31E3) 0.70378 (1.72E3)
WFG1 0.36437 (1.30E2) 0.47102 (3.48E2)
WFG2 0.93324 (8.53E2) 0.98602 (2.97E3)
WFG3 0.58887 (2.78E2) 0.60791 (1.88E2)
WFG4 0.72162 (1.18E2) 0.75320 (9.51E3)
WFG5 0.71482 (5.39E3) + 0.70759 (8.07E3)
WFG6 0.68672 (2.07E2) 0.70225 (4.53E3)
WFG7 0.74102 (1.36E2) 0.77542 (4.69E3)
WFG8 0.58781 (1.52E2) 0.63144 (8.64E3)
WFG9 0.60360 (1.15E2) ≈ 0.60888 (1.55E2)

10

DTLZ1 0.21092 (3.97E1) 0.82372 (2.00E1)
DTLZ2 1.00000 (3.12E8) 1.0000 (4.72E15)
DTLZ3 0.21042 (3.93E1) 0.0000 (0.00E+0)
DTLZ4 0.99996 (1.58E4) 1.0000 (2.55E15)
DTLZ5 0.95551 (3.53E2) 0.99722 (5.46E4)
DTLZ6 0.90823 (8.48E-2) 0.99687 (8.12E-4)
DTLZ7 0.59510 (9.04E-3) 0.61304 (2.23E-2)
WFG1 0.30804 (1.14E-2) 0.46823 (3.76E-2)
WFG2 0.98096 (3.72E-2) + 0.97673 (1.36E-2)
WFG3 0.45915 (9.84E-2) 0.56517 (3.05E-2)
WFG4 0.77387 (2.44E-2) + 0.74334 (4.48E-2)
WFG5 0.79392 (1.42E-2) + 0.60060 (2.86E-2)
WFG6 0.68492 (3.33E-2) 0.82041 (3.98E-3)
WFG7 0.85337 (2.12E-2) 0.88458 (1.43E-2)
WFG8 0.66419 (3.58E-2) + 0.61088 (3.38E-2)
WFG9 0.52131 (5.40E-2) ≈ 0.53882 (6.14E-2)

+//≈ 10/43/10 //

 10

E. Effectiveness of the proposed approaches

There are two search modules used in AgMOPSO, such as
immune-based evolutionary search and PSO-based search. In
order to study their effectiveness, AgMOPSO was further
compared to two variants of AgMOPSO, i.e., AgMOPSO-I and
AgMOPSO-II. AgMOPSO-I only runs the PSO-based search
on the particle swarm as shown in Fig 3 (a), while AgMOP-
SO-II only uses the immune-based evolutionary search on the
external archive as shown in Fig. 3 (b).

The IGD comparison results of AgMOPSO-I, AgMOPSO-II
and AgMOPSO on all the 31 test problems are listed in Table
IV. As observed from Table IV, AgMOPSO performs best on
21 out of 31 test problems regarding IGD when compared to
AgMOPSO-I and AgMOPSO-II. The Wilcoxon’s rank sum test
results also reveals that AgMOPSO obtains better IGD results
than AgMOPSO-I and AgMOPSO-II on 30 and 21 test prob-
lems, respectively. Moreover, AgMOPSO performs similarly
to AgMOPSO-I on 1 test problem and to AgMOPSO-II on 7
test problems. In other words, AgMOPSO performs better than
or similarly to AgMOPSO-I and AgMOPSO-II on 31 and 28
out of 31 test problems regarding IGD. These experimental
results clearly justify the usefulness of the evolution on the
external archive as well as the effectiveness of the ar-
chive-guided PSO search in AgMOPSO.

As observed from Table IV, the performance of AgMOP-
SO-I seems very poor when compared to AgMOPSO. This is
mainly because the proposed PSO-based search has to be
driven by the elite individuals from external archive. When the
archive cannot provide the guiding particles with good diver-
sity and good convergence, the performance of PSO-based
search in (5) won’t work well. AgMOPSO-I may search for
some undesirable sub-problems, as the archive didn’t provide
good leader information for the particle swarm. Especially for
the problems with many local POFs, such as ZDT4, DTLZ1,
DTLZ3, AgMOPSO-I is unable to jump out from the local
optimal only using PSO-based search, and this leads to a pretty
poor performance on these test problems. Due to the use of
immune-based evolutionary search, AgMOPSO-II focuses on
the sparse area, which helps to keep the archive with good
properties of convergence and diversity. From the above dis-
cussion, it is concluded that the two search modules compen-
sate each other and get better performance when they are
evolved cooperatively. Actually, the immune-based evolu-
tionary search is a general evolutionary module that can also
enhance the performance of other multiobjective metaheuristic

algorithms, as supported by the experiments in Section II of the
supplementary file.

F. Comparison of Running Times

In order to evaluate the computational efficiency of the
compared algorithms, the actual running time (in seconds: s) on
the WFG1-WFG9 test problems was recorded in Fig. 4. Please
note that all the compared algorithms were implemented in Sun
JAVA using a personal computer with an i7-6700 CPU running
at 3.40GHz (processor) and 20.0 GB in RAM. Clearly,
D2MOPSO consumes significantly more time than the other
competitors, as its leaders archive is updated based on the
crowding distances on both decision and objective spaces.
Therefore, the running time of D2MOPSO is greatly lengthened
as the number of variables in the WFG test problems is 24,
which is significantly larger than the number of objectives. For

TABLE IV
PERFORMANCE COMPARISONS OF AgMOPSO AND TWO VARIANTS

Problems AgMOPSO-I AgMOPSO-II AgMOPSO
ZDT1 6.47E1 (2.5E1) 4.01E3 (2.9E4) 3.70E3 (2.8E5)
ZDT2 2.22E+0 (7.4E1) 4.05E3 (1.6E4) 3.82E3 (3.1E5)
ZDT3 5.52E1 (1.9E1) 4.41E3 (4.6E5) 4.36E3 (5.2E5)
ZDT4 3.60E+1 (1.2E+1) 1.04E2 (2.3E2) 7.94E3 (2.2E2)
ZDT6 6.69E1 (1.7E+0) 3.00E3 (1.0E4) ≈ 2.99E3 (9.5E5)
WFG1 1.23E+0 (1.2E2) 4.96E1 (1.4E1) 3.26E1 (6.3E2)
WFG2 2.92E1 (6.3E2) 9.81E2 (4.4E2) 1.36E2 (5.3E3)
WFG3 5.51E1 (9.0E2) 3.97E1 (1.0E2) 3.84E1 (3.7E4)
WFG4 1.22E1 (1.3E2) 1.12E2 (2.8E4) + 1.36E2 (1.1E3)
WFG5 6.76E2 (2.0E3) 6.64E2 (3.8E4) ≈ 6.65E2 (5.9E5)
WFG6 1.32E1 (1.5E1) 6.04E2 (1.3E2) ≈ 6.98E2 (4.1E2)
WFG7 1.30E1 (2.5E2) 1.22E2 (2.0E4) ≈ 1.21E2 (1.6E4)
WFG8 3.16E1 (2.8E2) 1.14E1 (5.2E3) 1.11E1 (3.4E3)
WFG9 1.22E1 (8.0E3) ≈ 1.04E1 (4.0E2) + 1.13E1 (3.1E2)
UF1 3.03E1 (9.1E2) 6.37E2 (4.2E2) 1.01E2 (9.4E4)
UF2 1.29E1 (1.9E2) 2.82E2 (1.5E2) 1.06E2 (9.4E4)
UF3 5.61E1 (4.0E2) 1.85E1 (5.1E2) 4.18E2 (1.3E2)
UF4 8.20E2 (1.0E2) 4.97E2 (3.7E3) 4.41E2 (2.9E3)
UF5 3.13E+0 (4.5E1) 2.80E1 (1.1E1) ≈ 2.83E1 (1.0E1)
UF6 1.25E+0 (2.4E1) 4.43E1 (1.8E1) 3.33E1 (1.8E1)
UF7 3.82E1 (1.9E1) 1.58E1 (1.9E1) 4.93E2 (1.5E1)
UF8 4.42E1 (1.4E1) 1.97E1 (4.5E2) 1.11E1 (3.5E2)
UF9 5.50E1 (9.5E2) 3.22E1 (7.1E2) 2.74E1 (8.9E2)

UF10 4.47E+0 (1.0E+0) 7.67E1 (1.8E1) 6.10E1 (1.8E1)
DTLZ1 1.23E+1 (6.9E+0) 2.62E2 (2.6E3) 2.18E2 (5.6E4)
DTLZ2 6.45E2 (2.0E3) 6.78E2 (3.7E3) 5.13E2 (2.5E4)
DTLZ3 8.24E+1 (4.0E+1) 1.12E1 (1.7E1) + 3.61E1 (5.7E1)
DTLZ4 7.50E2 (2.3E2) 7.44E2 (6.5E2) 3.30E2 (4.6E4)
DTLZ5 5.11E3 (1.4E3) 3.89E3 (9.6E5) ≈ 3.86E3 (8.1E5)
DTLZ6 4.42E1 (6.7E1) 7.48E2 (3.3E2) 3.67E3 (1.2E4)
DTLZ7 1.10E+0 (8.8E1) 7.99E2 (4.8E3) ≈ 7.84E2 (5.4E3)
+//≈ 0/30/1 3/21/7 //

Fig. 3 Two variants of AgMOPSO

0

5

10

15

W
FG1

W
FG2

W
FG3

W
FG4

W
FG5

W
FG6

W
FG7

W
FG8

W
FG9

AgMOPSO

MMOPSO

D
2
MOPSO

NSGA-II

EAG-MOEA/D

(s)

Fig. 4 The running times of all the compared algorithms on WFG test problems

 11

NSGA-II, EAG-MOEA/D, MMOPSO and AgMOPSO, they
show similar running times, as they all adopt the same archive
updated method, which is the main factor affecting the running
time.

G. More discussions about AgMOPSO

Due to page limitations, further discussions were provided in
the supplementary file of this paper, in order to further study the
performance of AgMOPSO on many-objective optimization
problems, the effectiveness of the immune-based evolutionary
search and the cloning operator, and the parameter sensitivity
analysis of AgMOPSO on T, w, and F.

V. HANDLING CONSTRAINTS

After demonstrating the superiority of AgMOPSO for solv-
ing unconstrained MOPs (i.e., only with box constraints on
decision variables), this section extends AgMOPSO (denoted
as C-AgMOPSO) to solve constrained MOPs.

In case of the presence of infeasible solutions, some modi-
fications are suggested to the archive update procedure of
AgMOPSO, which is aimed to give more emphasis on feasible
solutions. The other components of AgMOPSO keep un-
touched, as introduced in Algorithm 5. An individual with a
lower constraint violation value is considered first and the
population diversity should be maintained at the same time.

A. Modifications on the Archive Update Procedure

As suggested in [61], the constraint violation value of a so-
lution x, denoted as CV(x), is calculated by the following form.

1 1

() () ()
J K

j k
j k

CV x g x h x

 (7)

where the bracket operator returns the absolute value of
 if 0 , and returns 0 otherwise. It is obvious that a
smaller value of CV(x) indicates the better quality of x, and a
feasible solution x always has a CV(x) value as 0.

The pseudo-code of this modified archive update procedure
is given in Algorithm 6. At first, the archive A and the off-
spring population S are combined (in line 1). Then, the feasible
and infeasible solutions in the union population are identified
(in lines 3-9). If the number of feasible solutions is larger than
N, the update procedure is the same as Algorithm 4 (in line 11).
Otherwise, the feasible solutions are added to the archive first
(in lines 13-15) and then the infeasible solutions are sorted in
descending order according to the CV values using (7). The
corresponding subproblem k nearest to the individual with the
lowest CV value is found. If this subproblem k is not marked,
this solution is added to the archive and the subproblem k is also
marked. This procedure will go on until the archive size reaches
N (in lines 17-25). Please note that when evaluating the quality
of infeasible solutions, its constraint violation value and the
population diversity in the archive are simultaneously consid-
ered in Algorithm 6.

B. Experiments

In order to validate the performance of C-AgMOPSO in
solving constrained MOPs, C-AgMOPSO was further com-
pared to C-MOEA/DD [11] on tackling 14 benchmark con-

strained MOPs, including 10 CF problems proposed in the CEC
2009 test suite [55] and 4 constrained test instances in [61]
(C1-DTLZ1, C2-DTLZ2, C3-DTLZ1 and C3-DTLZ4). The
population size was set to 100 for the bi-objective test problems
and to 105 for the three-objective ones. The maximum numbers
of generation were set to 3000 for the CF problems and to 500
for the constrained DTLZ problems. The reference points for
HV are set to 1.1 times the nadir points of the true POFs, i.e.
1.1×(0.5,…,0.5) for C1_DTLZ1, 1.1×(1.0,…,1.0) for
CF1-CF10, C2_DTLZ2, C3_DTLZ1, and 1.1×(2.0,…,2.0) for
C3-DTLZ4. Other parameters settings were set the same as
introduced in Section IV-C.
1) Comparison of C-AgMOPSO and C-MOEA/DD

Table V shows the HV results obtained from 30 independent
runs on 14 test instances. The better results were marked with
boldface. These statistical results were obtained based on fea-
sible non-dominated solutions that dominate the reference point
for each problem. As observed from Table V, C-AgMOPSO
significantly outperforms C-MOEA/DD on two-objective

TABLE V
COMPARISON RESULTS ON CONSTRAINED TEST PROBLEMS

Problems C-MOEA/DD C-AgMOPSO
CF1 0.84031 (4.25E3) 0.86803 (1.46E4)
CF2 0.60237 (1.34E1) 0.90273 (7.92E5)
CF3 0.49492 (5.27E2) 0.59908 (1.06E1)
CF4 0.71891 (5.26E2) 0.78686 (6.98E2)
CF5 0.54987 (4.39E2) 0.61858 (4.46E2)
CF6 0.83861 (3.19E2) 0.88888 (1.76E2)
CF7 0.63973 (1.04E1) 0.70051 (5.19E2)
CF8 0.82826 (4.62E1) 0.85325 (1.63E1)
CF9 0.90171 (4.89E3) 0.91671 (2.99E3)
CF10 0.43362 (8.12E2) 0.17342 (3.23E1)

C1-DTLZ1 0.97030 (2.84E3) 0.97231 (3.07E3)
C2-DTLZ2 0.91883 (1.17E3) 0.91979 (2.86E4)
C3-DTLZ1 0.97621 (2.20E3) ≈ 0.97608 (1.83E3)
C3-DTLZ4 0.91971 (1.34E4) + 0.91839 (1.24E4)

+//≈ 2/11/1

Algorithm 6: A = Archive_Update_Constraint(S, A)
1 U A S
2 I={}, O={}
3 for each x U
4 if CV(x) > 0 // x is infeasible solution
5 I I x
6 else
7 O O x
8 end if
9 end for
10 if |O| > N
11 Archive_Update(O, A); // use O to update A (Algorithm 4)
12 else
13 for i=1 to |O| // add the feasible solutions
14 add Oi to A
15 end for
16 sort I in descending order according to CV
17 while (|A| < N) //add the infeasible solutions
18 for i=1 to |I|
19 find the subproblem k that is nearest to I(i)
20 if subproblem k is not marked
21 add I(i) to A
22 end if
23 mark subproblem k
24 end for
25 end while
26 end if
25 return A

 12

constrained test instances (CF1-CF7). Moreover, for the
three-objective constrained test instances, C-MOEA/DD per-
forms better only on CF10 and C3-DTLZ4, while
C-AgMOPSO performs better on CF8, CF9, C1-DTLZ1 and
C2-DTLZ2. For C3-DTLZ1, C-AgMOPSO and C-MOEA/DD
shows statistically similar performance. From the last row in
Table V, C-AgMOPSO performs better than C-MOEA/DD on
10 out of 14 test instances. Therefore, it is concluded that
C-AgMOPSO presents some advantages over C-MOEA/DD in
solving these constrained test problems.

To visually show the performance, the best final solution sets
obtained by C-MOEA/DD and C-AgMOPSO on CF1-CF6, and
C1-DTLZ1, C2-DTLZ2, C3-DTLZ1, and C3-DTLZ4 were
plotted in Fig. S-1 of the supplementary file.
2) Further study on tackling a real world problem

Here, a real world engineering problem (car side-impact
problem [61]) was also included to validate the performance of
AgMOPSO. This problem has three objectives and ten con-
straints, which aims at minimizing the weight of a car and
simultaneously minimizing the public force experienced by a
passenger and the average velocity of the V-Pillar responsibil-
ity for withstanding the impact load. More details about this
problem can be found in [61].

For this problem, the population size N was set to 210 and the
maximum number of generation was set to 2000. All other
experimental configurations were set the same as introduced in
Section III-C. Fig. 5 illustrates the final solutions obtained by
C-AgMOPSO, where the generated approximated POF using
the classical generative procedure (i.e., the fmincon function in
MATLAB) is marked with small circles while the approxi-
mated POF obtained by C-AgMOPSO is identified with bigger
circles. Apparently, as observed from Fig. 5, all the points
found by C-AgMOPSO are uniformly distributed over the
entire surface formed by the classical generative procedure. To
investigate the closeness of our found solutions with that ob-
tained by the classical generative procedure, the convergence
metric (i.e., the average distance from our points to that found
by the classical generative procedure) is computed and its value
is 3.59×10-3. This value is very small and it clearly indicates
that the solutions obtained by C-AgMOPSO can closely ap-
proach the approximated POF of this problem. Moreover, the
spread of solutions is also demonstrated visually in Fig. 5.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel MOPSO algorithm with an ar-
chive-guided velocity update method was presented, which is
based on a decomposition approach to transform MOPs into a
set of aggregated sub-problems. The pbest, lbest and gbest
particles are all properly selected from the external archive.
Additionally, an immune-based evolutionary strategy is further
applied on some individuals that are selected from the external
archive for being located in sparse areas of the search space.
The evolution on the external archive was verified to promote
the convergence speed and keep the diversity, which can help to
guide the swarm to do the PSO-based search. In this way, the
performance of AgMOPSO was enhanced to enable it tackle
various types of MOPs. The effectiveness of the proposed
immune-based search and archive-guided PSO search ap-
proaches was also justified by experimental results. When
compared to three state-of-the-art MOEAs and two competitive
MOPSOs, our experimental results confirmed that AgMOPSO
showed a competitive performance in solving most of the test
problems adopted. Moreover, the extensions of AgMOPSO to
solve constrained optimization problems, many-objective op-
timization problems, and a real world engineering problem
were also conducted in this paper to show its potential in tack-
ling different types of optimization problems.

As part of our future work, the performance of AgMOPSO in
tackling many-objective optimization problems will be further
studied and the applications of AgMOPSO for more practical
problems will also be studied.

REFERENCES
[1] X. Zhang, Y. Zhou, Q. Zhang, V. Lee, and M. Li, “Problem Specific

MOEA/D for Barrier Coverage with Wireless Sensors,” IEEE T. Cybern.,
DOI: 10.1109/TCYB.2016.2585745, Jul. 2016.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

[3] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization,” in
Evolutionary Methods for Design, Optimization and Control with Ap-
plication to Industrial Problems (EUROGEN 2001), K. Giannakoglou et
al., Eds. International Center for Numerical Methods in Engineering
(CIMNE), 2002, pp. 95-100.

[4] E. Zitzler, and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,” IEEE Trans.
Evol. Comput., vol. 3, no. 4, pp. 257-271, 1999.

[5] E. Zitzler and S. Kunzli, “Indicator-based selection in multiobjective
search,” in Proc. 8th Int. Conf. Parallel Problem Solving from Nature
(PPSN), 2004, pp. 832-842.

[6] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective
selection based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181,
no. 3, pp. 1653-1669, 2007.

[7] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition,” IEEE Trans. Evol. Comput., vol. 11, no.
6, pp. 712-731, Dec. 2007.

[8] K. Li, S. Kwong, Q. Zhang, and K. Deb, “Inter-Relationship Based
Selection for Decomposition Multiobjective Optimization.” IEEE T.
Cybern., vol. 45, no. 10, pp. 2076-2088, 2015.

[9] Q. Lin, J. Li, Z. Du, J. Chen and Z. Ming, “A novel multi-objective
particle swarm optimization with multiple search strategies,” Eur. J. Oper.
Res., vol. 247, no. 3, pp. 732-744, Dec. 2015.

[10] K. Li, S. Kwong, and K. Deb, “A dual-population paradigm for evolu-
tionary multiobjective optimization,” Inf. Sci., vol. 309, pp. 50-72, 2015.

[11] K. Li, K. Deb, Q. Zhang, S. Kwong, “An evolutionary many-objective
optimization algorithm based on dominance and decomposition,” IEEE
Trans. Evol. Comput., vol. 19, no. 5, pp. 694-716, 2015.

25
30

35
40

3.6

3.7

3.8

3.9

4

10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

f1

f2

f3

Fig. 5 Final results of C-AgMOPSO on the car-side impact problem

 13

[12] M. Li, S. Yang, and X. Liu, “Pareto or Non-Pareto: Bi-criterion evolution
in multi-objective optimization,” IEEE Trans. Evol. Comput., DOI:
10.1109/TEVC.2015.2504730.

[13] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of Mul-
tiobjective Evolutionary Algorithms based on Decomposition,” IEEE
Trans. Evol. Comput., DOI: 10.1109/TEVC.2016.2608507.

[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. 4th
IEEE Int. Conf. Neural Netw., 1995, pp. 1942-1948.

[15] J. Li, J.Q. Zhang, C.J. Jiang, and M.C. Zhou, “Composite Particle Swarm
Optimizer With History Memory for Function Optimization,” IEEE T.
Cybern., vol. 45, no. 10, pp. 2350-2363, Oct. 2015.

[16] Q. Qin, S. Cheng, Q. Zhang, L. Li, and Y. Shi, “Particle Swarm Optimi-
zation with Interswarm Interactive Learning Strategy,” IEEE T. Cybern.,
DOI: 10.1109/TCYB.2015.2474153.

[17] W. Hu, and G.G. Yen, “Adaptive Multiobjective Particle Swarm Opti-
mization Based on Parallel Cell Coordinate System,” IEEE Trans. Evol.
Comput., vol. 19, no. 1, pp. 1-18, Feb. 2015.

[18] C. A. Coello Coello, G. T. Pulido, and M. S. Lechuga, “Handling Multi-
ple Objectives With Particle Swarm Optimization,” IEEE Trans. Evol.
Comput., vol. 8, no. 3, pp. 256-279, 2004.

[19] K. C. Tan, L. H. Lee, Q. L. Zhu, and K. Qu, “Evolutionary algorithm with
dynamic population size and local exploration for multiobjective opti-
mization,” IEEE Trans. Evol. Comput., vol. 5, no. 6, pp. 565-588, 2001.

[20] N. AI Moubayed, A. Petrovski, and J. McCall, “D2MOPSO: MOPSO
Based on Decomposition and Dominance with Archiving Using Crowd-
ing Distance in Objective and Solution Spaces,” Evol. Comput., vol. 22,
no. 1, pp. 44-77, May. 2014.

[21] Y. Cai and J. Wang, “Differential evolution with neighborhood and
direction information for numerical optimization,” IEEE T. Cybern., vol.
43, no. 6, pp. 2202-2215, 2013.

[22] Y.L. Li, Z.H. Zhan, Y.J. Gong, W.N. Chen, J. Zhang and Y. Li, “Dif-
ferential Evolution with an Evolution Path: A DEEP Evolutionary Algo-
rithm,” IEEE T. Cybern., vol. 45, no. 9, pp. 1798-1810, Sep. 2015.

[23] P.C. Roy, M.M. Islam, K. Murase, and X. Yao, “Evolutionary Path
Control Strategy for Solving Many-Objective Optimization Problem,”
IEEE T. Cybern., vol. 45, no. 4, pp. 702-715, Apr. 2015.

[24] X. Qiu, J.X. Xu, K.C. Tan, H.A. Abbass, “Adaptive Cross-Generation
Differential Evolution Operators for Multi-objective Optimization”,
IEEE Trans. Evol. Comput., DOI: 10.1109/TEVC.2015.2433672.

[25] Q.Z. Lin, J.Y. Chen, Z.H. Zhan, W.N. Chen, C. Coello Coello, and J.
Zhang, “A Hybrid Evolutionary Immune Algorithm for Multiobjective
Optimization Problems,” IEEE Trans. Evol. Comput., in press, DOI:
10.1109/TEVC.2015.2512930.

[26] R.H. Shang, L.C. Jiao, F. Liu, and W.P. Ma, “A novel immune clonal
algorithm for MO problems,” IEEE Trans. Evol. Comput., vol. 16, no. 1,
pp. 35-50, 2012.

[27] C.A. Coello Coello and C.N. Cruz, “An approach to solve multiobjective
optimization problems based on an artificial immune system,” in Proc. 1st
Conf. on Artif. Immune Syst., 2002, pp. 212-221.

[28] L.C. Jiao, M.G. Gong, R.H. Shang, H.F. Du, and B. Lu, “Clonal selection
with immune dominance and energy based multiobjective optimization,”
In Proc. 3rd Conf. Evol. Multi-Criterion Optimization, Lecture Notes in
Computer Science, vol. 3410, 2005, pp. 474-489.

[29] R.H. Shang, L.C. Jiao, M.G. Gong, and B. Lu, “Clonal selection algo-
rithm for dynamic multiobjective optimization,” in Proc. Conf. Comuput.
Intelligence and Security, 2005, pp. 846-851.

[30] M.G. Gong, L.C. Jiao, H.F. Du, and L.F. Bo, “Multi-objective immune
algorithm with nondominated neighbor-based selection,” Evol. Comput.,
vol. 16, no. 2, pp. 225-255, 2008.

[31] K.C. Tan, C.K. Goh, A.A. Mamun, and E.Z. Ei, “An evolutionary artifi-
cial immune system for multi-objective optimization,” Eur. J. Oper. Res.,
vol. 187, no. 2, pp. 371-392, 2008.

[32] J.Y. Chen, Q.Z. Lin, and Z. Ji, “A hybrid immune multiobjective opti-
mization algorithm,” Eur. J. Oper. Res., vol. 204, no. 2, pp. 294-302,
2010.

[33] Q.Z. Lin and J.Y. Chen, “A novel micro-population immune multiobjec-
tive optimization algorithm,” Comput. Oper. Res., vol. 40, no. 6, pp.
1590-1601, 2013.

[34] Q. Lin, Q. Zhu, P. Huang, J. Chen, Z. Ming, and J. Yu, “A novel hybrid
multi-objective immune algorithm with adaptive differential evolution,”
Comput. Oper. Res., vol. 65, pp. 95-111, 2015.

[35] Y.T. Qi, Z.T. Hou, M.L. Yin, H.L. Sun, and J.B. Huang, “An immune
multi-objective optimization algorithm with differential evolution in-
spired recombination,” Appl. Soft. Comput., vol. 29, pp. 395-410, 2015.

[36] M.R. Sierra, and C.A. Coello Coello, “Improving PSO-based mul-
ti-objective optimization using crowding, mutation and epsi-
lon-dominance,” Evolutionary Multi-criterion Optimization, Lecture
Notes in Computer Science, vol. 3410, pp. 505-519, 2005.

[37] A.J. Nebro, J.J. Durillo, J. Garcia-Nieto, C.A. Coello Coello, F. Luna, and
E. Alba, “SMPSO: A new PSO-based metaheuristic for multi-objective
optimization,” in Proc. IEEE Symposium on Computational Intelligence
in Multi-Criteria Decision-Making, 2009, pp. 66-73.

[38] V.L. Huang, P.N. Suganthan and J.J. Liang, “Comprehensive Learning
Particle Swarm Optimizer for Solving Multiobjective Optimization
Problems”, Int. J of Intelligent Systems, vol. 21, no. 2, pp. 209-226, 2006.

[39] S.Z. Zhao and P.N. Suganthan, “Two-lbests Based Multi-objective Par-
ticle Swarm Optimizer”, Engineering Optimization, vol. 43, no. 1, pp.
1-17, 2011.

[40] Z. Zhan, J. Li, J. Cao, J. Zhang, H. Chuang, and Y. Shi, “Multiple Popu-
lations for Multiple Objectives: A Coevolutionary Technique for Solving
Multiobjective Optimization Problems,” IEEE T. Cybern., vol. 43, no. 2,
pp. 445-463, Apr. 2013.

[41] W. Peng and Q. Zhang, “A decomposition-based multi-objective particle
swarm optimization algorithm for continuous optimization problems,” in
Proc. Conf. Granular Comput., 2008, pp. 534-537.

[42] N.A. Moubayed, A. Petrovski, and J.A.W. McCall, “A novel smart
multi-objective particle swarm optimization using decomposition,” in
Proc. PPSN, 2010, pp. 1-10.

[43] S.Z. Martinez and C.A. Coello Coello, “A multiobjective particle swarm
optimizer based on decomposition,” in Proc. Genetic Evolutionary
Computation, 2011, pp. 69-76.

[44] N. AI Moubayed, A. Petrovski, and J. McCall, “D2MOPSO: Mul-
ti-objective particle swarm optimizer based on decomposition and dom-
inance,” in Proc. European Conference, EvoCOP 2012, vol. 7245, pp.
75-86, 2012.

[45] L.T. Bui, J. Liu, A. Bender, M. Barlow, S. Wesolkowski, and H. A.
Abbass, “DMEA: a direction-based multiobjective evolutionary algo-
rithm,” Memetic Comp., vol. 3, pp. 271-285, 2011.

[46] L. Nguyen, L. Bui, and H. Abbass, “DMEA-II: the direction-based mul-
ti-objective evolutionary algorithm-II,” Soft Computing, vol. 18, no. 11,
pp. 2119-2134, 2014.

[47] L. Nguyen, L. Bui, and H. Abbass, “A new niching method for the di-
rection-based multiobjective evolutionary algorithm,” in 2013 IEEE
Sympsium on Computational Intelligence in Multi-Criteria Decision
Making (MCDM), April 2013, pp. 1-8.

[48] H. Li and D. Landa-Silva, “Evolutionary multi-objective simulated
annealing with adaptive and competitive search direction,” in IEEE
Congress on Evolutionary Computation, June 2008, pp. 3311-3318.

[49] I. Das and J. E. Dennis, “Normal-Boundary Intersection: A new method
for generating the pareto surface in nonlinear multicriteria optimization
problems,” SIAM J. Optim., vol. 8, pp. 631-657, 1998.

[50] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex System, vol. 9, no. 2, pp. 115-148, 1995.

[51] A.K. Qin, V.L. Huang and P.N. Suganthan, “Differential Evolution
Algorithm With Strategy Adaptation for Global Numerical Optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398-417, Apr. 2009.

[52] S. Kukkonen and K. Deb, “Improved Pruning of Non-Dominated Solu-
tions Based on Crowding Distance for Bi-Objective Optimization Prob-
lems,” in 2006 IEEE International Conference on Evolutionary Compu-
tation, July 2006, pp. 1179-1186.

[53] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolu-
tionary algorithms: Empirical results,” Evol. Comput., vol. 8, no. 2, pp.
173-195, 2000.

[54] S. Huband, P. Hingston, L. Barone, and L. While, “A Review of Multi-
objective Test Problems and a Scalable Test Problem Toolkit”, IEEE
Trans. Evol. Comput., vol. 10, no. 5, Oct. 2006.

[55] Q.F. Zhang, A.M. Zhou, S.Z. Zhao, P.N. Suganthan, W.D. Liu, and S.
Tiwari, “Multiobjective optimization test instances for the CEC 2009
special session and competition,” The School of Computer Science and
Electronic Engineering, University of Essex, Technical Report CES-487,
2009.

[56] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems
for evolutionary multiobjective optimization,” in Evolutionary Multi-
objective Optimization, ser. Advanced Information and Knowledge Pro-
cessing, A. Abraham, L. Jain, and R. Goldberg, Eds. Springer London,
2005, pp. 105-145.

[57] P. Bosman and D. Thierens, “The balance between proximity and diver-
sity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 7, no. 2, pp. 174-188, Apr. 2003.

 14

[58] L. While, L. Bradstreet, and L. Barone, “A Fast Way of Calculating Exact
Hypervolumes,” IEEE Trans. Evol. Comput., vol. 16, no. 1, Feb 2012.

[59] X. Cai, Y. Li, Z. Fan and Q. Zhang, “An External Archive Guided Mul-
tiobjective Evolutionary Algorithm Based on Decomposition for Com-
binatorial Optimization,” IEEE Trans. Evol. Comput., vol. 19, no. 4, pp.
508-523, Aug. 2015.

[60] M. Li, S. Yang and X. Liu, “Shift-Based Density Estimation for Pare-
to-Based Algorithm in Many-Objective Optimization,” IEEE Trans.
Evol. Comput., vol. 18, no. 3, pp. 348-365, 2014.

[61] H. Jain and K. Deb, “An evolutionary many-objective optimization
algorithm using reference-point based non-dominated sorting approach,
part II: Handling constraints and extending to an adaptive approach,”
IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602-622, 2014.

Qingling Zhu received the B.Sc degree in Nanchang
Institution of Technology and M.Sc degree in Shenzhen
Univeristy, China, in 2013 and 2016, respectively. He is
currently a research assistant in Shenzhen University. His
current research interests include evolutionary multi-
objective optimization and machine learning.

Qiuzhen Lin received the B.S. degree from Zhaoqing
University and the M.S. degree from Shenzhen University,
China, in 2007 and 2010, respectively. He received the
Ph.D. degree from Department of Electronic Engineering,
City University of Hong Kong, Kowloon, Hong Kong, in
2014.
He is currently a Lecturer in College of Computer Science
and Software Engineering, Shenzhen University. He has
published over ten research papers since 2008. His current

research interests include artificial immune system, multi-objective optimiza-
tion and dynamic system.

Weineng Chen (S’07-M’12) received the bachelor’s and
Ph.D degrees from Sun Yat-sen University, Guangzhou,
China, in 2006 and 2012, respectively.
He is currently a Professor with the School of Computer
Science and Engineering, South China University of
Technology, Guangzhou. He has published 50 papers in
international journals and conferences. His current research
interests include swarm intelligence algorithms and their
applications on cloud computing, operations research, and

software engineering.
Dr. Chen was a recipient of the IEEE Computational Intelligence Society

Outstanding Dissertation Award in 2016, for the doctoral thesis, the Natural
Science Foundation for Distinguished Young Scientists of Guangdong Prov-
ince, China, in 2015, the Guangdong Special Support Program for Outstanding
Young Scientists in 2015, and the Pearl River New Star in Science and Tech-
nology in 2014.

Ka-Chun Wong received his B. Eng in Computer Engi-
neering from the Chinese University of Hong Kong in
2008. He has also received his M.Phil. degree at the same
university in 2010. He received his PhD degree from the
Department of Computer Science, University of Toronto in
2015. After that, he assumed his duty as assistant professor
at City University of Hong Kong. His research interests
include Bioinformatics, Computational Biology, Evolu-

tionary Computation, Data Mining, Machine Learning, and Interdisciplinary
Research.

Carlos A. Coello Coello received PhD degree in computer
science from Tulane University, USA, in 1996. He is
currently Professor (CINVESTAV-3F Researcher) at the
Computer Science Department of CINVESTAV-IPN, in
Mexico City, México. Dr. Coello has authored and
co-authored over 450 technical papers and book chapters.
He has also co-authored the book Evolutionary Algorithms
for Solving Multi-Objective Problems (Second Edition,

Springer, 2007). His publications currently report over 29,000 citations in
Google Scholar (his h-index is 67). Currently, he is associate editor of the IEEE
Transactions on Evolutionary Computation and serves in the editorial board of
12 other international journals. His major research interests are: evolutionary
multi-objective optimization and constraint-handling techniques for evolu-
tionary algorithms. He received the 2007 National Research Award from the
Mexican Academy of Sciences in the area of Exact Sciences, the 2013 IEEE
Kiyo Tomiyasu Award and the 2012 National Medal of Science and Arts in the
area of Physical, Mathematical and Natural Sciences. He is a Fellow of the
IEEE, and a member of the ACM, Sigma Xi, and the Mexican Academy of
Science.

Jianyong Chen is a professor in College of Computer
Science and Software Engineering, Shenzhen University.
He got his PhD from City University of Hong Kong, Hong
Kong, China, in 2003. He is interested in Artificial Intel-
ligence and Information Security.
He worked for ZTE Corporation as senior engineer of
network technology from 2003 to 2006. After that, he
joined the Shenzhen University. He was vice-chairman of

International Telecommunication Union-Telecommunication (ITU-T) SG17
from 2004 to 2012, and editor of three recommendations developed in ITU-T
SG17. He has published more than 30 papers and got more than 30 patents in
the field of Artificial Intelligence and Information Security.

Jun Zhang (M’02-SM’08) received the Ph.D degree
under Prof. Henry Chung’s supervision in Electrical
Engineering from the City University of Hong Kong,
Kowloon, Hong Kong, in 2002. Since 2004, he has been
with Sun Yat-Sen University, Guangzhou, China, where
he is a Changjiang Scholars Professor. He has authored
seven research books and book chapters, and over 100
technical papers in his research areas. His current research
interests include computational intelligence, cloud com-

puting, high performance computing, data mining, wireless sensor networks,
operations research, and power electronic circuits.

Dr. Zhang was a recipient of the China National Funds for Distinguished
Young Scientist from the National Natural Science Foundation of Chinain 2011
and the First-Grade Award in Natural Science Research from the Ministry of
Education, China, in 2009. He is currently an Associate Editor of the IEEE
Transactions on Evolutionary Computation, the IEEE Transactions on Indus-
trial Electronics, and the IEEE Transactions on Cybernetics. He is the
Founding and Current Chair of the IEEE Guangzhou Subsection and IEEE
Beijing (Guangzhou) Section Computational Intelligence Society Chapters. He
is the Founding and Current Chair of the ACM Guangzhou Chapter.

