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Abstract: 

In this paper, a novel multi-objective evolutionary algorithm (MOEA) is proposed with dynamic 
decomposition strategy, called MOEA/D-DDS. After the recombination, all the parents and offspring 
populations both with the size N are combined as a union population in environmental selection, which 
is then associated to the preset N weight vectors using the constrained decomposition approach. By 
counting the number of solutions that fall within the feasible region of each subproblem, the number of 
subproblems that are not associated to any solution can be calculated and recorded by maxT , which 
somehow shows the distribution of union population and also indicates the number of weight vectors 
(i.e., subproblems) to be regenerated. Then, the subproblem associated with the largest number of 
solutions will be found and then further divided into two new subproblems using the proposed dynamic 
decomposition strategy. This process of dynamic decomposition will be run maxT  times in order to 
have N subproblems associated with at least one solution. At last, a simple convergence indicator is 
used to select one solution showing the best convergence for each of these N subproblems. Twenty-six 
well-known test problems are employed to challenge the performance of MOEA/D-DDS and the 
experiments validate the superiority of MOEA/D-DDS over six recently proposed MOEAs. 
Keywords: Dynamic decomposition; Evolutionary algorithm; Multi-objective optimization
 
1. Introduction 

Some practical applications (e.g., biology inference [1], data mining [2], power engineering [3], and 
optical networks [4]) can be naturally formulated as the problems to simultaneously optimize multiple 
(often conflicting) objectives [5] [6]. Due to the difficulties of solving multi-objective optimization 
problems (MOPs), they have attracted a great deal of attentions. Without loss of generality, this paper 
considers MOPs without any constraint, as defined by 

  1 2( ) ( ( ), ( ),..., ( ))mMinimize F x f x f x f x                      (1) 
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Subject to  x  
where 1( , , )nx x x  is a decision vector with n dimensions and : mF R  defines m objective 
functions (  and mR  are respectively the decision and objective spaces). Since the objectives often 
contradict with each other, no single solution can optimize them simultaneously. Thus, a MOP in Eq. (1) 
aims to find a Pareto-optimal set (PS), which has equally better solutions when considering all the 
objectives. The mapping of PS in the objective space is termed Pareto-optimal front (PF) [7]. For the 
purpose of supporting decision-makings in MOPs, it is necessary to search an approximate subset of PF 
that is closest to the true PF and evenly distributed along the true PF. Owing to the population-based 
nature of evolutionary algorithms (EAs), multi-objective EAs (MOEAs) are very popular for solving 
MOPs [9] [10], as they can search multiple solutions in a single run [8]. Generally, there are two goals 
for MOEAs to get a set of solutions, i.e., they approximate to the true PF as closely as possible (known 
as convergence) and they are distributed as evenly as possible along the true PF (known as diversity) 
[19]. To reach the above goals, a large number of MOEAs [11]-[16] were presented in the last decades. 
According to their selection strategies, most MOEAs can be classified into three main categories, i.e., 
Pareto-based MOEAs [11]-[12], indicator-based MOEAs [13]-[14], and decomposition- based MOEAs 
[15]-[16]. Pareto-based MOEAs use Pareto optimality definitions to guarantee the convergence and 
then further maintain the diversity with other metrics (e.g., crowding distance [11] or niching method 
[12]). Indicator-based MOEAs adopt performance indicator (e.g., Hyper-volume [17]) to guide the 
population’s evolution, trying to balance the convergence and the diversity. Decomposition-based 
MOEAs transform MOPs into a set of subproblems, which are then solved by evolutionary search on a 
collaborative manner. The optimization of each subproblem ensures the convergence, while the use of 
the weight vectors evenly distributed in the objective space guarantees the diversity. Due to the easy 
implementation and good quantization property of decomposition-based MOEAs, they are becoming 
the major methodologies for tackling MOPs [18].  

In a state-of-the-art decomposition-based MOEA (MOEA/D [15]), each individual is associated to 
optimize one subproblem by using the information from its neighboring subproblems. Simulated binary 
crossover (SBX) and polynomial mutation are adopted as the recombination operators in this original 
version. Moreover, the solution replacement in MOEA/D mainly depends on the aggregated function 
values to update the original solutions, aiming to speed up the convergence. However, as pointed out in 
[20], this method may lead to three main defects for MOEA/D, i.e., duplicate solutions, preset targets to 
be updated, and thoughtless deletion of solutions. To conquer these limitations and enhance 
performance of MOEA/D in solving different types of MOPs, a number of studies have been conducted 
based on MOEA/D, including the improved decomposition methods [21]-[26], the computational 
resource allocation strategies [27]-[29], the modified reproduction operators [30]-[35], the enhanced 
mating selection method [36], and the modified solution replacement approaches [37]-[42]. Overall, 
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these MOEA/D variants maintain the population’s diversity by using a set of uniform weight vectors to 
define their subproblems and then renew the solution associated to each subproblem using the 
aggregated function values. However, this kind of solution replacement neglects the population’s 
distribution in the objective space, which may hamper the diversity when solving some MOPs with 
irregular and discontinuous PFs. 

To alleviate the above problem, constrained decomposition strategies for MOEA/D were suggested 
in [43]-[46], by transforming MOPs into a set of constrained subproblems. Each subproblem will be 
assigned with a constrained subspace in the objective space, regarded as its feasible region. Solutions 
inside the feasible region are always better than the outside solutions, which can maintain the 
population’s diversity quite well. However, due to the inconsistency of the used weight vectors and the 
true PFs, this kind of constrained decomposition approaches often leads to the disequilibrium of 
solutions that are associated to subproblems, i.e., a larger number of solutions may be located in the 
feasible region of one subproblem, while no solution can be found in some feasible regions. Such cases 
will lead to the fact that their performances are very sensitive to the shapes of unknown PFs [47]. 
Generally, it often requires a user to select a suitable aggregation function with a specific set of weight 
vectors, in order to get superior performance on one particular MOP, which may not always be an easy 
task for no-experience users [44].  

To solve the above problem, some adaptive adjustment approaches on the used weight vectors are 
designed in [48]-[52] based on the decomposition methods without any constraint. Working on the 
same research direction to adjust the weight vectors, this paper proposes a novel MOEA with dynamic 
decomposition strategy (DDS), called MOEA/D-DDS, which tries to regenerate the weight vectors 
under the constrained decomposition approach. In our DDS, N parent solutions and their N offspring 
solutions at each generation are combined to a union population with 2N solutions, which are then 
associated to the preset N uniform weight vectors based on the constrained decomposition method. 
Then, the distribution of union population can be shown by counting the number of solutions that fall in 
the feasible region of each subproblem, i.e., in ( 1,2,..., )i N  is used to record the number of solutions 
in the feasible region of ith subproblem with the constraint 

1
2N

ii
n N . By this way, the number of 

subproblems that are not associated to any solution can be calculated and recorded by maxT , which also 
indicates the number of new weight vectors (subproblems) that need to be re-produced for associating 
solutions. Thereafter, the subproblem associated with the largest number of solutions will be found, 
which is further decomposed into two new subproblems using the proposed clustering-based method. 
Please note that when there are more than one subproblem associated with the largest number of 
solutions, one of them can be selected randomly. This dynamic decomposition process will be run maxT  
times in order to have N subproblems associated with at least one solution. At last, a simple 
convergence indicator is used to select one solution from the feasible region of each of these N 
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subproblems, which can simultaneously guarantee the convergence and the diversity even when the 
initially used weight vectors and evolutionary population are not so matched. When compared to six 
competitive MOEAs (NSGA-III [55], MOEA/D-DE [30], MOEA/D-DRA [27], MOEA/D-STM [37], 
MOEA/D-IR [41], and MOEA/D-ACD [43]), the experiments justify the advantages of MOEA/D-DDS 
in solving most cases of twenty-six well-known test MOPs. 

The remainder of this paper is organized as follows. Section 2 introduces three decomposition 
approaches in MOEA/D and the constrained decomposition strategy. Section 3 introduces the details of 
MOEA/D-DDS, while Section 4 gives the experimental results and the corresponding discussions of 
MOEA/D-DDS with other competitors. Finally, Section 5 presents our conclusions and future work. 

 
2. A short review of related work 
2.1 Three decomposition approaches in MOEA/D  

The motivation of using the idea of decomposition for solving MOPs may retrospect to C-MOGA 
[53] and cMOEA [54], which combine the traditional mathematical tool (i.e., the decomposition 
approach) with the heuristic search methods. In the original MOEA/D framework [15], there are two 
essential components for decomposition, i.e., the used decomposition function and the associated 
weight vectors. With these two elements, MOEA/D decomposes Eq. (1) into N scalar optimization 
subproblems, where N is the population size and also the number of weight vectors. Thereafter, it 
simultaneously optimizes all the N subproblems on a collaborative manner. The optimal solutions for N 
subproblems will approximate the entire true PF of a MOP. To enhance the performance of optimizing 
the subproblems, MOEA/D uses the information from neighboring subproblems as defined according 
to the Euclidean distance of weight vectors (i.e., the T closest weight vectors are considered as the T 
neighbors of subproblems), which helps to design a restricted mating selection method and a solution 
replacement strategy.  

When generating the set of weight vectors 1 2( , ,..., )N , they are uniformly sampled from the unit 
hyperplane in the objective space, which can be determined by the user with priority or preset on a 
systematic manner. Based on the division parameter H and the condition 1

1
m
H mC N , each element 

i i
j  is assigned a value from the set 0,1/ ,2/ ,...,1H H , which subjects to the condition 1 1m i

j j  
for all 1,2,...,j m  and 1,2,...,i N (m and N are the number of objectives and the population size, 
respectively).   

Regarding the decomposition approaches (or scalarizing functions), there are three mainly used 
methods (namely weighted sum, Tchebycheff, and penalty-based boundary intersection functions) 
introduced in original MOEA/D [15]. Assume that * * * *

1 2, ,...,
T

mz z z z  is an ideal point, where its 
element *

jz  is always set to be the smallest jf  value found so far for all 1,2,...,j m . Each weight 
vector 1 2, ,...,

Ti i i i
m  defines ith subproblem and its particular search direction ( 1,2,..., )i N . 
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The definitions of these three methods are introduced below. 
1) Weighted Sum Approach (WS) and Tchebycheff Approach (TCH) 

These two methods (WS and TCH) are derived from the family of the pL  scalarizing functions 
( 1p ), as follows. 

1/

* *

1
Minimize | , ( | |)p

p
m

L i i p
j j

j
g x z f x z                    (2) 

Subject to x .                     
WS and TCH are two extreme cases of *| ,pL ig x z  with 1p  and p , respectively. Thus, the 
scalarizing functions of WS and TCH can be respectively defined by 1* *| , = | ,Lws i ig x z g x z  and 

* *| , = | ,Ltch i ig x z g x z . To have a better understanding, the search direction of WS is illustrated in 
Fig. 1(a), where the particular direction vector ir  of ith subproblem is set the same with the weight 
vector i  and the solutions located in the improvement region (IR) are better than the solution ix . As 
pointed out in [5], WS puts more attentions to the solutions’ convergence and has a better performance 
on the MOPs with convex PFs, but it gives a worse performance on the population’s diversity when 
handling the MOPs with nonconvex PFs. Moreover, as shown in Fig. 1(b), TCH gives more emphasis 
on the population’s diversity, which is suitable to tackle the MOPs with nonconvex PFs when compared 
to WS. Especially, in TCH, 1/ i

j  is used to replace i
j  in order to obtain a set of even distribution on 

search directions. In this case, i
j  is re-set to -510  when its value is 0, so as to guarantee the validity 

of the division [37]. 
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Fig. 1: Illustrations of three scalarizing functions with direction vector ir  using (a) WS, (b) TCH, (c) PBI, 
where dashed lines are contour lines and grid regions are the improvement region (IR) for the solution ix . 

 
2) Penalty-Based Boundary Intersection Approach (PBI)  

PBI is a balanceable scalarizing function, which consists of two components, i.e., a convergence 
distance 1

id  and a diversity distance 2
id . Here, as shown in Fig. 2, 1

id  is the projection distance of 
*iF x z  on the weight vector i , and 2

id  is the perpendicular distance between ( )iF x  and i . 
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Then, the weights of these two distances are controlled by a user-defined penalty parameter , which 
tends to balance the convergence and the diversity for the population. Using mathematical format, PBI 
can be used to define the ith subproblem, as follows. 

1 2Minimize pbi i * i ig x| ,z d d                         (3) 

where *
1 ( )

Ti i id F x z , *
2 1
i i i id F x z d    

  Subject to x . 

Figure 1 (c) gives an illustration to show the search direction of PBI, and its direction vectors are the 

same with the preset weight vectors. By properly adjusting the parameter , PBI can well solve the 

MOPs with convex or nonconvex PFs. It is obvious that a small  value can be set to prefer the 

convergence speed, while a large  value tends to emphasize the population’s diversity. 
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Fig. 2: The illustration of the projection distance and the perpendicular distance regarding the weight vector i   
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Fig. 3: Illustrations of the most serious cases of three scalarizing functions (a) WS, (b) TCH, (c) PBI 

 

2.2 Constrained decomposition strategy 
As shown in Fig. 1, the IRs for one solution may be too large for some problems with irregular 

PFs in MOEA/D [26], which results in the fact that several parent solutions from different subproblems 
may be substituted by a single new offspring solution and thus deteriorating the population’s diversity. 
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Figure 3 illustrates the most serious cases that (a) WS, (b) TCH and (c) PBI are all going to be trapped 
in a local region. In each sub-plot of Fig. 3, there are five evenly distributed weight vectors 

1 2 3 4 5( , , , , )  associated with five corresponding parent solutions 1 2 3 4 5( , , , , )x x x x x . However, 
all of these five parent solutions will be replaced by a single new offspring solution childx , as the 
solution childx  nearly falls on the true PF and all parent solutions’ IRs contain childx . In this way, the 
search process may be easily trapped in a local PF and the populations’ diversity will be seriously lost. 
Thus, in order to alleviate the above-mentioned situation, a constrained decomposition strategy was 
proposed in [43], embedding constraints to the subproblems and reducing the volumes of IRs to control 
the balance of convergence and diversity. This way, the ith subproblem with weight vector i  has a 
feasible region (FR) in the objective space, where solutions in this region are assigned with the 
aggregated objective value i *g x| ,z  as defined in Eq. (2-3), while solutions outside the feasible 
region are set to  as their aggregated function values. This indicates that the solutions in FR of each 
subproblem are always better than the ones outside it, and thus the IRs of the subproblems are restricted 
within the FRs. To get these FRs and correspondingly reduce the IRs, there are two main approaches to 
define the constrained optimization subproblems in MOEA/D, as introduced below. 

1) Angle-based approach [43] [45] [46]  
To reduce the IRs, this method introduces an angle i  to adaptively control the FR of the ith 

subproblem, 1,2,...,i N , which is defined as follows. 
*Minimize | ,constrained A ig x z                           (4) 

Subject to *, 0.5i ir F x z  and x  
where *| ,constrained A ig x z  is the aggregated objective function (e.g., WS, TCH, or PBI) and ir  is the 
particular direction vector of ith subproblem determined by the used decomposition method, which has 
been introduced in Section 2.1. Then, *,ir F s z  indicates the acute angle of ir  and *F s z , 
and the FR of ith subproblem can be adaptively controlled by adjusting the parameter i , where each 
subproblem has an unique  value based on the adjustment strategy in [43]. To visually clarify this 
method, Fig. 4 illustrates the IR for one solution ix  associated to the ith subproblem. 

2) Distance-based approach [44] [55] 
This approach is mathematically defined as follows. 

                       Minimize *| ,constrained D ig x z                           (5) 
Subject to *argmin , i distan r F x z rce  and x  

where *,distance r F x z  is the Euclidean distance from r  to *F x z , and other components 
like *| ,constrained D ig x z  and ir  are the same as defined in the above angle-based approach. Thus, 
the FR of ith subproblem is defined to have the minimum distance from *F x z  to the reference 
vector ir , and the IR is restricted within the FR. 



8 

PF PF PFri
 ri

 ri
 

f1

f2

f1 f1

f2 f2o o o

xi xi xi

(a) (b) (c)

IR IR IR

Ɵi Ɵi Ɵi 

 
Fig. 4: Illustrations of the IRs for three constrained decomposition approaches using (a) WS, (b) TCH, (c) PBI, 

where dashed lines are contour lines and grid regions are the IRs for one solution ix . 

 
3. The Proposed MOEA/D-DDS Algorithm 

In this section, the details of the proposed MOEA/D-DDS algorithm are introduced. At first, the 
framework of MOEA/D-DDS is provided, which gives an overview of our algorithm. Then, the two 
important procedures (offspring reproduction and the proposed DDS) are introduced. At last, an 
analysis related to the computational complexity of MOEA/D-DDS is given. 

 
Algorithm 1 Framework of MOEA/D-DDS 
Input: neighborhood size T, a mating selection control parameter , maximal generation Gmax 
Output: An approximation to the PF (PS)   
1: Initialize population set P 1 2, ,..., Nx x x , a set of weight vectors W ,...,1 2 N , generation G=1; 
2: While G  Gmax do 
3:    Q = Offspring_Reproduction (P, ) //Introduced in Section 3.2 
4:    R = P + Q and set P   
5:    P = Dynamic_Decomposition_Strategy (R,W) and G++ // Given in Section 3.3 
6: End While  
7: Return P 

 
3.1 The Framework of MOEA/D-DDS  

The proposed MOEA/D-DDS algorithm designs a dynamic decomposition strategy (DDS), which 
endeavors to well balance the diversity and the convergence during the evolution. To give an overview 
of MOEA/D-DDS, its framework is given in Algorithm 1 with a very concise structure. First, in line 1 
of Algorithm 1, a set of weight vectors , ,...,1 2 N  is evenly generated and the population P is 
randomly initialized with N solutions 1 2, ,..., Nx x x  in the decision space. Second, the population P 
begins to evolve in lines 2-6 in order to search an approximation set until the stopping condition is 
satisfied, i.e., G reaches to Gmax. When the evolution terminates, a set of solutions can be obtained, 
expecting to closely approximate to the true PF with even distribution. For each evolutionary cycle, the 
procedure of offspring reproduction is run, which has the neighborhood concept defining the adjacent 
solution vectors to run the restricted mating selection and the recombination operators (DE crossover 
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and polynomial-based mutation), and then an offspring population Q is generated in line 3. Details of 
this procedure will be given in Section 3.2. After that, the parent population P and the offspring 
population Q are combined as a union population R in line 4, and the proposed DDS is run on R to 
obtain the new population P in line 5. When compared to MOEA/D [15] and most of its variants [27] 
-[43], the main novelty of MOEA/D-DDS is the proposed DDS, which includes three main components, 
i.e., distance-based constrained decomposition approach, clustering-based dynamic decomposition 
approach and the convergence-based solution selection method (scalarizing functions in MOEA/D). 
With these three components, the proposed DDS strives to balance the convergence and the diversity 
for the population, the details of which are given in Section 3.3. At last, when the maximal generations 
are reached, the population P is outputted as an approximation set to the true PF in line 7.  

3.2 Offspring reproduction  

Reproduction is an important step to create an offspring population Q, which includes three main 
procedures (mating selection, crossover and mutation). Each solution ix  in P needs several parent 
solutions to do reproduction. Generally, one solution is selected to run SBX [56], while two solutions 
are chosen to perform a DE variant (DE/rand/1) [30]. In these operators, mating selection plays an 
important role in the process of reproduction, as recombination of several distant or very different 
parents is disruptive and not likely to get superior offspring. Thus, the neighborhood information is 
used in our mating selection to restrictedly select mating parents from the neighboring subproblems 
with a high probability. As suggested in MOEA/D [15], the neighborhood information is defined to 
have T closest weight vectors as the neighbors of each weight vector. In this way, the neighbors of each 
subproblem are fixed at the beginning, in which the neighborhood information is heavily dependent on 
the used weight vectors. However, this approach may ignore the distribution of the population, and 
reduce the effect of recombination. To alleviate the above problem, T angle-based closest solutions to 
each solution ix  are defined in MOEA/D-DDS as its T neighbors ( 1,2,..., )i N . Here, the angle of 
solutions ix  and jx  can be computed by Eq. (6). 

1

2 2

1 1

( , ) arccos

m
i j

k k
ki j

m m
i j

k k
k k

f x f x
angle x x

f x f x
arccos                        (6) 

where i
kf x  is the kth objective value of ix , {1,2,..., }k m  and m is the number of objectives. 

To clearly show this procedure, Algorithm 2 gives the details to produce the offspring population 
Q, with the inputs P (the parent population) and  (a parameter to control mating selection). First, in 
line 1, Q is initialized as an empty set. Then, the neighborhood information of ix  is obtained and 
preserved in B i , as shown in line 2, where 1 2( ) , ,..., TB i i i i  indicating 1 2, ,..., Ti i ix x x  are T 
angle-based closest solutions to ix , 1,2,...,i N . At last, an offspring population Q is obtained in lines 
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3-9 using the restricted mating selection and two recombination operators (DE crossover and 
polynomial-based mutation). Here, the restricted mating selection strategy and the recombination 
operators used in lines 4-7 are introduced. Based on the preset parameter  and the neighborhood 
information of each solution ix  1,2,...,i N , 1r  is randomly generated from [0,1] to set the mating 
selection index pool msP  for ix , as defined by 

1if 
=     

1 2 otherwisems

B i r ,
P

, ,...,N .
                             (7) 

Then, each element u
kx  ( =1,2,..., )k n  in the new solution 1 2, ,...,u uu u

nx x x x  is generated by DE 
(n is the dimensions of the decision space), as follows. 

2  if ,
=     

  otherwise.

d hi ii
k k ku

k
i
k

x F x x r CR
x

x
                        (8)  

where CR is the crossover probability, F is the scaling factor, dix  and hix  are two selected parents 
from msP , and 2r  is randomly generated from [0,1]. Then, the polynomial-based mutation is further 
run on ux  to get a new offspring 1 2, ,...,v v v v

nx x x x  in line 7, as computed by  

3( )      if ,
=    

        otherwise.

u
k k k k mv

k u
k

x u d r p
x

x
                       (9) 

with 

1
1

1
1

(1 )
1 4

(1 )
2

2 4+(1-2 4) (1- ) 1              if <0.5,  

1 2 2 4 +(2 4 1) (1- )            otherwise        
k

rd rd r

rd rd
    (10) 

here 1

u
kk

k k

x d
u d  and 2

u
k k

k k

u x
u d  

where  is the distribution index, mp  is the mutation rate, 3r  and 4r  are both randomly generated 
from [0,1], while ku and kd  are the upper and lower bounds of the kth decision variable, respectively. 
 

Algorithm 2: Offspring_Reproduction (P, ) 
Input: P (a parent population) and  (a control parameter for mating selection) 
Output: The offspring population Q 
1: Initialize the offspring population Q  
2: Compute B(i) ={i1…iT} by finding T angle-based closest solutions to ix ( 1,2,..., )i N  
3: For i = 1 to N do 
4:   Set mating selection index pool msP with Eq. (7) 
5:   Randomly select two indexes ,d hi i  from msP  and get two parents ( , )d hi ix x  from P 
6:   Run DE crossover on dix , hix and ix  to get ux   
7:   Run polynomial-based mutation on ux  to get vx  
8:   Add vx  into Q 
9: End For 
10: Return Q  
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3.3 Dynamic decomposition strategy 

As introduced in Section 2, a general decomposition approach transforms the MOP in Eq. (1) into a 
set of subproblems and thus the objective space of Eq. (1) is divided into a set of sub-regions (as shown 
in Section 2.1). A constrained decomposition strategy assigns each sub-region as the feasible region for 
the corresponding subproblem, and then the solutions in the feasible region of each subproblem are 
considered as the ones better than the outside ones, which have been introduced in Section 2.2. In the 
proposed DDS, a set of uniformly distributed weight vectors , ,...,1 2 N  is initially associated to 
the union population R (composed by the parent population P and the offspring population Q), in 
which the distance-based constrained decomposition strategy defined in Eq. (5) is used to get N subsets 

1 2( , ,..., )NS S S  with each iS  ( 1,2,...,i N ) including the solutions falling into the feasible region of 
ith subproblem. In this process, each solution Rix  is associated to the closest weight vector by 
computing the distances of ix  and all the reference vectors in the objective space. Then, the 
distribution of R can be estimated by counting the number of solutions that fall within each feasible 
region, i.e., i

in S  ( 1,2,...,i N ) with the constraint 
1

2N
ii

n N .  
 

Algorithm 3 Dynamic_Decompose ( iS ) 
1: initialize j ix S as a cluster jC and cluster center jcc , size = | iS |, flag( jC )=false 
2: while size > 2  
3:   Find the two most closest clusters aC  and bC  subject to flag( aC )= flag( bC )=false

  by computing the angles between their centroids using Eq.(6)           
4:   Combine aC  and bC  as a new cluster C 
5:   Update the centroids of C using Eq. (11) 
6:   Set aC C  and flag( bC )=true 
7:   size-- 
8: end while 
9: return ,a bC C subject to flag( aC )= flag( bC )=false 

 
When tackling the general MOPs, it is often observed that some feasible regions are empty (i.e., 
0in ), while other feasible regions overflow with many solutions (i.e., 3in ), especially at the begin 

of evolution. This is mainly because the preset weight vectors cannot always match the distribution of 
evolutionary population. To solve the above problem, the overflowed feasible regions should be further 
decomposed on a dynamic manner according to the population’s distribution, which regenerates some 
new weigh vectors (i.e., subproblems) in order to substitute the empty weigh vectors (i.e., subproblems 
associated with no solutions). Thus, a clustering-based dynamic decomposition approach is designed to 
classify solutions in one most-crowded feasible region. In this paper, the agglomerative hierarchical 
clustering method [57] [58] is employed to explore the inner distribution and regularity of solutions in 
the most-crowded feasible region, so that the solutions in this region can be classified into two clusters 
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regarded as two subproblems. By this way, two new subproblems are re-generated from two clusters, 
by setting the centroids of two clusters as two weight vectors.  
 To further clarify the procedure of clustering-based dynamical decomposition, its pseudo-code is 
given in Algorithm 3 with the input iS  (regarded as a cluster in this paper to preserve solutions in the 
feasible region of ith subproblem). This procedure aims to decompose iS  into two clusters ( , )a bC C  
using the agglomerative hierarchical clustering method. Each solution j ix S  ( 1,2,...,| |)ij S  is 
treated as one cluster and the centroid, as shown in line 1 of Algorithm 3, and we use size to represent 
the current number of clusters, which is initialized to | |iS . Then, in lines 2-8, two most similar clusters 
are merged until only two clusters are left at last, i.e., size=2. In this process, the similarity of two 
different clusters is defined by computing the angle value using Eq. (6) between two clusters’ centroids 
in line 3. In addition, once a new cluster C is generated, it needs to update the centroid in line 5 by 
computing the average vector of all the solutions in C. The cluster center cc of C can be computed by 

1
( )C k

ik
i

f x
f cc

C
                                     (11) 

where kx C  and i = 1, 2, … m. The centers of ,a bC C  can be treated as two weight vectors for new 
subproblems. After that, the size is reduced by 1 in line 7. While size is larger than 2, the above 
procedures in lines 3-7 will be run iteratively. 
Algorithm 4 Dynamic_Decomposition_Strategy(R, W) 
1: Apply distance-based constrained decomposition strategy to decompose R into N solution sets 1 2( , ,..., )NS S S   
2: Compute maxT  by Eq. (12)  
3: For i = 1 to maxT  do  
4:    Find the cluster 1 2, ,...,t NS S S S  with the largest number of solutions 
5:    ( , )x yS S = Dynamic_Decompose ( tS )  //(Algorithm 3) 
6:    Set tS = xS and eS = yS  ( eS is an empty cluster, 1,2,..., 0ee N n 0e ) 
7: End for 
8: Add a solution , (1,2,..., )ix S i N with a best value of Convergence(x) by Eq.(14) into P 
9: Return P 

 
With the above Algorithm 3, Algorithm 4 is provided to clearly introduce the designed DDS. The 

detailed process is summarized as follows. Firstly, the distance-based constrained decomposition 
strategy is applied to decompose R into N solution sets 1 2( , ,..., )NS S S  in line 1 of Algorithm 4 based 
on the preset weight vectors ( , ,..., )1 2 N . Here, iS  saves the solutions falling into the ith 
subproblem’s feasible region and in  is used to record its size, i.e., i

in S  with 1,2,...,i N  (N is 
number of weight vectors). The total number of empty feasible regions (with in 0) is obtained in line 
2, which is recorded by maxT  in Eqs. (12)-(13). 

max
1

N

i
i

T E                                   (12) 
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with 
1 if 0

=      1,2,...,
0 if 0

i
i

i

n
E i N

n
                     (13) 

This value of maxT  also indicates the number of times to do the clustering-based dynamic 
decomposition. Next, this process of dynamic decomposition is run to replace the empty subproblems 
in lines 3-7. In this process, Algorithm 3 is adopted to iteratively divide the cluster tS  with the 
maximum record size max  ( 1,2,..., )t in n i N  into two new clusters ( , )x yS S  in lines 4-5. Please 
note that when there are more than one subproblem associated with the largest number of solutions, one 
of them will be randomly selected. Then, the replacement of subproblems is run, by using xS  to 
replace tS  and using yS  to update one empty cluster in line 6. At last, N subproblems whose 
feasible regions having at least one solution can be obtained and a simple convergence indicator in Eq. 
(14) is used to select only one best solution from each feasible region into P in line 8. Here, 

iConvergence x  indicates the convergence performance for solution ix , as defined by  

1

m
i i

j
j

Convergence x f x                                (14) 

In order to facilitate the understanding of our proposed DDS, a simple example is given in Fig. 5. As 
shown in Fig. 5(a), four preset weight vectors ( 1 , 2 , 3 , 4 ) are distributed uniformly in the 
objective space and they separate the bi-objective space into four feasible sub-regions (L1, L2, and L3 
are the boundary lines of the feasible sub-regions). In this example, the union population R includes 
eight solutions (a, b, c, d, e, f, g, and h) in the bi-objective space. First, as shown in Fig. 5(a), 
distance-based constrained decomposition strategy is used to obtain four solution sets 1 2 3 4( , , , )S S S S , 
where a and b belong to 1S ; c, d, e, f, and g are associated to 3S ; h falls into 4S , while 2S  has no 
associated solution. As 3S  has the largest number of associated solutions, Algorithm 3 is run on it to 
get two new clusters, in which c and d belong to one cluster, while e, f, and g are collected into other 
cluster. At last, one solution is selected by Eq. (14) in each cluster to have a better convergence, which 
is marked by red color in Fig. 5(b). 
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Fig. 5 A simple example to show the process of dynamic decomposition strategy. 
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3.4 Computational Complexity of MOEA/D-DDS 

As introduced in Section 3.1, MOEA/D-DDS includes two main produces, i.e., offspring 

reproduction (mating selection and recombination operators) and the proposed DDS (environmental 

selection), which determine the computational complexity of MOEA/D-DDS in one generation. As 

shown in Algorithm 1, it requires a time complexity of 2O mN  (m is the number of objectives and N 

is the population size) to get the offspring population Q in line 3. The details of this process are given 

in Algorithm 2, where the computational complexity is mainly dominated by the process of preserving 

the neighbor information of each solution in line 2. Regarding the proposed DDS, in line 5 of 

Algorithm 1 (details are given in Algorithm 4), it needs a time complexity of 2O mN  to run the 

distance-based constrained decomposition strategy to decompose the union population R into N 

clusters 1 2( , ,..., )NS S S  with the set of weight vectors (in line 1 of Algorithm 4). In the loop of 

dynamic decomposition to re-generate new subproblems in lines 3-7 of Algorithm 4, the time 

complexity is mainly determined by the clustering-based method (Algorithm 3) in line 5, which 

requires a time complexity of 
2iO m S  to divide the input population iS  into two new cluster ( iS  

indicate the cardinality of iS , and iS  is regarded as a cluster in this paper to preserve solutions in the 

feasible region of ith subproblem). In the experimental studies, we find that iS NN for most 

considered MOPs, especially in the last stage of evolution. However, there is the worst scenario that all 

solutions in R are clustered in the same feasible region of ith subproblem (i.e., iS =2N  and the 

max = 1T N  in line 2 of Algorithm 4), it needs a worst time complexity of max 2

1

T i

i
O m S 3O mN  

to finish the loop in the DDS. Especially, the cardinality of iS  becomes smaller with the running of 

clustering. Therefore, considering the above computational complexity analysis of all the procedures, 

the overall worst time complexity of MOEA/D-DDS is approximated to max 2

1

T2 i

i
O mN +O m S  

3O mN  in one generation. 
 
4. The Experimental Studies 

In this section, six competitive MOEAs, i.e., NSGA-III [55], MOEA/D-DE [30], MOEA/D-DRA 
[27], MOEA/D-STM [37], MOEA/D-IR [41], and MOEA/D-ACD [43], are adopted here to study the 
performance of the proposed MOEA/D-DDS algorithm. Twenty-six various MOPs, i.e., WFG1-WFG9 
[59], UF1-UF10 [60], and MOP1-MOP7 [25], are considered here as the test problems to run the 
empirical studies. To access the quality of solutions obtained by these compared MOEAs, two widely 
used performance metrics are employed in our experiments, such as inverted generational distance 
(IGD) [64] and hyper-volume (HV) [17]. In the following subsections, the experimental studies are 
divided into the three main components. Firstly, some information related to the compared MOEAs, the 
considered test problems, the parameters settings and the used performance metrics (IGD and HV), are 
introduced. Then, the experimental studies about the proposed MOEA/D-DDS are given. Finally, more 
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discussions about DDS are provided to show its advantages. 
 
4.1 Related Experimental Information 

4.1.1 Compared MOEAs 
Six competitive MOEAs are used here to testify the performance of our proposed MOEA/D-DDS, 

which are briefly introduced below. 
1). NSGA-III [55]: It was an enhanced version of NSGA-II to tackle many objective optimization 

problems. In NSGA-III, using the preset uniformly distributed reference vectors, the distance-based 
constrained decomposition strategy is used to design a niche method, which assigns each solution to the 
nearest reference line. In the feasible region of reference line, when multiple solutions have the best 
non-dominated sorting rank, one solution with the shortest distance to the reference line is selected for 
next generation. Under this way, NSGA-III tries to alleviate the loss of selection pressure by enhancing 
diversity management using the distance-based constrained decomposition strategy.  

2). MOEA/D-DE [30]: In order to solve some complicated MOPs with variable dependencies, 
differential evolution (DE) operator are employed in MOEA/D to substitute its original crossover 
operator (SBX).  

3). MOEA/D-DRA [27]: In the competition of MOEAs in CEC2009, this algorithm showed the 
superior performance on tackling most of the complicated MOPs. A dynamic resource allocation 
strategy was proposed in MOEA/D-DRA, which computes the utility function for each subproblem and 
dynamically selects the subproblems having high potentiality to be improved.  

4). MOEA/D-STM [37]: It adopts a stable matching model (STM) to associate the subproblems and 
the solutions, aiming to balance the convergence and the diversity for the population during the 
evolutionary process. 

5). MOEA/D-IR [41]: This algorithm is enhanced from MOEA/D-STM. An inter-relationship model 
was presented to associate solutions based on the principle of diversity first and convergence second, 
which considers the mutual-preferences of the subproblems and the solutions.  

6). MOEA/D-ACD [43]: It is a recently proposed MOEA/D variant, which designs an adaptive 
angle-based constrained decomposition approach to enhance the population’s diversity.  
 
4.1.2 Benchmark Problems 

In our experiments, twenty-six various unconstrained MOPs are considered here to assess the 
performance of the proposed MOEA/D-DDS algorithm, and their features are briefly introduced below.  

UF1-UF10 are initially proposed as the benchmark problems for the competition of MOEAs in 
CEC2009 [60], which show very complicated PSs in the search space. For MOP1 to MOP7 [25], they 
are modified from ZDT [61] and DTLZ [62] problems, characterized with various twisted search 
landscapes, in which the solution in a tiny search area can dominate other solutions in the large area. 
Thus, to avoid the trap in local area of a MOEA, it is important to maintain the diversity when solving 
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MOP1-MOP7. Considering the WFG test problems (WFG1-WFG9) [59], they are characterized with 
various complex features, such as non-separable, deceptive, degenerate, variable dependent, different 
scaled and mixed PF shapes. 

According to the number of objectives (summarized in Table 1), UF1-UF7 and MOP1-MOP5 are 
two-objective problems, while UF8-UF10 and MOP6-MOP7 are three-objective problems. More 
importantly, WFG1-WFG9 can be scalable to any number of objectives and they are scaled to 
three-objective problems in this paper. In addition, the numbers of decision variables of UF1-UF10 and 
MOP1-MOP7 are respectively set to 30 and 10; Especially for WFG1-WFG9, they have position- and 
distance-related decision variables, whose numbers are respectively set to 4 and 10. More information 
above these test problems can be found in [25], [59], and [60]. 

 
4.1.3 Performance Indicators 

In this paper, to evaluate the performance among the compared algorithms, two widely used 
performance indicators are used in our empirical studies, i.e., the inverted generational distance (IGD) 
[64] and the Hyper-volume (HV) [17], which can simultaneously reflect the quality of solutions 
obtained by different MOEAs, on the aspects of convergence and diversity. 
 

Table 1 Basic settings of IGD and HV for different test problems  
Problems Numbers of Objectives (m) Numbers of Sampling Points in *P  Reference Points rz  

WFG1-WFG9 3 2000 (3.0,5.0,7.0)   
UF1-UF7 2 1000 (2.0,2.0)   

UF8-UF10 3 10000 (2.0,2.0 2.0)  
MOP1-MOP5 2 5000 (2.0,2.0)  
MOP6-MOP7 3 5000 (2.0,2.0 2.0)  

 
  1). IGD: assuming that S is a set of optimum solutions obtained by a MOEA, the IGD indicator is 
designed to compute the average distance from a subset of true PF to S, which can simultaneously show 
the convergence and the distribution of S along the true PF. Thus, when computing the IGD indicator, 
the information about the true PF of the underlying MOP should be known in advance. Generally, a 
uniformly sampled set ( *P ) from the true PF is used to calculate the IGD value of S, as follows.  

*| | | |

1* 1
*

min ( , )
,

P S
i j

j
i

 dist p x
IGD S P

P
                            (15) 

where ( , )i jdist p x  indicates the Euclidean distance between a solution i *p P  and a solution jx S . 
*P  and S  respectively indicate the number of solutions in *P and S. It is noted that the set S with a 

low IGD value indicates the high approximation to the entire PF. Moreover, the numbers of points ( *P ) 
on the true PF should be as larger as possible in order to improve the computational accuracy. In our 
empirical studies, the sizes of *P  for different test problems are given in Table 1. 
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  2). HV: assuming that S is a set of solutions obtained by a MOEA, the HV indicator is designed to 
compute the volume of the dominated objective space of S in a limited space. Generally, the nadir point 
of the true PF, i.e., a reference point 1( ,..., )r r r T

mz z z , is defined as the bound of the limited space, in 
order to get the HV value. As suggested in [41], each element in rz  should be set slightly bigger than 
the corresponding value of the nadir point. Then, the HV metric can be calculated as follows. 

 1 1
x S

( ) Vol( [ ( ), ] ...[ ( ), ])r r
m mHV S f x z f x z

x S
f[ ( ),1 1[ ( )[ ( ),( ),1 1        (16) 

where Vol( )  denotes the Lebesgue measure. When calculating the HV value, the solutions in S that 
cannot dominate rz  will be discarded (i.e., solutions in S that cannot dominate rz  are not included to 
compute HV). Similar to [41], an integer larger than the member of the nadir point in each objective is 
adopted in our experiments as the reference point, which is shown in Table 1 for different test problems. 
Generally, the solution set S with a larger HV value indicates a more promising performance to 
approach the true PF. 
 
4.2 Experimental Parameter Settings 

MOEA/D-DE, MOEA/D-DRA, MOEA/D-STM, MOEA/D-IR, MOEA/D-ACD and the proposed 
MOEA/D-DDS are designed based on the decomposition approach, which employ the DE crossover 
operator for reproduction, while NSGA-III applies the SBX crossover operator and its parameters are 
set as suggested in [55]. The detailed parameter settings of these decomposition-based MOEAs are 
summarized in Table 2. 

Table 2 General Experimental Parameter Settings 
Basis Setting types Parameter Settings 

Reproduction operators 
Mutation probability 1/mp n , 

Distribution index 20mu  
CR=0.5 and F=0.5 for WFG; CR=1.0 and F=0.5 for UF and MOP [41] 

Population Size (N) N=600 for UF1 to UF7; N=1000 for UF8 to UF10; N=100 for MOP1 to MOP5; 
N=300 for MOP6 and MOP7; N=300 for WFG1 to WFG9 

Number of Runtimes Each algorithm is independently launched 30 times on each test problems 
Function Evaluations 300 000 for UF and MOP problems and 120 000 for WFG problems 

Neighborhood Size (T) T=15 for bi-objective problems and T=20 for three-objective problems 
Probability ( ) 0.9=  for all the decomposition-based MOEAs 

 
In Table 2,  is a user-defined parameter to control the restricted mating selection in MOEAs; CR 

and F are two parameters to control the DE crossover operator [65]. To have a fair comparison with all 
the compared algorithms, we actually use the same parameter settings from their references. Due to the 
different difficulties for different kinds of problems, the compared algorithms usually will adopt 
different values of parameters (CR, F, N) for comparison, in order to guarantee that most of the 
compared algorithms can be well converged, which will have a reasonable and justified comparison. 
Additionally, all the compared MOEAs in this paper are implemented in JAVA. The source code of 
NSGA-III was implemented by the authors of -DEA [66], while the other source codes are provided 
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by their authors.  

4.3 Comparison with Several Competitive MOEAs 

In this section, MOEA/D-DDS is compared to NSGA-III, MOEA/D-DE, MOEA/D-DRA, 
MOEA/D-STM, MOEA/D-IR and MOEA/D-ACD on twenty-six test problems (WFG1-WFG9, 
UF1-UF10, and MOP1-MOP7). After obtaining the IGD and HV results, Wilcoxon rank sum test was 
further run with a significance level =0.05 to get a statistically sound conclusion, which shows the 
statistically significant differences between the results of MOEA/D-DDS and other MOEAs. In the 
following tables, all the IGD and HV results obtained by each MOEA are expressed in terms of 

( )Mean Std  for each test MOP, where Mean and Std are respectively the mean value and the standard 
deviation value from 30 run. The symbols “+”, “–”, and “~” indicate that the results of other MOEAs 
are respectively better than, worse than, and similar to the ones of MOEA/D-DDS, under Wilcoxon 
rank sum test. Please note that the best mean result of each test MOP is highlighted with boldface in 
gray background for easy observation. 

 
4.3.1 Comparison on WFG1-WFG9 

All the performance comparisons of seven MOEAs on WFG1-WFG9 are given in Tables 3 and 4, 
which respectively list the IGD and HV results. These experimental results show that MOEA/D-DDS 
has a promising performance in solving WFG problems, as it is best on 3 out of 9 cases both on IGD 
and HV. By contrast, NSGA-III, MOEA/D-DE, MOEA/D-DRA, MOEA/D-STM, MOEA/D-IR and 
MOEA/D-ACD are respectively best on 4, 0, 1, 0, 0 and 1 cases for IGD and respectively best on 3, 0, 
0, 1, 1, and 1 cases for HV, as summarized in the second last row of Tables 3 and 4. In the last row of 
Tables 3 and 4, the comparison summary of MOEA/D-DDS with each of other MOEAs is given when 
considering all the WFG problems, where “+/–/~” give the total number of test problems on which the 
corresponding MOEA performs better than, worse than, and similarly to MOEA/D-DDS.  

 
Table 3 Performance Comparisons of IGD on WFG1-WFG9 Test Problems 

Problem NSGA-III MOEA/D-DE MOEA/D-DRA MOEA/D-STM MOEA/D-IR MOEA/D-ACD MOEA/D-DDS 
WFG1 8.13E-01(1.84E-01)+ 1.10E+00(6.92E-02)~ 9.02E-01(8.10E-02)+ 7.27E-01(1.39E-01)+ 7.12E-01(1.35E-01)+ 3.92E-01(4.30E-02)+ 1.14E+00(1.18E-02) 

WFG2 1.26E-01(8.14E-03)+ 3.98E-01(3.28E-02)– 4.06E-01(3.57E-02)– 3.32E-01(6.47E-02)– 3.05E-01(6.82E-02)– 3.07E-01(6.86E-02)– 1.90E-01(4.28E-02) 

WFG3 5.49E-02(4.43E-03)+ 3.89E-02(6.86E-04)+ 3.75E-02(7.06E-04)+ 4.25E-02(3.34E-04)+ 4.74E-02(1.60E-03)+ 4.13E-02(1.28E-03)+ 1.36E-01(7.10E-03) 

WFG4 9.80E-02(8.18E-04)+ 2.07E-01(4.21E-03)– 2.04E-01(4.26E-03)– 1.71E-01(7.09E-03)– 1.65E-01(7.14E-03)– 1.67E-01(7.50E-03)– 1.48E-01(1.99E-03) 

WFG5 1.42E-01(1.20E-03)+ 1.93E-01(1.79E-03)– 1.94E-01(1.89E-03)– 1.67E-01(1.24E-03)– 1.64E-01(1.45E-03)– 1.67E-01(5.83E-04)– 1.48E-01(1.01E-03) 

WFG6 1.57E-01(1.08E-02)– 2.30E-01(6.12E-02)– 2.48E-01(6.93E-02)– 1.62E-01(2.60E-02)– 1.60E-01(1.19E-02)– 2.00E-01(6.00E-02)– 1.32E-01(3.92E-03) 

WFG7 1.12E-01(1.55E-04)+ 1.71E-01(1.14E-03)– 1.70E-01(1.28E-03)– 1.42E-01(9.07E-04)– 1.40E-01(1.35E-03)– 1.41E-01(1.15E-03)– 1.27E-01(1.14E-03) 

WFG8 2.68E-01(4.33E-03)– 2.94E-01(1.18E-02)– 2.90E-01(1.49E-02)– 2.78E-01(8.26E-03)– 2.61E-01(9.90E-03)– 2.73E-01(1.18E-02)– 2.30E-01(3.75E-03) 

WFG9 1.33E-01(1.02E-03)– 1.94E-01(3.91E-02)– 2.19E-01(6.65E-02)– 1.76E-01(5.86E-02)– 1.60E-01(4.00E-02)– 1.78E-01(5.39E-02)– 1.28E-01(3.27E-02) 

Best/All 4/9 0/9 1/9 0/9 0/9 1/9 3/9 
+/–/~ 6/3/0 1/7/1 2/7/0 2/7/0 2/7/0 2/7/0 ––––– 

 

When compared to MOEA/D-DE and MOEA/D-DRA, MOEA/D-DDS has shown an absolute 
advantage, as it outperforms them on 7 test problems regarding IGD and on 6 test problems regarding 
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HV; whereas, MOEA/D-DE and MOEA/D-DRA outperform MOEA/D-DDS on WFG1 and WFG3, 
when considering both of IGD and HV. To be specific, as WFG1 has a convex, mixed and biased PF, 
while WFG3 owns a linear and unimodal PF, MOEA/D-DDS is not so good at solving WFG1 and 
WFG3. Regarding the comparisons to MOEA/D-STM, MOEA/D-IR, and MOEA/D-ACD, MOEA/D- 
DDS also shows some advantages, as it outperforms them on at least 5 test problems. Except for WFG1 
and WFG3, MOEA/D-DDS performs better on most cases when considering both of IGD and HV. 
MOEA/D-DDS only performs worse than MOEA/D-IR and MOEA/D-ACD on WFG2 regarding IGD 
and HV, and similarly to MOEA/D-STM on WFG2 and WFG4 regarding HV. For WFG4-WFG9 with 
concave PFs, MOEA/D-DDS shows superior performance over other decomposition-based competitors. 
Since a complicated normalization procedure is used in NSGA-III to compute the intercepts along each 
objective axis, which helps to eliminate the impact of different amplitudes on multiple objectives for 
WFG1-WFG9, NSGA-III can give the best results on most cases of WFG problems regarding IGD and 
HV. MOEA/D-DDS performs a little worse than NSGA-III, as it is only better than NSGA-III on three 
test problems (WFG6, WFG8, and WFG9).  

Table 4 Performance Comparisons of HV on WFG1-WFG9 Test Problems 
Problem NSGA-III MOEA/D-DE MOEA/D-DRA MOEA/D-STM MOEA/D-IR MOEA/D-ACD MOEA/D-DDS 
WFG1 8.12E+01(3.90E+00)+ 5.71E+01(2.44E+00)+ 6.47E+01(3.27E+00)+ 7.14E+01(5.93E+00)+ 7.25E+01(5.72E+00)+ 8.90E+01(2.08E+00)+ 5.65E+01(2.88E-01) 

WFG2 9.99E+01(3.95E+00)~ 9.97E+01(2.76E-01)~ 9.98E+01(1.87E-01)~ 9.97E+01(4.58E-01)~ 1.00E+02(2.30E-01)+ 1.00E+02(5.01E-01)+ 9.97E+01(2.67E-01) 

WFG3 7.53E+01(2.40E-01)+ 7.61E+01(1.95E-02)+ 7.61E+01(3.15E-02)+ 7.61E+01(5.14E-03)+ 7.60E+01(1.77E-02)+ 7.61E+01(2.24E-02)+ 7.16E+01(5.52E-01) 

WFG4 7.76E+01(6.94E-02)+ 7.53E+01(1.98E-01)– 7.58E+01(1.43E-01)– 7.59E+01(2.17E-01)~ 7.62E+01(1.73E-01)~ 7.55E+01(3.03E-01)– 7.60E+01(1.20E-01) 

WFG5 7.39E+01(3.76E-01)+ 7.18E+01(1.34E-01)– 7.20E+01(1.25E-01)– 7.19E+01(1.61E-01)– 7.27E+01(2.21E-01)– 7.19E+01(1.68E-01)– 7.32E+01(1.89E-01) 

WFG6 7.32E+01(7.36E-01)– 7.22E+01(4.63E+00)– 7.10E+01(5.30E+00)– 7.61E+01(2.06E+00)– 7.58E+01(1.18E+00)– 7.27E+01(4.41E+00)– 7.66E+01(3.89E-01) 

WFG7 7.79E+01(3.81E-02)+ 7.62E+01(1.62E-01)– 7.64E+01(1.42E-01)– 7.65E+01(3.02E-01)– 7.70E+01(8.87E-02)– 7.70E+01(3.67E-01)– 7.71E+01(7.62E-02) 

WFG8 6.66E+01(2.59E-01)– 6.75E+01(1.27E+00)– 6.76E+01(1.36E+00)– 6.70E+01(2.05E-01)– 6.82E+01(1.28E+00)– 6.75E+01(9.10E-01)– 6.89E+01(1.18E-01) 

WFG9 7.32E+01(1.49E-01)– 7.20E+01(2.76E+00)– 7.03E+01(4.76E+00)– 7.14E+01(3.87E+00)– 7.28E+01(2.66E+00)– 7.13E+01(3.44E+00)– 7.35E+01(1.96E+00) 

Best/All 3/9 0/9 0/9 1/9 1/9 1/9 3/9 
+/–/~ 5/3/1 2/6/1 2/6/1 2/5/2 3/5/1 3/6/0 ––––– 

 

Therefore, when compared to decomposition-based MOEAs, it is reasonable to draw a conclusion 
that the proposed MOEA/D-DDS presents a superior performance over MOEA/D-DE, MOEA/D-DRA, 
MOEA/D-STM, MOEA/D-IR and MOEA/D-ACD with respect to IGD and HV on all the WFG 
problems. As introduced in Section 3.1, the main novelty of MOEA/D-DDS is the proposed DDS when 
compared to the above decomposition-based MOEAs. The superior performance of MOEA/D-DDS on 
these WFG test problems indicates the advantages of our proposed DDS, which can regenerate the 
weight vectors to fit the evolutionary population. 

 
4.3.2 Comparison Results on UF1-UF10 

The mean IGD and HV results of seven MOEAs on UF1-UF10 problems are reported in Table 5 and 
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Table 6, respectively. It can be observed that MOEA/D-DDS obtains significantly better results for 4 
out of 10 cases both on IGD and HV, while NSGA-III, MOEA/D-DE, MOEA/D-DRA, MOEA/D-STM, 
MOEA/D-IR and MOEA/D-ACD are best on 3, 0, 0, 1, 2 and 0 cases for IGD and best on 2, 0, 0, 1, 3, 
and 0 cases for HV, respectively. The comparison summary of MOEA/D-DDS with each algorithm on 
UF problems is listed in the last row of Table 5 and Table 6, respectively for IGD and HV. 

 
Table 5 Performance Comparisons of IGD Values on UF1-UF10 Test Problems 

Problem NSGA-III MOEA/D-DE MOEA/D-DRA MOEA/D-STM MOEA/D-IR MOEA/D-ACD MOEA/D-DDS 
UF1 9.43E-02(1.26E-02)– 1.07E-03(8.01E-05)– 2.27E-03(5.11E-04)– 1.04E-03(1.04E-04)– 1.12E-03(5.40E-05)~ 1.06E-03(8.73E-05)– 1.03E-03(7.81E-05) 

UF2 2.89E-02(2.72E-03)– 5.11E-03(1.90E-03)– 5.32E-03(2.42E-03)– 3.17E-03(1.67E-03)+ 2.69E-03(1.04E-03)+ 6.23E-03(9.48E-04)– 5.63E-03(1.35E-03) 

UF3 2.01E-01(4.99E-02)– 2.43E-02(2.05E-02)– 1.82E-02(1.96E-02)– 8.14E-03(5.78E-03)– 9.16E-03(7.51E-03)– 2.88E-02(2.08E-02)– 7.90E-03(2.74E-03) 

UF4 4.24E-02(5.29E-04)+ 5.67E-02(3.50E-03)~ 5.49E-02(4.74E-03)~ 5.30E-02(2.97E-03)+ 5.33E-02(3.61E-03)~ 5.76E-02(4.58E-03)– 5.28E-02(2.99E-03) 

UF5 2.09E-01(3.98E-02)+ 3.22E-01(6.17E-02)~ 2.97E-01(7.09E-02)~ 2.48E-01(2.11E-02)– 2.64E-01(4.46E-02)~ 4.16E-01(6.83E-02)– 2.70E-01(2.10E-02) 

UF6 2.14E-01(7.03E-02)– 9.57E-02(5.73E-02)– 1.04E-01(5.47E-02)– 8.61E-02(4.11E-02)~ 9.25E-02(4.20E-02)– 1.57E-01(1.52E-01)– 7.38E-02(2.32E-02) 

UF7 7.80E-02(9.13E-02)– 1.86E-03(1.91E-03)+ 1.93E-03(4.95E-04)+ 1.06E-03(6.38E-05)+ 1.14E-03(7.98E-05)+ 1.80E-03(5.41E-04)+ 3.58E-03(9.21E-04) 

UF8 1.67E-01(2.60E-03)– 5.93E-02(9.56E-03)~ 4.48E-02(1.23E-02)+ 2.87E-02(3.50E-03)+ 2.61E-02(4.45E-03)+ 5.26E-02(8.93E-03)– 5.21E-02(8.24E-03) 

UF9 1.65E-01(3.15E-02)– 6.07E-02(4.28E-02)– 5.89E-02(4.91E-02)– 3.74E-02(3.39E-03)– 3.14E-02(2.91E-02)– 1.02E-01(5.01E-02)– 2.66E-02(5.70E-03) 

UF10 2.29E-01(5.28E-02)+ 5.55E-01(6.32E-02)+ 4.63E-01(4.74E-02)+ 8.71E-01(2.04E-01)+ 4.86E-01(6.72E-02)+ 7.43E-01(9.58E-02)+ 1.75E+00(2.53E-01) 

Best/All 3/10 0/10 0/10 1/10 2/10 0/10 4/10 
+/–/~ 3/7/0 2/5/3 3/5/2 5/4/1 4/3/3 2/8/0 ––––– 

 
Table 6 Performance Comparisons of HV Values on UF1-UF10 Test Problems 

Problem NSGA-III MOEA/D-DE MOEA/D-DRA MOEA/D-STM MOEA/D-IR MOEA/D-ACD MOEA/D-DDS 
UF1 3.386(8.31E-02)– 3.662(6.50E-04)– 3.657(3.65E-03)~ 3.663(1.10E-03)– 3.662(9.65E-04)– 3.414(3.20E-01)– 3.678(9.15E-04) 

UF2 3.576(2.34E-02)– 3.646(1.70E-02)~ 3.649(1.31E-02)~ 3.655(6.51E-03)+ 3.656(1.33E-02)~ 2.765(3.22E-01)– 3.647(8.84E-03) 

UF3 2.798(1.13E-01)– 3.556(1.11E-01)– 3.591(1.20E-01)– 3.640(2.61E-02)– 3.637(2.67E-02)– 3.475(3.27E-01)– 3.685(5.04E-02) 

UF4 3.215(3.30E-03)+ 3.173(1.15E-02)– 3.161(2.17E-02)– 3.179(1.25E-02)~ 3.087(7.14E-02)– 2.924(5.63E-02)– 3.182(1.29E-02) 

UF5 2.742(1.55E-01)– 2.619(1.92E-01)– 2.646(2.03E-01)– 2.928(6.18E-02)+ 2.716(2.88E-01)– 2.335(2.21E-01)– 2.887(5.94E-02) 

UF6 2.809(2.06E-01)– 3.112(1.80E-01)– 3.087(1.72E-01)– 3.168(8.66E-02)– 3.023(2.58E-01)– 2.932(4.13E-01)– 3.183(5.81E-02) 

UF7 3.262(3.10E-01)– 3.488(2.71E-02)~ 3.493(4.01E-03)+ 3.496(9.99E-04)+ 3.497(2.11E-03)+ 3.274(3.35E-01)– 3.488(3.14E-03) 

UF8 6.421(1.18E-02)– 7.308(2.03E-02)– 7.331(2.91E-02)~ 7.346(1.71E-02)~ 7.417(9.28E-03)+ 7.243(2.66E-02)– 7.321(1.99E-02) 

UF9 6.216(2.81E-01)– 7.492(1.84E-01)– 7.527(2.12E-01)– 7.650(1.71E-02)– 7.709(1.35E-01)~ 7.203(2.02E-01)– 7.722(4.04E-02) 

UF10 6.172(1.94E-01)+ 3.286(2.75E-01)+ 3.671(2.68E-01)+ 2.309(7.08E-01)+ 3.606(4.29E-01)+ 2.470(2.73E-01)+ 0.214(2.93E-01) 

Best/All 2/10 0/10 0/10 1/10 3/10 0/10 4/10 
+/–/~ 2/8/0 1/7/2 2/5/3 4/4/2 3/5/2 1/9/0 ––––– 

 
Specifically, when solving UF1 with a regular PF, only the IGD and HV results of NSGA-III on 

these three problems are significantly inferior to other algorithms. That is to say, except NSGA-III, the 
other six MOEAs perform well on UF1. Furthermore, for UF2 and UF7 having similar PFs with UF1, 
NSGA-III still shows the worst performance on them. For UF3 with a concave PF, MOEA/D-DDS has 
the best performance both for IGD and HV. Regarding UF4 as a difficult instance with concave PF in 
the objective space, NSGA-III obtains the best result, and MOEA/D-DDS performs better than other 
five decomposition-based MOEAs. With respect to UF5 and UF6 both with discontinuous PFs in the 
objective space, all these MOEAs are unable to approximate the entire UF, as both their IGD and HV 
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results are unsatisfactory. As shown in Table 5 and Table 6, MOEA/D-DDS is better than other 
competitors on UF6. However, for UF5, NSGA-III has the best result on IGD, but has the inferior 
result on HV, while MOEA/D-STM is better than other competitors on HV. With respect to the 
three-objective instances UF8 and UF9 (UF9 is with two disconnected PFs), the results indicate that 
MOEA/D-IR is best among the compared MOEAs on UF8, while MOEA/D-DDS performs best on 
UF9. Since UF10 is an extension version of UF8 with a multimodal PF, all of these MOEAs fail to 
converge to the true PF, where NSGA-III performs the best while MOEA/D-DDS performs the worst. 
Our proposed MOEA/D-DDS embeds DDS into MOEA/D, which adaptively adjusts the weight vectors 
at each generation. However, as pointed out in many work [45]-[52], updating the weight vectors too 
frequently will slow down the convergence speed of the population. Therefore, MOEA/D-DDS may 
performer worse on MOPs with hardly-convergence PF (like UF10).  

Please note that MOEA/D-ACD is developed based on the adaptive angle-based constrained 
decomposition strategy as introduced in Section 2.2, while MOEA/D-DDS and NSGA-III apply the 
distance-based constrained decomposition strategy. However, MOEA/D-DDS gives a more promising 
performance on most UF problems when compared to MOEA/D-ACD and NSGA-III, which strongly 
demonstrates the superiority of the proposed DDS. 

 
4.3.3 Comparison Results on MOP1-MOP7  

MOP1-MOP7 are the widely used benchmark problems, which are modified from ZDT and DTLZ 
problems. Various twisted search landscapes are embedded into these MOP problems, which pose new 
challenges to MOEAs, especially on their diversity capability. As the population may be easily trapped 
into some local regions, it is essential to design a feasible diversity maintenance strategy for balancing 
the convergence and the diversity in evolution. As explained in [25], both MOEA/D and NSGA-II pay 
much attentions on promoting the convergence of population, and they have significant difficulties on 
solving these MOP problems in an efficient way.  

Table 7 and Table 8 respectively list the IGD and HV comparison results of all the seven MOEAs on 
tackling MOP test problems. When compared to other competitors, MOEA/D-DDS shows the obvious 
advantages, as it shows significantly better IGD and HV results on all the MOP test problems. The 
detailed best performance is summarized in the second last row of Table 7 and Table 8. In addition, the 
Wilcoxon’s rank sum test shows the superior performance of MOEA/D-DDS with statistical 
significance, as summarized in the last row of Table 7 and Table 8. 
  Overall, the performance of MOEA/D-IR, MOEA/D-ACD and MOEA/D-DDS on MOP test 
problems overwhelms other competitors. This is mainly because MOEA/D-IR presents an 
inter-relationship (IR) model to emphasize the diversity, while MOEA/D-ACD and MOEA/D-DDS are 
designed based on constrained decomposition strategy, which focus on the diversity during the 
evolutionary search. Although NSGA-III involves the distance-based constrained decomposition  
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Table 7 Performance Comparisons of IGD Values on MOP1-MOP7 Test Problems 
Problem NSGA-III MOEA/D-DE MOEA/D-DRA MOEA/D-STM MOEA/D-IR MOEA/D-ACD MOEA/D-DDS 
MOP1 3.65E-01(3.28E-03)– 3.50E-01(3.58E-02)– 3.65E-01(6.10E-03)– 3.62E-01(7.21E-03)– 2.61E-02(2.77E-03)~ 2.61E-02(2.60E-03)~ 2.13E-02(1.75E-03) 

MOP2 3.49E-01(1.28E-02)– 2.77E-01(6.70E-02)– 2.43E-01(7.45E-02)– 2.32E-01(6.77E-02)– 3.91E-02(3.35E-02)– 1.05E-02(1.18E-02)~ 1.21E-02(4.56E-02) 

MOP3 9.26E-02(1.04E-02)– 1.07E-01(3.92E-02)– 1.04E-01(5.11E-02)– 1.16E-01(5.51E-02)– 1.23E-02(2.32E-02)– 1.48E-02(2.07E-02)– 1.20E-02(1.29E-02) 

MOP4 2.96E-01(1.38E-02)– 2.74E-01(2.67E-02)– 2.77E-01(2.59E-02)– 2.81E-01(2.47E-02)– 7.45E-02(8.10E-02)– 7.11E-02(6.11E-02)– 2.11E-02(2.08E-02) 

MOP5 2.73E-01(2.76E-02)– 3.17E-01(3.70E-03)– 3.16E-01(1.36E-02)– 3.07E-01(5.38E-02)– 2.15E-02(1.74E-03)~ 2.33E-02(1.46E-03)– 1.96E-02(1.90E-03) 

MOP6 3.09E-01(2.51E-05)– 3.02E-01(1.76E-02)– 2.99E-01(2.15E-02)– 3.07E-01(5.63E-03)– 8.51E-02(2.94E-02)– 8.18E-02(2.32E-02)– 5.00E-02(1.50E-03) 

MOP7 3.56E-01(3.41E-05)– 3.45E-01(2.05E-02)– 3.51E-01(1.39E-02)– 3.54E-01(1.36E-02)– 2.38E-01(3.21E-02)– 3.15E-01(3.15E-02)– 1.19E-01(4.77E-03) 

Best/All 0/7 0/7 0/7 0/7 0/7 1/7 6/7 
+/–/~ 0/7/0 0/7/0 0/7/0 0/7/0 0/5/2 0/5/2 ––––– 

 
Table 8 Performance Comparisons of HV Values on MOP1-MOP7 Test Problems 

Problem NSGA-III MOEA/D-DE MOEA/D-DRA MOEA/D-STM MOEA/D-IR MOEA/D-ACD MOEA/D-DDS 
MOP1 3.077(8.76E-03)– 3.102(6.77E-02)– 3.076(1.40E-02)– 3.080(1.57E-02)– 3.623(3.10E-02)– 3.629(3.24E-03)~ 3.630(2.90E-03) 

MOP2 3.003(7.23E-03)– 3.038(4.06E-02)– 3.062(6.37E-02)– 3.079(5.57E-02)– 3.174(1.10E-01)– 3.287(1.03E-01)– 3.304(4.80E-02) 

MOP3 3.105(1.17E-02)– 3.081(4.03E-02)– 3.087(5.60E-02)– 3.073(6.13E-02)– 3.184(5.25E-02)– 2.961(2.74E-01)– 3.197(2.06E-02) 

MOP4 3.135(9.62E-03)– 3.151(2.32E-02)– 3.151(2.35E-02)– 3.148(2.23E-02)– 3.044(2.46E-01)– 3.019(1.56E-01)– 3.484(3.04E-02) 

MOP5 3.116(1.10E-01)– 2.723(1.16E-01)– 2.711(1.11E-01)– 2.755(2.08E-01)– 3.632(4.37E-03)~ 3.626(3.77E-03)– 3.633(2.86E-03) 

MOP6 7.495(4.23E-04)– 7.502(2.63E-02)– 7.508(3.20E-02)– 7.497(8.50E-03)– 7.732(3.07E-02)– 7.730(1.94E-02)– 7.766(2.73E-03) 

MOP7 7.209(6.08E-04)– 7.213(1.16E-02)– 7.210(4.43E-03)– 7.212(7.76E-03)– 7.288(4.74E-02)– 7.195(3.13E-02)– 7.350(3.46E-03) 

Best/All 0/7 0/7 0/7 0/7 0/7 0/7 7/7 
+/–/~ 0/7/0 0/7/0 0/7/0 0/7/0 0/6/1 0/6/1 ––––– 

 
strategy, it is also easily trapped into some local regions on these problems due to its niche-preservation 
method to emphasize the convergence first. Moreover, as DDS is further used to reproduce the suitable 
weight vectors for the constrained decomposition strategy, MOEA/D-DDS performs significantly better 
than MOEA/D-ACD on both IGD and HV. Therefore, the effectiveness of the proposed DDS is 
validated, which is the main difference between MOEA/D-DDS and MOEA/D-ACD. 
 
4.4 Further Discussion and Analysis on MOEA/D-DDS 

To quantify how well each algorithm performs overall with a more vigorous multi-method statistical 
test, Friedman’s test is used to rank these compared algorithms on all the test problems. Please note that 
the software tool KEEL [67] is used here to conduct Friedman’s test. In Fig. 6, the average 
performance rank is summarized for different test problems, and the ranks of MOEA/D-DDS are 
connected by a red line to easily observe the values. The ranks on all the problems shows the average 
performance rank of the selected seven MOEAs when solving all the twenty-six test problems. A 
smaller performance rank indicates a better performance for this algorithm.  

From the IGD based average rankings in Fig. 6(a), MOEA/D-DDS has the best rank on all the test 
problems adopted. Regarding WFG1-WFG9 and UF1-UF10, MOEA/D-DDS obtains the second and 
third ranks, respectively. From the HV based average rankings in Fig. 6(b), MOEA/D-DDS gives the 
second rank on UF1-UF10 and WFG1-WFG9. Especially, MOEA/D-ACD has a better rank on 
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MOP1-MOP7, but a worse rank on other test problems; NSGA-III has a better rank on WFG1-WFG9, 
but performs worse on other test problems. Thus, the ranks in Fig. 6 clearly illustrate the 
comprehensive performance of MOEA/D-DDS on all test problems.  

 

 
                  (a)                                              (b) 

Fig. 6 Average performance ranks of the selected seven MOEAs on different test problems with Friedman’s test 
 
To visually show and support the above discussion results, some final solution sets with the median 

IGD values from 30 runs are plotted in Figs. 7-12, respective for UF1 with an regular PF, UF9 with 
complicated two disconnected PFs, MOP1 with a simple twisted search landscapes and a regular PF, 
MOP4 with a disconnected PF and a twisted search landscapes, MOP6 with three-objective PF, and 
WFG9 with a different scaled PF. It is also used for a better understanding on the performance of seven 
MOEAs and to describe the distribution of obtained solutions in the objective space. 

Regarding UF1, UF2, and UF7 with the similar PFs, UF1 is shown in Fig. 7 as an example. 
Obviously, only NSGA-III has difficulty in solving UF1, as the obtained set of optimum solutions is 
not so smooth and unable to approximate the true PF, while MOEA/D-DE, MOEA/D-DRA, 
MOEA/D-STM, MOEA/D-IR, MOEA/D-ACD and MOEA/D-DDS all perform well in approximating 
the entire PF of UF1, which have the similar distributions of solutions. For the three-objective problem 
UF9 shown in Fig. 8, when comprehensively considering the convergence and diversity of the obtained 
solution sets of these seven MOEAs, MOEA/D-DDS, MOEA/D-IR and MOEA/D-STM are almost 
able to approximate the two disconnected PFs of UF9, while NSGA-III only converges to the topmost 
segment and MOEA/D-ACD only converges to the rightmost segment. For MOEA/D-DE and 
MOEA/D-DRA, the distributions of solutions are not so smooth and a couple of regions along the true 
PF are lost. For MOP test problems (MOP1, MOP4 and MOP6) shown in Figs. 9-11, it is clear that 
only MOEA/D-DDS, MOEA/D-IR and MOEA/D-ACD can approximate the entire true PF, while other 
MOEAs are all falling into a couple of local regions along the true PF. In special, for MOP1 in Fig. 9,  
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Fig. 7 Final solution sets achieved by seven MOEAs and the true PF on UF1 problems 

 

 

 
Fig. 8 Final solution sets achieved by seven MOEAs and the true PF on UF9 problems 

 

 

 
Fig. 9 Final solution sets achieved by seven MOEAs and the true PF on MOP1 problems 
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Fig. 10 Final solution sets achieved by seven MOEAs and the true PF on MOP4 problems 

 

  

  
Fig. 11 Final solution sets achieved by seven MOEAs and the true PF on MOP6 problems 

 

 
Fig. 12 Final solution sets achieved by seven MOEAs and the true PF on WFG9 problems 
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the solutions obtained by MOEA/D-DDS are smoother than those of MOEA/D-IR and MOEA/D-ACD. 
On MOP4 consisting of three disconnected segments in Fig. 10, MOEA/D-DDS and MOEA/D-ACD 
can well approximate the middle and rightmost segments of the true PF, while solutions obtained by 
MOEA/D-IR mainly cover the middle and leftmost segments of the true PF. Regarding MOP6 in Fig. 
11 which has a regular three-objective true PF developed from DTLZ1, MOEA/D-DDS has a better 
spread over the true PF than MOEA/D-IR and MOEA/D-ACD. With respect to WFG9 in Fig. 12, its PF 
has a different scale in each objective, and NSGA-III performs very well as the used weight vectors can 
well match the PF after the normalization process. Other compared MOEA/D variants also give the 
promising performance and MOEA/D-DDS seems to have a better distribution. Thus, these figures 
fully validate the results discussed in Section 4.3 and illustrate the superiority of MOEA/D-DDS in 
solving MOPs with irregular and regular PFs. 

Table 9 p-values Obtained by Four Post Hoc Procedure for The Compared MOEAs 
MOEA/D-DDS vs. p-unadjusted p-Bonf p-Holm p-Hoch p-Homm 

On All Problems 
(HV) 

MOEA/D-ACD 0.000052 0.000315 0.000315 0.000315 0.000270 
MOEA/D-DE 0.000090 0.000541 0.000450 0.000450 0.000450 

NSGA-III 0.000946 0.005678 0.003786 0.003563 0.002839 
MOEA/D-DRA 0.001188 0.007127 0.003786 0.003563 0.003563 
MOEA/D-STM 0.043165 0.258988 0.086329 0.086329 0.086329 

MOEA/D-IR 0.441105 2.646629 0.441105 0.441105 0.441105 
MOEA/D-DDS vs. p-unadjusted p-Bonf p-Holm p-Hoch p-Homm 

On MOP Problems 
(HV) 

NSGA-III 0.000125 0.000753 0.000753 0.000753 0.000753 
MOEA/D-DRA 0.000668 0.004010 0.003342 0.003342 0.002673 
MOEA/D-STM 0.000837 0.005020 0.003347 0.003347 0.003347 
MOEA/D-DE 0.002437 0.014620 0.007310 0.005971 0.004873 

MOEA/D-ACD 0.002985 0.017913 0.007310 0.005971 0.005971 
MOEA/D-IR 0.107762 0.646574 0.107762 0.107762 0.107762 

MOEA/D-STM vs. p-unadjusted p-Bonf p-Holm p-Hoch p-Homm 

On UF Problems 
(HV) 

MOEA/D-ACD 0.000054 0.000325 0.000325 0.000325 0.000325 
NSGA-III 0.001901 0.011405 0.009504 0.009504 0.009504 

MOEA/D-DE 0.022773 0.136640 0.091093 0.091093 0.091093 
MOEA/D-DRA 0.120507 0.723044 0.361522 0.361522 0.361522 

MOEA/D-IR 0.378949 2.273697 0.757899 0.641363 0.641363 
MOEA/D-DDS 0.641363 3.848177 0.757899 0.641363 0.641363 

NSGA-III vs. p-unadjusted p-Bonf p-Holm p-Hoch p-Homm 

On WFG Problems 
(HV) 

MOEA/D-DE 0.008829 0.052973 0.052973 0.052973 0.052973 
MOEA/D-DRA 0.056210 0.337258 0.281048 0.281048 0.281048 
MOEA/D-STM 0.126630 0.759783 0.506522 0.506522 0.506522 
MOEA/D-ACD 0.299953 1.799716 0.899858 0.899858 0.878068 
MOEA/D-DDS 0.585379 3.512274 1.170758 1.000000 1.000000 
MOEA/D-IR 1.000000 6.000000 1.170758 1.000000 1.000000 

 
In addition, to further test the significant difference among these compared algorithms, the p-values 

obtained by Bonferroni-Dunn’s, Holm’s, Hochberg’s and Hommel’s post hoc procedure using the 
software tool KEEL [67] are listed in Table 9. These p-values are all obtained based on the HV results 
of each MOEA on different test problems, which indicate that the comprehensive performance of 
MOEA/D-DDS is significantly better than other compared MOEAs on all the test problems adopted. 
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As shown in Table 9, although the comprehensive performance of MOEA/D-DDS is worse than that of 
MOEAD-STM on the UF test problems and worse than that of NSGA-III and MOEA/D-IR on the 
WFG test problems, the comparison results between them are very similar as observed from the 
relatively large p-values in these post hoc procedures. Other p-values are very closer to 0, which 
indicate the significant differences on the experimental results. 

In summary, among the six compared MOEAs, it is reasonable to conclude that MOEA/D-DDS is 
the best one on tackling most of test MOPs adopted, which is largely brought by the proposed DDS. In 
our proposed DDS, the diversity and convergence of the population are considered simultaneously by 
dynamically generating the weight vectors based on the distribution of the population.  
 
4.5 More discussions about DDS 

As discussed in Section 3.3, our designed DDS includes three main components, i.e., distance-based 
constrained decomposition approach (Eq. (5)), clustering-based dynamic decomposition (Algorithm 3) 
and the convergence-based solution selection method (Eq. (14)). After observing the above extensive 
experimental results, it is found that the approach in Algorithm 3 has the greatest impact on the results 
of MOEA/D-DDS when compared to other two components of DDS. Here, the approach of Eq. (5) can 
be replaced with angle-based approach defined in Eq. (4) and several alternative convergence 
indicators (such as the Euclidean distance to the ideal point and also to the Nadir point) can be applied 
into DDS to achieve the similar performance on most of test MOPs used. For Algorithm 3, there are 
two main factors to be considered, i.e., the selection of clustering method and the selection of 
subproblems to be decomposed.  

Based on the existing experimental studies, the agglomerative hierarchical clustering method is the 
most reasonable one for DDS in solving various MOPs, as it not only obtains the best performance, but 
also has the suitable computational complexity for DDS. Moreover, when considering the selection of 
subproblem to be decomposed, it is a straightforward ideal to decompose the subproblem with the 
highest density in its feasible region, as introduced in Section 3.3. Of course, there are other strategies 
that can be considered. As shown in Fig. 13(a), the feasible region of 2rd subproblem has the largest 
number of associated solutions, thus the 2rd subproblem needs to be decomposed by Algorithm 3 based 
on the introduced DDS in Section 3.3. However, while doing this procedure, some information about 
3th and 4th sub-regions may be lost due to an overweight exploration in 2rd sub-region. In this case, we 
can also consider to select other subproblem to be decomposed. Here, another strategy is to select the 
sub-region with the maximum span, in which the definition of a region’s maximum span can be defined 
by the maximum angle between any two solutions in this region (if only one or no solution is within 
this region, the maximum span is set to 0). Therefore, using this selection strategy, Algorithm 3 is run 
on the 3th subproblem as shown in Fig. 13(b). 
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In order to show the efficiency of the above alternative strategy for selecting the subproblem to be 
decomposed, some experimental studies are given with the same parameter settings in Table 2. In this 
experiment, case1 indicates MOEA/D-DDS using the strategy of selecting the subproblem with the 
highest density to be decomposed in Algorithm 3, while case2 means an alternative strategy to 
decompose the subproblem with the maximum span. Table 10 gives a summary of the significance test 
on the HV and IGD comparison results obtained by case1 and case2 of MOEA/D-DDS, when tackling 
twenty-six test problems. It can be observed from Table 10 that a lot of similar performance are 
obtained by case1 and case2, as there are 11 similar ones out of total 26 cases on both IGD and HV, 
while case1 performs slightly better than case2 when considering all the test problems. In special, as 
shown in Fig. 14, case2 performs better than case1 in exploring the boundary region of UF8, which 
indicates the efficiency of case2 in MOEA/D-DDS to tackle some kinds of MOPs.  

Overall, there are many factors to influence the performance of our proposed DDS, and the DDS 
introduced in Section 3.3 is more reasonable for MOEA/D-DDS to solve most of test MOPs adopted in 
this paper.   
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Fig. 13 A simple example to show the process of case2 in MOEA/D-DDS 

 
Table 10 Summary of the Significance Test between case1 and case2 of MOEA/D-DDS 

case1  vs case2 case 1   vs case2 

With IGD metric 
Better 8 

With HV metric 
Better 9 

Worse 7 Worse 6 
Similar 11 Similar 11 

 

 
Fig. 14 The final solution sets achieved by MOEA/D-DDS with case1 and case2 
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4.6 More studies on the Comparison of MOEA/D-DDS 

  In the previous subsections (Section 4.3.1 to Section 4.3.3), we have experimentally verified the 
advantages of our proposed MOEA/D-DDS in solving different kinds of MOPs (WFG, UF and MOP) 
when compared to some competitive decomposition-based MOEAs. To further verify the advantages of 
MOEA/D-DDS over other kinds of MOEAs, like dominance-based and indicator-based MOEAs, more 
experimental studies are conducted in this section. Moreover, in order to further verify the effectiveness 
and efficiency of DDS, a recent decomposition-based MOEAs with a learning-to-decompose paradigm 
(MOEA/D-LTD [72]) is also compared. At last, we also study the performance of MOEA/D-DDS on 
solving some many-objective optimization problems (MaOPs) that the number of objective m is more 
than three (m>3). 

4.6.1 Comparison results with other kinds of MOEA 
Here, two dominance-based MOEAs ( -MOEA[68] and VaEA [69]), two indicator-based MOEAs 

(MOEA/IGD-NS [70] and SMS-EMOA [71]), a MOEA based on the bi-criterion evolution framework 
of dominance-based criterion and indicator-based criterion (BEC-IBEA [19]), and MOEA/D-LTD [72] 
were included for performance comparison. To allow a fair comparison, the related parameters of all 
the compared algorithms were set as suggested in their references. Besides, seventeen test problems 
(UF1-UF10 and MOP1-MOP7) were adopted, and all the parameter settings of these test problems 
were set the same as introduced in Section 4. 1. Finally, the IGD metric introduced in Section 4.1.3 
was used as the performance indicator. 

Table 11 Performance Comparisons of IGD values on UF1-UF10 and MOP1-MOP7  
Problem -MOEA   BCE-IBEA MOEA/IGD-NS SMS-EMOA VaEA MOEA/D-LTD MOEA/D-DDS 

UF1 1.22E-01(3.36E-02) 4.07E-02(8.01E-04) 8.69E-02 (5.11E-04) 7.41E-02(1.04E-04)– 9.93E-02(6.65E-03) 5.09E-02(1.11E-02) 1.03E-03(7.81E-05) 

UF2 6.32E-02(9.90E-03) 3.40E-02(6.07E-03) 3.16E-02(4.13E-03) 5.48E-02(5.62E-03) 2.92E-02(1.75E-03) 1.35E-02(3.66E-03) 5.63E-03(1.35E-03) 

UF3 1.49E-01(4.59E-02) 5.65E-02(5.05E-02) 5.07E-02(3.19E-02) 5.28E-02(4.77E-02) 6.99E-02(4.33E-02) 7.55E-02(6.14E-02) 7.90E-03(2.74E-03) 

UF4 7.42E-02(3.02E-03) 4.07E-02(1.52E-03) 4.29E-02(3.60E-03) 4.17E-02(2.91E-03) 4.16E-02(9.09E-04) 3.36E-02(1.15E-03) 5.28E-02(2.99E-03) 

UF5 2.56E-01(5.39E-02) 1.96E-01(2.94E-02) 2.08E-01(4.23E-02) 2.26E-01(2.22E-02) 2.19E-01(4.50E-02) 2.25E-01(7.95E-02) 2.70E-01(2.10E-02) 

UF6 2.07E-01(1.08E-01) 2.13E-01(1.85E-01) 2.10E-01(1.83E-01) 2.16E-01(1.67E-01) 1.23E-01(8.47E-02) 1.61E-01(1.21E-01) 7.38E-02(2.32E-02) 

UF7 2.27E-01(1.41E-02) 2.00E-02(1.04E-02) 4.57E-02(1.11E-02) 4.81E-02(2.00E-02) 3.21E-02(7.01E-03) 1.09E-01(1.30E-02) 3.58E-03(9.21E-04) 

UF8 4.97E-01(8.62E-02) 2.07E-01(3.02E-02) 3.25E-01(4.21E-02) 3.84E-01(5.27E-02) 2.34E-01(6.19E-03) 8.22E-02(7.09E-03) 5.21E-02(8.24E-03) 

UF9 3.76E-01(4.70E-02) 1.52E-01(3.09E-02) 3.90E-01(5.99E-02) 4.91E-01(8.78E-02) 2.43E-01(3.49E-02) 7.88E-02(2.82E-02) 2.66E-02(5.70E-03) 

UF10 5.10E-01(6.37E-02) 1.56E+0(2.73E-01) 3.47E-01(2.16E-02) 3.75E-01(4.00E-02) 2.98E-01(5.71E-02) 2.08E-01(2.11E-02) 1.75E+00(2.53E-01) 

MOP1 3.84E-01(8.44E-03) 3.14E-01(8.12E-03) 3.40E-01(8.37E-03) 3.01E-01(7.46E-03) 3.42E-01(8.65E-03) 6.15E-02(5.55E-03) 2.13E-02(1.75E-03) 

MOP2 3.54E-01(7.78E-02) 2.10E-01(5.18E-02) 2.20E-01(6.61E-02) 2.09E-01(6.04E-02) 3.54E-01(8.11E-02) 1.11E-01(2.38E-02) 1.21E-02(4.56E-02) 

MOP3 5.78E-01(4.20E-02) 1.10E-01(4.60E-02) 1.13E-01(9.16E-02) 1.10E-01(2.03E-02) 5.06E-01(8.39E-02) 1.51E-01(7.11E-02) 1.20E-02(1.29E-02) 

MOP4 3.45E-01(1.83E-02) 3.51E-01(3.23E-02) 3.38E-01(3.31E-02) 3.53E-01(1.83E-02) 3.06E-01(1.35E-02) 1.45E-01(8.15E-02) 2.11E-02(2.08E-02) 

MOP5 3.15E-01(4.08E-03) 4.84E-01(5.41E-02) 5.34E-01(4.06E-02) 4.84E-01(6.16E-02) 2.67E-01(3.64E-02) 5.35E-02(7.08E-03) 1.96E-02(1.90E-03) 

MOP6 3.11E-01(1.05E-03) 8.29E-01(4.77E-03) 8.28E-01(4.91E-03) 8.21E-01(4.35E-03) 3.09E-01(8.94E-03) 8.44E-02(8.26E-03) 5.00E-02(1.50E-03) 

MOP7 3.64E-01(3.30E-03) 5.44E-01(7.33E-03) 5.43E-01(7.81E-03) 5.35E-01(6.30E-03) 3.57E-01(5.13E-03) 1.06E-01(5.14E-03) 1.19E-01(4.77E-03) 

Best/All 0/17 1/17 0/17 0/17 0/17 3/17 13/17 
 
The mean IGD results of these seven MOEAs on UF1-UF10 and MOP1-MOP7 are reported in Table 

11. It can be observed that MOEA/D-DDS obtains significantly better results for 13 out of 17 test 
problems, while -MOEA, BEC-IBEA, MOEA/IGD-NS, SMS-EMOA, VaEA and MOEA/D-LTD are 
best on 0, 1, 0, 0, 0 and 3, respectively. Therefore, MOEA/D-DDS shows superior performance on most 



30 

of UF and MOP problems when compared to these MOEAs, which also demonstrates the superiority of 
the proposed DDS. 

4.6.2 Comparison results on test problems with 5 and 10 objectives 

  Recently, decomposition-based MOEAs have showed their effectiveness and efficiency when 
solving MaOPs. However, it was experimentally studied and pointed out in [47] that the performance 
of decomposition-based MOEAs strongly depends on the consistency to the shapes of the PF and the 
used weight vectors. As the weight vectors of MOEA/D-DDS are adaptively generated by DDS, 
MOEA/D-DDS can be directly applied to solve MaOPs in this part. In order to testify the performance 
of DDS in tackling MaOPs, four recently proposed many-objective evolutionary algorithms (MaOEAs) 
were used for comparison, i.e., NSGA-III [55], -DEA  [66], EFR-RR [73] and VaEA [69]. In 
addition, MaF1, MaF2 and MaF7 from an irregular and complex MaOP series: MaF [74], and 
WFG1-WFG4 and WFG9 were used for experimental studies. For each problem, the number of 
objectives m was set to 5 and 10. Correspondingly, the population size N is set to 210 and 275 for 5- 
and 10-objective problems, respectively. Moreover, the number of decision variables n in MaF series 
was set by n=m+k-1, where k was set to 10 for MaF1-MaF2 and to 20 for MaF7. Regarding the WFG 
problems, k (position-related parameters) was set to 2(m-1) and l (distance-related parameters) was set 
to 20. All the algorithms were terminated when a predefined maximum number of generations Gmax was 
reached. The values of Gmax for 5- and 10-objective problems were set to 600 and 900, respectively. 
Moreover, the normalized HV metric was used as the performance indicator, where the objective 
vectors in final solution sets were all normalized by max max max

1 21.1 ( , ,..., )mf f f , where max
kf ( k  

1,2,...,m ) was the maximum value of kth objective in the true PF, and then the reference point was set to 
(1.0,1.0,...,1.0) .  

Table 12 Performance comparisons of normalized HV values on 5- and 10-objective Problems  
Problem Obj. (m) NSGA-III -DEA   EFR-RR VaEA MOEA/D-DDS 

MaF1 m=5 6.419E-03(6.10E-04)– 4.129E-03(3.25E-04)– 2.355E-03(4.91E-04)– 1.081E-02(7.36E-04)– 7.519E-03(1.63E-04) 
m=10 3.824E-07(5.54E-08)– 2.583E-07(6.17E-08)– 1.400E-07(8.31E-08)– 2.314E-07(4.54E-08)– 4.378E-07(2.79E-08) 

MaF2 m=5 2.368E-01(2.26E-03)– 2.275E-01(3.42E-03)– 2.122E-01(3.14E-03)– 2.247E-01(3.52E-03)– 2.445E-01(3.88E-03) 
m=10 2.023E-01(3.96E-03)– 1.841E-01(7.62E-03)– 1.853E-01(4.18E-03)– 1.992E-01(6.24E-03)~ 2.097E-01(3.25E-03) 

MaF7 m=5 2.966E-01(2.18E-03)~ 2.680E-01(7.09E-03)– 1.996E-01(2.82E-02)– 2.985E-01(2.58E-03)~ 3.061E-01(2.12E-03) 
m=10 2.267E-01(3.01E-03)– 2.205E-01(1.63E-02)– 1.290E-01(1.52E-02)– 1.833E-01(8.84E-03)– 2.359E-01(3.14E-03) 

WFG1 m=5 3.524E-01(2.96E-02)– 5.221E-01(2.72E-02)– 3.432E-01(2.04E-02)– 3.135E-01(3.21E-02)– 5.410E-01(2.19E-02) 
m=10 6.438E-01(4.01E-02)– 8.634E-01(9.43E-03)+ 7.537E-01(3.39E-02)+ 7.009E-01(3.14E-02)+ 6.649E-01(5.71E-02) 

WFG2 m=5 9.490E-01(5.23E-02)+ 9.435E-01(6.54E-02)+ 9.799E-01(2.36E-03)+ 9.586E-01(3.11E-02)+ 9.351E-01(4.69E-02) 
m=10 9.501E-01(5.99E-02)– 9.003E-01(8.50E-02)– 9.616E-01(5.82E-02)~ 9.783E-01(3.39E-03)+ 9.620E-01(8.90E-03) 

WFG3 m=5 6.104E-01(7.72E-03)+ 6.298E-01(7.32E-03)+ 5.803E-01(8.18E-03)~ 5.594E-01(1.34E-02)– 5.839E-01(9.61E-03) 
m=10 6.196E-01(2.75E-02)+ 6.003E-01(1.97E-02)~ 6.011E-01(1.55E-02)~ 5.283E-01(3.53E-02)– 6.002E-01(2.44E-02) 

WFG4 m=5 7.111E-01(6.46E-03)+ 7.425E-01(4.61E-03)+ 7.269E-01(5.01E-03)+ 7.007E-01(6.37E-03)~ 7.066E-01(3.13E-03) 
m=10 8.511E-01(9.95E-03)+ 8.642E-01(9.14E-03)+ 8.478E-01(1.16E-02)+ 8.125E-01(1.00E-02)– 8.459E-01(7.17E-03) 

WFG9 m=5 6.533E-01(1.48E-02)– 6.921E-01(1.77E-02)~ 6.416E-01(7.99E-03)– 6.376E-01(5.36E-03)– 6.713E-01(3.25E-03) 
m=10 7.229E-01(1.23E-02)– 7.490E-01(2.67E-02)~ 7.292E-01(2.41E-02)– 6.979E-01(1.20E-02)– 7.508E-01(1.03E-02) 

Best/All 1/16 4/16 1/16 1/16 9/16 
+/–/~ 5/1/10 5/3/8 4/3/9 3/3/10 ––––– 
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Table 12 provides the mean HV comparison results of MOEA/D-DDS with respect to four current 
MaOEAs (NSGA-III, -DEA , EFR-RR and VaEA) on MaF1, MaF2, MaF7, WFG1-WFG4 and 
WFG9 with 5 and 10 objectives. As observed from Table 12, MOEA/D-DDS obtains the best results on 
9 out of 16 comparisons, which validates the superior performance of MOEA/D-DDS on solving 
MaOPs, especially for the irregular problems like MaF1 with an inverted PF and MaF7 with a 
disconnected PF. For NSGA-III, -DEA, EFR-RR and VaEA, they respectively obtain the best results 
on 1, 4, 1 and 1 out of 16 comparisons. As observed from the one-to-one comparisons in the last row of 
Table 12, MOEA/D-DDS respectively performs better than NSGA-III, -DEA, EFR-RR and VaEA on 
10, 8, 9 and 10 out of 16 comparisons; whereas, MOEA/D-DDS is only beaten by NSGA-III, -DEA, 
EFR-RR and VaEA on 5, 5, 4 and 3 comparisons, respectively. Therefore, MOEA/D-DDS also shows a 
superior performance on solving MaOPs when compared to these four MaOEAs, which further justifies 
the advantages of the proposed DDS. 

5. Conclusions and future work 
 In this paper, a novel decomposition-based MOEA with dynamic decomposition strategy was 
presented, named MOEA/D-DDS. This approach firstly decomposes a MOP in Eq. (1) into a set of 
constrained subproblems by using a set of uniformly distributed weight vectors. Then, based on the 
proposed DDS, one most crowded feasible region is found and decomposed into two new subproblems 
in the objective space. This process of dynamic decomposition will be run a number of times until there 
have N subproblems, and each one is associated with at least one solution. At last, one individual 
showing the best convergence is selected from each of N subproblems to form the new population for 
next generation. Under this way, MOEA/D-DDS can well balance diversity and convergence by 
considering the distribution of evolutionary population. When compared to six decomposition-based 
MOEAs (NSGA-III, MOEA/D-DE, MOEA/D-DRA, MOEA/D-STM, MOEA/D-IR, and MOEA/D- 
ACD) and other kinds of MOEAs ( -MOEA, VaEA, MOEA/IGD-NS, SMS-EMOA, MOEA/D-LTD), 
MOEA/D-DDS showed some advantages on tackling most of the test problems adopted. 

In our future work, we will further study other decomposition approaches using the machining 
learning methods. Moreover, the application of MOEA/D-DDS to solve the real-life problems will be 
conducted as part of our future work. 
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