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Abstract

Many real-world applications involve dealing with several conflicting objectives
which need to be optimized simultaneously. Moreover, these problems may re-
quire the consideration of limitations that restrict their decision variable space.
Evolutionary Algorithms (EAs) are capable of tackling Multi-objective Opti-
mization Problems (MOPs). However, these approaches struggle to accurately
approximate a feasible solution when considering equality constraints as part of
the problem due to the inability of EAs to find and keep solutions exactly at the
constraint boundaries. Here, we present an indicator-based evolutionary multi-
objective optimization algorithm (EMOA) for tackling Equality Constrained
MOPs (ECMOPs). In our proposal, we adopt an artificially constructed refer-
ence set closely resembling the feasible Pareto front of an ECMOP to calculate
the Inverted Generational Distance of a population, which is then used as a
density estimator. An empirical study over a set of benchmark problems each
of which contains at least one equality constraint was performed to test the
capabilities of our proposed COnstrAined Reference SEt - EMOA (COARSE-
EMOA). Our results are compared to those obtained by six other EMOAs. As
will be shown, our proposed COARSE-EMOA can properly approximate a fea-
sible solution by guiding the search through the use of an artificially constructed
set that approximates the feasible Pareto front of a given problem.
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1. Introduction

Many real-world problems require the optimization of multiple objective
functions concurrently [I]. Amongst these problems, some of the most com-
monly found include Portfolio selection where the return of the portfolio needs
to be maximized, keeping the risk at a minimum [2], environmental engineering
where the costs of monitoring the purity of water need to be in balance with the
accuracy of the estimates obtained by testing [3] and power dispatch problems,
where the cost of producing energy needs to be reduced while also trying to
maintain the environmental impact of using cheap fuels at a minimum [4].

Moreover, these objectives can potentially conflict with each other, requir-
ing the consideration of a set of trade-offs among them. The conflict that exists
among objective functions often results in the lack of a single optimal solution
capable of minimizing (or maximizing) all of them. Instead, a set of possi-
ble solutions appears, each focusing more on optimizing a particular objective
function [1].

Over the last two decades, Evolutionary Algorithms (EAs) have been stud-
ied due to their known efficiency and robustness when solving Multi-objective
Optimization Problems (MOPs) [1,[5]. It is the simplicity of implementing these
techniques, and their flexibility in many different scenarios which has made EAs
quite popular in recent years [6]. Today, a wide variety of Evolutionary Multi-
objective Optimization Algorithms (EMOAS) capable of solving highly complex
MOPs are available.

Despite the wide availability of EMOAs currently available, when faced with
problems that require searching inside a restricted domain, the situation is en-
tirely different [7]. Although some constraint-handling techniques have been
proposed for EMOAs [8], most of them focus only on inequality constraints
and disregard Equality Constrained MOPs (ECMOPs). This is mainly due to
EMOASs’ inability to find and adequately search over the constraint boundaries
which makes it difficult for an EMOA to guarantee the generation of enough
feasible solutions [9).

As a way to cope with constrained MOPs, many methods have been proposed
ranging from the transformation of constraints into additional objectives to the
incorporation of local search techniques and heuristics within EMOAs [10, [11],
1213} [14] 15, [16] [17,[18]. Nevertheless, many result in the inclusion of additional
conditions for the problem to be solvable, by computing internal optimization
problems or the calculation of gradients to obtain feasible solutions [14} [19].
Moreover, in many situations, the existing methodologies and algorithms cannot
achieve a full set of feasible solutions, some of them attaining no more than a
50% success rate [20].

Here, we propose the COnstrAined Reference SEt - EMOA (COARSE-
EMOA) as an alternative to handle ECMOPs. Our approach consists of an
indicator-based EMOA that artificially generates a reference set that tries to
approximate the PF of an ECMOP at each generation, using it to calculate the
individual contribution to the Inverted Generational Distance [21] (IGD) as a
way to preserve those individuals closer to the feasible Pareto front, pushing the
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population towards it. We extend a technique based on the approach presented
by Zapotecas et al. [22] for approximating the Pareto front of any given problem
while considering its equality constraints. We show that our proposed technique
is capable of guiding the search towards the feasible Pareto front of an ECMOP
in most cases. The contributions of this work are outlined as follows:

1. A technique for constructing an approximation of the PF of an equality
constrained multi-objective problem is presented. This procedure allows
the synthesis of a reference set that facilitates the calculation of the IGD
from a population to the best-found approximation of the feasible PF.

2. The COARSE-EMOA is developed incorporating the previous technique
as a selection procedure for individual survivability. This drives the pop-
ulation of the algorithm to move closer to the feasible region and to the
PF of the problem during the search process.

3. A comparison of the COARSE-EMOA against six algorithms used for con-
strained optimization is performed on existing equality constrained MOPs.
The results show that the COARSE-EMOA can find feasible solutions that
reach the boundary of the constraints by exclusively focusing on improving
the performance indicator of its population.

The remainder of this paper is organized as follows. Section [2| provides
some basic concepts adopted within the area of multi-objective optimization.
Previous works focused on the study and solution of ECMOPs are also presented
in this section. Section [3| describes our proposal for synthesizing a reference set
to approximate the PF of a problem to consider feasible solutions. Section
describes an indicator-based EMOA that uses our technique to tackle ECMOPs.
Our experimental results and methodology are presented in Section [5| as well
as a short discussion of our findings. Lastly, Section [6] presents our conclusions
and some paths for future research.

2. Preliminaries and Background
For this work we focus on the resolution of problems of the following type:
min  F(x)
xeR" (1)
s.t. hij(x)=0j=1,...,q
where F(x) = (f1(x), f2(x), ..., fx(x)) is a vector formed by k objective func-
tions, f; : S CR™ = R, i =1,...,k is the i*" objective function, x is a vector

of decision variables that exist in R™ and S represents the feasible search space
given by:

S:={x:hj(x)=0,j=1,...,q} (2)

The following definitions are relevant to understand some of the concepts
that will be referred to throughout the rest of the document in regards to MOPs.
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Definition 1. a) Let x,y € S be two decision vectors. Then x is said to
dominate y (denoted by x < y), if and only if: F(x) < F(y) and F(x) #
F(y) [

b) The same vector x is said to weakly dominate a vector y (denoted by x <y)
if: F(x) <F(y) [1].

¢) A point x* € S is said to be Pareto optimal if there is no x that dominates
it. The phrase Pareto Optimal is taken to mean with respect to the entire
decision space unless otherwise specified [1].

d) For a given MOP, the Pareto optimal set of F(x) can be defined as P* :=
{xeS[-dy e SF(y) < F(x)} [

Further, we recall the concept of active constraints, which is key in the
treatment of ECMOPs.

Definition 2. (Active constraints [23]) Given a feasible point x, an inequality
constraint g; is said to be active if g(x) = 0 and inactive at x if g(x) < 0. All
equality constraints (h;) are always active.

2.1. Performance Indicators

Obtaining an approximation to the Pareto front is not enough; we need to
assess how good it is. Furthermore, if we want to compare the performance of
several algorithms over the same problem, we require a standard performance
indicator to do so. Many different performance indicators have been proposed
for assessing the quality of an approximation of the Pareto front [24] 25| [26] 27]
28].

Here, we present formally those that will be used throughout this work. We
will start with the Inverted Generational Distance, which is a key element of
our proposed approach, followed by the Averaged Hausdorff distance and the
Feasibility ratio, which are two performance indicators employed to evaluate the
final approximations obtained by our algorithm and to compare our results to
those obtained by six more contrained EMOAs.

2.1.1. Inverted Generational Distance

It is well known that the Generational Distance (GD) [24] presents sensitiv-
ity to the size of the approximation front and to the number of non-dominated
solutions in it [21]. The Inverted Generational Distance (IGD) proposed by
Coello and Cortés [21] intends to solve this issue while retaining similar proper-
ties as its counterpart. It measures the distance between a discretization (Z) of
the true PF of a problem and the approximation set (A) obtained by an algo-
rithm. This indicator tells us how far the approximation is to the real solution
of a problem and it is defined as follows:

1/p
IGD(A, Z) = % (Z min d(z,a)P> (3)
z€Z

where d(z, a) is the Euclidean distance from z to the closest element a € A.
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2.1.2. The Averaged Hausdorff Distance

Presented by Schiitze et al. in [25], the Averaged Hausdorff Distance (A,)
is an indicator for assessing the performance of EMOAs which is composed of
the GD, and the IGD,, which are two slight modifications to the original GD
and IGD indicators. Thus, A, is defined as shown below:

Given an approximation A and a discretization of the PF, Z, then:

1/p

1

GD,(A,Z) = <|A| rzréiéld(a,z)p> (4)
acA

is the averaged semi-distance between A and Z, and:

1/p
IGD,(A, Z) = <;| Z géillql d(z, a)p> (5)
2€Z

is the averaged semi-distance between Z and A. Then A, is defined as:
A, (A, Z) =max (IGD,(A,Z),GD,(A, Z)) (6)

2.1.3. Feasibility Ratio

Given that EMOAs rarely consider constraints, performance indicators also
rarely consider them as part of their definition. The Feasibility ratio is an
indicator that offers the possibility of determining how far an algorithm is from
achieving a feasible state (where all individuals are feasible).

Introduced in [15], this indicator measures the percentage of feasible solu-
tions in a population. This measure is trivial to compute and is defined as
follows: 4

F.(A) = 2£, (7)
I
being Ap the number of feasible solutions in an approximation (A) and u its
size.

2.2. Related Work

In the literature, many approaches have been designed to tackle constrained
MOPs [8,129] 30 [31]. Examples of such approaches come from the incorporation
of techniques like the adoption of modified definitions of Pareto optimality,
employing methods to repair solutions and the hybridization of EMOAs. Given
the difficulty of handling equality constraints, many authors still seek to develop
alternatives for the resolution of ECMOPs.

2.2.1. Penalty Functions

Penalty functions are perhaps the most common approach for tackling con-
strained optimization problems using evolutionary algorithms. In this approach,
the main aim is to incorporate the level of constraint violation as a way to pun-
ish the fitness value of all infeasible individuals [32]. This penalization results



145

150

155

160

165

170

175

180

185

in the search being guided towards the feasible region by the improved survival
of individuals that are not only closer to optimality but also to feasibility.

Two types of penalties exist in the field of classical optimization: interior
and exterior [32] [33]. For exterior penalties, we start with infeasible solutions
and from there, the penalty helps the algorithm to move towards the feasible
region. In the case of interior penalties, we need to start within the feasible
region of the decision space and then look for the optimum. This is because the
exterior penalty causes the constraint boundaries to act as barriers, stopping
elements from ever leaving the feasible region [33].

2.2.2. Transforming Equality Constraints with Feasibility Thresholds

Many EMOAs even after the incorporation of penalty functions, present
important problems when handling equality constraints thanks to their inability
to search precisely for, and remain within, the boundary between the feasible and
infeasible regions [34] of the active constraints. As an alternative to handle this
and to allow the algorithm to search in the proximity of the boundary allowing
a better implementation of some general constraint handling techniques, several
authors have proposed a straightforward and useful method to approximate
equality constraints [10} 35} 36}, 37].

The approach works by determining a feasibility threshold around the fea-
sibility boundary of any equality constraints close to zero. This way, for any
practical matter, the constraint remains equal to zero within a small region
surrounding the boundary. This transformation opens up the possibility of ex-
ploring the usage of other techniques for constraint handling not necessarily
designed to work with equality constraints.

2.2.3. The Constrained-domination principle

Another technique for constraint handling in evolutionary algorithms comes
from the redefinition of the Domination Principle that many EMOAs already
use to select individuals. An example of this is the Constrained-Domination
Principle (CDP), which is a technique for constraint handling proposed by Deb
et al. [13] as part of the NSGA-IT and further explored within the adaptive
NSGA-III algorithm [38]. The CDP presents a slight modification to the defini-
tion of Pareto domination allowing for an algorithm to select individuals taking
into consideration their feasibility and not only optimality.

Using this principle, feasible individuals have better possibilities of surviving
selection than those individuals that are not feasible. This method is expected
to lead the search in the direction of the feasible space as with each generation,
more and more individuals should reach feasibility while also preserving non-
dominance. Thanks to the straightforward implementation of this strategy, its
incorporation in practically any Pareto-based EMOA is rather simplistic. How-
ever, the use of techniques like this one, even after the definition of a feasibility
threshold, does not secure that enough feasible solutions will be found to prop-
erly approximate the PF and the Pareto set of an ECMOP, given the difficulty
of finding new feasible solutions [34].
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2.2.4. Ensemble of Constraint Handling Techniques

To effectively solve a constrained problem, an algorithm requires to be able
to use the information present even in infeasible individuals, for which the ap-
propriate constraint-handling technique and its corresponding parameters are
required. Given that in most scenarios it is difficult to select a specific technique
capable of effectively solving a particular problem, Mallipeddi and Suganthan
proposed in [39] an Ensemble of Constraint Handling Techniques (ECHT).

In this approach, several constraint-handling methods are selected and each
is given a population. Each population corresponding to a method produces its
offspring and evaluates them. Then, the obtained individuals not only compete
with members of all populations in the ensemble but also with the members of
their own population. This way an offspring may be rejected by its population
but could be accepted by others according to the characteristics of the other
constraint handling methods. This allows the algorithm to retain a balance
between diversity and feasibility of individuals. However, the performance of
the ensemble highly depends on the proper determination of parameters for each
of its internal techniques, which could present an issue.

2.2.5. Dynamic Problem transformation

A contemporary approach for solving constrained MOPs is to transform the
problem by incorporating the constraint violation of individuals as one more of
the objectives to optimize. Jiao et al. in [40] propose a method to transform
a constrained many-objective optimization problem (CMaOP) into a dynamic
CMaOP. This allows an evolutionary algorithm to optimize objectives and pro-
cessing constraints simultaneously.

Their approach reformulates a k-objective constrained problem into an equiv-
alent k£ 4 1-objective constrained problem. Moreover, the technique relaxes the
constraint boundary to make all individuals e-feasible at the beginning of the
run, and it is shrunk dynamically as the search goes on. As a last way to en-
sure the preference of e-feasible individuals over those that are not e-feasible a
variation of the CDP is adopted by the authors to perform the individual se-
lection. By incorporating constraint violation as an objective and relaxing the
boundary, the algorithm throughout the evolutionary process can preserve the
diversity while searching for the optimal PF through even infeasible regions.

2.2.6. Repairing Infeasible Solutions

Other approaches aim to improve the number of feasible solutions that an
algorithm can find. Some rely on repair mechanisms to improve the quality of
their solutions, while others seek to refine their search process by incorporating
techniques that are not typically found in evolutionary algorithms. A popular
example of a repair mechanism for handling ECMOPs can be found in the work
of Saha and Ray [14]. These authors present a repair algorithm based on the
concept of the Most Probable Point of failure (MPP), which is commonly used
in the context of reliability-based optimization of structures [41].

Their approach is used to help an EMOA to obtain a feasible approximation
of the Pareto front in an ECMOP aiming to reach a complete feasible popu-
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lation by the end of a run. However, the inclusion in this case of an internal
optimization problem that needs to be solved to repair individuals implies an
increased time complexity for the algorithm used to approximate the solution.

2.2.7. Constraint handling at different stages.

Through this section, we have seen a variety of promising evolutionary al-
gorithms capable of tackling constrained problems. While these algorithms are
capable of achieving competitive performance there are cases where this per-
formance deteriorates, especially when presented with highly complex feasible
solution spaces.

In an attempt to address this issue, Ma et al. in [16] present the Multi-Stage
Constrained EMOA (MSCMO), where constraints are added one after the other
and handled at different stages of the evolutionary process. Considering that
having a small number of constraints simplifies the solution space, allowing
individuals to converge towards the feasible region more easily while preserving
diversity.

Furthermore, the authors present a strategy for sorting the constraints to
be handle at each stage. This is done as a way to improve the convergence of
the algorithm in terms of feasibility. Starting from an evolved approximation of
the unconstrained Pareto front obtained by the algorithm in the first stage, the
strategy determines which constraints to handle according to the infeasible rate
of the current approximation. The constraints that obtain a higher infeasible
rate are considered in the first stages.

2.2.8. Coevolution for constraint handling

While evolutionary algorithms have demonstrated outstanding capabilities
while tackling multi-objective optimization problems, Constrained MOPs are
particularly challenging for these algorithms. The inclusion of constraints that
reduce the solution space hinders the ability of EMOAs for retaining diversity
while looking for valid solution candidates.

Tian et al. in [17] present a coevolutionary framework specifically designed
to be used in constrained multi-objective optimization. The Coevolutionary
Constrained Multi-objective Optimization framework (CCMO) evolves two pop-
ulations at the same time, independently from one another. One focused only
on solving a CMOP and the second focusing on solving a helper problem de-
rived from the original. The helper problem here consists of the original CMOP
without any constraint.

Both populations collaborate by sharing the offspring generated by each. In
this case, since the helper problem is easier to solve than the original CMOP
individuals in the second population preserve diversity, while individuals in the
first population give priority to feasibility. These characteristics allow the off-
spring generated by the helper population to improve the capability for the main
population to approach the PF, helping it escape local optimums and feasible
but non-optimal regions.
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2.2.9. The Tri-Goal Evolution Framework

The real challenge of constrained multi and many-objective optimization can
be generalized to find the balance between solution quality, diversity, and feasi-
bility. For an EMOA to properly solve a CMOP it needs to maintain a certain
balance between solutions that are feasible but have worse objective values and
solutions that achieve better objective values at the cost of being infeasible. This
balance is needed for the preservation of the quality and diversity of individuals
in a population.

Inspired by the above Zhou et al. present the Tri-Goal Evolution (TiGE)
Framework for Constrained Many-Objective Optimization [18]. Here three indi-
cator values are used to measure the quality, diversity and feasibility of individ-
uals are estimated and used to measure the worth of each individual. Further,
the authors propose TiGE-2 that uses what they named a two-level balance
scheme.

The individual selection of TiGE-2 starts by applying the non-dominated
sorting strategy. On the first level, the sorting is based on the minimization
of the normalized individual objective values and a modified crowding degree
estimator, trying to balance the quality and diversity of individuals. On the
second level, the sorting strategy is then applied on the second level, where
individuals are ordered from best to worst based on the minimization of their
previous rank and the constraint violation, aiming at finally balancing quality
and diversity and feasibility.

2.2.10. Hybridizing EMOAs for Constraint Handling

A recent approach from the work of Cuate et al. [19] is the e~NSGA-II/PT,
which considers the use of a hybrid EMOA for handling equality constraints.
The authors propose the usage of a continuation strategy to refine the approxi-
mation obtained by an EMOA. Starting with a modified version of the NSGA-
IT that incorporates the e—constraint strategy proposed in [37] the algorithm
obtains a small set of feasible KKT points that are extended into a better ap-
proximation of the feasible Pareto set of the problem through the application
of a mathematical continuation technique called the Pareto Tracer (PT) [42].
The incorporation of the PT to refine the approximation obtained by the EMOA
forces the algorithm to lose its gradient-free properties, given that the technique
requires the calculation of the gradients of the functions to work.

3. Building a Feasible Reference Set for Calculating the IGD

Motivated by the necessity of finding ways for EMOASs to be able to handle
constraints and, most importantly, to be able to tackle ECMOPs, we extend a
technique to artificially construct a reference that closely resembles the shape
and location of the feasible PF of a problem given a set of constraints. As
a result of this technique, we obtain a reference surface that allows using a
performance indicator, such as the IGD, as a tool for selecting individuals which
generationally shorten the distance between the approximation and the feasible
front.
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To construct the reference surface mentioned above, we first need to establish
the characteristics of the PF to be found. Zapotecas-Martinez et al. [22] state
that given a particular MOP, there is a very high probability that its Pareto front
draws a curve in the objective space. Following this assumption, the authors
relate the PF of a problem to a curve belonging to the following family:

{()* +...+ ()" =1:y; € [0,1],a € (0,00)} (8)

The main benefit of using this particular family of curves is that according
to an index «, a curve with various degrees of convexity or concavity can be
described. This behavior follows that given a < 1, the resulting curve will be
convex and when « > 1 the curve will be concave. An interesting case is seen
when o« = 1, where the resulting curve describes a line equivalent to a set of
evenly distributed weight vectors when normalized within [0,1]. Using this curve
family, we can decompose the problem of obtaining an adequate reference into
three simpler subproblems:

1. To generate a set of evenly distributed weight vectors as a starting set.

2. To select from the population the set that minimizes each objective func-
tion and the point that describes the maximum bulge of the front, known
as the knee.

3. To find an adequate « value to transform the set of weight vectors into a
surface that passes through the points of the previous step.

We use the ideas from [22] as a starting point. However, we introduce the
addition of a penalty factor inside the function used to determine the extreme
and knee points at each generation. Moreover, we propose that searching for
the correct value of a used to define the reference curvature can be transformed
into the problem of determining if a point is inside a polygon. The last problem
is easily solvable exploiting the relationship that exists between a Delaunay
triangulation and a convex hull [43].

3.1. Constrained Achievement Function

The first step in approximating the curve of the PF of the problem is to
identify the Convex Hull of Individual Minima (CHIM) of the problem. While
doing this represents a challenge on its own, there is a way to identify CHIM
candidate points from within the population of the algorithm at each generation,
improving the approximation of the PF as the quality of solutions also improves.
Identifying these points is comparable to finding a set of minimizers for each
objective function from the problem, known as the extremes of the front from
which the following definition arises:

Definition 3. Let x} be the global minimizers of f;(x), j = 1,...,k and
Fi(x}), j = 1...,k. Let ® be a square matrix of order k whose 4t col-
umn is F7 — F*. Then, the convex hull of individual minima is defined by the

set of points in R¥ that are convex combinations of F7 [22, 144], e.g. CHIM =
{68: 8RS0, Bi=1, B20i=1,. .k}

10
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In the above definition, F(x}) denotes the Utopian vector defined by the
global minima values of each objective function f;. From Definition |3] it is
possible to find individuals that closely resemble the extremes and knee point
of the PF, from any approximation obtained by an algorithm at a given time
step.

Thus, let us consider Q = P,Uq as the current approximation to the real PF
achieved by an evolutionary algorithm. Then, we state the extremes (individual
minima) of the PF (£) with the following achievement function presented in [22].

. . k « .
¢ = angnin (il (1,00 - £7)/¢)) ) )
zeP J=1
where el = (ei,...,el) is the canonical basis in R* and /7 is the current mini-

mum for the j*" objective function found along the search process. This achieve-
ment function allows us to also identify the maximum bulge (knee) formed by
the convex hull of the population. This can be achieved by finding a solu-
tion candidate x such that it minimizes a Tchebycheff problem. To identify
such a solution using the achievement function we employ the weight vector
Aj = (A =4%...\ = 1) instead of e'.

We have found that for the particular case of ECMOPs, by using a penalty
factor is possible to select as extremes a set of points that both lie closest to
the feasible space and minimize an objective function. Due to its simplicity, we
decided to apply a quadratic penalty [23] to the achievement function, resulting
in the following:

zeP J=

q
& = argmin <mkx ((F56) — F)/ef) + 5 > cm<x>2> (10)
m=1
where each ¢, (x) represents the constraint violations of an individual, where u
is a penalty factor as close as possible to zero that determines the severity of
the penalty applied to each reference point. The closer u is to zero, the harder
the severity of the constraints applied to the function.

The importance of u comes from the necessity of applying enough pressure
from the constraint violation to the achievement function; otherwise, one of
two situations could happen. On the one hand, if the pressure is too high, it
could lead to select only one individual minimum point, which prevents the
construction of an adequate reference set. On the other hand, if the pressure
is not enough, it can result in the reference set behaving like the unconstrained
version of the problem.

We propose the use of an exterior penalty method, in contrast to a barrier
method (i.e., interior penalty method) because we are only dealing with equality
constraints. This means that the feasible set of constraints has an empty interior,
and hence any barrier method is useless. An interior penalty method would
cause an algorithm to ignore solutions close to the feasible boundaries [23], [45].

The effects of this new function are contrasted against those of the original
unconstrained version in Figure We can appreciate how different are the

11
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selected sets and how our approach minimizes the distance from the feasible
region. This would mean that the reference surface constructed using this set
will be in proximity to the feasible space, and even more, the location of the
points shows that the shape of the curve will be similar to that of the feasible
region.

Figure 1: We present, in these figures, the result of evaluating a random population
over &, figure (a), and over the original achievement function, figure (b). We have
used (blue solid) circles to ease the identification of those elements selected by each
function. In each figure, we show both the knee and the extreme points of the current
population; notice that, for figure (a), these points minimize the distance from the
feasible region denoted by the black diagonal.

8.2. Finding Alpha

Once the extremes and knee of the Pareto front have been identified, we can
proceed to search for the factor .. This factor is used to curve the set of evenly
distributed weights to the shape of the PF. The determination of o can be easily
performed by browsing the range [0, 00| in small increments until the reference
surface passes through the maximum bulge described by the CHIM (the knee
point). An appropriate increment value for o needs to be selected as a large
value can cause the search to overestimate the curvature of the surface, and a
step that is too small can lead to an increment in the number of values to be
tested, resulting in a time increase to find «.

We propose to curtail the number of a values tested during the process,
performing a triangulation to determine if the curve of the PF we are looking
for is concave or convex, which is essential for approximating it. This is done by
constructing a polygon (convex hull) using the extreme points and the Utopian
point that the extremes draw and determining if the knee vector lies within.
Examples of the drawn polygons and knee point location can be seen in Figure 2]

12



410

415

420

425

—— Extremes polygon [ JExtremes polygon
+ Knee point AN + Knee point
55 _ ) [+ Sneepomt @ |
/

Figure 2: In the figures, we show two examples of polygons constructed using individual
minima points. The algorithm then uses the knee point (black cross) to determine the
curvature of the PF. In (a) the point lies outside the polygon for two objectives,
exemplifying a concave PF, while in (b) the point lies inside a polygon, this time for
three objectives, meaning the PF is convex.

The close relationship that exists between convex hulls and the Delaunay
triangulation simplifies the process of determining if a point lies within the
boundaries of a convex hull. By lifting the point to a paraboloid one dimen-
sion higher and searching for the facet projected by the triangulation that is
farthest below it, we can determine if the point lies within the area of the
convex hull [46] [47]. To find if the point is inside the polygon, we used a di-
rected search to identify the facet that contains the point as implemented by
the Delaunay. find_simplex function of scipy [48].

After determining if the knee is inside or outside the polygon, the range
a € [0,00] is split into two. If the knee lies inside the polygon, the PF to
approximate is convex and a € [0, 1]; otherwise, the PF is concave and o €
[1,00]. Departing from the simplest case where o = 1, which is equivalent to
having a well-distributed set of weight vectors, we need to move in small steps
of 0.05 as determined in [22], towards 0 or co to transform those weights into
an appropriate curvature. This can be seen in Figure |3| and Figure 4} Pareto
dominance for this case is particularly useful to identify when an adequate «
value has been found. To search for «, given a convex PF, we continue moving
its value closer to zero until the curve it describes dominates the knee point.
In the opposite case, we increase « until at least one point of the curvature is
dominated by the knee point.
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Figure 3: Figures (a) and (b) exemplify a reference surface constructed to approximate
a concave and a convex PF, respectively. The procedure draws the curves according
to the extremes and knee points of a particular population identified beforehand.
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Figure 4: From the figures above, we present in (a) and (b) two views of the same 3-D
reference surface. This surface approximates the curvature of a convex PF. While (c)
and (d) present two views of a 3-D reference surface constructed to approximate a
concave PF. In both cases, the surface is generated based on individuals identified as

the current minima of the problem.
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4. Constrained Reference Set - EMOA

Here, we describe the structure of the COARSE-EMOA, an evolutionary
algorithm intended for dealing with ECMOPs that uses the Inverted Genera-
tional Distance as part of its selection mechanism. The COARSE-EMOA does
not need any information regarding the PF of the problem for calculating this
indicator. Furthermore, it incorporates the previously mentioned method of
synthesizing a feasible reference set as an attempt to approximate an adequate
discretization of the front. This allows the algorithm to lead the search of in-

dividuals in direction of the reference set and towards an approximation of the
feasible PF of the problem.

Algorithm 1 COnstrAined Reference SEt - EMOA
Input: stopping criterion (Number of function evaluations);
u : population size
Output: P; : Resulting approximation to the PF.

t+0
P+ {x1,...,xu} > Initialize a population with g random individuals.
Evaluate(P;) > The population is evaluated.
fe+pu > Starts with g Function Evaluations
while fe < Stop criterion do
ind < generate(P;) > Generate one new individual.
Piy1 + reduce(P; U {ind}) > Select the p best individuals.
fe<+ fe+1 > One individual is evaluated at each generation.

end while

The COARSE-EMOA (Algorithm [1)) starts by initializing a population P;
(t = 0) of u randomly generated individuals. With each passing generation, the
algorithm creates a new individual (ind) selecting two different individuals from
P to act as parents. The determined pair is recombined by applying Simulated
Binary Crossover (SBX) [49], and the offspring has a chance of being mutated
with Polynomial-Based Mutation (PBM) [50]. Each ind has the possibility of
becoming a member of the population P;, 1, if and only if replacing an individual
with it, leads to a better-evaluated population. This process is repeated until a
preset number of function evaluations f. are performed.

Algorithm 2 reduce(Q)

Input: @ : Population to be reduced
Output: Q' : Population after reduction

s = argmax , .o (IGD(Q\{x}, R)) > calculate the contribution to the IGD for all
X EeQ
Q' =0Q\s

return Q’
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The reduction procedure we employ is described in Algorithm [2| Tt selects
the p best individuals from @ = P; U {ind} based on the contribution of each
individual to the IGD. Given that the size of @ is p + 1, the new population
discards only one element. For selecting which individuals are preserved, the
following Definition is essential.

Definition 4. (Contribution to the IGD [22]) Let Z be a discrete approxima-
tion of the PF of a particular MOP. The contribution of a solution x € @ to the
IGD indicator is defined as:

U(z,Q,2) = IGD(Q\{z}, 2) (11)

Unlike other algorithms that combine performance indicators and dominance
in their selection process, such as RIB-EMOA or SMS-EMOA, our proposed
COARSE-EMOA does not incorporate a non-dominated sorting procedure be-
fore calculating the contribution of individuals to the indicator. The main reason
for only using the contribution of individuals is to study the capabilities of the
proposed technique at properly approximating the PF of the problem using ref-
erence sets synthesized directly from the population. The effects of including
a sorting procedure, like for example one based on the constraint-domination
principle described in [2.2.3] provides a line of future research. The IGD was
selected in the first instance over other indicators as it is not affected by the
population size, and it provides balanced insight of the convergence, spread, and
distribution of the algorithm according to the works of Bezerra et al. [51].

Given Definition [4] if removing an individual from @ does not cause any
change to the IGD, or its removal reduces the current IGD, that individual
is then deemed inferior. The worst individual from each generation is then
discarded; ties are solved randomly. This allows those individuals that have
better quality to survive each generation while reducing the distance that exists
between the individuals and the artificial approximation of the PF which gets
closer to the real feasible PF of the problem, as the algorithm progresses.

This reduction in the distance between the population and a better and fea-
sible reference set causes the final population to lie and remain within the active
region of the constraints. This results in individuals being unable to escaping
the active region making this technique particularly suitable for working with
equality constrained MOPs.

4.1. Computational Complezity

Studying the behavior of the algorithm during experimentation exhibits that
COARSE-EMOA performance depends entirely on the speed of calculating the
individual contribution to the performance indicator. Nevertheless calculating
the IGD is significantly faster than calculating other performance indicators at
O(mMN) where m is the number of objectives, M is the number of reference
points and N is the size of solution set [52]. This is very reasonable when
compared with respect to other algorithms like the NSGA-III where the non-
dominated sorting has a complexity of O(mN?).
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Given that the COARSE-EMOA only generates one individual at each gen-
eration after the initial population, the complexity of calculating the individual
contribution to the indicator remains O(mMN). It is important to mention,
that changing the number of offspring obtained at each generation would invari-
ably increase this complexity.

5. Experimental Design and Results

As a way to illustrate that the COARSE-EMOA is capable of solving EC-
MOPs, we evaluate the ability of the algorithm to obtain a good approximation
to the PF over a set of benchmark ECMOPs. Moreover, we compare the ob-
tained results with respect to those obtained by the e-NSGA-II/PT, the CCMO,
the MSCMO, the TiGE-2, the C-NSGA-II and the C-NSGA-III. It is worth not-
ing that the last two methods incorporate the constrained-domination principle
described in Section 2.2

The e-NSGA-II/PT, the CCMO, the MSCMO, and the TiGE-2 were chosen
as a way to test the COARSE-EMOA with respect to other approaches from
the state-of-the-art. We selected the C-NSGA-II and C-NSGA-IIT as a way to
contrast a common constraint-handling technique, in this case the CDP, against
our proposed constraint achievement function. Additionally, C-NSGA-III was
selected given the good performance observed in [53]. The aim was to show the
capabilities of our technique for guiding the search towards the feasible PF of a
constrained problem.

The set of experiments performed consisted of a total of 20 independent runs
of each algorithm per problem [19] [54] [55]. Each approximation was evaluated
using two performance indicators to assess their quality and to quantify the
number of feasible individuals found by the algorithms. The experiments were
run in a Windows server with two Intel Xenon CPU E5-2670 v3 processors
running at 2.30GHz with a total of 48 logic processors, and 1 TB of RAM.

We chose the parameters of each EMOA in such a way that we could make a
fair comparison among them. To ensure that the final approximations contained
the same number of candidate solutions, we set population sizes for each algo-
rithm as g = 100 for problems with two objectives and p = 300 for the problem
with three objectives [15]. The use of a larger population size in the problem
with three objectives was for the algorithms to achieve a better distribution in
the larger surface described by the PF in three dimensions [5].

The distribution indexes for the evolutionary operators (Simulated Binary
Crossover (SBX) and Polynomial-Based Mutation (PBM)) adopted by our ap-
proach and the others were set as distc = 20 and distm = 20, respectively [13].
We kept the crossover probability as pc = 0.9 and the mutation probability
as pm = + where pu is the size of the population. These parameter values
have been found appropriate for a wide variety of problems by many different
authors [, [56] [57]. Finally, we set the total number of function evaluations
in such a way that it did not exceed 20,000 for the bi-objective problems and
150,000 for the tri-objective test problem [15].
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The only parameter that is unique to our algorithm is the penalty factor
u, which is used to determine the pressure that the constraint violation applies
when looking for the feasible minima points of the problem. In this case, we
have set a fixed parameter u = 1 x 1076 for all the problems. As defined
in [23], u needs to be as close as possible to zero so that it exerts enough
pressure. However, initial empirical tests performed with the COARSE-EMOA
over the problems with v = 1 x 10~7 resulted in the algorithm not identifying
the necessary points for generating a reference at the very beginning of the
search. This happens as there are not enough individuals sufficiently close to
the feasibility boundary that are candidates to represent the extremes and knee
point of the PF.

5.1. Test Problems

All seven algorithms, including the COARSE-EMOA, were tested over a set
of Equality Constrained MOPs. Starting with the CZDT functions proposed
in [14], which consist of a set of problems derived from the well-known ZDT
test suite [58]. To further test the capabilities of the algorithms in particular on
ECMOPs whose Pareto set location is altered by the constraints, we adopted a
set of problems proposed by Cuate et al. [15], namely the Eq1-ZDT1, the Eq2-
ZDT1, the Eql-Quad and Eq2-Quad. Lastly, as a way to test the capabilities
of the algorithms while handling PF that have been degenerated by constraints
we include the first problem of the Eq-DTLZ suite proposed in [53].

Table[Il describes the different features that each of the mentioned test func-
tions possesses. Each one allows the assessment of the performance of EMOAs
under different conditions known to be challenging for them.

It is essential to mention that the constrained version of the ZDT test suite
has a unique characteristic. While all the problems contain one equality con-
straint, its addition does not alter the feasibility of the true Pareto front of the
problem, resulting in the same shape for both the constrained and unconstrained
versions. Nevertheless, these problems pose a considerable challenge for evolu-
tionary algorithms because of the difficulties associated with the constraints
incorporated into them.
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Table 1: Test problems used for experimentation
Problem # of Objectives # of Constraints Characteristics

CZDT1 2 1 The problem has a convex Pareto front
CZDT2 2 1 The problem is the non-convex counterpart of CZDT1.
CZDT3 9 1 The problem has a discontinuous Pareto front consisting

of several convex pieces.

The problem contains 219 local Pareto fronts,

CzDbT4 2 1 resulting in a multifrontal problem.

The problem presents two difficulties:

First, the Pareto-optimal solutions are not uniformly distributed
CZDT6 2 1 over the PF with more solutions located, where f;(x) is near one.

Second, the number of solutions near the Pareto front is scarce.
This density increases as the population gets farther away from
the front.

The problem is based on the ZDT1, here the constraint establishes
Eql1-ZDT1 2 1 the feasible region within the perimeter of a hyper-cylinder
in the search space

The problem is similar to the Eq1-ZDT1, it differs on the addition of

Bq2-ZDT2 2 1 box constraints, which results in a disconnected PF.

The problem consists of three quadratic objective functions with the
Eq1-Quad 3 1 addition of one equality constraint. A modification of a problem

found in [59).

The problem is similar to the previous one with the addition of a second
Eq2-Quad 3 9 constraint. The Pareto set of this problem then consists of two connected

components that can be both expressed by curves (and which are hence
1-dimensional).

The problem is based on the DTLZ1 formulation. However, it includes
Eq-DTLZ1 3 1 one equality constraint in such a way that it reduces the dimensionality
of the Pareto set and front by one.

The problems mentioned above are state-of-the-art examples of test problems
that include equality constraints in their formulation [15 53]. To the best of
our knowledge, no other benchmarks currently exist that include only MOPs
with equality constraints.

5.2. Measures for Assessing Performance

We are interested in quantifying two particular aspects of the approxima-
tions: (1) the number of feasible Pareto candidate solutions that the algorithms
were able to find and (2) how good was each algorithm at approximating the
feasible PF of the problems. For this, two different performance indicators were
employed to evaluate the approximations.

To assess the percentage of feasible solutions found in the final approxima-
tions of the algorithms, we calculated the F,. as described in Section A
larger value obtained in this indicator means that more feasible solutions were
found. This means that the techniques used to handle constraints were success-
ful in guiding the search towards the feasible region of the problem.

To determine how close an approximation is to represent the feasible PF of
the problems, the indicator A, was used. This indicator provides a simple yet
effective way to compare the results of the algorithms, providing a ranking that
matches convergence, spread and distribution [25] [51]. The smaller the value
obtained by this indicator, the closer an approximation is to the feasible PF.
It is possible to use this indicator as we are working with benchmark problems
whose feasible PF is known.
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5.8. Performance of COARSE-EMOA

We will now describe the obtained results of applying the COARSE-EMOA
over the 8 Equality Constrained Multi-objective Optimization Problems previ-
ously indicated. The results of the experiments are described in Table

These results indicate that the COARSE-EMOA was able to obtain popula-
tions with more than 50% feasible individuals in most cases, even in the presence
of discontinuous Pareto fronts, as is the case of CZDT3 and Eq2-ZDT1. How-
ever, the results also indicate that the approach used to generate the reference
set presented sensitivity to multifrontal problems. This was the case when the
COARSE-EMOA was unable to obtain a single feasible individual in CZDT4
and obtained an average A, of 3.0401. The existence of local fronts throughout
the search space caused the algorithm to be unable to construct a reference sur-
face that corresponded with the global PF of the problem leading to stagnation
of the individuals in a region far from it. An interesting thing to mention is that
while the global minima of the problem were not reached in CZDT6, still 76% of
the solutions were feasible. In the case of Eql-Quad, Eq2-Quad and Eq-DTLZ1
the COARSE-EMOA was unable to cover the entirety of the PF. Nevertheless,
the algorithm was able to find solutions with great proximity to the PF out of
which 52%, 45% and 100% were feasible, respectively.

Table 2: Averaged Hausdorff distance (Aj) and Feasibility ratio (F) results of the COARSE-
EMOA. The values were obtained over 20 independent test runs on each problem.

COARSE-EMOA

Average St. . Average St.
A, Deviation  iedian F.(%)  Deviation
CZDT1 0.0008 0.0003236  0.0006 0.73 0.0543357 0.76
CZDT2 0.0018  0.0005414  0.0017 0.62 0.0421776  0.63
CZDT3 0.0205  0.0007957  0.0204 0.54 0.0928615  0.56
CZDT4 3.0401 1.3131170  2.9625 0.00 0.00 0.00
CZDT6 0.0702  0.02799403  0.0692 0.73 0.2188509  0.76
Eq1-ZDT1 ~ 0.0009  0.0003848  0.0009 0.78 0.0727874  0.77
Eq2-ZDT1 0.0020 0.0005748  0.0020 0.70 0.1360902 0.70
Eql-QUAD  0.2603  0.0214872  0.2608 0.52 0.0764229  0.54
Eq2-QUAD  2.3168 1.2085106 2.2913 0.45 0.0982110 0.46
Eq-DTLZ1 ~ 0.0282  0.0692024  0.02801 1.00 0.0000000 1.00

Problem Median

To better understand the results, we graphically show the best runs of the
COARSE-EMOA for each problem in Figures[f] and [6} The blue surface shows
the feasible PF of each problem while the red dots represent the final population
of that particular run. The COARSE-EMOA was able to compute a set of points
with a relatively good spread over the Pareto set in the majority of the problems;
this is the case for CZDT1, CZDT2, CZDT3, Eql-ZDT1 and Eq2-ZDT2. In the
case of Figure (problem CZDT4), we can see that no point close to the PF
was obtained, due to the COARSE-EMOA getting stuck in a local front.
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Figure 5: In the Sub-figures, we show the Pareto front approximations for the CZDT,
Eql-ZDT1 and Eq2-ZDT1 obtained by the COARSE-EMOA. The red dots represent
the solution approximation, while the blue lines represent the real Pareto front of the
problem.
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Figure 6: The graphs show a Pareto front approximation for Eq1-Quad, Eq2-Quad and
Eq1-DTLZ1 using the COARSE-EMOA. The red dots represent the solution approx-
imation, while the blue areas represent the real Pareto front of the problem.

5.4. Comparison of COARSE-EMOA vs Other Algorithms

Continuing with our experiments,we compared the COARSE-EMOA perfor-
mance against six state-of-the-art algorithms using our set of ten problems. The
results obtained are detailed in Table We have highlighted the best results
obtained on the A, indicator with boldface text. We only consider feasible
solutions while evaluating the quality of the approximations. Results with gray
background highlight approximations composed exclusively of feasible individu-
als. The lack of results in Table [3|for the A, column means that the associated
algorithm was unable to generate even a single feasible individual.

Using the algorithms’ output, we performed a Wilcoxon’s rank-sum with a
significance level of 0.05 [60]. We obtained the p—value by comparing the results
of the COARSE-EMOA against e-NSGA-II/PT, CCMO, MSCMO, TiGE-2, C-
NSGA-IIT and C-NSGA-IT when possible. Problems marked with (*) reflect a
statistically significant result based on the Wilcoxon rank test. For the case of
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algorithms CCMO, MSCMO, and TiGE-2 implementations were obtained from
the Evolutionary multi-objective optimization platform (PlatEMO) presented
by Tian et al. in [61]

The results above show that e~ NSGA-II/PT obtained only entirely feasible
approximations to the PF. It is followed by MSCMO that achieved fully feasible
populations in 5 of the 10 problems. While COARSE-EMOA was unable to gen-
erate populations of exclusively feasible solutions, the algorithm still achieved
an average of 60.7% feasibility overall. The Feasibility ratios obtained by the
COARSE-EMOA show that our proposed technique for constructing a reference
is able, in most cases (seven out of eight problems), to approximate the feasible
PF of a problem while still taking into consideration equality constraints.

Furthermore, the results demonstrate that regardless of the ratios of feasibil-
ity, the COARSE-EMOA approximations present better distribution and con-
vergence according to Ap, when compared against the other algorithms. This
is supported by the COARSE-EMOA achieving the best overall performance in
4 out of the 10 problems, according to the indicator.

We found that our approach is capable of overcoming different obstacles
such as discontinuous Pareto fronts and non-uniform search spaces. However,
the reference surface construction is highly sensitive to the presence of local
fronts. This is evident from the results obtained for the case of the multifrontal
problem (CZDT4), where the COARSE-EMOA was unable to escape from local
fronts causing the algorithm to stagger.

According to our results, COARSE-EMOA obtains a similar and even bet-
ter individuals distribution over the PF supported by A, values, presented in
Figure These performance values indicate that the COARSE-EMOA has
beneficial convergence properties comparable to those of other state-of-the-art
algorithms. Nevertheless, the COARSE-EMOA was unable to surpass the fea-
sibility ratio of the eeNSGA-II/PT, CCMO, MSCMO, and TiGE-2 as seen in
Figure

As mentioned before, the COARSE-EMOA is capable of tackling ECMOPs
without extra information. This means that no gradient information for the
incorporation of local search or continuation techniques is necessary to achieve
an approximation of the feasible PF of an ECMOP, nor a transformation is
required to obtain a set of feasible solutions. The underlying idea of using an
EMOA, and any stochastic technique for the matter, comes from the impossi-
bility of guaranteeing that gradient information is obtainable for the problem
to be optimized.
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Figure 7: The Average F,. obtained by each of the algorithms over the test problems
is shown. Each bar represents the feasibility ratio average of the COARSE-EMOA,
e—NSGA-II, CCMO, MSCMO, TiGE-2, C-NSGA-IIT and C-NSGA-II, respectively.
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Figure 8: A semi-log scatter plot of the average A, obtained by each algorithm over
our set of test problems. The blue stars represent the average and standard deviation
of A, of the COARSE-EMOA. The red squares represent the same information for
e—NSGA-II/PT, while the yellow dots do so for CCMO. The purple diamonds repre-
sent the values of MSCMO, and the green circles the values of TIGE-2. C-NSGA-III
and C-NSGA-II are represented by the light blue crosses and the burgundy triangles,
respectively.
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6. Conclusions and Future Work

We have presented an EMOA capable of solving Equality Constrained Multi-
objective Optimization Problems. Its capabilities of tackling ECMOPs come
mainly from the addition of a quadratic penalty integrated into an achievement
function based on Tchebycheff for approximating the shape and location of
the Pareto Front (PF) of a problem. This new achievement function allowed
the algorithm to remain entirely based on the minimization of a performance
indicator through evolution while considering feasibility.

According to the observed behavior of the COARSE-EMOA and the ob-
tained results, our proposed approach can successfully synthesize reference sets
that approximate the unknown feasible Pareto Front (PF) of an ECMOP as the
algorithm progresses. Each reference set aims at minimizing a penalty associ-
ated with the constraint violation of individuals. This allowed the algorithm
to evolve its population towards the boundary of the equality constraints and,
most importantly, to remain there, which is something that EMOAs naturally
have problems achieving [34].

While the COARSE-EMOA did not obtain a complete feasible PF approx-
imation on all the problems, on average more than half of its resulting indi-
viduals were valid solution candidates, as reflected by the average feasibility
ratio. Furthermore, the results in A, indicate that COARSE-EMOA obtained
a better-distributed population closer to the feasible PF of the problem in con-
trast to the approximations obtained by the other algorithms over four of the
test functions.

As a path for future work, we have considered an attractive approach to ex-
plore the possibility of incorporating different methods to extend the COARSE-
EMOA. The first extension contemplates the incorporation of a sorting proce-
dure based on the constrained domination principle. Such a procedure could
reduce the number of times the algorithm calculates the contribution to the
performance indicator of each individual and possibly reduce the overall time
complexity of the COARSE-EMOA. Another path takes into consideration the
convergence properties shown by the COARSE-EMOA, the incorporation of a
technique to refine its approximation could help assure that a full feasible state
is achieved and could even help to improve the quality of the obtained approx-
imation in terms of coverage of the Pareto front.

We also consider the possibility of exploring different curve families that
could provide the means of constructing a reference set with a more flexible
structure. Other families of curves could offer the possibility of handling unex-
pected changes in the front found in problems with irregular PF shapes, seeking
to improve all in all the performance of any algorithm incorporating the refer-
ence construction technique.

This research focused on demonstrating the capabilities of the COARSE-
EMOA when dealing with two and three-objective problems, each with one or
two equality constraints. This limitation arises from the geometrical nature of
the proposed procedure to generate the reference surface, in specific the trans-
formation of a lattice of points to fit within those individuals considered to be
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extreme and knee candidates.

By researching and implementing a generalization for a higher dimensional-
ity of this procedure, the basic structure of the COARSE-EMOA should allow
it to be applied in Equality Constrained Many-objective optimization problems.
Future analyses on the behavior of the algorithm are needed where such a proce-
dure is presented and studied over Many-objective optimization problems with
at least one constraint, examples of which have been introduced in [53] 61].
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