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I. THEORETICAL ANALYSES

For simplicity and without loss of generality, we consider
a multiplex network G = {V, E [1], E [2]} with |V| = n nodes
and q = 2 layers of edges. Each network G[α] = {V, E [α]},
α ∈ {1, 2}, follows a degree distribution P

[α]
0 (k) and a

community size distribution Q
[α]
0 (s), where k and s denote

the node degree and community size, respectively. In our
robustness (or resilience) evaluation model, nodes and links
are normally functional in G if and only if they are in the
largest connected component (LCC) and their community is
functional. We call the functional LCC in our evaluation model
as the community-aware LCC.

We assume that a fraction p/n of nodes are removed from
G due to failures. In this case, the node failures may first
cause node cascading failures, and then may further trigger
community failures. These failures occur recursively until
there are no further node failures. We call this failure model
as the node-community cascading failures (NCCFs).

Under the NCCFs, we let P∞ and P∞
c denote the frac-

tions of community-aware LCC after the first round of node
cascading failures (NCFs) and the first round of community
failure, respectively. Moreover, we let P∞

c be the final fraction
of community-aware LCC after all cascades of node and
community failures. For a given multiplex network G with
q (e.g., q = 2) layers, P∞

c can be approximately computed by
the following expression:

P∞
c = ρ · (P∞ + P∞

c ), (1)

where ρ ∈ [0, 1] is a control parameter used to determine
the relation among P∞, P∞

c and P∞
c . This approximate

expression is inspired by some real phenomena: for example,
the final failures of social systems caused by natural disasters
(like earthquakes and tsunamis) are highly related to the
first round of cascading failures, as has been validated by
several experiments. In further work, we will further study
the theoretical analyses of this relation.

Here, P∞ can be computed as follows:

P∞ = (1− p/n) ·
∞∑

k1=0

[
P

[1]
0 (k1)− P

[1]
0 (k1)G

[1]
0

(
1− u

[1]
0

)]
·

∞∑
k2=0

[
P

[2]
0 (k2)− P

[2]
0 (k2)G

[2]
0

(
1− u

[2]
0

)] ,

(2)
where P

[α]
0 (k) is the degree distribution of G[α], while G

[α]
0 (x)

is the generating function of P [α]
0 (k), α = 1, 2, . . . , q. G[α]

0 (x)
is evaluated as follows:

G
[α]
0 (x) =

∞∑
k=0

P
[α]
0 (k) · xk, (3)

while u
[α]
0 is the fraction of the LCC of G[α] under NCFs,

which follows the following self-consistent probability equa-
tions (see [1]):

u
[1]
0 = (1− p/n) ·

∞∑
k1=0

P
[1]
0 (k1) · k1
< k

[1]
0 >

· [1− (1− u
[1]
0 )k1−1]

·
∞∑

k2=0

P
[2]
0 (k2) · [1− (1− u

[2]
0 )k2 ]

,

(4)

u
[2]
0 = (1− p/n) ·

∞∑
k2=0

P
[2]
0 (k2) · k2
< k

[2]
0 >

· [1− (1− u
[2]
0 )k2−1]

·
∞∑

k1=0

P
[1]
0 (k1) · [1− (1− u

[1]
0 )k1 ]

,

(5)
where < k

[α]
0 > denotes the average node degree of G[α],

α ∈ {1, 2}.
For each α ∈ {1, 2}, we let P [α](k) denote the degree dis-

tribution of the failed network G[α] which undergone node cas-
cading failures. As known from [2], for each α = 1, 2 . . . , q,
we can obtain the following relationship:

G[α](x) = G
[α]
0 (1− P∞ · (1− x)), (6)

where G[α](x) is the generating function of the degree distri-
bution P [α](k).

The node cascading failures cause the failures of a fraction
1 − P∞ of nodes, and theses failures will further result in
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the failures of a fraction 1−Pr of communities. This fraction
1− Pr is computed as follows:

1− Pr =

∞∑
s[α]=1

P
[α]
f (s[α]) ·Q[α]

0 (s[α]), (7)

where P
[α]
f (s[α]) is the failure probability of a community c

with size s[α] in the multiplex network at layer α. Formally,
P

[α]
f (s[α]) is computed as follows:

P
[α]
f (s[α]) =

⌊(1−λ)×s[α]⌋∑
s=0

(
s[α]

s

)
· (P∞)s · (1− P∞)s

[α]−s,

(8)
where λ is the threshold of community failures.

Subsequently, the failures of a fraction 1−Pr of communi-
ties may further trigger a cascade of community failures. To
further study these failures, we first construct a novel multiplex
network Gc with a set of supernodes, in which each supernode
is a community of the original multiplex network G, while
the links are the edges of G that are connected two nodes in
different communities. Fig. 1 gives a schematic illustrations
of the construction of a novel multiplex network Gc with a set
of supernodes.

4

4

4

4

4

4

4

4

4

Construct a supernode-

aware multiplex network

cc

11 1

2 2 2

3 3 3

4

5

6

7

8

9

10

11

12 12

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12

1 1 1

2 2 2

3 33

Fig. 1: Schematic illustrations of the construction of a novel
multiplex network Gc with a set of supernodes. Each supernode
in Gc is a community of the original multiplex network G, and
each link in Gc is the links between two communities of G.
Nodes with the same shapes are in the same communities,
while the numbers around supernodes are the size (or number
of nodes) of the supernodes.

Then, we approximately model community cascading fail-
ures in G as node cascading failures in Gc. We let Q(s[1], s[2])
denote the joint community size distribution of G at all layers
after node cascading failures are occurred, and let D(x, y)
be the generating function of Q(s[1], s[2]). Q(s[1], s[2]) can be
evaluated as follows:

Q(s[1], s[2]) =

{
0 if s[1] ̸= s[2]

Q[1](s[1]) = Q[2](s[2]) if s[1] = s[2]
, (9)

where Q[α](s) denotes the community size distribution of the
failed network G[α] after node cascading failures are occurred,

α = 1, 2. Formally, Q[α](s) is evaluated as follows:

Q[α](s) =
∞∑

s0=s

Q
[α]
0 (s0) ·

(
s0
s

)
· (P∞)s · (1− P∞)s0−s.

(10)
D(x, y) of Q(s[1], s[2]) can be computed as follows:

D(x, y) =
∞∑

s[1]=1

∞∑
s[2]=1

Q(s[1], s[2]) · xs[1] · ys
[2]

. (11)

Moreover, we let Pc(k
[1], k[2]) denote the probability that

a supernode in G[1]
c has a community degree k[1] while its

corresponding supernode in G[2]
c has a community degree k[2],

and let G(x, y) be the generating function of Pc(k
[1], k[2]).

Here, G(x, y) can be computed as follows [3]:

G(x, y) =

∞∑
k[1]=0

∞∑
k[2]=0

Pc(k
[1], k[2]) · xk[1]

· yk
[2]

, (12)

and we have the following relation [3]:

G(x, y) = D(G[1](x),G[2](y)). (13)

Next, we can compute P∞
c of Gc with a fraction 1−Pr of

failed supernodes under supernode cascading failures by the
following self-consistent probabilities equations [3]:

u[1] = P∞ · Pr ·
[
1− (Gx(1− u[1], 1) +Gx(1, 1− u[2])

−Gx(1− u[1], 1− u[2]))/Gx(1, 1)
] ,

(14)

u[2] = P∞ · Pr ·
[
1− (Gy(1− u[1], 1) +Gy(1, 1− u[2])

−Gy(1− u[1], 1− u[2]))/Gy(1, 1)
] ,

(15)

P∞
c = P∞ · Pr ·

[
1− F[1](1− u[1], 1)

−F[1](1, 1− u[2]) + F[1](1− u[1], 1− u[2])
], (16)

where Gx(·) = ∂G(x, y)/∂x and Gy(·) = ∂G(x, y)/∂y
are the partial derivative of G(x, y) with respect to x and
y, respectively. Moreover,

F[1](x, y) =
T[1](G[1](x),G[2](y))

T[1](1, 1)
, (17)

and

T[1](x, y) = x · ∂D(x, y)

∂x

=
∞∑

s[1]=1

∞∑
s[2]=1

s[1] ·Q(s[1], s[2]) · xs[1] · ys
[2]

.
(18)

Here, T[1](1, 1) is the average community size of failed
network G which undergone node cascading failures.

Finally, we can evaluate P∞
c based on (1), (14), (15) and

(16).
An illustration of the P∞

c computation on ER-ER multiplex
networks with q = 2 is then given as follows. As ER multiplex
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(k)

Fig. 2: Schematic illustrations of the variations of the fraction of functional nodes with the fraction p/n of randomly attacked
nodes on ER-ER networks under NCFs and NCCFs with ρ = 0.5. The ER-ER networks with n = 500 and k̄ = 6 under (a)
λ = 1.0, (b) λ = 0.9, (c) λ = 0.8, (d) λ = 0.7, (e) λ = 0.6, (f) λ = 0.5, (g) λ = 0.4, (h) λ = 0.3, (i) λ = 0.2, (j) λ = 0.1,
and (k) λ = 0.01, where k̄ is the average degree of the network while λ is the threshold of community failure.

networks follow a Poisson distribution, we can evaluate the
generating function of the degree distribution of G[α], α = 1, 2,
as follows:

G
[1]
0 (x) = e<k

[1]
0 >·(x−1), (19)

G
[2]
0 (x) = e<k

[2]
0 >·(x−1), (20)

where < k
[α]
0 > is the average degree of G[α], α = 1, 2.

Then, we can obtain the implicit equation of P∞ based on
(2), (4), and (5). Formally, the implicit equation of P∞ is
represented as follows:

P∞ = (1− p/n) ·
[
1− e−<k

[1]
0 >·P∞

]
·
[
1− e−<k

[2]
0 >·P∞

]
.

(21)
This implicit equation can be solved by using numerical
methods. After this implicit equation is solved, we can obtain
the P∞ value.



4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(d)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(e)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(f)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(g)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(h)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞
 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(i)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(j)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of attacked nodes: p/n

Fr
ac

tio
n 

of
 f

un
ct

io
na

l n
od

es
: P

c∞

 

 
Simulated results (NCFs)
Simulated results (NCCFs)
Theoretical results (NCFs)
Theoretical results (NCCFs)

(k)

Fig. 3: Schematic illustrations of the variations of the fraction of functional nodes with the fraction p/n of randomly attacked
nodes on ER-ER networks under NCFs and NCCFs with ρ = 0.5. The ER-ER networks with n = 500 and k̄ = 4 under (a)
λ = 1, (b) λ = 0.9, (c) λ = 0.8, (d) λ = 0.7, (e) λ = 0.6, (f) λ = 0.5, (g) λ = 0.4, (h) λ = 0.3, (i) λ = 0.2, (j) λ = 0.1, and
(k) λ = 0.01, where k̄ is the average degree of the network while λ is the threshold of community failure.

Subsequently, we can obtain the implicit equation of P∞
c

based on (16). Formally, the implicit equation of P∞
c is

represented as follows:

P∞
c = P∞ · Pr ·

1−
∞∑
s=1

[
s ·Q[1](s) · f(P∞

c )
]

∞∑
s=1

s ·Q[1](s)

 , (22)

where Q[1](s) is the community size distribution of the failed

network G[1] which undergone node cascading failures, while
f(P∞

c ) is evaluated as follows

f(P∞
c ) = e−<k

[1]
0 >·P∞·s·P∞

c + e−<k
[2]
0 >·P∞·s·P∞

c

− e−(<k
[1]
0 >+<k

[2]
0 >)·P∞·s·P∞

c .
(23)

Similarly, the implicit equation in (22) can be solved by using
numerical methods. After this implicit equation is solved, we
can obtain the P∞

c value.
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Fig. 4: Variations of the attack robustness Ra of ER-ER
multiplex networks with n = 500 and λ = 0.3 with the
average degree k̄.

Finally, we can obtain the P∞
c value based on the computed

P∞ and P∞
c values, and (22).

To demonstrate the effectiveness of the aforementioned
theoretical analyses, Figs. 2 and 3 show the variations of P∞

c

with fraction (p/n) of randomly damaged nodes on two types
of ER-ER multiplex networks with n = 500. All results in
Figs. 2 and 3 are averaged over 100 ER-ER networks with each
network tested over 10,000 independent runs. These results
show that the simulated results approximate the theoretical
results well, and that the ER-ER networks are more fragile
to NCCFs than to NCFs. Moreover, the ER-ER multiplex
networks with higher node degrees are more robust to attacks.

Fig. 4 shows the variations of the attack robustness Ra of
ER-ER multiplex networks with n = 500 as the average degree
k̄ ranging from 1 to 10. The results show that the simulated
results approximate the theoretical results well in different k̄
values. Moreover, the ER-ER networks become more robust to
attacks as k̄ increases. This is because intra-layer node failures
decrease as the number of intra-layer links increases.

II. ROBUSTNESS OF MULTIPLEX NETWORKS DURING THE
MIXING OF ATTACKS AND RECOVERIES

In some real-world cases, a mix of attacks and recoveries
occur simultaneously, and the mixing weight is controlled by
a recovery rate 1/τ . 1/τ represents one recovery after each τ
attacks. To analyze this mixing case, we first define an attack
and recovery robustness Rar of a multiplex network, and then
give some theoretically and experimentally analyses of the
robustness of the ER-ER multiplex networks under different
recovery rates.

The attack and recovery robustness Rar
τ evaluates the re-

silience (or fraction) of functional nodes during all n possible
mixing attacks Ta and recoveries Tr with a recovery rate 1/τ .
Formally, Rar

τ is computed as follows:

Rar
τ (G,Ta,Tr) =

1

n

[ xn/(1+τ)y∑
t=1

t·(1+τ)−1∑
p=(t−1)·(1+τ)+1

P∞
a,c(p)

+
n∑

p=xn/(1+τ)y·(1+τ)+1

P∞
a,c(p) +

t=xn/(1+τ)y∑
t=1,p=t·(1+τ)

P∞
r,c(p)

] ,
(24)
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Fig. 5: Variations of Rar
τ with 1/τ on the ER-ER networks

with n = 500, k̄ = 6 and λ = 0.3.

where P∞
a,c(p) and P∞

r,c(p) are the final fractions of the
community-aware LCC when the p-th operation is an attack
and a recovery, respectively, while the operator xn/(1+τ)y is
the floor of n/(1 + τ). In (24), 1/n is a normalization factor,
which enables fair comparison of the robustness of networks
with different scales. Generally, the Rar value is in the range
of [0, 1], and networks with a higher Rar are more robust to
the failures during the mixing of attacks and recoveries.

In our system model, a damaged node is randomly recovered
at each recovery, while an undamaged node (a functional node
or a fail node) is randomly attacked at each attack. In this case,
for each p = t · (1 + τ), t = 1, 2, . . . , xn/(1 + τ)y, P∞

r,c(p)
at the t · (1 + τ)-th recovery is equal to P∞

a,c(p − 2) of the
(t ·(1+τ)−2)-th attack. Therefore, Rar

τ can also be evaluated
as follows:

Rar
τ (G,Ta,Tr) =

1

n

[ xn/(1+τ)y∑
t=1

t·(1+τ)−1∑
p=(t−1)·(1+τ)+1

P∞
a,c(p)

+
n∑

p=xn/(1+τ)y·(1+τ)+1

P∞
a,c(p) +

t=xn/(1+τ)y∑
t=1,p=t·(1+τ)

P∞
a,c(p− 2)

].
(25)

Here, P∞
a,c(p) is the same as P∞

c in (1) under a fraction p/n of
damaged nodes, and it can be computed by the aforementioned
theoretical analyses.

To analyze the impacts of the recovery rate 1/τ on the attack
and recovery robustness analyses, Fig. 5 gives the variations
of Rar

τ with 1/τ on the ER-ER networks with n = 500 and
k̄ = 6 under both NCFs and NCCFs. The results show that
the simulated results approximate the theoretical results well
and the ER-ER networks are more vulnerable to NCCFs than
to NCFs. Moreover, the Rar

τ values decrease as the 1/τ value
increases. This is to be expected that the number of damaged
nodes and intra-layer node failures decrease as an increasing
number of damaged nodes recover.

III. DETAILS OF EXPERIMENTAL SETTINGS

A. Statistics of tested synthetic multiplex networks

In this part, the statistics of communities for the tested
synthetic networks such as average modularity and average
number of communities are given (see Figs. 6 and 7).
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Fig. 6: Box plot of the statistic Q of all tested networks with
different scales (n). (a) n = 200 and (b) n = 500. The box
plots are adopted to show the distribution of statistic Q values
of all tested synthetic networks. On each box, the red line
denotes the median while the symbol ‘+’ represents the outlier.

Multiplex modularity Q has been widely used to evaluate
the quality of communities of multiplex networks. It evaluates
the difference between the fraction of links falling into com-
munities over layers and the expected fraction in an equivalent
network with links placed at random. The Q value is in the
range of [-1, 1]. When Q = 0, it indicates that links of the
networks are randomly placed at random. When Q > 0, it
indicates that the networks have certain community structures.
When Q > 0.3, it indicates that the networks have clear
community structures.

The results in Fig. 6 show that the tested multi-layered
ER-SF, SF-SF, SW-SF and ER-SW-SF networks show certain
community properties as their Q values are generally larger
than 0.3. The results in Fig. 7 illustrate that the numbers of
communities of these networks are in the range of [3, 13].

The results in Figs. 6 and 7 of this document and Table III
in the manuscript show that the tested networks with lesser
communities and higher modularity generally have a higher
robustness and resilience. This is reasonable as the networks
with less communities can restrain community cascading fail-
ures, and these with clear community structures can restrain
node cascading failures.
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Fig. 7: Box plot of the statistic number of communities nc

of all tested networks with different scales (n). (a) n = 200
and (b) n = 500. The box plots are adopted to show
the distribution of statistic nc values of all tested synthetic
networks. On each box, the red line denotes the median while
the symbol ‘+’ represents the outlier.

B. Details of comparison Algorithms

In this part, the details of some comparison algorithms such
as PA, Betweenness, Degree, PageRank, CI and GA are given.

PA [4]: The PA algorithm aims to decrease the degree of
cascading failures in coupled networks by establishing 10%
of autonomous nodes. Each of these autonomous nodes has
a specific operation system, which avoids inter-layer failures
between autonomous nodes [4].

Betweenness [5], [6]: The Betweenness algorithm tries to
protect 5% of nodes based on their betweenness centrality.
For a given node i, its betweenness B(i) evaluates the extent
to which node i falls on the shortest paths between pairs of
nodes in the network [5], and it is computed as follows:

B(i) =
∑

j ̸=i ̸=w

σjw(i)

σjw
,

where σjw (σjw(i)) represents the number of the shortest paths
from node j to node w (which pass through i).

Degree [5], [6]: The Degree centrality D(i) of a node i
measures the number of the nodes in the network linked with
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i, and it is defined as follows:

D(i) =

q∑
α=1

∑
w ̸=i

A
[α]
iw ,

A
[α]
iw ∈ {0, 1} represents the link state between the nodes i

and w in layer α of network G. Specifically, if there is a link
between i and w in layer α, A[α]

iw = 1, and A
[α]
iw = 0 otherwise.

PageRank [7], [8]: The PageRank algorithm, which is the
most famous ranking technique, is used by Google to rank
the impacts of web pages. The PageRank centrality Pt(i) of
a node i for a network at time t is computed as follows:

Pt(i) =
1− ξ

n
+ ξ

∑
w

AiwP
t−1(i)

do(w)
.

where 1− ξ is the transition probability for a random walker
to jump to the next node, while do(w) represents the output
degree of w.

CI [9]: The CI algorithm aims to rank the nodes in a network
according to their collective influence on belief propagation.
For a node i, its collective influence CIς(i) is computed as
follows:

CIς(i) = (D(i)− 1)
∑

w∈∂Ball(i,ς)

(D(w)− 1),

where Ball(i, ς) denotes the set of nodes in the ball of i with
radius ς , while ∂Ball(i, ς) represents the frontier of the ball
[9].

GA [10], [11]: The GA algorithm, which is simply an
extended version of memetic algorithms [10], [11] without
local search, aims to find the influential nodes by evaluating
a population of individuals simultaneously. It first adopts a
binary string X = {xi ∈ {0, 1}}n to represent a possible
solution, in which xi denotes whether or not node i is an
influential node. It then uses a two-way crossover, a random
swapping mutation, and an elite update strategy to iteratively
evolve the population until the maximum number of iterations
is reached. Finally, the solution with the highest network
robustness is chosen to determine the influential nodes.
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