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Many-Objective Land Use Planning Using a
Hypercube-Based NSGA.III Algorithm

Abstract: Due to the many objectives and constraints involved in urban land-use planning (ULUP),
this is considered as a many-objective and complex optimization problem that needs a variety of
geographical analyses. In this paper, the main target is improving NSGA-III as an advanced many-
objective optimization algorithm for solving the ULUP problem. In this study, five objective
functions (i.e., consistency, dependency, compactness, suitability, and per-capita violation of land-
uses) are considered for simultaneous optimization for allocation. The proposed algorithm is tested
using the spatial data of region 7, district 1 of Tehran using vector format. To evaluate the results,
two more real datasets were implemented. The performance of the improved algorithm is compared
concerning NSGA-II and NSGA-III in the main case study area and two other instances. The
comparison results show that the improved algorithm increases the convergence and diversity of
the generated solutions in ULUP concerning the results obtained by these two other algorithms. The
results of optimization with these methods can help decision-makers towards sustainable
development in the construction of new cities, new towns, and smart cities.

Keywords: Hypercube-based NSGA-III; many-objective optimization; Elite mutation for urban
planning, Geospatial Information System (GIS), Sustainable development of urban areas

1. Introduction

The decision-making process in urban land-use allocation, as the main core of urban land-use
planning (ULUP), allocates different urban land-uses to the suitable land units and results in the
effective spatial organization of urban activities based on the demands and needs of urban society
[1]. Generally speaking, the land-use planning process can be divided into two main associated parts
[2]. The first part generates different scenarios based on defined objectives and constraints, while the
second part aggregates stakeholders’ preferences and selects a final land-use layout. The main core
of land-use planning is the first part, which is concerned with allocating different land-uses to land
units in order to achieve near-optimum layouts according to different objectives and constraints [2].
Indeed, an example of this multi-objective optimization problem is the allocation of different land-
uses to various urban land units in order to produce a variety of alternatives, which satisfy multiple
objectives and constraints. To solve this problem, classic optimization methods, such as linear
programming (LP), are used in some research works [3, 4]. Heuristic and meta-heuristic methods are
thus required to solve these NP-hard non-linear multi-objective optimization problems [5]. Two
general approaches are considered to achieve optimal land-use layouts when tackling a multi-
objective optimization problem, using heuristic or meta-heuristic methods. The first type of approach
is based on determining the weights of the objectives prior to solving the problem and converting the
multi-objective optimization problem into a single-objective optimization problem [2, 6, 7]. The
second type of approach relates to the use of the Pareto front (PF) concept [8, 9].

For instance, in [10], goal programming, as one of the weighting methods, was applied to model
the problem, while the genetic algorithm (GA) was used to settle it. To solve this optimization
problem with the weighting approach, other heuristic or metaheuristic algorithms can be adopted,
such as simulated annealing (SA) [11], ant colony optimization (ACO) [12], particle swarm
optimization (PSO) [13], bee colony optimization (BCO) [14], hybrid methods [15], and so on. The
main problems with weighting approaches are their dependency on the selected weights of the
objective functions [16] and their inability to obtain non-convex portions of the Pareto front [17].
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Besides, generating well-distributed PF for urban planners in selecting different land-use layouts
with different objective trade-offs is impossible in these methods.

By considering the relative importance of each objective independently, the PF-based approach
can overcome the aforementioned problems associated with the weighting approach. Accordingly,
several studies have focused on solving a Multi-Objective Land-Use Optimization Problem
(MOLUOP) based on the concept of PF [9, 17-19]. One of the early works based on this approach,
Feng and Lin [19] used the Cumulative Genetic Algorithm (CGA) to generate alternative urban land-
use layouts for urban planners. They proposed two objective functions to maximize the development
efficiency and environmental harmony of land units. Moreover, Cao, Batty [17] generated various
land-use allocation scenarios using the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II).
Their model consisted of three objectives, i.e., minimizing the land-use conversion cost, maximizing
accessibility, and maximizing compatibility with land-uses in the neighborhood. Masoumi, Coello
[20] employed NSGA-II for urban land-use planning. They considered the consistency, dependency,
suitability, and compactness of land-uses as objective functions and also the per-capita demand as a
criterion. They employed the original NSGA-II and also the GA operators (mutation and crossover).

Table 1 summarizes the limitations of different methods employed in the ULUP researches
mentioned above. Moreover, the most common methods and their drawbacks are classified in Table
1. As can be seen in this table, the methods have been improving gradually to solve the ULUP
problem in the real world. Recent researches employed multi-objective methods which are limited
when the number of objectives increases. The NSGA-II algorithm proposed by Deb, Pratap [21] is one
of the most widely-used approaches in spatial optimization and ULUP [17, 22, 23]. In NSGA-II, the
crowding distance measure is defined and applied to maintain the diversity of solutions in objective
space. NSGA-II was proposed to reduce computational complexity, improve the diversity of the
solutions, and adapt appropriately with discrete search spaces [24]. Moreover, its relative ease of
implementation [20, 25] is well known. Usually, MOLUOP depends on several objectives that should
be considered during the optimization process. In this case (i.e. considering many objectives), the
crowding distance tends to prefer dominance-resistant solutions, and it is not a suitable mechanism
for selecting appropriate solutions to reach the true PF [26, 27]. To address the limitations of NSGA-
IT as a multi-objective optimization method, Deb and Jain [28] proposed NSGA-III, which is a many-
objective optimization method and also get benefitted from the advantages of NSGA-II. In NSGA-III,
the pre-defined reference points are responsible for preserving diversity. In NSGA-III, A hyper-plane
must be generated to calculate the position of the reference points in objective space using the Das
and Dennis systematic approach [29]. To generate this hyper-plane, it is essential to obtain the
extreme points (maximum or minimum) near each axis in the objective space. In some cases, one
extreme point may be near two different axes. If this happens, the generated hyper-plane has smaller
dimensions than the objective space, which leads to abnormal results [30, 31]. Moreover, Ishibuchi,
Imada [32] showed that in many-objective optimization problems, NSGA-III does not always
generate better solutions than NSGA-II. On the other hand, due to the nature of spatial data employed
in MOLUQP, the chromosome of the GA is very large and consists of several thousand genes. As
such, the usual crossover and mutation operators adopted in the NSGA-III algorithm, inherited from
a traditional GA, cannot effectively discover optimal solutions.

Table 1. The summary of literature review, methods they have used , and the drawbacks of methods
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Mathematical Linear Moah linear objectives and
. 2009 : . .
methods programming (LP) | &Kanaroglou constraints involved in
complex problems
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To overcome these drawbacks, in this work, instead of using reference points, hypercubes are
relied upon to preserve the diversity of the solutions in a many-objective ULUP problem. When this
method is employed, the objective space is first divided into different hypercubes. Following this, the
solutions of each hypercube constitute a cluster. The number of neighbors of each solution within a
cluster is considered a criterion to qualify the solution for the next generation. Solutions with a lower
number of neighbors are likely to be chosen for the next generation. In addition to this, a new spatial-
based mutation operator for ULUP, known as an elite mutation for urban planning (EMUP), is
proposed to improve the ability to discover new solutions in objective space. By choosing elite
solutions for each objective, the operator changes the land-use of some parcels to improve the fitness
of the solutions in the neighborhood of the selected parcels. Therefore, the main target of this study
is not to invent a new state-of-the-art multi-objective evolutionary algorithm; instead, we seek to
improve the results of the NSGA-III as a many-objective optimization algorithm used for solving the
ULUP problem. In specialized and complex problems such as ULUP in which the objective functions,
input data, and problem details have a particular format and do not have a standard form, it is
necessary to make significant changes to adapt the algorithms to the problem. Previous researchers,
such as [15, 24, 30, 36, 37] have shown that in some cases the use of these algorithms in the ULUP
problem does not create a diverse and well-ordered solution space. Therefore, the goal here is to
balance the density of the solutions in the PF and to achieve a wider variety of solutions based on the
use of the NSGA-III. To illustrate the functionality of the algorithm in solving the MOLOUP, the land-
uses of district 1 in region 7 of Tehran are optimized taking into account five objectives, namely
maximizing compatibility, dependency, compactness, suitability of land-uses and minimizing per
capita demand violation. These objectives were selected based on the principle of urban land use
design parameters [33]. Finally, the results of the proposed algorithm in MOLOUP are compared
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with the results of NSGA-II and NSGA-III and also in two more case study areas to evaluate the
efficiency of the proposed algorithm in this problem.

2. Spatial urban land-use allocation model

Land-use allocation is a complex process and presenting a comprehensive solution is not
practical. The optimal allocation of urban land-uses is defined as a process of allocating various land-
uses to different urban land units according to multiple criteria and constraints [20]. In this process,
the size and shape of urban land units, the extent of neighborhoods, criteria and constraints can be
very influential in the results.

The data format for urban land units can take the form of a regular raster grid or an irregular
vector polygon layer. Each of these formats has its own advantages and disadvantages. Using the
raster format facilitates the definition of the neighborhood, chromosomes encoding, and the
application of GA operators because the computations can be conducted in a regular grid [10, 15, 22,
34-37]. However, the raster format is dependent on the size of grid cells (resolution). To model the
details of land units using the raster format, the cell size must be small enough, which increases the
number of cells and, consequently, the processing time as well. Using large cells also results in a loss
of details, especially in the boundaries between urban land units. Consequently, the raster format
does not model the actual shape of urban land units properly. On the contrary, in vector format, the
urban land units are considered as polygons in their actual shape which corresponds to the reality of
urban land units. Nevertheless, the vector format has some disadvantages, such as complexity in the
neighborhood definition, failure in optimizing the parcels’ shape, and maintaining the exact areas for
various land-use types. However, using vector format results in precise boundaries between parcels.
Furthermore, the vector format leads to lower computational load, which results in a reduction in the
number of land units (as against grids) required to model urban parcels. As such, in this research, the
vector format is used to model urban parcels. Figure 1 illustrates this subject in 3 different resolutions
as 1, 5, and 10 meters. As seen in Figure 1, increasing the grid size resulted in missing the real shape
of urban parcels in raster format but the shape of vector format is independent from the grid size.

012815 W 75 [ 125 (S8 T — — i
R — — bt

a.Raster format with l-meter resolution vs vector format

DILES S0 75 100 125 150 012525 S0 75 100 125 IS0
T — — ) Mo

b Raster format with S-meters resolu prmat e Raster format with 1-meters resolution vs veetor format

Figure 1. Raster format vs. Vector format in modeling land units in urban areas; a, b, and ¢ parts show 1,
5, and 10-meter grid size in rater format in comparison with vector format respectively in a part of case study
area
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Several objectives and constraints can be considered when looking at the urban land-use
allocation problem. The main objectives, which have been used in recent studies as neighborhood
effects include compatibility, dependency, and compactness [9, 38-40].

The compatibility indicates no disturbance in adjacent land-uses. For example, residential and
industrial land-uses are not compatible due to the noise and air pollution that industrial land-use
produces. [9]. Dependency is used to express the dependencies between two land-use types. For
instance, residential land-use requires commercial use nearby to meet everyday needs [33]. Equations
(1) and (2) present the compatibility and dependency objective functions used in this study.

P n; ny
1 1
Compability = 7 Z—Z a;; X Cij |+ Min(z a;; X Cij) M
e j=1
p n; n;
1 1 .
Dependency = 7 Zn_z a;; X Dy |+ Mln(z a;j % Dyj) )
=1 =1 j=1

where, i indicates the subject parcel and j indicates its neighbors; P is the number of all
parcels, and n; is the number of neighboring parcels of the ith parcel; C;; is the compatibility
between two land-uses of parcels i and j; D;; is also the dependency between two land-uses of
parcels i and j. The values of C;; and D;; are provided by experts’ judgment about the
compatibility and dependency of land-uses types gathered by the Delphi method in dependency and
compatibility matrices. Because there are 11 main land-use types here (which are shown in Figure 4)
and each of them has two or three subclasses only a part of the dependency matrix (e.g., between just
two residential and commercial land-use types) is presented in Table 2.

Table 2. A part of the extracted dependency matrix from the Delphi model between residential and
commercial land-uses, HD, MD, LD, MI, HI, and N refer to high dependency, medium dependency, low
dependency, medium independence, high independence, and neutral respectively

Commercial Residential
2
Land-use type > % =
.g FG 'd%
e | = 3 £ g
9 g s 5 | ©
= ) > < 5
2 | B 5| ®| 8| Z
Al | Q| T | =]
Low density MD MD |HD |LD |MD |MD
Residential Medium density |[MD (MD |HD |MD |MD
High density MI |MD |HD |[MD
Daily HD |MI |HI
Commercial Regional HD |HI
District HI

These qualitative values in Table 2, were extracted by surveying among urban planning experts
using the Delphi method. Some questionaries were designed first to give the experts” opinions. In the
dependency matrix, HD, MD, LD, MI, HI, and N refer to high dependency, medium dependency,
low dependency, medium independence, high independence, and neutral respectively which is
directly asked from experts in the questionaries. In the next stage, the conflicts between expert’s
opinions were extracted and summarized with them in a meeting. Three rounds of surveying are
done in this research to solve some conflicts in expert’s views. This is a common process followed in
land-use planning to extract these matrices.
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Then, since the algorithm works with numerical values, the qualitative values obtained from the
Delphi are converted to numerical values using the structured pairwise comparison based on
Analytic Hierarchy Process (AHP). In this method, the process of comparing the decision criteria is
done in two stages. First, each criterion is ranked based on its importance and priority, and then the
two adjacent criteria are compared. For example, since the proximity of two dependent land-uses
increases their usefulness and the proximity of two independent users reduce their usefulness,
negative effects and consequences should be more important. So, the change from "N" level to "MD"
level is considered more important than a change from "N" level to "MI". Table 3 shows the degree of
importance of the different levels of dependency in comparison with each other.

Table 3. Structured pairwise comparison between decision criteria

Dependency levels based on the Delphi The relative importance of two levels of
method dependency
HD to MD More important than= 1 level
MD to N More important than=1 level
N to MI Much more important than= 2 levels
MI to HI Much more important than= 2 levels

Table 4 also shows how to determine the relative importance of each degree of dependence pair
and calculate the numerical values for them using AHP.

Table 4. The values obtained for levels of dependency using the AHP method

Dependency oo | vip | N | v | & Geometric Standardi
levels mean zed value
HD 1 2 3 5 7 219137 043
MD 0.5 1 2 4 6 1.8882 0.28
N 033 | 05 1 ) 1.2011 0.18
MI 02 025|033 | 1 3 0.5492 0.08
HI 0.14 | 017 | 0.2 | 0.33 1 0.2756 0.04

The compatibility matrix was produced in the same structure but here the matrix was filled with
the consistency values. For more information about construction details of these matrices and the
AHP method, the readers can refer to [41].

In equations (1) and (2), «;; represents a distance decay function that controls the impact of distance
in the value of compatibility and dependency between two parcels i and j which is defined as
Equation (3) [42].

(u) 4 < gk
Ay =AN dhay /T T 3)
0d;; > diyax

where dfq, is the maximum distance that land-use k can affect on other land-uses, and d;; is the
nearest Euclidean distance between two parcels i and j. The value of d¥,, is obtained from the radius
of effect table that is provided by. This function is used to reduce the effect of land-use types on each
other by increasing the distance between two land units. The larger the distance, the less the effect of
two parcels is.

The second part of Equations (1) and (2) is used to maximize the minimum value of the objectives in
the solutions.
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The compactness objective is used to measure the similarity of neighboring land-uses in a
neighborhood. In urban land-use planning, most land-uses tend to be located in areas that have
similar land-uses. Hence, the compactness objective function is defined in Equation (4)[43].

P
1 sim;

c tness = — E kil

ompactness P( o ) 4)

In Equation (4), sim; is the number of neighboring parcels with a land-use type similar to the
ith parcel. Physical suitability is also an important objective in the land-use allocation process. This
criterion indicates the degree of physical and environmental adaptation of a land-use type to different
land units [14]. Physical suitability is dependent on different parameters, such as the size and
dimensions of the land unit, access to the city's public transport network, air pollution, noise
pollution, and the difficulty in changing to another land-use type [9]. By using a weighted
combination of these parameters, we can estimate the suitability of each land-use for parcels of the
study area. The overall suitability of the entire study area is calculated using Equation (5).

p
suitability = {% (Z 5i> + Min(si)} ©)

i=1
where, S; is the suitability of parcel i concerning its current land-use. The second part of this
equation is also used to maximize the lowest value of suitability in the area.

The requirement of each person for a certain area of any land-use type is defined as per-capita
demand in urban land-use planning which is defined as a standard value in a detailed city plan.
Violations of standard per capita demand occur in two situations: more than per capita and less than
per capita. In this research, per capita violation is assumed as a penalty function to suppress invalid
solutions [44]. The optimization process focuses on minimizing the amount of per capita demand
violation (PCV). Therefore, in this study, PCV is considered an objective function to be minimized in
the optimization process. The PCV is calculated using Equation (6).

U
PCV = Z Ve (6)
k=1

where U indicates the number of land-use types, and Vj, is the per capita demand violation of the
land-use k, which is calculated using Equation (7).

mind, — Ay A < mind
_— mindy.
mindy if Ax il
Vi = { Ay — maxAy . (7)
_— if A, > maxAy.
maxA; f A k
0 if minA, < A, < max4y.

where mind, and maxA, indicate the minimum and the maximum acceptable area of the land-use
type k and Aj isthe current area of the land-use type k. The mind, and maxA,; are obtained from
[45]. Table 5 briefly describes the objective functions and their definition.

Using regulatory knowledge in the form of constraints can avoid the generation of non-real
solutions in urban land use planning [2]. A sample constraint derived from regulatory knowledge is
that “land-units must have access to the transportation network appropriate to their land-use type”.
These constraints are applied to allocate valid land-uses to parcels in two steps: the initial solution
generation step, and the mutation step, both of which are discussed in Section 3.1 and Section 3.2,
respectively.



Table 5. An overview of the objective functions and their brief definition in the problem in land-use arrangements

Objective . . . Target
) . Formula Main component of formula Brief description S g L
functions (Minimizing/Maximizing)
P n o . . . Measures consistency
. 1 1 ) Cij: compute compatibility using its derived matrix . Lo
Compatibility | Compability = 7 ;Z a;; X Cj |+ Mm(z a;j X Cj) . e between neighbor Maximization
i = aij: model distance effect on compatibility land-use types
P S . . Measures
1 ) Cij: compute dependency using its derived matrix . S
Dependency | Dependency = {3 Zn—z a;j X Dy |+ Mm(z a;; X Dyj) o model distance effect on dependenc requirements of land- Maximization
= ' v Y uses to each other
Measures the
P
I 1 ) s . hysical suitability of L
Suitability | suitability = y5| ) S; | + Min(S;) Si: suitability of each land unit for land-use types Py . Y Maximization
P\& a land with its land-
use type
P . . Avoids scattering in
1 sim; Sim;: a counter to compute the similar land-use types C
Compactness | Compactness = 5 Z -— L land use types of Maximization
= in neighbors :
neighbor parcels
Prevents land-use
. . arrangements with
. ) u Vi: compute the difference between per capita hioh orglo er canita
t . . w C
reaptE 1 pey = Z Vi demand in an arrangement and standard per capita & percap Minimization
violation =1 demand in

demand

comparison with
standard values
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The application of this type of problem in the real world is firstly when urban land use planners want
to see the impact of land-use change in an area of the city. In an urban system, the demand for a
change of land-uses must be constantly examined by experts. External consequences mean how much
the balance between urban uses is disturbed in terms of the five objective functions provided in Table
5. The calculation of this case was previously done by experts at the neighborhood level, but the real
effect is beyond the neighborhood [46]. In recent years, this effect has been calculated approximately
using multi-criteria decision systems [34, 40]. This concept is especially important in the smart cities'
context, which is one of the most advanced urban concepts nowadays. Recent research in this field
seeks to use optimization algorithms and adapt them to solve the ULUP problem. That is, if land-use
changes, what will be the optimal arrangement of other land-users by considering all objective
functions simultaneously? Therefore, once the optimal layout is determined, the experts will be able
to observe the changed land-uses and decide whether the costs of this change are acceptable or not
for the region and the whole city.

Furthermore, the optimized arrangement of land-uses is desirable in cases such as designing new
cities, city development plans, and sketching the detailed plan of a city. In these cases, the urban
planner should arrange the different land-uses in the urban areas considering the above-mentioned
objectives simultaneously [46]. Planners, therefore, face the challenge of having to deal with many
objectives, and multi-objective optimization offers an option to balance potential trade-offs among
the objectives allowing to achieve sustainable development in the cities [39]. Overall, this and other
recent studies in this field are raising the interest in adopting state-of-the-art multi- and many-
objective optimization algorithms for solving the ULUP problem.

As discussed before, in the first application, it is necessary to know the legal boundaries between the
parcels. So, it is essential to use vector data that are well able to display these boundaries. However,
in the second case, raster data can be used. Still, the results would be much more accurate if the initial
boundaries of the zones or parcels were taken into account (which is possible using vector data).

3. Hypercube-Based NSGA-III for MOLUOP

In this section, a many-objective optimization algorithm based on NSGA-III is proposed to solve
MOLUOP.

In the proposed algorithm, instead of using reference points, a grid is employed to preserve the
diversity of solutions. In the many-dimensional objective space, this grid becomes a set of hypercubes
to cluster and maintain the diversity of solutions. Due to the use of hypercubes to preserve diversity,
the proposed algorithm is called Hypercube-based NSGA-III (HNSGA-III).

3.1. HNSGA-III

The proposed algorithm is similar to NSGA-III, having its main differences related to diversity
maintenance, next-generation selection, and its mutation operator (EMUP).

The proposed algorithm has an iterative process to optimize the initial population by preserving
diversity of the solutions. At each iteration, in the first step, the offspring are generated from parents
by applying crossover, mutation and our proposed EMUP operator. In the next step, the total
population is evaluated and sorted into different non-domination levels. The non-dominated sorting
algorithm acts similarly to the one used in the NSGA-III algorithm, and is carried out based on
dominance rules [47]. In the last step, N (number of generations in each iteration) solutions must be
selected from the total population. In order to preserve Elite-members, the algorithm starts to select
solutions from the first non-domination level and continues until the number of the next generation
(Ge+1) becomes greater than or equal to N. If G,,, becomes exactly equal to N, there is no need to
perform other operations, and the algorithm goes to the next iteration. Otherwise, the surplus
solutions must be removed from the last front that is selected to contribute in the next generation. For
this purpose, the number of neighbors of each solution is calculated by constructing hypercubes in
objective space and assigning each solution to a hypercube. On the last front, the chance of removing
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solutions with more neighbors is higher. The procedure of producing a generation is illustrated in
Algorithm 1.

Algorithm 1: The procedure of HNSGA-III
Input: The population of the generation t: P,
Output: The population of generation ¢t + 1: Py
Chyy, = Crossover + Mutation(FP,)

Teor = P+ Chyyy

Fr[] = Non_dominated_sort(T,,,)

Gesr = [1.Fro =11

i=1

repeat

Geyy = Gy U Fr[i]
i=i+1

until |G| = N

if (|G.y,| =N) then P, = G,,,. break;

else
Prr = U;;{ Friil
Fry, = Frli] % Fry: The last selected front for the next generation.
CalNoN( Fr;) % CalNoN is detailed in Algorithm 2.
K=N-|Pl % K: The number of solutions that remain in the Fry.

R, = RDH (Fr,.K) % RDH is detailed in Algorithm 4.
Prig = Praa U Ry
end if

In Algorithm 1, Ch;,, is the generated offspring for generation t + 1; Ty, indicates the combined
parent and offspring population; Fr[] maintains the fronts; Fr[i] is the i front; Gy, is the
candidate solutions for the next generation; Fr; is the last front that is selected to contribute in the
next generation and R; contains the remaining solutions from Fr; to be included in the next
generation (Py1).

3.1.1. Calculating the number of neighbors of the solutions

To count the number of neighbors of each solution, the hypercube of each solution must be
determined based on its position in objective space. After determination of the hypercube of each
solution, the hypercube ID (HID) is assigned to the HID property of each solution. HID is the
identification number of the hypercube. All of the solutions that have the same HID are the
neighbors of each other. Algorithm 2 shows the procedure of calculating the number of neighbors of
each solution.

Algorithm 2 (CalNoN): Calculating the number of neighbors of the solutions
Input: Last front without the number of neighbors of each solution: Fr,
Output: Last front with the number of neighbors of each solution: Fr;

1: FindHID(Fr,) % Detailed in Algorithm 3

2:for i =1 to |Fry|

3: for j=i+1 to |Fry|

4 if (Fr[i]. HID == Fr,[j].HID )
5 Fry[i]. NoN++;

6 Fry[j]. NoN++;

7 end if

8 end for

9

: end for

In Algorithm 2, Fr[i]. HID is the hypercube ID of the it solution in Fry; Fri[i]. NoN indicates
the number of neighbors of the it solution in Fr;.

The procedure of finding and assigning HID to each solution is shown in Algorithm 3. The
hypercubes of Fr; is generated in lines 1 to 5 of Algorithm 3. In these lines, first, the minimum and
maximum values of each objective are determined. Then, according to the minimum and maximum
values and number of divisions (D), the width of the hypercubes is calculated along each objective
axis. In lines 6 to 14 of Algorithm 3, the HID of all solutions in Fr; are determined considering their
position in objective space. Figure 2 illustrates a schematic view of hypercubes and their HID in three
dimensions.
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Algorithm 3 (FindHID): Finding and assigning HID to each solution in Fr;.
Inputs: Last front: Fry,

Qutputs: Last front with HID property

l:fori=1to M

2: Max|i] = Find maximum value of objective [ in Fry;
3 Min[i] = Find minimum value of objective i in Fry;
S WIli] = (Max[i] - Min[i])/ D

5: end for

6: for j=1to |Fry|
7: fori=1to M
8

9

fork=1to D
if (Min[i] + k « W[i]) < Fri[j]. objli] < (Min[i] + (k + 1) =« W[i])
10: Fry[j]. HID[i] = k;
11: end if
12: end for
13: end for
14: end for

In Algorithm 3, M is the number of objectives; Max[i] and Min[i] are the maximum and
minimum values of the it objective function; W[i] is the width of the hypercubes along the it
objective axis; D indicates the number of divisions in each objective; Fr,[j]. obj[i] refers to the ith
objective value of the jt solution in Fr;, and Fr,[j]. HID[i] refers to HID of the it objective of the
jth solution in Fry.
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Figure 2. A schematic view of generated hypercubes in 3D and their HID.

3.1.2. Removing surplus solutions from the last front

Aniterative tournament selection procedure picks and removes surplus solutions from Fr;. This
procedure is detailed in Algorithm 4. In this procedure, after picking a solution with a high number
of neighbors, NoN of the neighbors of the picked solution are decreased by one unit and the selected
solution will be removed. This procedure continues until all surplus solutions are removed from the

last front.
Algorithm 4 (RDH): Removing solutions from dense hypercubes

Inputs: last front: Fr;

Number of solutions that must be remained in Fry: K
Output: The remained solutions in Fry: R,
l:fori=1to |Fr|—K

2 select a solution to remove: Sol = Tournoment_Selection(Fry)
3: for each (neighboring solution of Sol: Sol,,)

4: Sol,, .NoN = Sol, .NoN — 1

5 end for

6: remove Sol from Fr

7:end for

In Algorithm 4, Sol,, . NoN indicates the number of neighbors of the neighboring solution (Sol,). It
should be noted that, if the number of neighbors in the tournament selection is the same, one of the
solutions will be deleted randomly, because they are not different and they are both at the same level

of importance in the algorithm.
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3.2. Genetic Operators in HNSGA-III

It is necessary to redesign the structure of chromosomes and genes as well as the GA operators
of the algorithm to be compatible with MOLUOP. Hence, chromosomes represent land-use layouts
and genes represent parcels. Each parcel has a value that indicates its land-use type. GA operators,
including initialization, crossover, mutation, and EMUP (for MOLUOP) are explained in the
following subsections.

3.2.1. Initialization

In most studies related to optimal land-use allocation, to achieve a valid solution, all or some of
the solutions of the initial population are generated by applying a random modification to the current
land-use layout in the study area. This can reduce the efficiency of searching for optimal solutions in
the entire solution space. Consequently, to generate the initial population independent of the status
quo, initial land-use layouts are randomly generated only concerning access type and area
constraints. To assign a valid land-use to parcels, first, valid land-uses for each parcel are selected in
a way that both constraints are satisfied. Then, from among the valid land-uses, one is randomly
assigned to the parcel. The pseudo-code of generating an initial random solution is shown in
Algorithm 5.

Algorithm 5: Generating an initial random solution considering the constraints.
Input: Parcels of the study area: Parcels

Output: An initial random solution: Sol

1:for i =1 to |Parcels|

2: VLU = select land-uses from LUs

3: where LUs.minArea < Parcels|i]. Area,

4: and LUs.maxArea > Parcels|i] Area,

5: and LUs.ValidAccessTypes.Contains(Parcel[i]. AccessType);
6: Parcel[i]. Landuse = Select a random land-use from VLU;

7: if (VLU is empty)

8: Parcel[i]. Landuse = Select a random land-use from LUs;

9: end if

10:  Sol = Sol U Parcelli];

11: end for

In Algorithm 5, LUs refers to the list of all land-uses; VLU represents the valid land-uses for
parcel i; Parcel[i]. Landuse indicates the land-use of the it parcel in Parcel set; Parcels[i]. Area
indicates the area of parcel i; LUs.minArea and LUs.maxArea is the list of the minimum and
maximum valid parcel areas of land-uses in LUs and LUs.ValidAccessTypes is the list of valid
access types of land-uses in LUs.

It should be noted that approximately 1.5% of parcels may have an invalid LU. Because the
number of these parcels is so rare, we used a random assignment of an LU to them.

3.2.2. Crossover

The crossover operator generates two offspring by selecting two parents using tournament
selection. This operator randomly divides both parents into N, parts to generate offspring. N, is a
random number between 2 and 100. This means that the operator divides the parents into a minimum
of 2 parts and a maximum of 100. The operator then generates two offspring by swapping these parts
between parents. Algorithm 6 shows the procedure of the crossover operator. Moreover, Figures 3(a)
and (b) represent the structure of a chromosome and an example of the crossover operator for Ny=5
respectively in this research.



Algorithm 6: Crossover operator

Inputs: Two parents: P; and P,.

Outputs: Two offspring: 0, and 0,.

1: N, = Select a random number between 2 and 100;

2:for i = 1to Ny,

3: if i is Odd

4 0,41i] = P,[i];
5 0,[i] = Py [i];
6 else

7: 0,1i] = Py[i];
8 0,[i] = P,[i];
9 end if

10: end for

389

390  3.2.3. Mutation

391 In addition to the conventional mutation in which 10% of the parcels are randomly selected and
392 their land-uses are randomly changed to another valid land-use, a new mutation operator which we
393  call here EMUP, is proposed as part of our approach. This operator attempts to improve the objective
394 functions locally in elite solutions by selecting randomly 10% of the parcels of these solutions and
395  assigning the best local land-use for these parcels. At first, the algorithm finds the neighbors of the
396  selected parcels in the map. Then, the objective functions for all possible land-use types for these
397  parcels are calculated. The best land-use for objective i on a selected parcel is determined by
398  calculating and sorting the fitness of objective i for all the valid land-uses. The constraints are also
399  applied to determine valid solutions for a parcel. The details of the EMUP operator are illustrated in
400  Algorithm 7 and Figure 3 (c). In Figure 3 (), the steps of EMUP are described schematically for just
401  one parcel. Actually, in the proposed algorithm this operator is applied to 10% of the parcels.

Algorithm 7: EMUP for an elite solution

Inputs: Elite solution: ES

Outputs: Elite Offspring: EO

lifori=1to M

2: SP= Select randomly 10% of parcels from (ES);

3 for each parcel P in SP
4: VLUs[P] = select valid land-uses for (P);
o BestLU[P] = current land-use of P;
6 for each LU in VLUs[P]
7 Fitness = Calculate local fitness of LU in P;
8: if (Fitness is better than the fitness of BestLU[P])
9: BestLU[P] = LU;
10: end if
11: end for
12: end for
402 13: end for
403 In Algorithm 7, M is the number of objectives; SP is the list of the 10% of all parcels that are

404  selected randomly, and BestLU[P] indicates the best land-use for parcel P.
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Each chromosome consists of an array of the whole parcels (2710 parcels) in the study area and each parcel is considered as a Gene which its content is one of
the 36 land-use types of this research (LLE).

Chromosome [ Luof [ Luof | LUof | .. LUof LU of
structure Parcell Parcel2 Parcel3 Parcel2709 Parcel2710
(@)
An example of crossover operatpr for Np=5
Pi(Parent:) [ [ T T T T T. |

][ &

e e
[aor]

O: (Offspring:) [T T 1T

(2] = Al2] 0,03] = P13] ay4] = P4 | .
l || l |

O: (Offspringz)
(b)
Select a parcel randomly for mutation (57 in algorithm#7)
[ Gemel | Geme2 | Genes | __ 1) [ Gene2709 | Gene2710 |
Find the correspond \_/
parcel in the map LLE Obj: | Obp | Objy | Objs | Obyjs
LU 0.1973 | 0.0643 | 0.4987 | 0.6506 | 0.0237
LUs 0.1874 | 0.0702 | 05339 | 0.7234 | 0.0014 »[Maxof | LU
Find the values of Find the LUs g:": ?f:s
objective functions e - d 1o the i L
related to all 36 LUz 0.1954 | 0.0725 | 0.3654 | 0.6907 | 0.0105 of each Obj2 LUs
land-use types for - . objective functions Obj3 LUz
this parcel. for this parcell Obj4 | LU=
LUz 0.1702 | 0.0589 | 0.5201 | 0.7600 | 0.0048 (BestLU). Obj5 | LUx
LUss 0.1651 | 0.0644 | 0.3890 | 0.7195 0
Black circle shows the effect radius LU=Different land-use types in the research,
which was extracted of related LUP Ohj,= 5 objective functions of this research
related standards. which have been described in Table 2 and
calculated in the effect radius of selected parcel.
Create five chromosomes using the LU/s related to the maximum of
5 objective functions form the parent chromosome
v
Offspring 1 [ Genel | Genez | Gened | || | Genezros | Geme2r10 |
Offspring 2 [ Genel | Gene2 | Gene3 | [ Lo | | Gemezroa | Geme2710 |
Offspring 3 | Genel | Gene2 | Gene3 | [ LUn | [ Gene2709 | Gene2710 ]
Offspring4 | Genel | Gene2 | Gened | [Lus | | Geme2709 | Gene2710 |
Offspring 5 | Genel | Gene? I Genel I I LUsx I | Gene2709 | Gene2710 I

(©)

Figure 3. Definition of chromosomes, crossover, and mutation stages in the proposed algorithm, (a) shows the
chromosome structure, (b) describes an example of the crossover operator, (c) indicates the stages of the
mutation operator

4. Study Area and Implementation Requisites

The land-use map of region 7, district 1 of Tehran at the parcel level on the scale 1:2000 is used
to implement and test the proposed algorithm. The presence of various land-uses at different service
levels is the most significant matter when it comes to this study area, which complicates the issue of
urban land-use planning. The parcels layer is applied in the form of vector data and 11 urban land-
es are defined with respect to the three service levels: local, district, and regional.
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objective functions. For this purpose, the existing urban design standards in Iran and related
documents have been used. The number of urban parcels in the study area is 2,710, which covers an
area of approximately 52 ha. Figure 4 shows the urban parcels and their land-uses in the study area.
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Figure 4. Land-uses of the study area

The residential density concerning the area of the residential units is extracted from the
development pattern of Tehran [48]. The residential density is used in the calculation of the per capita
demand for residential use. Urban land-use access types are also extracted from the development
pattern of Tehran [48] and are used in applying the constraints related to access types. The parcel
area ranges for each land-use are extracted from [49] and are used in applying the constraints related
to parcel area. The implementation of the proposed algorithm was carried out in Visual Studio 2010
using C#, and was executed on a computer system with an Intel Core i5-4200U processor, and 4GB
of RAM.

5. Experiments and results

In this section, the parameter selection procedure of the algorithm is first discussed. Following
this, the effect of the EMUP operator is investigated. Finally, an analysis of the optimization results
is presented. All the algorithms in this study are independently run 10 times on each case study
problems and related results like HV indicator, DCI, and effect size values reported in this section.

5.1. Parameter selection

To determine optimal values for the parameters, the proposed algorithm is executed with
different parameters 10 times, and the best value for each parameter is selected.

The HV is a popular performance indicator that is commonly used to assess the performance of
different evolutionary approaches in multi- and many-objective optimization methods; it assesses the
results in terms of convergence and maximum spread [50]. HV has also been employed for the
selection of initial parameters in evolutionary multi- and many-objective optimization algorithms.
This indicator measures the volume enclosed between a reference point (usually the worst objective
function values) and a PF approximation. A greater value indicates that the solutions are more distant
from the reference point and more scattered in objective function space (i.e., we have a better PF
approximation). For more information on this indicator, see [51, 52]. The population sizes considered
were 250, 500, 750, and 1000, and the maximum number of iterations of the algorithm was set as 500.
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Figure 5 shows the changes in HV values for the initial population sizes of 250, 500, and 750 with a
maximum number of iterations of 500. As can be seen in this figure, the HV index when using a
population size of 250 had not converged after 500 iterations, and the HV value in this case is lower.
In contrast, with population sizes of 500 and 750, this algorithm converges in about 150 iterations,
and the values of the HV indicators for these two executions are almost the same. As a result, we
concluded that the population size required to achieve relative stability is 500. For higher accuracy,
the population size and the maximum number of iterations considered were 600 and 200,
respectively. In addition, after considering the various executions, the crossover and mutation rates
were set as 0.6 and 0.4, correspondingly. It should be noted that the run with the initial population
size of 1000 and a maximum number of iterations of 500 had almost the same HV results as those
obtained with the previously indicated settings, but the execution time in this case, was significantly
higher.

[

HV (x10"%)

o4 Population size: 500

+— Population size: 750

+—=¢ Population size: 250

0 50 100 150 200 250 300 350 400 450 500
Iteartions

Figure 5. The HV indicator with respect to different population sizes.

The number of hypercubes is an important parameter in preserving the diversity of the solutions
in the PF. To determine the suitable value of this parameter, the algorithm is executed by taking into
account the previous parameters and assigning different values to the number of hypercubes used to
assess the diversity metric (DM). DM is an indicator that examines the range searched by the
algorithm. The more the algorithm searches for the larger range, the more varied are the optimal

solutions, and, consequently, the better is the performance [53]. If fr:]ni " and f "™ are indicative of
maximum and minimum values for the m objective function, respectively, Af j are defined using
Equation 8 [54].

L e N S

where m is the number of objective functions. The AF vector is also defined using Equation 9.
AF =[Af Af,,...,Af ] )
The diversity metric is then calculated using Equation 10.

DM =|AF| (10)
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where, the ||AF|| is the second norm of AF.

As shown in Figure 6, the results of the different executions show that the DM [55] of the results
improves with an increase in the number of divisions on each dimension in the objective space. This
improvement continues until the number of divisions reaches ten, although after ten divisions no
tangible improvements are found in DM. The DM becomes worse as the number of divisions rises
above 30. By increasing the number of divisions of each dimension in objective space, the number of
hypercubes increases exponentially. Thus, most of the hypercubes are empty, and just some
hypercubes contain one or two solutions. In this case, the neighbor count of each solution falls to zero
or one, and therefore the importance of all solutions is nearly equal in terms of diversity. In other
words, the algorithm selects the next generation randomly and the importance of each solution does
not influence the selection process. In this situation, the results are facing a reduction in the DM. As
a result, the suitable value for the number of divisions is ten in this research.
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Figure 6. Diversity metric of results with respect to the different number of divisions in each
dimension of objective space.

5.2. The effect of the EMUP operator on the results

One of the most important parts of the proposed algorithm is the EMUP operator. To evaluate
the effectiveness of this operator, the algorithm is executed ten times, with and without EMUP, and
the average of the worst and the best values of each set of PF together with the respective HV values
for two study cases are calculated. Table 3 compares the worst, the best and the extent (the difference
between the worst and the best values) from the ten executions. The results of the comparison show
that the presence of this operator can significantly improve the results. In addition, the interval
between the worst and the best values of the objective functions exhibits a considerable increase when
this operator is applied, which represents a significant spread in the approximated PF.

Table 3. The average of worst/best, and the extent of objective values from the ten executions with

and without EMUP.
Without EMUP With EMUP

Worst Best Extent Worst Best Extent
Objective 1 0.1613 0.1657 0.0044 0.1036 0.1973 0.0937
Objective 2 0.0461 0.0473 0.0012 0.0396 0.0725 0.0329
Objective 3 0.4376 0.4619 0.0243 0.1426 0.5339 0.3913
Objective 4 04298 04721 0.0423 0.2511 0.7600 0.5089
Objective 5 0.7023 0 0.7023 9.725 0 9.725

Figure 7 presents the spread of the approximated PF with and without the EMUP operator along
with the HV indicator of the two study cases. In Figure 7 (a), the approximated PF is shown in three
dimensions (compatibility, dependency, and compactness) for both cases. The algorithm detects only
a small part of the PF when the EMUP operator is not applied. In this case, all of the non-dominated
solutions are placed in a part of objective space, which is magnified in Figure 7(a) for a better view.
But by applying the EMUP, the spread of results, with both worst and best values significantly
increases and the algorithm can find new solutions and act in a more exploratory way. Figure 7 (b)
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also presents the HV indicator of the approximated PF with and without the EMUP operator. The
comparison between two HV diagrams indicates that the HV of the PF when incorporating EMUP is
extensively (1000 times) larger than the case without EMUP. Furthermore, the algorithm that
incorporates EMUP converges in approximately 50 iterations. Conversely, the algorithm without
EMUP converges in about 150 iterations. So, the algorithm with EMUP achieves convergence in fewer
iterations.
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Figure 7. Approximated PFs along with the HV diagram in 200 iterations both when using the
EMUP operator and without using it, (a). The related PFs in three dimensions, (b) the HV diagrams.

5.3. Analysis of the optimization results

Figure 8 shows the approximated PF in the first, tenth and last iterations. In this figure, the
improvement of the solutions is illustrated during the optimization process. The figure also shows
that the initial solutions are not distributed well in objective space and are focused in a small area. In
the next iterations, the solutions are well-distributed and a wide range of the space is covered. In
addition, the objective values are improved in the next iterations.
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An analysis of the results from ten different executions of the algorithm shows that the
repeatability of the algorithm is in a suitable condition. As shown by Figure 9, in ten different
executions with the same parameters, the best solutions regarding the first objective, 93% of the
parcels receive the same land-use. In addition, in terms of the best solutions regarding the second,
third and fourth objectives, 89.5%, 99.5%, and 88.2% of parcels respectively receive the same land-
uses in ten executions. However, the situation is different for the fifth objective, where only 13% of
the parcels receive the same land-uses in the different executions. This is due to the nature of the fifth
objective function. The fifth objective function is calculated as a violation of the minimum and
maximum per capita demand, and for this reason various solutions can be without per capita
violation; indeed, this variety in solutions leads to only 13% of parcels receiving the same land-uses
in all ten runs.
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539 Table 4 also indicates that objective 5 has more changes in objective value range over the ten

540  runs, while the worst and best values in the first four objectives are very close together.

541 Table 4. The worst and the best objective values in different executions
objective 1 objective 2 objective 3 objective 4 objective 5
Worst Best Worst Best Worst Best Worst Best Worst Best
Runl 0.1038  0.1969 0.0388 0.0727 0.1417 0.5337 0.2505 0.7599 9.4177 0
Run2 0.1033  0.1971 0.0402 0.0712 0.1483 0.5337 0.2488 0.76 9.4039 0
Run3 0.1036 0.1974 0.0387 0.0727 0.1418 0.5341 0.25 0.7601 10.0576 0
Run4 0.1037  0.1973 0.0399 0.0727 0.1414 0.5337 0.2535 0.7601 9.9615 0
Run5 0.1035 0.1973 0.0391 0.0727 0.1425 0.5337 0.2578 0.7602 9.621 0
Runé 0.1037  0.1974 0.0396 0.0727 0.1417 0.534 0.253 0.7602 10.3944 0
Run?7 0.1032 0.1974 0.0419 0.0726 0.1407 0.534 0.2532 0.7599 9.4346 0
Run8 0.1032 0.1971 0.0376 0.0724 0.1451 0.5341 0.2467 0.7599 10.2337 0
Run9 0.1044 0.1974 0.041 0.0727 0.1414 0.5341 0.244 0.7599 9.386 0
Run10 0.104 0.1972 0.0393 0.0726 0.1414 0.5337 0.2536 0.76 9.3485 0
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Among all PF solutions, five solutions are important. These solutions show the best land-use
layout for each objective. Figure 10 illustrates the five land-use layouts. As shown by Figure 10 (a), in
the best layout for objective 1 (compatibility), the largest area is allocated to residential, park, and
commercial land-uses. Theses land-use types have more compatibility with each other, and joining
them means that the overall land-use compatibility of the study area can be maximized.
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Figure 10. The best land-use layout for objective 1 (a), objective 2 (b), objective 3 (c), objective 4 (d)
and objective 5 (e)

Figure 10 (b) shows the best land-use layout for achieving maximum dependency between land-
units. In this layout, except for residential land-use that prevails in all layouts, sport and urban
equipment land-uses are dominant. These land-use types are heavily dependent on residential land-
use, and their presence in the layout increases the dependency between land-units. Figure 10 (c)
shows the best arrangement with respect to physical suitability. In this arrangement, commercial,
educational and religious land-use types are allocated to most land-units. According to the
parameters of physical suitability [43], these land-use types maximize the physical suitability of
overall arrangement. Figure 10 (d) shows the best arrangement with respect to compactness. The
same land-use types in different parts of the map are located next to each other. Moreover, in this



559
560
561
562
563
564
565
566
567
568

569

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

586
587

588
589

590
591

layout, the variety of land-use types is lower than that of other layouts. The reason for this is to
achieve maximum compactness between neighboring land-uses. Finally, Figure 10 (e) indicates the
best arrangement of land-uses with respect to per capita demand. As shown in this layout, the variety
of land-uses is more pronounced than in other layouts. According to the high per capita demand of
educational land-use, the algorithm devotes the largest parcel of the study area to this land-use type.
It is notable to say that the arrangements in Figure 10 belong to the extreme values of each objective
function (the edge of PFs) in which just one objective function is optimized and other objectives are
not considered. We just want to show that the decision-makers can see different arrangements of
land-use types and they can select one of them as the desired arrangement. However, urban planners

usually seek the balanced status of objective functions.

6. Evaluation and discussion

The results of NSGA-II and NSGA-III in urban land-use planning are used to evaluate the results
of the proposed algorithm because they are in the same family of EMOs. In these two algorithms, the
EMUP operator is also employed to achieve comparable results with respect to HNSGAIII because
the EMUP significantly affects the diversity of solutions. Moreover, all initial values have been
considered the same to compare the results fairly. As mentioned before, in NSGA-III, extreme points
may be duplicated during the normalization step; in this case, the infinite hyper-plane can be defined
to include these extreme points [31]. To avoid such a problem, the normalization method described
in [31] is employed during the implementation of NSGA-IIL

Moreover, to be precise, two more real instances were examined in this section. The land-use
maps of the different parts of two other cities at the parcel level on the scale 1:2000 were used to
implement and test the proposed algorithm. These case studies areas, similar to the main case study
area adopted in this work, are located in deteriorated urban environments, and the renovation of
buildings and the change of land-uses are priorities for the municipalities. The presence of various
land-use types at different service levels is one of the features of these two case study areas. The
numbers of urban parcels in these study areas are 2238 and 2685, respectively. Figure 11 displays the

urban parcels and their main land-uses types in these two study areas.

Case Study 3
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A large number of performance measures have been proposed for comparing the results of
multi- and many-objective optimization methods [50, 56]. Given that the true PF is not achievable in
this study, performance indicators that do not require the true PF should be used. Therefore, the
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Diversity Comparison Indicator (DCI) [56] and the HV indicator [51] were selected to compare the
results of the proposed algorithm with respect to the results of two other algorithms in three case
study areas, due to their independence from the true PF.

The DCI is designed to compare the diversity of different PF approximations. This indicator
calculates the diversity of the solutions in different PF approximations by dividing the objective space
by the number of cells. The DCI value of a PF approximation is a number in the range [0, 1], and a
greater value indicates better diversity. The number of divisions (div) in objective space is an
important parameter for this indicator Li, Yang [56]. The DCIs of the results are calculated according
to different div values and are shown in Figure 12 in three case study areas. As shown in this figure,
in all case studies, the DCI values of the proposed algorithm are greater than those of the other two
algorithms in almost all divisions, which indicates that the proposed algorithm works better in terms
of diversity. By increasing div, the DCI is decreased for all three algorithms. This is due to the fact
that the number of non-empty cells in objective space increases with div, and for a solution set, it is
essential to consider more cells which are filled by other solution sets [56]. Additionally, in the
MOLUP, DCI indicates that NSGA-II performs better than NSGA-III in terms of diversity.
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Figure 12. DCI values of the NSGAII, NSGA-III and the proposed algorithm next to different
numbers of divisions in three case study areas.

Figure 13 shows variations in the average HV of ten runs for the three algorithms compared for
the three case study areas. This figure shows that all three algorithms are able to increase the HV
value when increasing the number of iterations. The proposed algorithm manages to find a better
HV value than the other two algorithms, even after 50 iterations, while the NSGA-III does not find a
better HV value than any of the other two algorithms. This is the case for all three case study areas.
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Figure 14 presents the parallel coordinates plot for 3 case study areas. In this diagram, the
objective functions are normalized between 0 to 1. As seen in this figure, the spread of solutions over
solution space is more regular in the proposed algorithm in comparison with NSGA-III and NSGA-
IIin all case studies. To investigate more, Figure 15 shows the PFs of two combinations of objectives
in three dimensions for each algorithm in case study 1.

According to these figures, the proposed
algorithm appears to perform better than the other two algorithms in generating diverse solutions.
Moreover, in this figure, the solutions of NSGA-II have more diversity than the solutions of NSGA-
III.
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Figure 14. Parallel coordinates plot of the objective functions for the 3 case study areas
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Figure 15. The 3D PF of three algorithms; (A). HNSGA-IIL, (B). NSGA-II, and (C). NSGA-III

Consequently, as Figures 14 and 15 demonstrate, using hypercubes improves the spread of the
solutions and generates diverse solutions. However, one of the problems with hypercubes is
determining their optimal number. Low numbers cause the lack of proper diversity of solutions, and
high numbers impose additional calculations on the program.
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Figure 16. Comparison of computational times using the HV indicator: (a) average HV indicator
values at different time steps; (b) average time at different HV values.

Moreover, the comparison of this work and the research of Masoumi, Coello [20] which
employed the original NSGA-II, showed that the use of hypercubes and EMUP spread the solution
space significantly which leads to better solutions (with better objective function values). However,
the objective functions of this research are different from those adopted by Masoumi, Coello [20]. In
that previous work, per-capita demand was considered as a criterion but in this paper, per-capita
violation is considered as an objective function to be minimized during the optimization process.
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urban design experts have been used. In a general summary of the opinions of experts, it can be said
that the results of this research can be useful to urban design and management decision-makers in
the following cases.

e Inpresenting the initial plans in the detailed design of cities, it meets the needs of urban users
for accurate calculations of important objective functions such as compatibility, dependency,
suitability, compactness, and per capita demand. The current routine is that designers in
designing new cities or detailed plans, produce original plans according to their experiences
and modify them based on urban design rules, and there is no codified calculation procedure
for this. This can be especially useful in smart cities where the whole design process is based
on complex initial calculations.

e The effects of changing a land-use on the existing layout of urban uses are fully computable.
This matter can help the decision-maker to easily decide whether or not to change. Relevant
calculations are not very common in traditional systems and the effects of change up to a
very limited effect radius have been extracted qualitatively.

There is a gap between the results of this research and its implementation in the real world, like other
applications of new algorithms. The most important thing in reducing this gap is to model real-world
problems and incorporate them into the algorithm. For example, social and economic issues, although
hidden in the first two objective functions of this research, but if they have been considered as
separate objective functions, the results will be closer to the real world. Another issue is the
management of property owners, which should consider strategies for convincing them, which is
beyond the scope of this article and can be a new field of work. However, this is a very new topic in
urban design and management and requires a lot of work to get closer to the real-world application.

7. Conclusion

Urban land-use planning as a many-objective optimization problem requires finding all non-
dominated optimum land-use arrangements. In this research, NSGA-III is improved based on and
the use of hypercubes for its use in the MOLOUP problem. Given the nature of ULUP problem, the
convergence of solutions is slow and a lot of trial and error is required if they are to reach their optimal
state. As such, in this study, a new mutation operator called EMUP is introduced. The results show
that the proposed algorithm converges in a few steps to the PF with this operator.

The five objective functions of this research have always been considered by urban designers in
designing new cities and also proposing detailed plans, but scientific and simultaneous calculations
of these functions together are a new issue that allows urban decision-makers to be able to consider
different views of the city. On the other hand, solving this problem by using multi-objective
algorithms gives a very scientific and suitable opportunity to urban affairs decision-makers to be able
to see different aspects of the city by considering different objective functions. But solving ULUP
problem using many-objective algorithms has many complexities in data type, objective functions,
constraints, and search space. Therefore, using new algorithms in this problem requires a lot of
adaptation, and the possibility of evaluating the algorithm using the usual evaluation parameters in
many-objective calculations is very difficult or sometimes impossible.

One of the limitations of this study is the large number of solutions in the PF. As part of our
future work, we aim to propose a model designed to select a solution that all the stakeholders in the
process of urban land-use planning agree upon, after being presented every solution. This model can
use the modelling techniques of interactions and negotiation between stakeholders, such as
interactive and agent-based models, to aggregate the preferences of the stakeholders and select a
solution that has the most compatibility with these preferences.

According to these explanations and experiences of this research and other researchers in this
field, achieving the applicable form of many-objective algorithms in ULUP requires the
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implementation and realization of many parameters in the real world, which can be a new way for
future research.

8. References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Ligmann-Zielinska, A., R.L. Church, and P. Jankowski, Spatial optimization as a generative
technique for sustainable multiobjective land-use allocation. International Journal of Geographical
Information Science, 2008. 22(6): p. 601-622.

Li, X. and L. Parrott, An improved Genetic Algorithm for spatial optimization of multi-objective and
multi-site land use allocation. Computers, Environment and Urban Systems, 2016. 59: p. 184-
194.

Chuvieco, E., Integration of linear programming and GIS for land-use modelling. International
Journal of Geographical Information Science, 1993. 7(1): p. 71-83.

Moah, H. and P. Kanaroglou, A ftool for evaluating urban sustainability via integrated
transportation and land use simulation models. Urban Environment, 2009. 3: p. 28—-46.
Khalili-Damghani, K., et al., Solving land-use suitability analysis and planning problem by a hybrid
meta-heuristic algorithm. International Journal of Geographical Information Science, 2014.
Porta, J., et al, High performance genetic algorithm for land use planning. Computers,
Environment and Urban Systems, 2013. 37: p. 45-58.

Kog, I. and I. Babaoglu, A comparative study of swarm intelligence and evolutionary algorithms on
urban land readjustment problem. Applied Soft Computing, 2020: p. 106753.

Balling, R.J., et al.,, Multiobjective urban planning using genetic algorithm. Journal of Urban
Planning and Development, 1999. 125(2): p. 86-99.

Masoomi, Z., Modeling the physical effects of urban land-uses change using optimization algorithms
and spatial analysis (In persian), in Geodesy and Geomatics engineering, Geospatial Information
Systems (GIS). 2013, Khajeh Nasir Toosi University Of Technology.

Stewart, T.J., R. Janssen, and M. van Herwijnen, A genetic algorithm approach to multiobjective
land use planning. Computers & Operations Research, 2004. 31(14): p. 2293-2313.

Aerts, ].C. and G.B. Heuvelink, Using simulated annealing for resource allocation. International
Journal of Geographical Information Science, 2002. 16: p. 571-587.

Ai, B, S. Ma, and S. Wang, Land-use zoning in fast developing coastal area with ACO model for
scenario decision-making. Geo-spatial Information Science, 2015. 18(1): p. 43-55.

Shifa, M., et al., Land-use spatial optimization based on PSO algorithm. Geo-Spatial Information
Science, 2011. 14(1): p. 54-61.

Yang, L., et al, An improved artificial bee colony algorithmfor optimal land-use allocation.
International Journal of Geographical Information Science, 2015: p. 1-20.

Mohammadi, M., M. Nastaran, and A. Sahebgharani, Development, application, and comparison
of hybrid meta-heuristics for urban land-use allocation optimization: Tabu search, genetic, GRASP,
and simulated annealing algorithms. Computers, Environment and Urban Systems, 2016. 60: p.
23-36.

Romaniello, M. and U. Fiore, Special issue on recent advances in soft set decision making: Theories
and applications. Applied Soft Computing, 2017. 100(54): p. 364-365.

Cao, K,, et al., Spatial multi-objective land use optimization: extensions to the non-dominated sorting
genetic algorithm-1I. International Journal of Geographical Information Science, 2011. 25(12):
p. 1949-1969.



773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

Huang, K., et al., An improved artificial immune system for seeking the Pareto front of land-use
allocation problem in large areas. International Journal of Geographical Information Science,
2013. 27(5): p. 922-946.

Feng, CM. and ].]J. Lin, Using a genetic algorithm to generate alternative sketch maps for urban
planning. Computers Environment and Urban Systems, 1999. 23: p. 91-108.

Masoumi, Z., C.A.C. Coello, and A. Mansourian, Dynamic urban land-use change management
using multi-objective evolutionary algorithms. Soft Computing, 2020. 24(6): p. 4165-4190.

Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary
Computation, IEEE Transactions on, 2002. 6(2): p. 182-197.

Shaygan, M., et al., Spatial Multi-Objective Optimization Approach for Land Use Allocation Using
NSGA-II. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS
AND REMOTE SENSING, 2014.

Heyns, AM. and J.H. van Vuuren, A multi-resolution approach towards point-based multi-
objective geospatial facility location. Computers, Environment and Urban Systems, 2016. 57: p.
80-92.

Jansen, T., Analyzing evolutionary algorithms: The computer science perspective. 2013: Springer
Science & Business Media.

Deb, K., Recent advances in evolutionary multi-criterion optimization (EMO), in Proceedings of the
Genetic and Evolutionary Computation Conference Companion. 2017, ACM: Berlin, Germany. p.
702-735.

Koppen, M. and K. Yoshida. Substitute distance assignments in NSGA-II for handling many-
objective optimization problems. in Evolutionary Multi-Criterion Optimization. 2007. Springer.
Masoumi, Z., et al., Using an Evolutionary Algorithm in Multiobjective Geographic Analysis for
Land Use Allocation and Decision Supporting. Geographical Analysis, 2017.

Deb, K. and H. Jain, An evolutionary many-objective optimization algorithm using reference-point-
based nondominated sorting approach, part I: solving problems with box constraints. Evolutionary
Computation, IEEE Transactions on, 2014. 18(4): p. 577-601.

Das, I. and ]J.E. Dennis, Normal-boundary intersection: A new method for generating the Pareto
surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 1998.
8(3): p. 631-657.

Chiang, T., nsga3cpp: A C++ implementation of NSGA-iii. 2014.

Yuan, Y., H. Xu, and B. Wang, An improved NSGA-III procedure for evolutionary many-objective
optimization, in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation. 2014, ACM: Vancouver, BC, Canada. p. 661-668.

Ishibuchi, H., et al. Performance comparison of NSGA-II and NSGA-III on various many-objective
test problems. in 2016 IEEE Congress on Evolutionary Computation (CEC). 2016.

Taleai, M., et al., Evaluating the compatibility of multi-functional and intensive urban land uses.
International Journal of Applied Earth Observation and Geoinformation, 2007. 9(4): p. 375-
391.

Cao, K., W. Zhang, and T. Wang, Spatio-temporal land use multi-objective optimization: A case
study in Central China. Transactions in GIS, 2019. 23(4): p. 726-744.

Schwaab, |, et al., Improving the performance of genetic algorithms for land-use allocation problems.

International Journal of Geographical Information Science, 2018. 32(5): p. 907-930.



816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Handayanto, R.T., et al., Achieving a sustainable urban form through land use optimisation: insights
from Bekasi City’s land-use plan (2010-2030). Sustainability, 2017. 9(2): p. 221.

Song, M. and D. Chen, An improved knowledge-informed NSGA-II for multi-objective land
allocation (MOLA). Geo-spatial Information Science, 2018. 21(4): p. 273-287.

Cao, K., et al., Sustainable land use optimization using Boundary-based Fast Genetic Algorithm.
Computers, Environment and Urban Systems, 2012. 36(3): p. 257-269.

Abolhasani, S., et al.,, Simulating urban growth under planning policies through parcel-based
cellular automata (ParCA) model. International Journal of Geographical Information Science,
2016: p. 1-26.

Tong, Z., et al., Quantification of the openness of urban external space through urban section. Geo-
spatial Information Science, 2020. 23(4): p. 316-326.

Masoumi, Z.,J. van L Genderen, and J. Maleki, Fire Risk Assessment in Dense Urban Areas Using
Information Fusion Techniques. ISPRS International Journal of Geo-Information, 2019. 8(12): p.
579.

Maleki, J., F. Hakimpour, and Z. Masoumi, A Parcel-Level Model for Ranking and Allocating
Urban Land-Uses. ISPRS International Journal of Geo-Information, 2017. 6(9): p. 273.
Masoomi, Z., M.S. Mesgari, and M. Hamrah, Allocation of urban land uses by Multi-Objective
Particle Swarm Optimization algorithm. International Journal of Geographical Information
Science, 2013. 27(3): p. 542-566.

Mezura-Montes, E. and C.A.C. Coello, Constraint-handling in nature-inspired numerical
optimization: past, present and future. Swarm and Evolutionary Computation, 2011. 1(4): p. 173-
194.

Maab-Consulting-Engineers, Definitions and concepts of urban land-uses and determining the per
capita (In Persian). 2010: Iran's Supreme Council for Planning and Architecture.

Shao, Z., et al., Urban sprawl and its impact on sustainable urban development: a combination of
remote sensing and social media data. Geo-spatial Information Science, 2020: p. 1-15.
Chankong, V. and Y.Y. Haimes, Multiobjective Decision Making Theory and Methodology. 1983:
New York: North-Holland.

Farnahad, C.E., Development pattern of district 7 of Tehran (In Persian). 2005: Orderd by Tehran
municipality.

Habibi, M. and S. Masaeli, Urban land uses per capita (In Persian). 1999, Tehran: National Land
and Housing Organization.

Riquelme, N., V. Von Liicken, and B. Baran. Performance metrics in multi-objective optimization.
in 2015 Latin American Computing Conference (CLEI). 2015.

Bradstreet, L., The hypervolume indicator for multi-objective optimisation: calculation and use. 2011:
University of Western Australia.

Cao, Y., B.J. Smucker, and T.J. Robinson, On using the hypervolume indicator to compare Pareto
fronts: Applications to multi-criteria optimal experimental design. Journal of Statistical Planning
and Inference, 2015. 160: p. 60-74.

Coello, C.A.C,, G.B. Lamont, and D.A. Van Veldhuizen, Evolutionary algorithms for solving
multi-objective problems. Vol. 5. 2007: Springer.

Bajestani, M.A., et al., A multi-objective scatter search for a dynamic cell formation problem.
Computers & operations research, 2009. 36(3): p. 777-794.



859
860
861
862
863
864
865
866
867
868

55.

56.

57.

Li, X.-y., J.-h. Zheng, and J. Xue, A Diversity Metric for Multi-objective Evolutionary Algorithms,
in Advances in Natural Computation: First International Conference, ICNC 2005, Changsha, China,
August 27-29, 2005, Proceedings, Part III, L. Wang, K. Chen, and Y.S. Ong, Editors. 2005,
Springer Berlin Heidelberg: Berlin, Heidelberg. p. 68-73.

Li, M., S. Yang, and X. Liu, Diversity comparison of Pareto front approximations in many-objective
optimization. IEEE Transactions on Cybernetics, 2014. 44(12): p. 2568-2584.

Vargha, A. and H.D. Delaney, A critique and improvement of the CL common language effect size
statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 2000. 25(2): p.
101-132.



