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Abstract In this paper, we are interested in selection
mechanisms based on the hypervolume indicator with
a particular emphasis on the mechanism used in an im-

proved version of the S metric selection Evolutionary
Multi-Objective Algorithm (SMS-EMOA) called iSMS-
EMOA, which exploits the locality property of the hy-

pervolume. Here, we propose a new selection scheme
which approximates the contribution of solutions to
the hypervolume and it is designed to preserve the

locality property exploited by iSMS-EMOA. This ap-
proach is proposed as an alternative to the use of ex-
act hypervolume calculations, and is aimed for solv-

ing many-objective optimization problems. The pro-
posed approach is called “approximate version of the
improved SMS-EMOA (aviSMS-EMOA)” and is vali-

dated using standard test problems (with three or more
objectives) and performance indicators taken from the
specialized literature. Our preliminary results indicate

that our proposed approach is a good alternative to
solve many-objective optimization problems, if we con-
sider both quality in the solutions and running time

required to obtain them because it outperforms two
versions of the original SMS-EMOA that approximate
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México D.F. 07300, MÉXICO,
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the contributions to the hypervolume, it outperforms
MOEA/D using Penalty Boundary Intersection (PBI)
and it is competitive with respect to the original SMS-

EMOA in several of the test problems adopted. Also,
its computational cost is reasonable (it is slower than
MOEA/D but it is faster than SMS-EMOA).
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1 Introduction

We are interested in the so-called multi-objective op-
timization problems (MOPs). These problems involve

multiple objective functions which are in conflict with
each other. In MOPs, the notion of optimality refers
to the best possible trade-offs among the objectives.

Consequently, there are several possible solutions (the
so-called Pareto optimal set whose image is called the
Pareto front). The use of evolutionary algorithms for

solving MOPs has become very popular and has two
main goals [11]: (i) to find solutions that are as close
as possible to the true Pareto front and (ii) to produce

solutions that are spread along the Pareto front as uni-
formly as possible.

There are different indicators to assess the quality of

the approximation of the Pareto-optimal set generated
by a multi-objective evolutionary algorithm (MOEA).
Some of them are: error ratio, generational distance,

hypervolume, ϵ-indicator, R2-indicator, two set cover-
age, and nondominated vector addition [11]. But only
a few indicators are “Pareto Compliant” (in [32], it is

shown that the hypervolume indicator is the only unary
indicator which is strictly “Pareto compliant”).

When studying MOEAs, we find two main types

of selection mechanisms: (i) those that incorporate the
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concept of Pareto optimality (e.g., NSGA-II [13]), and

(ii) those that do not use Pareto dominance to select in-
dividuals. Within this class, those that use an indicator-
based selection mechanism [30] have become particu-

larly popular.

The use of Pareto-based selection has been very

popular for the last 20 years, but it has several lim-
itations. From them, its poor scalability with respect
to the number of objectives in a MOP is, perhaps, the

most remarkable one. The quick growth in the number
of nondominated solutions as we increase the number
of objectives, rapidly dilutes the effect of the selection

mechanism of a MOEA [17]. Because of this limitation,
MOEAs of type (ii) have become relatively popular in
recent years as an alternative that allows us to tackle

problems having four or more objectives (the so-called
“many-objective optimization problems”).

In this work, we are interested in MOEAs based on

the hypervolume indicator (IH). IH is the only unary
indicator which is known to be strictly “Pareto com-
pliant” [32]. IH was originally proposed by Zitzler and

Thiele in [31], and it’s defined as the size of the space
covered by the Pareto optimal solutions. IH rewards
convergence towards the Pareto front as well as the

maximum spread of the solutions obtained. Fleischer
proved in [18] that, given a finite search space and
a reference point, maximizing the hypervolume indi-

cator is equivalent to finding the Pareto optimal set.
The main disadvantage of the hypervolume indicator
is its high computational cost (the problem of com-

puting IH is #P-hard [6]).1 Consequently, in the last
few years, several proposals have been made to address
this problem. Some authors have proposed to reduce

the dimensionality of the MOP [9], others have pro-
posed improvements to the calculation of the contri-
bution to the hypervolume indicator of each individual

in the population [5,16], as well as mechanisms to ap-
proximate the contribution of each individual in the
population [23,3,7,8]. Also, other authors have pro-

posed a new competition scheme for selection mech-
anisms based on IH . In this scheme, only three indi-
viduals compete to survive. Thus, we only need to cal-

culate the contribution of three individuals and choose
the best from them [25]. In contrast, most of the current
hypervolume-based MOEAs need to calculate the con-

tribution of each individual in the population in order
to choose the best from them.

In this paper, we study the competition schemes
used in MOEAs based on the hypervolume indicator
and, we also study some selection techniques based on

the approximation of the hypervolume. Then, we pro-

1 IH cannot be computed exactly in polynomial time in the
number of objective functions unless P = NP .

pose a new selection mechanism based on the com-

petition scheme proposed by Menchaca and Coello in
[25] and on the technique to approximate the contribu-
tion to the hypervolume proposed by Bringmann and

Friedrich in [7]. This idea came from the fact that we
only need to approximate three contributions to IH .
Additionally, we have the hypothesis that we can de-

crease the error of the approximation in two ways: First,
we can use a larger sample without increasing exces-
sively the running time (compared with MOEAs that

use the traditional competition scheme in which we
need to know the contribution of all individuals). And,
second, the probability of deleting the correct individ-

ual (i.e., the individual with the lowest contribution) is
greater in this case, than if we use the traditional com-
petition scheme because we only deal with three errors

and not with P errors, where P is the population size.
As we will see later on, our results indicate that our pro-
posed selection mechanism obtains better results than
those which approximate the hypervolume and do not

consider its locality property.

The remainder of this paper is organized as follows.

Section 2 states the problem of interest. The hyper-
volume indicator is defined in Section 3. The previous
related work is discussed in Section 4. The selection

mechanism based on the hypervolume and its locality
property is described in Section 5. Our alternative se-
lection mechanism based on the approximation of the

contributions to the hypervolume is presented in Sec-
tion 6. Our experimental validation and the results ob-
tained are shown in Section 7. Finally, we provide our

conclusions and some possible paths for future work in
Section 8.

2 Problem Statement

The generalmulti-objective optimization problem (MOP)

is defined as follows: Find x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]

T which
optimizes

f(x) = [f1(x), f2(x), . . . , fk(x)]
T (1)

such that x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible re-

gion of the problem. Assuming minimization problems,
we have the following definitions.

Definition 1 We say that a vector x = [x1, . . . , xn]
T

dominates vector y = [y1, . . . , yn]
T , denoted by x ≺ y,

if and only if fi(x) ≤ fi(y) for all i ∈ {1, ..., k} and

there exists an i ∈ {1, . . . , k} such that fi(x) < fi(y).

Definition 2 We say that a vector x = [x1, . . . , xn]
T

weakly dominates vector y = [y1, . . . , yn]
T , denoted by

x ⪯ y, if f(x) is not worse than f(y) in all objectives.
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Definition 3 A point x∗ ∈ Ω is Pareto optimal if there

does not exist any x ∈ Ω such that x ≺ x∗.

Definition 4 For a given MOP, f(x), the Pareto opti-
mal set is defined as: P∗ = {x ∈ Ω|¬∃y ∈ Ω : y ≺ x}.
Definition 5 Let f(x) be a given MOP and P∗ the
Pareto optimal set. Then, the Pareto Front is defined
as: PF∗ = {f(x) | x ∈ P∗}.
Definition 6 An approximation of the Pareto op-
timal set is a subset of Ω composed of mutually non-
dominated vectors (e.g., A ⊆ Ω such that for any two

vectors x,y ∈ A is true that x ⊀ y and y ⊀ x).

3 Hypervolume indicator

The hypervolume indicator (IH) was originally proposed
by Zitzler and Thiele in [31], and it’s defined as the size
of the space covered by the Pareto optimal solutions.

IH is a “Pareto Compliant” indicator.2

If Λ denotes the Lebesgue measure, IH is defined as:

IH(A,yref ) = Λ

 ∪
y∈A

{x | y ≺ x ≺ yref}

 (2)

where A is the approximation of the Pareto optimal set
and yref ∈ Rk denotes a reference point which should

be dominated by all possible points.
The contribution to the hypervolume of a solution

x is defined as:

CH(x,A) = IH(A,yref )− IH(A \ x,yref ) (3)

where x ∈ A. Then, the contribution of x is the space
that is only covered by x. See Figure 1.

Auger et al. [2] conducted a study about the opti-
mal µ-distributions and the choice of the reference point

in the hypervolume indicator. They mentioned one in-
teresting property of this indicator when k = 2 (two
objective functions), called locality which says: given

three consecutive points on the Pareto front, moving the
middle point will only affect the hypervolume contribu-
tion that is solely dedicated to this point, but the joint

hypervolume contribution of the other points remains
fixed. See Figure 2. Also, Auger et al. conducted a sim-
ilar study for k = 3 in [1] and they mentioned that

the optimal placement of a single solution is not deter-
mined by only two neighbors, anymore, as it is the case
for k = 2, since in this case, all solutions can have an

influence on the optimal placement of one point.

2 An indicator I : Ω → R is Pareto compliant if for all
A,B ⊆ Ω : A ⪯ B ⇒ I(A) ≥ I(B) assuming that greater
indicator values correspond to higher quality, where A and B
are approximations of the Pareto optimal set, Ω is the feasible
region and A ⪯ B means that every point b ∈ B is weakly
dominated by at least one point a ∈ A.
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IH(A, ~yref)

f2

f1

~yref

~x8

~x2

~x1

~x3

~x4

~x5

~x6

~x7

CH(~x4,A)

Fig. 1 Let A = {x1,x2, · · · ,x8} be the approximation of the
Pareto optimal set and yref be the reference point. Then, the
gray area is the hypervolume of set A and the hatched area
is the contribution to the hypervolume of the solution x4.

4 Previous Related Work

In recent years, there have been several proposals to
incorporate the hypervolume into a MOEA. However,
in most cases, the MOEAs use the same competition

scheme: if we have a population P and a new individual
xnew, we calculate the contribution to the hypervolume
of each individual in P and the contribution of the new

individual. If xnew is better than xworst (according to
the contribution), xnew replaces xworst. Otherwise, the
population remains the same. Some of these proposals

are the following:

– Knowles and Corne [24] used a bounded archive to
save the nondominated solutions found at each gen-
eration. When the archive was full and Pareto dom-

inance could no longer discard solutions, they pro-
posed to use the above competition scheme.

– Huband et al. [20] have used the hypervolume with

an evolution strategy. They used Pareto ranking as
the primary selection criterion and the hypervolume
as a second selection criterion (in the same way as

described before). However, it is important to men-
tion that the authors used exact calculations of the
contribution to IH only for MOPs with two objec-

tive functions.3

– Emmerich et al. [15] proposed an algorithm based
on NSGA-II and the archived strategies proposed by

Knowles, Corne and Fleisher. They called it “SMS-
EMOA”. SMS-EMOA creates an initial population
and then, it generates only one solution by itera-

tion using the operators (crossover and mutation)

3 Given a nondominated front of individuals, the hypervol-
ume value for an individual i is equal to the product of the
one-dimensional lengths to the next worse objective function
value in the front for each objective.
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~x1

~x2

~x3

~x1

~x2

~x3

IH(A \ ~x4, ~yref) IH(A \ ~x4, ~yref)

~yref

~x7

f1

f2

~x4

~x5

~x6

C(~x4,A)

~yref

~x7

~x5

~x6

~x4

f1

f2

C(~x4,A)

Fig. 2 Let A = {x1,x2, · · · ,x7} be the approximation of the Pareto optimal set. If we move x4 between x3 and x5, the covered
space by {A \ x4} is not affected and only the contribution to the hypervolume of x4 is affected.

of the NSGA-II. After that, it applies Pareto rank-
ing. When the last front has more than one solution,
SMS-EMOA uses the above competition scheme to

decide which solution will be removed. Beume et
al. [4] proposed not to use the contribution to the
hypervolume indicator when, after applying the Pa-

reto ranking procedure we obtain more than one
front. In that case, they proposed to use the num-
ber of solutions which dominate one solution (the

solution that is dominated by more solutions is re-
moved). The authors argue that the motivation for
using the hypervolume indicator is to improve the

distribution in the nondominated front and then it
is not necessary in fronts different to the nondomi-
nated front.

– Igel et al. [21] have used the hypervolume indicator
with an evolution strategy. They used Pareto rank-
ing as a primary selection criterion and crowding or

hypervolume as a second selection criterion (in the
same way as described before).

– Mostaghim et al. [26] designed a MOEA based on

particle swarm optimization in which the hypervol-
ume indicator was used in the leader selection mech-
anism.

If we use eq. (3) in the above competition scheme,
we need to calculate |P|+1 contributions to the hyper-
volume indicator, and therefore, the above algorithms

won’t be able to deal with MOPs with more than five
objective functions (solving a MOP with five objec-
tive functions will require several hours using a recent

personal computer). In order to address this problem,
Bradstreet et al. [5] proposed a method to calculate
the contribution to the hypervolume indicator of each

solution in a fast way without calculating the hyper-
volume for each solution. The main idea is the follow-
ing: when we eliminate one solution of the population,

not all the contributions of the other solutions are af-

fected. Emmerich and Fonseca [16] proposed a dimen-
sion sweep algorithm for computing all contributions to
the hypervolume in three dimensions with a time com-

plexity equal to O(n log n). Also, they showed that for
k > 3 (more than three objective functions), the time
complexity is bounded below by Ω(n log n). However,

the calculation of the minimal contribution is an NP-
hard [7] problem.

Other authors have chosen to approximate the con-
tribution to the hypervolume. For example, Ishibuchi et

al. [22] proposed using a number of achievement scalar-
izing functions with uniformly distributed weight vec-
tors to approximate the hypervolume. They measure

the distance from the reference point to the solution
set, using scalarizing functions, see Figure 3.

Bader and Zitzler [3] proposed to assign a fitness to
each individual using an approximation of the hypervol-

ume based on the idea that is not necessary to know the
exact contribution to the hypervolume of each solution,
since we only aim to obtain a good ranking of the so-

lutions in the population. The technique that they use
to assign fitness to each individual is not easy because
they do not consider only the contribution to the hyper-

volume as we defined in eq. (3), but also all the space
dominated by one solution, see Figure 4(a). They used
Monte Carlo simulation to approximate the dominated

regions and then assign fitness. Also, they proposed a
method to remove m individuals from a population P
considering the expected loss in hypervolume that can

be attributed to a particular solution when exactly m
solutions are removed, see Figure 4(b).

Bringmann and Friedrich [7] indicated that it is not
necessary to calculate the hypervolume of all the indi-

viduals in the population, in order to know the hyper-
volume contribution of a single solution. Let A be the
approximation of the Pareto optimal set; they proposed

to approximate the contribution of a solution x ∈ A as
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~f(~a)

~f(~b)

A

~f (~c)

~f (~d)

R = {~r}

~f(~a)

~f(~b)

~f (~c)

~f (~d)

R = {~r}

(a) (b)

Fig. 3 In (a), the dotted line represents a scalarizing function. Let A = {a,b, c,d} be the approximation of the Pareto optimal
set and r the reference point. Ishibuchi et al. propose to measure the distance from r to A. In (b) many uniformly distributed
weight vectors are used and the average length is taken as an approximation of the hypervolume.

1/4

1/2

1/3

1/31/2
1

~f (~a)

~f (~b)

~f(~c)

~f (~d)

FitnessH(~a,P ,R)

FitnessH(~c,P ,R)

R = {~r}

1/4

1

1/31/2

p=1/3 p=0 p=0p=1

~f (~a)

~f (~b)

~f(~c)

~f (~d)

R = {~r}

(a) (b)

Fig. 4 In (a), we illustrate the fitness assignment proposed by Bader and Zitzler. The space dominated by the four solutions
(a, b, c and d) is divided in regions. Suppose that we want to calculate the fitness of individuals a and c. Regions labeled with
number 1 indicate that this portion of the space is only dominated by the solution a or c. Therefore, this region is attributed
to a or c. Regions labeled with 1/2 indicate that this portion of the space is dominated by two solutions, and then, to each
of these two solutions, it corresponds half of this region. Regions with 1/3 and 1/4 indicate that the portion is dominated by
three and four solutions, respectively. Thus, for each of them, it corresponds a third or a fourth of this region. (b) shows the
probability p that a dominated region is lost if solution a is removed together with any other solution (m = 2). It is interesting
to look at the region with probability p = 1/3. If we remove solution a, then only solution b can dominate this region and the
probability of choosing b is 1/3. Regions with probability p = 0 indicate that if we remove a together with any solution, this
region is still dominated by one of the remaining solutions.

follows: Let BBx be the bounding box of x; then, we
do a random sampling in BBx. For each random point,
we have to check if it is uniquely dominated by x, and

then we can approximate the contribution of x using:

C̃H(x,A) =
SuccessSamples

Samples
V OL(BBx) (4)

where SuccessSamples is the number of samples that
were only dominated by x (there does not exist an-

other y ∈ A such that y dominates the sample) and
Samples is the total number of samples. See Figure 5.
To determine BBx, we construct a bounding box, By,

for each solution y ∈ A, using the reference point yref

as in Figure 5. Then, we can cut BBx as follows: start
with the box Bx itself, iterating over all other boxes By,

such that x ̸= y. If By dominates Bx in all but one di-

mension, then we can cut the bounding box, Bx, in the
nondominated dimension to obtain BBx. See Figure 6.

5 Selection Mechanism based on Hypervolume
and its Locality Property

A new competition scheme for selection mechanisms

based on IH was proposed in [25] and it works as fol-
lows: Let’s assume that at each iteration of a MOEA,
only one solution xnew is created and the current pop-

ulation is P. After that, we calculate the Euclidean dis-
tance of the new solution to each solution in the current
population:

disti = ∥xi − xnew∥ such that xi ∈ P (5)
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(a) (b)

Fig. 6 In (a), we can see that a is dominated by b in all objective functions except for f3. Then, we can cut the bounding
box of a and use ya instead of yref because the cut region is completely covered by b. In (b), b is better than a only in f1.
Therefore, we cannot move the reference point and cut the bounding box because the cut region is not completely covered by
b.
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BB~x3
Failed sample Success sample

~yref

f2

~x2

~x1

~x4

~x5
~x6

f1

~x3

Fig. 5 Let A = {x1,x2,x3,x4,x5,x6} be the approximation
of the Pareto optimal set and yref be the reference point.
We approximate the contribution of solution x3 as follows.
We construct the bounding box BBx3 from the reference
point yref . After that, we generate random points in BBx3 .
The black points into BBx3 are success samples; these points
are only dominated by x3. The remaining random points in
BBx3 are also dominated by other points and therefore they
are failed samples. Finally, the contribution is approximately

SuccessSamples
SuccessSamples+FailedSamples

V OL(BBx3). It is important to

mention that this is an example simply for illustrating the
procedure by which we can approximate the hypervolume
contribution of a solution. However, for two dimensions, we
can calculate the exact contribution, when we execute the
procedure to cut BBx3 .

and, we choose the nearest solution:

xnear such that distnear = min disti (6)

where i = {1, · · · , |P|}. These two solutions (the new
solution, xnew, and its nearest neighbor, xnear) com-

pete to survive. The core idea is to move a solution

within its neighborhood with the aim of improving its

contribution to the hypervolume. See Figure 7(a). How-
ever, we must consider the case in which the new solu-
tion is located in an unexplored region (a region with

few solutions) as shown in Figure 7(a). In this case, it
is not a good idea to remove the new solution or its
nearest neighbor. To address this problem, the authors

proposed to choose randomly another solution, xrand.

Then, xrand will also compete with the other two (xnew

and xnear). This is considering that the probability of
choosing a solution in an unexplored region is low. See

Figure 7(b).

The experimental results, presented by the authors

of this selection scheme, showed that this scheme is a
good option to deal with many-objective optimization
problems because it is able to reduce the running time

significantly without losing quality in the solutions un-
like other methods based on the approximation of the
hypervolume indicator which have a significant quality

loss. However, it is important to note that if we use the
competition scheme based on IH and its locality prop-
erty, we still have difficulties to solve many-objective

optimization problems because although the running
time is much lower than that required by MOEAs which
use the traditional selection scheme based on IH , we

need to calculate the exact contribution to IH and this
is an NP-hard problem. Also, the authors conducted
a study about the randomly-chosen solution in MOPs

with k = 3. For this, they calculated, at each genera-
tion, the number of times in which the random solution
is eliminated and considering 30 independent runs, they

showed that the random solutions are eliminated at the
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Fig. 7 In (a), xnew competes only with its nearest neighbor xnear and then xnear is eliminated. In (b), we choose xrand

randomly. Then, xnew, xnear and xrand compete to survive and xrand is eliminated.

beginning of the search process. And, as the search pro-
cess progresses, the new solution or its nearest neighbor
is eliminated more often. From these results, we can see

that although for the case in which k = 3 the optimal
placement of a single solution is not determined by only
two neighbors, the competition scheme based on IH and

its locality property still works. This is because this se-
lection scheme does not need to know the entire neigh-
borhood, it only considers to move one solution in the

direction corresponding to its nearest neighbor. There-
fore, it is not important if the optimal placement of one
solution is determined by many (even all) solutions of

the population.

6 An alternative selection mechanism based on
the approximation of the contributions to the
hypervolume

As we mentioned above, there are some proposals to ap-
proximate the hypervolume. However, these techniques

were incorporated into MOEAs that use the traditional
selection scheme in which all individuals compete to
survive. In this work, we propose to use the approxima-

tion technique proposed by Bringmann and Friedrich in
[7] into the selection mechanism proposed by Menchaca
and Coello in [25]. There are two main motivations to

adopt this approach: First, Bringmann and Friedrich
proposed a technique to approximate the contribution
to the hypervolume of an individual without having to

calculate the hypervolume and the new selection mech-
anism proposed by Menchaca and Coello is based on
the hypervolume contributions. And second, we have

the following hypothesis: since the new selection mech-
anism needs to calculate the contribution of only three
individuals, we can reduce the error of the approxima-

tion, by increasing the number of samples and this will

not increase the running time in an excessive manner.
Also, the probability of deleting the individual with
the lowest contribution is greater than if we use the

traditional competition scheme because if we randomly
choose one individual of a set of three individuals, the
probability of choosing the worst individual is 1/3. And,

if we choose one individual of a set of P individuals, the
probability of choosing the worst individual is 1/P. In
addition, we only deal with three errors and not with

P errors where P is the size of the population. Fur-
thermore, we expect that the contributions of the new
solution and its nearest neighbor are different because

our idea is to decide if we move the current solution in
the population (nearest neighbor of the new solution) to
the position of the new solution. Therefore, we expect

that the joint contribution of the other solutions is fixed
and the contribution of the new solution and its nearest
neighbor are different (locality property). We designed

an experimental test to validate these last claims. We
show experimentally our hypothesis in Section 7. In Al-
gorithm 1, we can see the procedure to approximate

the contribution to the hypervolume of one individual
in the population. And we can see our alternative se-
lection mechanism in Algorithm 2.

7 Experimental Results

To validate our alternative selection mechanism based
on the hypervolume indicator, we incorporated it into

the original SMS-EMOA [4] and we called it “ap-
proximate version of improved SMS-EMOA (aviSMS-
EMOA)”. For our experiments, we used problems with

up to six objective functions, seven of which were
taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ)
test suite [14] and seven more were taken from the

Walking Fish Group (WFG) toolkit [19]. We used k = 5
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Input : Current population, Pt, individual, x,
reference point, yref , and the number of
samples, nsamples.

Output: Approximation of the contribution to the
hypervolume of individual x, C̃H(x,Pt).

/*Defining the bounding box */

ybox ← yref ;
foreach xi ∈ Pt such that xi ̸= x do

if x is dominated by xi in all objective functions

except in fk then
ybox[k]← xi[k];

end

end

/*Calculating the volume of the box BBx */

volumeBBx ← 1;
foreach Objective function k do

volumeBBx ← (volumeBBx)(ybox[k]− x[k]);
end

/*Doing sampling */

SuccessSamples← 0;
for j ← 1 to nsamples do

Generate a random point xr, such that xr ∈ BBx;
if Not exists another point xi ∈ Pt such that xi

dominates xr then
SuccessSamples← SuccessSamples + 1;

end

end

return SuccessSamples
nsamples

(volumeBBx);

Algorithm 1: Approximating the contribution to

the hypervolume of individual x.

for DTLZ1, DTLZ3 and DTLZ6 and k = 10 for the
remaining test problems. We used kfactor = 2 and

lfactor = 10 for the WFG test problems. For each test
problem, we performed 30 independent runs. For all al-
gorithms, we adopted the parameters suggested by the

authors of NSGA-II: pc = 0.9 (crossover probability),
pm = 1/n (mutation probability), where n is the num-
ber of decision variables. For the crossover and muta-

tion operators, we adopted ηc = 15 and ηm = 20, re-
spectively. We performed a maximum of 50,000 fitness
function evaluations (we used a population size of 100

individuals and we iterated for 500 generations). Only
in DTLZ3 we performed 100,000 evaluations (we used
a population size of 100 individuals and we iterated

for 1000 generations). However, we adopted four hours
as our maximum running time because we know that
the computation of the exact hypervolume contribution

has a high computational cost. All MOEAs considered
in our experiments were compiled using the GNU C
compiler and they were executed on a computer with a

2.66GHz processor and 4GB in RAM.

Input : Current population, Pt, and the new
solution, xnew.

Output: The new population, Pt+1.

/*Calculate the distance of each solution in Pt to

xnew */

foreach xi ∈ Pt do

disti ← ∥xi − xnew∥;
end

/*Choose the nearest solution to xnew */

xnear | distnear = min disti;

/*Choose one random solution */

Choose randomly xrand such that xrand ∈ Pt and
xrand ̸= xnew;

/*Approximate the contributions to the

hypervolume, using Algorithm 1 */

C̃new ← C̃H(xnew,Pt);

C̃near ← C̃H(xnear,Pt);

C̃rand ← C̃H(xrand,Pt);

/*Remove the solution with the worst contribution

*/

xworst | C̃worst = min{C̃new, C̃near, C̃rand};
Pt+1 ← P \ xworst;

Algorithm 2: Alternative selection mechanism

based on the hypervolume.

7.1 Performance Indicators

We adopted IH to validate our results because it re-
wards both convergence towards the Pareto front as
well as the maximum spread of the solutions obtained.
Also, most of the algorithms used in this work have

as their aim to maximize the hypervolume and, there-
fore, it makes sense to use this indicator to assess their
performance.4 To calculate the hypervolume indica-

tor, we normalized the approximations of the Pareto
optimal set, generated by the MOEAs, and we used
yref = [y1, · · · , yk] such that yi = 1.1 as our reference

point. The normalization was performed considering all
approximations generated by the different MOEAs (i.e.,
we place, in one set, all nondominated solutions found

and from this set we calculate the maximum and min-
imum for each objective function).

Only in some experiments, we consider other two
quality indicators. The first one is called “two set cov-

erage (ISC)” with the aim of assessing only the conver-
gence of the MOEAs. ISC was proposed by Zitzler et
al. [29] and it is a Pareto compliant binary indicator.

Let A,B two approximations of the Pareto optimal set,

4 MOEA/D is not based on IH , but in this case, we also
used the “two set coverage” indicator.



An alternative IH -based selection mechanism for MOEAs 9

ISC is defined as follows:

ISC(A,B) = |b ∈ B such that ∃a ∈ A with a ≺ b|
|B|

If all points in A dominate or are equal to all points
in B, then by definition ISC = 1. ISC = 0 implies that

no element in B is dominanted by any element of A.
In general, both ISC(A,B) and ISC(B,A) have to be
considered.

The second one is called “inverted generational dis-
tance” indicator (IIGD) [10]. IIGD reports how far, on
average, PF is from A, where PF is the true Pareto

front and A is an approximation of the true Pareto
front. IIGD is Pareto non-compliant and it is defined
as:

IIGD(A) =
1

|PF|

|PF|∑
i=1

dpi

 1
p

where |PF| is the number of vectors in PF , p = 2

and di is the Euclidean phenotypic distance between
each member, i, of PF and the closest member in A to
that member, i. IIGD measures both convergence and

distribution. Since we cannot use the true Pareto front
because in most cases we cannot obtain it, we need
to use a reference set that provides a reasonably good

approximation of the true Pareto front. The result of
this indicator depends of this reference set.

7.2 Approximate version of original SMS-EMOA vs

approximate version of improved SMS-EMOA

As we saw in the previous section, we propose to ap-

proximate the contributions to the hypervolume used
by the selection mechanism proposed in [25]. However,
this gives rise to the following question: why don’t we

approximate the contributions in the original version
of the SMS-EMOA? Our hypothesis is that it is bet-
ter to use the improved SMS-EMOA for two reasons:

First, we need to do sampling for each solution for which
we need to know its contribution. Therefore, if we use
a large number of samples, the running time drasti-

cally increases when employing the traditional selection
mechanism adopted by the original SMS-EMOA. This
is because in this case, it is required to know the contri-

butions of all the individuals at each iteration, unlike
the selection mechanism used by the improved SMS-
EMOA that only requires to know the contribution of

three individuals per iteration. And second, if we use
the improved SMS-EMOA, we can decrease the proba-
bility of not choosing the worst individual because we

only deal with three errors instead of dealing with P

errors (P is the population size). Also, it is important

to consider that the selection mechanism used in the
improved SMS-EMOA exploits the locality property of
the hypervolume. Thus, we estimate that the contri-

butions of the new individual and its nearest neighbor
will be different and that the joint contribution of the
remaining individuals is fixed.

In order to validate our hypothesis, we compare our
“aviSMS-EMOA” with respect to a version of the orig-

inal SMS-EMOA that approximates the contributions
to the hypervolume using Algorithm 1; this version is
called “approximate version of the original SMS-EMOA

(avoSMS-EMOA).” We ran tests with up to six objec-
tive functions because the avoSMS-EMOA algorithm
has a manageable running time up to this dimension-

ality. We used k(103) as our number of samples for
both algorithms, where k is the number of objective
functions (e.g., if we have a MOP with three objec-

tive functions, we use 3(103) = 3000 samples). We de-
cided to use this number of samples with the aim that
both MOEAs can finish the search or they can exe-

cute the largest possible number of generations in the
allowable time (we must remember that we adopted
four hours as our maximum running time). However,

in Section 7.6, we study the behavior of our aviSMS-
EMOA with respect to the number of samples. Table 1
shows the results of the DTLZ and WFG test problems

with respect to the hypervolume indicator. This table
also shows the statistical analysis applied to the exper-
iments using Wilcoxon’s rank sum. In this table, we

can see that our aviSMS-EMOA obtains better results
in most cases, avoSMS-EMOA obtained better results
only in nine cases. However, if we check the statistical

analysis, we can see that avoSMS-EMOA outperforms
our aviSMS-EMOA only in four cases because only in
these cases the hypothesis that “medians are equal”

can be rejected. Moreover, our aviSMS-EMOA obtains
better results than avoSMS-EMOA in forty-seven cases
and the hypothesis that “medians are equal” can be

rejected in forty-three cases. In summary, our aviSMS-
EMOA outperforms avoSMS-EMOA in 43 problems, it
is outperformed in 4 problems, and both algorithms ob-

tain similar results in 9 problems. Now, let’s check Ta-
ble 2, which shows the running time required by the two
algorithms to obtain the approximation of the Pareto
front of each test problem. In this table, we can see that

our proposed aviSMS-EMOA is significantly better in
all cases (we can say that, on average, it is ten times
faster than avoSMS-EMOA).5 This validates, experi-

5 It is important to clarify that aviSMS-EMOA is not 33
times faster than avoSMS-EMOA because avoSMS-EMOA
does not always calculate 100 contributions to IH (only
when after applying Pareto ranking, a single front is ob-
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mentally, the first part of our hypothesis with respect to

the running time. For validating the second part, we ex-
ecuted both algorithms, avoSMS-EMOA and aviSMS-
EMOA, but we also calculate the exact contribution to

the hypervolume and we verify if the algorithm chooses
the correct individual to be deleted (worst individual)
per iteration. With the aim of calculating the success

percentage of each selection mechanism, we consider a
success when the algorithm deletes the worst individ-
ual. Also, we calculate the percentage in which the new

solution and its nearest neighbor had different values in
their contribution to the hypervolume because we ex-
pect that most of the time these two contributions will

be different. For this experiment, we only used prob-
lems with three and four objective functions, in order
to keep the running times within manageable values. In

Table 3, we can see that the alternative selection mech-
anism used in aviSMS-EMOA achieves a high success
rate (above 98% in all cases). This does not happen
with avoSMS-EMOA, which cannot even reach a suc-

cess rate of 1%. Thus, we can conclude that our pro-
posed aviSMS-EMOA is better than avoSMS-EMOA.
This is an important result because one of the objec-

tives of this paper is to show that we can significantly
improve the current MOEAs based on approximations
of IH if we use the selection mechanism proposed in

[25]. Also, we can see that most of the time the new
solution and its nearest neighbor had a different contri-
bution (above 95% in most cases).

7.3 HyPE version of SMS-EMOA vs approximate
version of improved SMS-EMOA

In this section, we adopt a version of the original SMS-
EMOA that uses the fitness assignment scheme pro-
posed in [3] instead of calculating the exact contribu-

tions,6 and which we called “HyPE version of SMS-
EMOA (hypeSMS-EMOA)”. For hypeSMS-EMOA, we
used the source code of HyPE, which is available in

the public domain. In both techniques, we used k(103)
as our number of samples, where k is the number of
objective functions. Table 4 shows the results for the

DTLZ and WFG test problems, with up to six objec-
tive functions, with respect to the hypervolume indica-
tor. This table also presents the statistical analysis of

tained). Also, aviSMS-EMOA only uses the selection mecha-
nism based on IH and its locality property when, after apply-
ing Pareto ranking, we only obtain a single front. Otherwise,
both algorithms use the number of solutions that dominate
certain solution as suggested by Beume et al. in [4].
6 It is important to mention that our aim was to validate

the selection mechanism. Therefore, we decided to use the
same MOEA in all cases and we only changed the selection
mechanism. For this reason, we did not use the original HyPE.

our experiments using Wilcoxon’s rank sum. In this ta-

ble, we can see that our aviSMS-EMOA obtains better
results than hypeSMS-EMOA in forty-eight problems
and in forty-six of these problems, the hypothesis “me-

dians are equal” can be rejected. Only in eight prob-
lems, hypeSMS-EMOA obtains better results than our
aviSMS-EMOA and only in four cases, we can say that

it outperforms our aviSMS-EMOA because the hypoth-
esis can be rejected. Summarizing, our aviSMS-EMOA
outperforms hypeSMS-EMOA in 46 problems, it is out-

performed in 4 problems and in 6 problems both algo-
rithms obtain similar results. In Table 5, we can see the
running time required by the two algorithms and we can

note that hypeSMS-EMOA is better than our aviSMS-
EMOA in all cases. However, as we saw in Table 4
the hypeSMS-EMOA algorithm loses quality in its so-

lutions and although our aviSMS-EMOA is slower than
hypeSMS-EMOA, its time requirements are still man-
ageable (in the worst case, it requires approximately
twenty-four minutes to solve problems with up to six

objective functions). In Figures 8, 9 and 10, we can see
the Pareto fronts obtained by the algorithms hypeSMS-
EMOA, aviSMS-EMOA and the original SMS-EMOA,

in the median of thirty independent runs (with respect
to the hypervolume indicator) for some of the prob-
lems used. In this figure, we can see that hypeSMS-

EMOA loses quality in the distribution of the solutions
and, in some problems, it cannot even generate the en-
tire Pareto front (for example, in DTLZ6, WFG1 and

WFG7). On the other hand, our aviSMS-EMOA ob-
tains a good distribution in all cases, similar to those
obtained by the original SMS-EMOA but at a much

lower computational cost.

7.4 Approximate version of the improved SMS-EMOA
vs the original SMS-EMOA

In this section, we compare our aviSMS-EMOA with
respect to the original SMS-EMOA. We tested it only
with up to five objective functions because the orig-

inal SMS-EMOA already exceeds the allowable time
in problems with five objective functions. Tables 6, 7
and 8 show that our aviSMS-EMOA is competitive

with respect to the original SMS-EMOA. In Table 7,
we present the results with respect to the hypervolume
indicator and we also present the results of the statisti-

cal analysis that we made to validate our experiments,
using Wilcoxon’s rank sum. Although, in most prob-
lems, the original SMS-EMOA obtains better results

than our aviSMS-EMOA, the aim of this work was to
design a new MOEA based on the approximations of
IH which can significantly reduce the computational

cost of MOEAs based on the exact calculation of IH
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in many-objective optimization problems but without

losing much quality. In Table 8, we can see that our
algorithm requires at most 24 minutes to solve prob-
lems with five objective functions (9.5% of the allowable

time), while the original SMS-EMOA spends all the al-
lowable time (four hours) and it is unable to finish the
search. It is important to note that our aviSMS-EMOA

outperformed the original SMS-EMOA in four problems
(DTLZ6, WFG1, WFG4 and WFG7 with five objective
functions) in spite of the fact that it requires much less

running time.

Finally, in Table 6, we show the results correspond-

ing to the “two set coverage” indicator ISC . To calculate
it, we merged all solutions found by our aviSMS-EMOA
in a set called A, considering all the 30 independent

runs, and we merged all solutions found by the original
SMS-EMOA in a set called B. From this table, we can
say that in only eleven problems SMS-EMOA covered

some solutions generated by aviSMS-EMOA and that
aviSMS-EMOA could not cover any solution generated
by SMS-EMOA, i.e., in these eleven problems, SMS-

EMOA was better than our aviSMS-EMOA in terms
of convergence. However, in the remaining thirty-one
problems, our aviSMS-EMOA covered some solutions

generated by SMS-EMOA and, therefore, we cannot say
which algorithm is better. There were no cases in which
SMS-EMOA was able to cover all solutions generated

by our aviSMS-EMOA and in which aviSMS-EMOA
was unable to cover any solution generated by SMS-
EMOA. Therefore, we can say that only in 26% of the

problems (eleven cases) SMS-EMOA outperforms our
aviSMS-EMOA in terms of convergence. In the other
74% of the problems (thirty-one cases) both algorithms

had a similar performance in terms of this indicator.

7.5 Approximate version of the improved SMS-EMOA
vs MOEA/D

Finally, in this section, we compare our aviSMS-EMOA
with respect to another well-known MOEA which is
called MOEA/D. We chose this MOEA because it has
been an alternative to deal with many-objective op-

timization problems in recent years and its computa-
tional cost is very low. MOEA/D [28] decomposes the
MOP into N scalar optimization subproblems and then

it solves these subproblems simultaneously using an
evolutionary algorithm. For our experiments, we used
the version in which MOEA/D adopts PBI (Penalty

Boundary Intersection) to decompose the MOP7 and

7 We decided to use PBI because the resulting optimal so-
lutions with PBI are normally much better distributed than
those obtained by the Tchebycheff approach [28].

we generated the convex weights using the technique

proposed in [12] and after that, we applied clustering
(k-means) to obtain a specific number of weights.

Table 10 shows the results for the DTLZ and WFG

test problems, with up to six objective functions, with
respect to the hypervolume indicator. This table also
presents the statistical analysis of our experiments us-

ing Wilcoxon’s rank sum. From these results, we can
say that our aviSMS-EMOA outperforms MOEA/D in
fifty-one problems, it is outperformed by MOEA/D in

one problem and both algorithms have a similar behav-
ior in the remaining four problems. Table 9 shows that
our aviSMS-EMOA was able to cover a big percent-

age of the solutions generated by MOEA/D in some
problems and MOEA/D did not cover any solutions
generated by our aviSMS-EMOA in many cases. Then,

we can say that the convergence of our aviSMS-EMOA
is better than the convergence of MOEA/D. Table 11
shows the results with respect to IIGD in problems with

three objective functions,8 the reference sets that we
adopted were taken from [11]. In this table, we can see
that our aviSMS-EMOA is better than MOEA/D in

most cases (ten out of fourteen) because it obtained a
better result according to IIGD and also the statisti-
cal analysis says that we can reject the null hypothesis

(“medians are equal”). In one case, both MOEAs have
a similar behavior because the null hypothesis cannot
be rejected and only in three cases MOEA/D outper-

formed our aviSMS-EMOA. Regarding IIGD and the
DTLZ test problems, we can say that MOEA/D is
better in MOPs with concave Pareto fronts (DTLZ2,

DTLZ3 and DTLZ4), both MOEAs had a similar be-
havior in a MOP with a linear Pareto front (DTLZ1)
and our aviSMS-EMOA is better in MOPs with de-

generate Pareto fronts (DTLZ5 and DTLZ6) and with
disconnected Pareto fronts (DTLZ7). These results are
logical because we know that in linear Pareto fronts

both MOEAs converge to a uniformly distribution,
therefore, we expect to both MOEAS have a similar
behavior; in concave Pareto fronts we know that both

MOEAs converge to a different distribution, therefore,
we expect to obtain different values in the indicator
IIGD. Finally, we know that MOEA/D has difficul-

ties in MOPs with disconnected Pareto fronts or de-
generate Pareto fronts, since it uses a set of well dis-
tributed weights (in the whole objective space) to guide

the search. With respect to the running time required
by each MOEA, MOEA/D outperforms our aviSMS-

8 We decided to use IIGD only in MOPs with three objec-
tive functions because the results of the indicator depend of
the reference set that we use and we know that generating a
good reference set in MOPs with many objective functions is
a difficult task.
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EMOA because it only needs a maximum of one sec-

ond to solve MOPs with 6 objective functions while
aviSMS-EMOA needs twenty-two minutes.

Finally, we present a brief study on the effect of

the population size on the performance of these two
MOEAs. It is normally assumed that if we increase the
number of objective functions, we should increase the

population size as well. However, MOEAs based on IH
are not practical when we use large populations be-
cause their computational costs increase rapidly (we

need to compute more times the contribution to IH).
Our aviSMS-EMOA is more practical in this sense for
two reasons: (i) it only needs to calculate three con-

tributions to IH per iteration regardless of the pop-
ulation size and (ii) it does not compute the exact
contributions to IH , it only approximates them. For

our study, we only used the DTLZ2 test problem with
3, 4 and 5 objective functions and we used a popu-
lation size equal to 300, 350 and 400 individuals, re-
spectively. Table 12 shows the results. In (a), we can

see that our aviSMS-EMOA is better than MOEA/D
regarding IH because it obtains better results and we
can also reject the null hypothesis in all three cases. In

(b), we can see that our aviSMS-EMOA is better than
MOEA/D in terms of convergence in two cases because
aviSMS-EMOA was able to cover some solutions found

by MOEA/D and MOEA/D could not cover any so-
lution found by aviSMS-EMOA. Only in DTLZ2 with
three objective functions both MOEAs have a similar

behavior because MOEA/D was able to cover some so-
lutions found by aviSMS-EMOA and, therefore, we can-
not say if one of these MOEAs is better. With respect

to the running time, we can see in (c) that MOEA/D
is much faster than our aviSMS-EMOA because it only
needs two seconds to solve problems with 3, 4 or 5 ob-

jective functions while our aviSMS-EMOA consumes
all the allowable running time (4 hours). Although
MOEA/D is very fast, it is important to keep in mind

that MOEA/D needs to generate a well-distributed set
of convex weights and this task is not easy when we
increase the number of objective functions.

7.6 Study: aviSMS-EMOA and the number of samples

As we mentioned in Section 4, Bringmann and Friedrich
proposed a method to approximate the contribution to

IH of one solution. However, their main goal was to
find the solution from a set of solutions with the least
contribution to IH . Thus, they present a way in which

we can determine the number of samples to guarantee
that for any given δ and ϵ ≥ 0 the obtained solution is
with a probability of (1 − δ), larger by at most a fac-

tor of (1 + ϵ) than the least contributor. Also, Nowak

et al. [27] made an empirical study about the number

of samples in the approximation method proposed by
Bringmann and Friedrich to find the least contributor.
They used δ = 10−6 and ϵ = 10−2. In one of their ex-

periments in which they used 200 points, the number
of samples was: 104 for points with dimension equal
to 3, between 104 and 105 for points with dimensions

equal to 4 and 5, 105 for points with dimension equal
to 6, between 105 and 106 for points with dimension
equal to 7, between 106 and 107 for points with dimen-

sion equal to 8, 107 and 108 for points with dimensions
equal to 9 and 10, 108 for point with dimension equal
to 11, 109 for points with dimension equal to 12. And,

an interesting thing is that for points with dimension
greater than 12 the number of samples can significantly
decrease, e.g., for points with dimension equal to 90 the

number of samples was between 104 and 105. Some of
their conclusions were the following: (i) there is a depen-
dence between the number of samples and the dimen-
sion, (ii) the number of samples increases when two or

more points differ very little in their contribution (this
was called “hardness of approximation” in the original
work by Bringmann and Friedrich) and, (iii) the effect

“hardness of approximation” seems to be inversely pro-
portional to the dimension when the number of points
is fixed. The authors mentioned that this can be at-

tributed to relatively sparse distribution of points as
the dimension increases, leading to fewer occurrences
of hard cases.

We do not use the complete algorithm proposed by
Bringmann and Friedrich in which they want to find

the point with the least contribution to IH from a set
of points. Instead, we only use the way in which the
contribution is approximated. We decided to conduct a

study, in which we use 102, 103, 104 and 105 samples
to approximate the contribution to IH in our aviSMS-
EMOA and we consider the DTLZ2 test problem with

3, 4, 5, 6, 7, 8, 9 and 10 objective functions. We made
our experiments using a population size equal to 100.
We decided to use up to 105 samples because according

to the empirical results presented by Nowak et al. we
need at most 105 samples for solving problems with di-
mension greater or equal than 2 and less or equal than

7 and problems with dimension greater or equal than
40 and less or equal than 90 to obtain a good approx-
imation (when δ = 10−6 and ϵ = 10−2 as suggested by

Bringmann and Friedrich). And also, for this number
of samples our aviSMS-EMOA requires less than four
hours (maximum allowable running time) to obtain the

approximation of the Pareto front. Therefore, we can
think that this is a good number of samples that our
aviSMS-EMOA could adopt. As in the above Sections,

to calculate the hypervolume indicator, we normalized
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Fig. 8 Pareto fronts obtained by the three algorithms in the median (with respect to the hypervolume indicator) of their
independent runs for the test problems DTLZ1 and DTLZ2.

the approximations of the Pareto optimal set, gener-
ated by aviSMS-EMOA and we used yref = [y1, · · · , yk]
such that yi = 1.1 as our reference point. The normal-
ization was performed considering all approximations
generated by aviSMS-EMOA using a different number

of samples (i.e., we place, in one set, all nondominated
solutions found and from this set we calculate the max-
imum and minimum for each objective function). In

Table 13, we can see that aviSMS-EMOA significantly
improved the quality in its solutions when we increased

the number of samples. And, an interesting thing is that
in Table 14 we can see that our aviSMS-EMOA is still
faster than avoSMS-EMOA (avoSMS-EMOA required

8418 seconds to solve the DTLZ2 test problems with
six objective funtions using 6000 samples while aviSMS-
EMOA required 3546 seconds to solve the same problem
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Fig. 9 Pareto fronts obtained by the three algorithms in the median (with respect to the hypervolume indicator) of their
independent runs for the test problems DTLZ6 and WFG1.

using 105 samples). It is important to mention that the
running time decreases as we increase the number of

objective functions and this is because aviSMS-EMOA
only uses the selection mechanism based on IH and its
locality property when, after applying Pareto ranking,

we only obtain one front. Therefore, we can claim that
our aviSMS-EMOA is a good option to solve MOPs

with low or high dimensionality in objective function
space.

8 Conclusions and Future Work

We have studied some MOEAs based on the hypervol-
ume indicator, finding that in most cases, they use a tra-

ditional competition scheme. The exception is the im-



An alternative IH -based selection mechanism for MOEAs 15

WFG3 WFG7

h
y
p

eS
M

S
-E

M
O

A

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0.6
 0.8

 1
 1.2

 1.4
 1.6

 1.8
 2

 0

 1

 2

 3

 4

 5

 6

 7

f3

f1

f2

f3

 0.5
 1

 1.5
 2

 2.5
 3  1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0

 1

 2

 3

 4

 5

 6

 7

f3

f1

f2

f3

a
v
iS

M
S

-E
M

O
A

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0.6
 0.8

 1
 1.2

 1.4
 1.6

 1.8
 2

 0

 1

 2

 3

 4

 5

 6

 7

f3

f1

f2

f3

 0.5
 1

 1.5
 2

 2.5
 3  1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0

 1

 2

 3

 4

 5

 6

 7

f3

f1

f2

f3

S
M

S
-E

M
O

A

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0.6
 0.8

 1
 1.2

 1.4
 1.6

 1.8
 2

 0

 1

 2

 3

 4

 5

 6

 7

f3

f1

f2

f3

 0.5
 1

 1.5
 2

 2.5
 3  1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0

 1

 2

 3

 4

 5

 6

 7

f3

f1

f2

f3

Fig. 10 Pareto fronts obtained by the three algorithms in the median (with respect to the hypervolume indicator) of their
independent runs for the test problems WFG3 and WFG7.

proved SMS-EMOA proposed by Menchaca and Coello
[25], which uses a different competition scheme that ex-

ploits the locality property of the hypervolume. Also,
we have studied different techniques to approximate the
hypervolume, and we found out that the technique pro-

posed by Bringmann and Friedrich [7] is an excellent
choice to be incorporated into the competition scheme
of a MOEA that exploits the locality property of the

hypervolume. This assumption is based on the following
hypothesis: Since the selection mechanism proposed by

Menchaca and Coello needs to calculate the contribu-
tion of only three individuals, we can reduce the error
of the approximation in two ways: (i) by increasing the

number of samples without excessively increasing the
running time and (ii) by considering that the probabil-
ity of deleting the individual with the lowest contribu-
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tion is greater than if we use the traditional competition

scheme, because in this case we only deal with three er-
rors and not with P errors (where P is the population
size). This hypothesis has been empirically validated in

this paper. Our results showed that our proposed se-
lection scheme is a viable alternative for solving MOPs
with many objective functions, since it provides reason-

ably good solutions at a very affordable computational
cost.

We also proposed an approximate version of the
improved SMS-EMOA, which was called “aviSMS-

EMOA”. This approach incorporates our proposed se-
lection mechanism into the original SMS-EMOA [4].
We compared our proposed aviSMS-EMOA with re-
spect to different versions of the original SMS-EMOA:

avoSMS-EMOA (which uses the technique proposed by
Bringmann and Friedrich [7] in a traditional competi-
tion scheme), hypeSMS-EMOA (which assigns fitness

to each individual in the population, using the tech-
nique proposed by Bader and Zitzler [3]) and SMS-
EMOA. Also, we compared our aviSMS-EMOA with

respect to MOEA/D using PBI. We showed that our
proposed aviSMS-EMOA outperforms avoSMS-EMOA,
hypeSMS-EMOA and MOEA/D. Moreover, we can say

that our aviSMS-EMOA outperforms SMS-EMOA, if
we consider both the quality of the approximation of
the Pareto front and the computational cost required

to obtain that approximation. This is because our pro-
posed aviSMS-EMOA obtains competitive results with
respect to SMS-EMOA but at a much lower computa-

tional cost. Although with respect to IH , SMS-EMOA
was better than aviSMS-EMOA in most problems, re-
garding ISC , in thirty-one problems (73% of the total

problems), we saw that aviSMS-EMOA was able to gen-
erate solutions that no solution found by SMS-EMOA
can dominate. Since we cannot say if the nondominated

solutions found by SMS-EMOA are better than the
nondominated solutions found by aviSMS-EMOA, we
claim that they are both competitive in these thirty-one

problems. Finally, we also conducted a study about the
number of samples that our aviSMS-EMOA should use
to increase the quality of the solutions but without ex-

ceeding our maximum running time of four hours and
we concluded that 105 is a good choice. However, we
should not forget that aviSMS-EMOA allows us to bal-

ance the quality of the solutions and the running time
required to obtain them.

As part of our future work, we plan to study other
techniques to approximate the contribution of the hy-

pervolume with the aim of reducing even more the run-
ning time of our proposed scheme, as well as its ap-
proximation error. We are also interested in studying

other performance indicators, such as the ϵ indicator

[30], which is also Pareto compliant [32]. The aim would

be to use the ϵ indicator to select solutions and the hy-
pervolume to distribute them, with the goal of having
a hybrid selection scheme that is more effective and

efficient than any of the hypervolume-based selection
schemes currently available. Finally, we plan to design
a version of aviSMS-EMOA which is able to use large

population sizes. The idea is to start the search using a
small population size and to increase its size over time.
In this way, we can obtain more accurate knowledge

about the Pareto front in many-objective problems but
saving both evaluations of the objective functions and
calculations of the contributions to IH .
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0.720380

(0.002684)
0.000 (1)

WFG6 (6)
0.526582

(0.042342)
0.637238
(0.050036)

0.000 (1)

WFG7 (6)
1.014516
(0.061564)

0.907848
(0.066396)

0.000 (1)

Table 1 Results obtained in the DTLZ and WFG test problems by avoSMS-EMOA and aviSMS-EMOA, using the hypervolume
indicator. We show average values over 30 independent runs. The values in parentheses correspond to the standard deviations.
The third column shows the results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity of the null
hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates
that the null hypothesis can be rejected at the 5% level.
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f
avo

SMS-EMOA
time

avi
SMS-EMOA

time

DTLZ1 (3) ≈ 4593 s ≈ 385 s
DTLZ2 (3) ≈ 10349 s ≈ 889 s
DTLZ3 (3) ≈ 14300 s ≈ 1298 s
DTLZ4 (3) ≈ 10482 s ≈ 888 s
DTLZ5 (3) ≈ 897 s ≈ 172 s
DTLZ6 (3) ≈ 5203 s ≈ 409 s
DTLZ7 (3) ≈ 8469 s ≈ 738 s
DTLZ1 (4) ≈ 4215 s ≈ 394 s
DTLZ2 (4) ≈ 12071 s ≈ 961 s
DTLZ3 (4) ≈ 11419 s ≈ 1399 s
DTLZ4 (4) ≈ 12062 s ≈ 948 s
DTLZ5 (4) ≈ 4679 s ≈ 495 s
DTLZ6 (4) ≈ 5794 s ≈ 567 s
DTLZ7 (4) ≈ 11439 s ≈ 974 s
DTLZ1 (5) ≈ 5488 s ≈ 350 s
DTLZ2 (5) ≈ 9542 s ≈ 798 s
DTLZ3 (5) ≈ 12807 s ≈ 1346 s
DTLZ4 (5) ≈ 9558 s ≈ 776 s
DTLZ5 (5) ≈ 5950 s ≈ 557 s
DTLZ6 (5) ≈ 6878 s ≈ 649 s
DTLZ7 (5) ≈ 13077 s ≈ 1135 s
DTLZ1 (6) ≈ 8364 s ≈ 436 s
DTLZ2 (6) ≈ 8418 s ≈ 750 s
DTLZ3 (6) ≈ 14410 s ≈ 1164 s
DTLZ4 (6) ≈ 8426 s ≈ 726 s
DTLZ5 (6) ≈ 6913 s ≈ 662 s
DTLZ6 (6) ≈ 7954 s ≈ 754 s
DTLZ7 (6) ≈ 13879 s ≈ 1324 s

f
avo

SMS-EMOA
time

avi
SMS-EMOA

time

WFG1 (3) ≈ 13915 s ≈ 1176 s
WFG2 (3) ≈ 4706 s ≈ 474 s
WFG3 (3) ≈ 6627 s ≈ 554 s
WFG4 (3) ≈ 13945 s ≈ 1230 s
WFG5 (3) ≈ 10697 s ≈ 896 s
WFG6 (3) ≈ 9574 s ≈ 736 s
WFG7 (3) ≈ 14415 s ≈ 1351 s
WFG1 (4) ≈ 11621 s ≈ 882 s
WFG2 (4) ≈ 6353 s ≈ 693 s
WFG3 (4) ≈ 7828 s ≈ 628 s
WFG4 (4) ≈ 14419 s ≈ 1238 s
WFG5 (4) ≈ 10827 s ≈ 878 s
WFG6 (4) ≈ 10351 s ≈ 799 s
WFG7 (4) ≈ 14319 s ≈ 1129 s
WFG1 (5) ≈ 7432 s ≈ 614 s
WFG2 (5) ≈ 9955 s ≈ 1007 s
WFG3 (5) ≈ 9945 s ≈ 815 s
WFG4 (5) ≈ 13473 s ≈ 1091 s
WFG5 (5) ≈ 13090 s ≈ 1123 s
WFG6 (5) ≈ 12392 s ≈ 1000 s
WFG7 (5) ≈ 12685 s ≈ 992 s
WFG1 (6) ≈ 5974 s ≈ 558 s
WFG2 (6) ≈ 13436 s ≈ 1339 s
WFG3 (6) ≈ 11710 s ≈ 1058 s
WFG4 (6) ≈ 12737 s ≈ 1042 s
WFG5 (6) ≈ 14413 s ≈ 1332 s
WFG6 (6) ≈ 14416 s ≈ 1359 s
WFG7 (6) ≈ 12346 s ≈ 992 s

Table 2 Time required by avoSMS-EMOA and aviSMS-EMOA for the test problems adopted. s = seconds. Both algorithms
were compiled using the GNU C compiler and they were executed on a computer with a 2.66GHz processor and 4GB in RAM.

f
avo

SMS-EMOA
success

avi
SMS-EMOA

success

avi
SMS-EMOA

diff

DTLZ1 (3)
0.010551

(0.003024)
0.973352
(0.002994)

0.898300
(0.002532)

DTLZ2 (3)
0.010578

(0.003577)
0.976261
(0.001304)

0.946450
(0.001322)

DTLZ3 (3)
0.008350

(0.003084)
0.953463
(0.011867)

0.942000
(0.005657)

DTLZ4 (3)
0.009864

(0.002434)
0.968088
(0.001255)

0.946100
(0.001700)

DTLZ5 (3)
0.009462

(0.001427)
0.869048
(0.009573)

0.920750
(0.001757)

DTLZ6 (3)
0.011180

(0.001651)
0.967014
(0.015320)

0.714150
(0.085841)

DTLZ7 (3)
0.009721

(0.003322)
0.990437
(0.001576)

0.937000
(0.002449)

DTLZ1 (4)
0.009780

(0.002375)
0.929687
(0.004549)

0.899200
(0.002768)

DTLZ2 (4)
0.009171

(0.002870)
0.958048
(0.001183)

0.946500
(0.000975)

DTLZ3 (4)
0.007843

(0.002046)
0.871917
(0.022897)

0.923600
(0.009324)

DTLZ4 (4)
0.009949

(0.002545)
0.937088
(0.001944)

0.942850
(0.001621)

DTLZ5 (4)
0.009950

(0.002343)
0.945747
(0.002642)

0.943850
(0.002725)

DTLZ6 (4)
0.010536

(0.002724)
0.963123
(0.002079)

0.930850
(0.003198)

DTLZ7 (4)
0.009045

(0.002350)
0.983524
(0.004796)

0.950350
(0.001108)

f
avo

SMS-EMOA
success

avi
SMS-EMOA

success

avi
SMS-EMOA

diff

WFG1 (3)
0.009368

(0.002253)
0.981253
(0.001282)

0.954100
(0.000768)

WFG2 (3)
0.010965

(0.002512)
0.976954
(0.004540)

0.930550
(0.005005)

WFG3 (3)
0.009335

(0.001776)
0.986898
(0.000819)

0.952900
(0.001221)

WFG4 (3)
0.009588

(0.003385)
0.997338
(0.000251)

0.955500
(0.000742)

WFG5 (3)
0.009214

(0.003495)
0.981864
(0.000761)

0.958000
(0.001000)

WFG6 (3)
0.009902

(0.002373)
0.986261
(0.000806)

0.951150
(0.000963)

WFG7 (3)
0.009955

(0.003873)
0.986393
(0.000630)

0.963250
(0.000887)

WFG1 (4)
0.008880

(0.003976)
0.970744
(0.001421)

0.953550
(0.001396)

WFG2 (4)
0.011041

(0.002897)
0.930375
(0.010810)

0.931550
(0.003471)

WFG3 (4)
0.010296

(0.004187)
0.979382
(0.001668)

0.952700
(0.001453)

WFG4 (4)
0.009413

(0.002984)
0.994394
(0.000436)

0.959100
(0.000943)

WFG5 (4)
0.009564

(0.003095)
0.981475
(0.000773)

0.958550
(0.000865)

WFG6 (4)
0.010444

(0.002686)
0.971220
(0.002110)

0.951650
(0.001152)

WFG7 (4)
0.008602

(0.004414)
0.984837
(0.000790)

0.961850
(0.000726)

Table 3 Success rate (column called “success”) achieved by both, avoSMS-EMOA and aviSMS-EMOA. Since the two selection
mechanisms delete the individual with the worst contribution, we define success when the following occurs: When the algorithm
deletes the true worst individual (in order to know which is the true worst individual, we compute the exact contribution).
In the case of aviSMS-EMOA, we consider the worst individual among three individuals (new, near and rand). In the case of
avoSMS-EMOA, we consider the worst individual among all individuals in the population. The column called “diff” shows the
percentage in which the new solution and its nearest neighbor had different values in their contribution to IH (this column
can only be applied to aviSMS-EMOA).
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f
hype

SMS-EMOA
IH

avi
SMS-EMOA

IH

P (H)

DTLZ1 (3)
1.101012

(0.006067)
1.122217
(0.000494)

0.000 (1)

DTLZ2 (3)
0.743232

(0.002097)
0.758602

(0.000340)
0.000 (1)

DTLZ3 (3)
1.328533
(0.000169)

1.328265
(0.000700)

0.487 (0)

DTLZ4 (3)
0.863879

(0.001943)
0.873943
(0.000250)

0.000 (1)

DTLZ5 (3)
0.265428

(0.000238)
0.266585

(0.000048)
0.000 (1)

DTLZ6 (3)
1.082554

(0.015066)
1.094423
(0.004341)

0.000 (1)

DTLZ7 (3)
0.534802

(0.033129)
0.552256
(0.048770)

0.000 (1)

DTLZ1 (4)
1.258490

(0.056806)
1.366684
(0.001205)

0.000 (1)

DTLZ2 (4)
1.008560

(0.003414)
1.035152
(0.001397)

0.000 (1)

DTLZ3 (4)
1.463624

(0.000067)

1.463597
(0.000130)

0.695 (0)

DTLZ4 (4)
1.014310

(0.004246)
1.035100
(0.000920)

0.000 (1)

DTLZ5 (4)
0.518095

(0.004575)
0.545064
(0.000508)

0.000 (1)

DTLZ6 (4)
1.056882

(0.017816)
1.206271

(0.004888)
0.000 (1)

DTLZ7 (4)
0.507082

(0.030202)
0.550050
(0.061062)

0.002 (1)

DTLZ1 (5)
1.237122

(0.348331)
1.541811

(0.005706)
0.000 (1)

DTLZ2 (5)
1.281626

(0.004608)
1.300072
(0.004737)

0.000 (1)

DTLZ3 (5)
1.608858
(0.000222)

1.608407
(0.003140)

0.004 (1)

DTLZ4 (5)
1.254611

(0.005040)
1.264793

(0.004457)
0.000 (1)

DTLZ5 (5)
0.871195

(0.008001)
0.930685
(0.001020)

0.000 (1)

DTLZ6 (5)
1.433997

(0.008634)
1.519103
(0.001631)

0.000 (1)

DTLZ7 (5)
0.473364

(0.056567)
0.589229
(0.020254)

0.000 (1)

DTLZ1 (6)
1.500805

(0.234972)
1.549649
(0.202423)

0.162 (0)

DTLZ2 (6)
1.658514

(0.002679)

1.655438
(0.003776)

0.000 (1)

DTLZ3 (6)
1.771045
(0.000047)

1.770941
(0.000163)

0.000 (1)

DTLZ4 (6)
1.583394
(0.003860)

1.572087
(0.006064)

0.000 (1)

DTLZ5 (6)
0.941583

(0.011495)
1.031885

(0.001188)
0.000 (1)

DTLZ6 (6)
1.460519

(0.022557)
1.631369
(0.002293)

0.000 (1)

DTLZ7 (6)
0.450393

(0.124927)
0.773352
(0.010180)

0.000 (1)

f
hype

SMS-EMOA
IH

avi
SMS-EMOA

IH

P (H)

WFG1 (3)
1.017526

(0.067671)
1.205361
(0.024067)

0.000 (1)

WFG2 (3)
0.647049

(0.054860)
0.799503

(0.074819)
0.000 (1)

WFG3 (3)
0.606017

(0.006630)
0.636772
(0.003130)

0.000 (1)

WFG4 (3)
0.701693

(0.005039)
0.752357
(0.001500)

0.000 (1)

WFG5 (3)
0.537158

(0.002760)
0.557581

(0.001661)
0.000 (1)

WFG6 (3)
0.547413

(0.003932)
0.565928
(0.001409)

0.000 (1)

WFG7 (3)
0.558748

(0.028965)
0.748956
(0.003767)

0.000 (1)

WFG1 (4)
1.147478

(0.026432)
1.414339
(0.008604)

0.000 (1)

WFG2 (4)
0.422296
(0.256235)

0.300548
(0.254003)

0.084 (0)

WFG3 (4)
0.527767

(0.016347)
0.592232

(0.006450)
0.000 (1)

WFG4 (4)
0.932772

(0.008365)
1.030276
(0.003034)

0.000 (1)

WFG5 (4)
0.558728

(0.005313)
0.598550
(0.001842)

0.000 (1)

WFG6 (4)
0.562704

(0.011569)
0.610031

(0.006558)
0.000 (1)

WFG7 (4)
0.417145

(0.032298)
0.915375
(0.006581)

0.000 (1)

WFG1 (5)
1.245126

(0.027633)
1.547656

(0.006617)
0.000 (1)

WFG2 (5)
0.496898
(0.219141)

0.407945
(0.205793)

0.176 (0)

WFG3 (5)
0.424716

(0.034430)
0.576101
(0.022876)

0.000 (1)

WFG4 (5)
1.116985

(0.018688)
1.270178

(0.004494)
0.000 (1)

WFG5 (5)
0.564973

(0.012296)
0.655659
(0.002092)

0.000 (1)

WFG6 (5)
0.437411

(0.035684)
0.598269
(0.027623)

0.000 (1)

WFG7 (5)
0.309892

(0.022794)
1.032123
(0.012809)

0.000 (1)

WFG1 (6)
1.356902

(0.031802)
1.691179
(0.014593)

0.000 (1)

WFG2 (6)
0.369049

(0.247980)
0.487496

(0.254908)
0.072 (0)

WFG3 (6)
0.353758

(0.043983)
0.590424
(0.049438)

0.000 (1)

WFG4 (6)
1.282154

(0.024684)
1.492717
(0.007779)

0.000 (1)

WFG5 (6)
0.523809

(0.020982)
0.720380

(0.002684)
0.000 (1)

WFG6 (6)
0.369149

(0.052829)
0.637238
(0.050036)

0.000 (1)

WFG7 (6)
0.264190

(0.017844)
0.907848
(0.066396)

0.000 (1)

Table 4 Comparison of the results obtained in the DTLZ and WFG test problems by hypeSMS-EMOA and aviSMS-EMOA,
with respect to the hypervolume indicator. We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations. The third column shows the results of the statistical analysis applied to our experiments
using Wilcoxon’s rank sum. P is the probability of observing the given result (the null hypothesis is true). Small values of P
cast doubt on the validity of the null hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be
rejected at the 5% level. H = 1 indicates that the null hypothesis can be rejected at the 5% level.
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f
hype

sms-emoa
time

avi
SMS-EMOA

time

DTLZ1 (3) ≈ 47 s ≈ 385 s
DTLZ2 (3) ≈ 106 s ≈ 889 s
DTLZ3 (3) ≈ 135 s ≈ 1298 s
DTLZ4 (3) ≈ 107 s ≈ 888 s
DTLZ5 (3) ≈ 64 s ≈ 172 s
DTLZ6 (3) ≈ 59 s ≈ 409 s
DTLZ7 (3) ≈ 98 s ≈ 738 s
DTLZ1 (4) ≈ 59 s ≈ 394 s
DTLZ2 (4) ≈ 156 s ≈ 961 s
DTLZ3 (4) ≈ 165 s ≈ 1399 s
DTLZ4 (4) ≈ 157 s ≈ 948 s
DTLZ5 (4) ≈ 143 s ≈ 495 s
DTLZ6 (4) ≈ 129 s ≈ 567 s
DTLZ7 (4) ≈ 185 s ≈ 974 s
DTLZ1 (5) ≈ 79 s ≈ 350 s
DTLZ2 (5) ≈ 188 s ≈ 798 s
DTLZ3 (5) ≈ 177 s ≈ 1346 s
DTLZ4 (5) ≈ 190 s ≈ 776 s
DTLZ5 (5) ≈ 229 s ≈ 557 s
DTLZ6 (5) ≈ 225 s ≈ 649 s
DTLZ7 (5) ≈ 296 s ≈ 1135 s
DTLZ1 (6) ≈ 98 s ≈ 436 s
DTLZ2 (6) ≈ 233 s ≈ 750 s
DTLZ3 (6) ≈ 185 s ≈ 1164 s
DTLZ4 (6) ≈ 234 s ≈ 726 s
DTLZ5 (6) ≈ 336 s ≈ 662 s
DTLZ6 (6) ≈ 340 s ≈ 754 s
DTLZ7 (6) ≈ 377 s ≈ 1324 s

f
hype

sms-emoa
time

avi
SMS-EMOA

time

WFG1 (3) ≈ 147 s ≈ 1176 s
WFG2 (3) ≈ 98 s ≈ 474 s
WFG3 (3) ≈ 148 s ≈ 554 s
WFG4 (3) ≈ 107 s ≈ 1230 s
WFG5 (3) ≈ 153 s ≈ 896 s
WFG6 (3) ≈ 168 s ≈ 736 s
WFG7 (3) ≈ 151 s ≈ 1351 s
WFG1 (4) ≈ 233 s ≈ 882 s
WFG2 (4) ≈ 170 s ≈ 693 s
WFG3 (4) ≈ 247 s ≈ 628 s
WFG4 (4) ≈ 157 s ≈ 1238 s
WFG5 (4) ≈ 206 s ≈ 878 s
WFG6 (4) ≈ 216 s ≈ 799 s
WFG7 (4) ≈ 252 s ≈ 1129 s
WFG1 (5) ≈ 335 s ≈ 614 s
WFG2 (5) ≈ 269 s ≈ 1007 s
WFG3 (5) ≈ 378 s ≈ 815 s
WFG4 (5) ≈ 220 s ≈ 1091 s
WFG5 (5) ≈ 276 s ≈ 1123 s
WFG6 (5) ≈ 274 s ≈ 1000 s
WFG7 (5) ≈ 358 s ≈ 992 s
WFG1 (6) ≈ 383 s ≈ 558 s
WFG2 (6) ≈ 377 s ≈ 1339 s
WFG3 (6) ≈ 445 s ≈ 1058 s
WFG4 (6) ≈ 316 s ≈ 1042 s
WFG5 (6) ≈ 246 s ≈ 1332 s
WFG6 (6) ≈ 259 s ≈ 1359 s
WFG7 (6) ≈ 408 s ≈ 992 s

Table 5 Time required by hypeSMS-EMOA and aviSMS-EMOA for the test problems adopted. s = seconds. Both algorithms
were compiled using the GNU C compiler and they were executed on a computer with a 2.66GHz processor and 4GB in RAM.

f ISC(A,B) ISC(B,A)

DTLZ1 (3) 0.002333 0.031000

DTLZ2 (3) 0.000000 0.063333

DTLZ3 (3) 0.039333 0.276000

DTLZ4 (3) 0.000000 0.067667

DTLZ5 (3) 0.002000 0.087333

DTLZ6 (3) 0.693667 0.703333

DTLZ7 (3) 0.002333 0.001667
DTLZ1 (4) 0.000000 0.013333

DTLZ2 (4) 0.000000 0.208000

DTLZ3 (4) 0.002000 0.169333

DTLZ4 (4) 0.000000 0.192667

DTLZ5 (4) 0.000667 0.127333

DTLZ6 (4) 0.226667 0.308333

DTLZ7 (4) 0.000333 0.002000

DTLZ1 (5) 0.000000 0.112667

DTLZ2 (5) 0.000000 0.327667

DTLZ3 (5) 0.091333 0.191000

DTLZ4 (5) 0.000000 0.330667

DTLZ5 (5) 0.092333 0.044000
DTLZ6 (5) 0.273333 0.134000
DTLZ7 (5) 0.000000 0.004667

f ISC(A,B) ISC(B,A)

WFG1 (3) 0.000000 0.003667

WFG2 (3) 0.426333 0.634667

WFG3 (3) 0.379333 0.186333
WFG4 (3) 0.078667 0.256667

WFG5 (3) 0.004333 0.061000

WFG6 (3) 0.272333 0.445333

WFG7 (3) 0.003667 0.020333

WFG1 (4) 0.000000 0.001000

WFG2 (4) 0.033000 0.966000

WFG3 (4) 0.159333 0.137333
WFG4 (4) 0.027000 0.228333

WFG5 (4) 0.003333 0.050667

WFG6 (4) 0.086000 0.387000

WFG7 (4) 0.001000 0.002667

WFG1 (5) 0.000000 0.000000
WFG2 (5) 0.029667 0.966667

WFG3 (5) 0.106667 0.207667

WFG4 (5) 0.419000 0.000667
WFG5 (5) 0.002000 0.044000

WFG6 (5) 0.023667 0.393667

WFG7 (5) 0.000000 0.000000

Table 6 Results obtained in the DTLZ and WFG test problems by aviSMS-EMOA and SMS-EMOA, using the two set coverage
indicator (ISC). In this case, A is the set composed by all solutions found by aviSMS-EMOA considering all 30 independent
runs and B is the set composed by all solutions found by SMS-EMOA considering all 30 independent runs.
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f
avi

SMS-EMOA
IH

SMS-EMOA
IH

P (H)

DTLZ1 (3)
1.122217

(0.000494)
1.123180
(0.000283)

0.000 (1)

DTLZ2 (3)
0.758602

(0.000340)
0.759983

(0.000048)
0.000 (1)

DTLZ3 (3)
1.328265
(0.000700)

1.328074
(0.000341)

0.051 (0)

DTLZ4 (3)
0.873943

(0.000250)
0.875118
(0.000042)

0.000 (1)

DTLZ5 (3)
0.266585

(0.000048)
0.266762

(0.000021)
0.000 (1)

DTLZ6 (3)
1.094423

(0.004341)
1.095866
(0.003607)

0.145 (0)

DTLZ7 (3)
0.552256
(0.048770)

0.548923
(0.056148)

0.045 (1)

DTLZ1 (4)
1.366684

(0.001205)
1.373796
(0.000307)

0.000 (1)

DTLZ2 (4)
1.035152

(0.001397)
1.046741
(0.000063)

0.000 (1)

DTLZ3 (4)
1.463597

(0.000130)
1.463689

(0.000083)
0.000 (1)

DTLZ4 (4)
1.035100

(0.000920)
1.044891
(0.000093)

0.000 (1)

DTLZ5 (4)
0.545064

(0.000508)
0.546139
(0.000159)

0.000 (1)

DTLZ6 (4)
1.206271

(0.004888)
1.208642

(0.003669)
0.003 (1)

DTLZ7 (4)
0.550050

(0.061062)
0.579217
(0.046162)

0.000 (1)

DTLZ1 (5)
1.541811

(0.005706)
1.566729

(0.000759)
0.000 (1)

DTLZ2 (5)
1.300072

(0.004737)
1.334594
(0.000329)

0.000 (1)

DTLZ3 (5)
1.608407

(0.003140)
1.609056
(0.000319)

0.004 (1)

DTLZ4 (5)
1.264793

(0.004457)
1.299259

(0.000224)
0.000 (1)

DTLZ5 (5)
0.930685

(0.001020)
0.931459
(0.001521)

0.000 (1)

DTLZ6 (5)
1.519103
(0.001631)

1.504474
(0.002545)

0.000 (1)

DTLZ7 (5)
0.589229

(0.020254)
0.599077
(0.019488)

0.008 (1)

f
avi

SMS-EMOA
IH

SMS-EMOA
IH

P (H)

WFG1 (3)
1.205361

(0.024067)
1.210076
(0.025345)

0.029 (1)

WFG2 (3)
0.799503

(0.074819)
0.809164

(0.067653)
0.245 (0)

WFG3 (3)
0.636772

(0.003130)
0.636873
(0.002070)

0.646 (0)

WFG4 (3)
0.752357

(0.001500)
0.754175
(0.001647)

0.000 (1)

WFG5 (3)
0.557581

(0.001661)
0.557814

(0.001690)
0.015 (1)

WFG6 (3)
0.565928

(0.001409)
0.567213
(0.001614)

0.003 (1)

WFG7 (3)
0.748956

(0.003767)
0.750817
(0.003654)

0.055 (0)

WFG1 (4)
1.414339

(0.008604)
1.422808
(0.008483)

0.000 (1)

WFG2 (4)
0.300548

(0.254003)
0.861447
(0.126454)

0.000 (1)

WFG3 (4)
0.592232

(0.006450)
0.599850

(0.006850)
0.000 (1)

WFG4 (4)
1.030276

(0.003034)
1.038021
(0.002107)

0.000 (1)

WFG5 (4)
0.598550

(0.001842)
0.599677
(0.001846)

0.000 (1)

WFG6 (4)
0.610031

(0.006558)
0.616532

(0.006956)
0.000 (1)

WFG7 (4)
0.915375

(0.006581)
0.925977
(0.007987)

0.000 (1)

WFG1 (5)
1.547656

(0.006617)

1.372422
(0.018408)

0.000 (1)

WFG2 (5)
0.407945

(0.205793)
0.913807
(0.125715)

0.000 (1)

WFG3 (5)
0.576101

(0.022876)
0.590381
(0.027869)

0.000 (1)

WFG4 (5)
1.270178

(0.004494)

1.224230
(0.008055)

0.000 (1)

WFG5 (5)
0.655659

(0.002092)
0.658808
(0.002015)

0.000 (1)

WFG6 (5)
0.598269

(0.027623)
0.631408
(0.028629)

0.000 (1)

WFG7 (5)
1.032123
(0.012809)

0.753463
(0.054363)

0.000 (1)

Table 7 Results obtained in the DTLZ and WFG test problems by aviSMS-EMOA and SMS-EMOA, using the hypervolume
indicator. We show average values over 30 independent runs. The values in parentheses correspond to the standard deviations.
The third column shows the results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity of the null
hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates
that the null hypothesis can be rejected at the 5% level.
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f
avi

SMS-EMOA
time

sms-emoa
time

DTLZ1 (3) ≈ 385 s ≈ 197 s

DTLZ2 (3) ≈ 889 s ≈ 302 s

DTLZ3 (3) ≈ 1298 s ≈ 502 s

DTLZ4 (3) ≈ 888 s ≈ 303 s

DTLZ5 (3) ≈ 172 s ≈ 201 s
DTLZ6 (3) ≈ 409 s ≈ 236 s

DTLZ7 (3) ≈ 738 s ≈ 270 s

DTLZ1 (4) ≈ 394 s ≈ 1422 s
DTLZ2 (4) ≈ 961 s ≈ 2527 s
DTLZ3 (4) ≈ 1399 s ≈ 6093 s
DTLZ4 (4) ≈ 948 s ≈ 2589 s
DTLZ5 (4) ≈ 495 s ≈ 1695 s
DTLZ6 (4) ≈ 567 s ≈ 2157 s
DTLZ7 (4) ≈ 974 s ≈ 1402 s
DTLZ1 (5) ≈ 350 s ≈ 14431 s
DTLZ2 (5) ≈ 798 s ≈ 14449 s
DTLZ3 (5) ≈ 1346 s ≈ 14474 s
DTLZ4 (5) ≈ 776 s ≈ 14440 s
DTLZ5 (5) ≈ 557 s ≈ 14433 s
DTLZ6 (5) ≈ 649 s ≈ 14444 s
DTLZ7 (5) ≈ 1135 s ≈ 13256 s

f
avi

SMS-EMOA
time

sms-emoa
time

WFG1 (3) ≈ 1176 s ≈ 369 s

WFG2 (3) ≈ 474 s ≈ 236 s

WFG3 (3) ≈ 554 s ≈ 288 s

WFG4 (3) ≈ 1230 s ≈ 340 s

WFG5 (3) ≈ 896 s ≈ 342 s

WFG6 (3) ≈ 736 s ≈ 298 s

WFG7 (3) ≈ 1351 s ≈ 388 s

WFG1 (4) ≈ 882 s ≈ 3471 s
WFG2 (4) ≈ 693 s ≈ 751 s
WFG3 (4) ≈ 628 s ≈ 783 s
WFG4 (4) ≈ 1238 s ≈ 2809 s
WFG5 (4) ≈ 878 s ≈ 1067 s
WFG6 (4) ≈ 799 s ≈ 939 s
WFG7 (4) ≈ 1129 s ≈ 2948 s
WFG1 (5) ≈ 614 s ≈ 14463 s
WFG2 (5) ≈ 1007 s ≈ 2486 s
WFG3 (5) ≈ 815 s ≈ 1424 s
WFG4 (5) ≈ 1091 s ≈ 14456 s
WFG5 (5) ≈ 1123 s ≈ 2742 s
WFG6 (5) ≈ 1000 s ≈ 2738 s
WFG7 (5) ≈ 992 s ≈ 14445 s

Table 8 Time required by aviSMS-EMOA and SMS-EMOA for the test problems adopted. s = seconds. Both algorithms were
compiled using the GNU C compiler and they were executed on a computer with a processor running at 2.66GHz and with
4GB in RAM.

f ISC(A,B) ISC(B,A)

DTLZ1 (3) 0.036333 0.000000
DTLZ2 (3) 0.002667 0.000333
DTLZ3 (3) 0.167667 0.003333
DTLZ4 (3) 0.001333 0.000000
DTLZ5 (3) 0.501667 0.020333
DTLZ6 (3) 0.983333 0.453667
DTLZ7 (3) 0.501333 0.000000
DTLZ1 (4) 0.000000 0.000000
DTLZ2 (4) 0.002667 0.000000
DTLZ3 (4) 0.060333 0.004667
DTLZ4 (4) 0.001667 0.000000
DTLZ5 (4) 0.285667 0.062333
DTLZ6 (4) 0.811667 0.057333
DTLZ7 (4) 0.124667 0.000000
DTLZ1 (5) 0.000000 0.000333

DTLZ2 (5) 0.002333 0.000000
DTLZ3 (5) 0.052000 0.008667
DTLZ4 (5) 0.002333 0.000000
DTLZ5 (5) 0.159000 0.055000
DTLZ6 (5) 0.423667 0.133333
DTLZ7 (5) 0.011333 0.000000
DTLZ1 (6) 0.000000 0.006000

DTLZ2 (6) 0.000333 0.000000
DTLZ3 (6) 0.025000 0.007667
DTLZ4 (6) 0.000333 0.000000
DTLZ5 (6) 0.148667 0.053000
DTLZ6 (6) 0.374000 0.089333
DTLZ7 (6) 0.000333 0.000000

f ISC(A,B) ISC(B,A)

WFG1 (3) 0.001667 0.000000
WFG2 (3) 1.000000 0.004000
WFG3 (3) 0.922000 0.014667
WFG4 (3) 0.989333 0.000000
WFG5 (3) 0.085333 0.050000
WFG6 (3) 0.621000 0.162667
WFG7 (3) 0.165667 0.002000
WFG1 (4) 0.000000 0.000000
WFG2 (4) 1.000000 0.009333
WFG3 (4) 0.865000 0.005000
WFG4 (4) 0.811667 0.000000
WFG5 (4) 0.040667 0.010000
WFG6 (4) 0.571667 0.014667
WFG7 (4) 0.002667 0.000000
WFG1 (5) 0.000000 0.000000
WFG2 (5) 0.993333 0.020667
WFG3 (5) 0.936333 0.000000
WFG4 (5) 0.627333 0.000000
WFG5 (5) 0.007667 0.000000
WFG6 (5) 0.381333 0.010667
WFG7 (5) 0.000000 0.000000
WFG1 (6) 0.000000 0.000000
WFG2 (6) 1.000000 0.002333
WFG3 (6) 0.911333 0.000000
WFG4 (6) 0.500000 0.010667
WFG5 (6) 0.000000 0.000000
WFG6 (6) 0.333000 0.010000
WFG7 (6) 0.000000 0.000000

Table 9 Results obtained in the DTLZ and WFG test problems by aviSMS-EMOA and MOEA/D, using the two set coverage
indicator (ISC). In this case, A is the set composed by all solutions found by aviSMS-EMOA considering all 30 independent
runs and B is the set composed by all solutions found by MOEA/D considering all 30 independent runs.
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f
pbi

MOEA/D
IH

avi
SMS-EMOA

IH

P (H)

DTLZ1 (3)
1.071328

(0.002556)
1.122217
(0.000494)

0.000 (1)

DTLZ2 (3)
0.718988

(0.000212)
0.758602

(0.000340)
0.000 (1)

DTLZ3 (3)
1.294000

(0.002000)
1.328265
(0.000700)

0.000 (1)

DTLZ4 (3)
0.709501

(0.000134)
0.873943
(0.000250)

0.000 (1)

DTLZ5 (3)
0.246682

(0.000807)
0.266585

(0.000048)
0.000 (1)

DTLZ6 (3)
0.197818

(0.029819)
1.094423
(0.004341)

0.000 (1)

DTLZ7 (3)
0.448768

(0.026011)
0.552256
(0.048770)

0.000 (1)

DTLZ1 (4)
1.311857

(0.003695)
1.366684
(0.001205)

0.000 (1)

DTLZ2 (4)
0.887228

(0.000914)
1.035152
(0.001397)

0.000 (1)

DTLZ3 (4)
1.439263

(0.004172)
1.463597

(0.000130)
0.000 (1)

DTLZ4 (4)
0.878865

(0.001268)
1.035100
(0.000920)

0.000 (1)

DTLZ5 (4)
0.471816

(0.003958)
0.545064
(0.000508)

0.000 (1)

DTLZ6 (4)
0.592195

(0.014757)
1.206271

(0.004888)
0.000 (1)

DTLZ7 (4)
0.337272

(0.008258)
0.550050
(0.061062)

0.994 (0)

DTLZ1 (5)
1.506309

(0.008970)
1.541811

(0.005706)
0.000 (1)

DTLZ2 (5)
0.987833

(0.003838)
1.300072
(0.004737)

0.000 (1)

DTLZ3 (5)
1.608395

(0.000366)
1.608407
(0.003140)

0.000 (1)

DTLZ4 (5)
0.982714

(0.003994)
1.264793

(0.004457)
0.000 (1)

DTLZ5 (5)
0.669155

(0.022872)
0.930685
(0.001020)

0.000 (1)

DTLZ6 (5)
0.802058

(0.020102)
1.519103
(0.001631)

0.018 (1)

DTLZ7 (5)
0.075921

(0.070973)
0.589229
(0.020254)

0.589 (0)

DTLZ1 (6)
1.690367
(0.003587)

1.549649
(0.202423)

0.000 (1)

DTLZ2 (6)
0.973263

(0.008725)
1.655438

(0.003776)
0.000 (1)

DTLZ3 (6)
1.766545

(0.001449)
1.770941
(0.000163)

0.661 (0)

DTLZ4 (6)
0.986331

(0.006574)
1.572087
(0.006064)

0.000 (1)

DTLZ5 (6)
0.585905

(0.017193)
1.031885

(0.001188)
0.000 (1)

DTLZ6 (6)
0.708188

(0.043127)
1.631369
(0.002293)

0.000 (1)

DTLZ7 (6)
0.013435

(0.003121)
0.773352
(0.010180)

1.000 (0)

f
pbi

MOEA/D
IH

avi
SMS-EMOA

IH

P (H)

WFG1 (3)
0.910507

(0.016598)
1.205361
(0.024067)

0.000 (1)

WFG2 (3)
0.145574

(0.198499)
0.799503

(0.074819)
0.000 (1)

WFG3 (3)
0.499214

(0.025639)
0.636772
(0.003130)

0.000 (1)

WFG4 (3)
0.595609

(0.013100)
0.752357
(0.001500)

0.000 (1)

WFG5 (3)
0.471079

(0.010426)
0.557581

(0.001661)
0.000 (1)

WFG6 (3)
0.453757

(0.006661)
0.565928
(0.001409)

0.000 (1)

WFG7 (3)
0.494583

(0.056148)
0.748956
(0.003767)

0.000 (1)

WFG1 (4)
1.100204

(0.057651)
1.414339
(0.008604)

0.000 (1)

WFG2 (4)
0.007223

(0.031709)
0.300548
(0.254003)

0.000 (1)

WFG3 (4)
0.287483

(0.034365)
0.592232

(0.006450)
0.000 (1)

WFG4 (4)
0.652634

(0.025612)
1.030276
(0.003034)

0.000 (1)

WFG5 (4)
0.366984

(0.015366)
0.598550
(0.001842)

0.000 (1)

WFG6 (4)
0.268060

(0.015468)
0.610031

(0.006558)
0.000 (1)

WFG7 (4)
0.293433

(0.036496)
0.915375
(0.006581)

0.000 (1)

WFG1 (5)
1.206775

(0.062432)
1.547656

(0.006617)
0.000 (1)

WFG2 (5)
0.029223

(0.064926)
0.407945
(0.205793)

0.000 (1)

WFG3 (5)
0.191112

(0.031531)
0.576101
(0.022876)

0.000 (1)

WFG4 (5)
0.640835

(0.023757)
1.270178

(0.004494)
0.000 (1)

WFG5 (5)
0.238371

(0.013922)
0.655659
(0.002092)

0.000 (1)

WFG6 (5)
0.193513

(0.027379)
0.598269
(0.027623)

0.000 (1)

WFG7 (5)
0.218223

(0.014294)
1.032123
(0.012809)

0.000 (1)

WFG1 (6)
1.167832

(0.030511)
1.691179
(0.014593)

0.000 (1)

WFG2 (6)
0.003634

(0.018966)
0.487496

(0.254908)
0.000 (1)

WFG3 (6)
0.040186

(0.034593)
0.590424
(0.049438)

0.000 (1)

WFG4 (6)
0.591344

(0.028666)
1.492717
(0.007779)

0.000 (1)

WFG5 (6)
0.153001

(0.017135)
0.720380

(0.002684)
0.000 (1)

WFG6 (6)
0.152732

(0.038473)
0.637238
(0.050036)

0.000 (1)

WFG7 (6)
0.189978

(0.014303)
0.907848
(0.066396)

0.000 (1)

Table 10 Results obtained in the DTLZ and WFG test problems by MOEA/D and aviSMS-EMOA, using the hypervolume
indicator. We show average values over 30 independent runs. The values in parentheses correspond to the standard deviations.
The third column shows the results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity of the null
hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates
that the null hypothesis can be rejected at the 5% level.
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f
pbi

MOEA/D
IIGD

avi
SMS-EMOA

IIGD

P (H)

DTLZ1 (3) 0.0004 (0.000) 0.0004 (0.000) 0.945 (0)
DTLZ2 (3) 0.0009 (0.000) 0.0012 (0.000) 0.000 (1)
DTLZ3 (3) 0.0009 (0.000) 0.0038 (0.002) 0.000 (1)
DTLZ4 (3) 0.0009 (0.000) 0.0012 (0.000) 0.000 (1)
DTLZ5 (3) 0.0002 (0.000) 0.0001 (0.000) 0.000 (1)
DTLZ6 (3) 0.0007 (0.000) 0.0003 (0.000) 0.000 (1)
DTLZ7 (3) 0.0026 (0.003) 0.0024 (0.002) 0.000 (1)

f
pbi

MOEA/D
IIGD

avi
SMS-EMOA

IIGD

P (H)

WFG1 (3) 0.0066 (0.000) 0.0051 (0.000) 0.000 (1)
WFG2 (3) 0.0138 (0.000) 0.0124 (0.001) 0.000 (1)
WFG3 (3) 0.0056 (0.000) 0.0055 (0.000) 0.000 (1)
WFG4 (3) 0.0009 (0.000) 0.0007 (0.000) 0.000 (1)
WFG5 (3) 0.0022 (0.000) 0.0021 (0.000) 0.000 (1)
WFG6 (3) 0.0155 (0.000) 0.0151 (0.000) 0.000 (1)
WFG7 (3) 0.0038 (0.000) 0.0035 (0.000) 0.000 (1)

Table 11 Results obtained in the DTLZ and WFG test problems with three objective functions by MOEA/D and aviSMS-
EMOA, using the inverted generational distance indicator (IIGD). We show average values over 30 independent runs. The
values in parentheses correspond to the standard deviations. The third column shows the results of the statistical analysis
applied to our experiments using Wilcoxon’s rank sum. P is the probability of observing the given result (the null hypothesis
is true). Small values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the null hypothesis (“medians
are equal”) cannot be rejected at the 5% level. H = 1 indicates that the null hypothesis can be rejected at the 5% level.

f |P|
pbi

MOEA/D
IH

avi
SMS-EMOA

IH

P (H)

DTLZ2 (3) 300 0.7678(0.000) 0.7935 (0.000) 0.000 (1)
DTLZ2 (4) 350 0.9913(0.001) 1.1046 (0.001) 0.000 (1)
DTLZ2 (5) 400 1.2083(0.002) 1.4338 (0.001) 0.000 (1)

ISC(A,B) ISC(B,A)

0.000222 0.000667
0.000000 0.001143
0.000000 0.001583

pbi
MOEA/D

time

avi
SMS-EMOA

time

≈2.38 ≈2935.09
≈2.36 ≈4384.97
≈2.74 ≈4551.01

(a) (b) (c)

Table 12 Results obtained in the DTLZ2 test problem by MOEA/D and aviSMS-EMOA. |P| is the population size. In the case
of the hypervolume indicator (IH), we show average values over 30 independent runs. The values in parentheses correspond to
the standard deviations. Also, in the case of IH , we present the results of the statistical analysis applied to our experiments
using Wilcoxon’s rank sum. P is the probability of observing the given result (the null hypothesis is true). Small values of P
cast doubt on the validity of the null hypothesis. H = 1 indicates that the null hypothesis can be rejected at the 5% level. In
the case of the two set coverage indicator, all solutions found by our MOEA/D were merged in a set called A, considering all
the 30 independent runs, and all solutions found by the original aviSMS-EMOA are merged in a set called B. In the case of
running time (time), we present the time required by both MOEAs in seconds. Both algorithms were compiled using the GNU
C compiler and they were executed on a computer with a processor running at 2.66GHz and with 4GB in RAM.

f
100-samples

IH

1000-samples
IH

10000-samples
IH

100000-samples
IH

DTLZ2 (3) 0.7456 (0.002) 0.7549 (0.001) 0.7577 (0.000) 0.7581 (0.000)
DTLZ2 (4) 0.9670 (0.007) 1.0207 (0.003) 1.0405 (0.001) 1.0451 (0.000)
DTLZ2 (5) 1.0448 (0.000) 1.0448 (0.000) 1.0448 (0.000) 1.0448 (0.000)
DTLZ2 (6) 1.1124 (0.041) 1.4090 (0.019) 1.5153 (0.009) 1.5588 (0.002)
DTLZ2 (7) 1.1884 (0.074) 1.6036 (0.024) 1.7477 (0.007) 1.8043 (0.003)
DTLZ2 (8) 1.5072 (0.125) 1.8152 (0.043) 1.9893 (0.010) 2.0498 (0.004)
DTLZ2 (9) 2.0565 (0.063) 2.0905 (0.046) 2.2676 (0.009) 2.3135 (0.003)
DTLZ2 (10) 2.3874 (0.071) 2.3114 (0.074) 2.5323 (0.008) 2.5683 (0.003)

Table 13 Results obtained in the DTLZ2 test problem with 3, 4, 5, 6, 7, 8, 9 and 10 objective functions by aviSMS-EMOA
using 102, 103, 104 and 105 samples to approximate the contribution to IH . We show average values over 30 independent runs
using the hypervolume indicator IH . The values in parentheses correspond to the standard deviations.

f
100-samples

time
1000-samples

time
10000-samples

time
100000-samples

time

DTLZ2 (3) 82.0507 (5.654) 178.4597 (3.499) 969.8713 (15.051) 8904.6407 (104.433)
DTLZ2 (4) 84.6053 (3.655) 160.5430 (3.103) 792.2043 (10.598) 7464.5580 (127.088)
DTLZ2 (5) 86.7600 (3.023) 135.5130 (2.812) 528.9030 (8.302) 5135.6250 (88.684)
DTLZ2 (6) 88.7860 (2.877) 126.9493 (2.811) 402.0157 (4.699) 3546.9327 (83.094)
DTLZ2 (7) 93.7263 (3.195) 125.3957 (2.989) 367.8517 (3.811) 2914.5407 (66.569)
DTLZ2 (8) 95.9470 (1.954) 110.1653 (3.706) 374.0367 (4.304) 2812.7597 (43.800)
DTLZ2 (9) 98.7967 (3.043) 112.6773 (2.650) 391.5673 (3.303) 3146.0043 (42.011)
DTLZ2 (10) 100.9503 (3.005) 115.7223 (3.212) 414.8363 (4.425) 3311.5910 (37.305)

Table 14 Time required by aviSMS-EMOA for the DTLZ2 test problem with 3, 4, 5, 6, 7, 8, 9 and 10 objective functions,
using 102, 103, 104 and 105 samples to approximate the contribution to IH . s = seconds. aviSMS-EMOA was compiled using
the GNU C compiler and it was executed on a computer with a processor running at 2.66GHz and with 4GB in RAM.


