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Abstract

Design of experiments is a branch of statistics that has been employed in dif-

ferent areas of knowledge. A particular case of experimental designs is uniform

mixture design. A uniform mixture design method aims to spread points (mix-

tures) uniformly distributed in the experimental region. Each mixture should

meet the constraint that the sum of its components must be equal to one. In

this paper, we propose a new method to approximate uniform mixture designs

via evolutionary multi-objective optimization. For this task, we formulate three

M -objective optimization problems whose Pareto optimal fronts correspond to

a mixture design of M components (or dimensions). In order to obtain a uni-

form mixture design, we consider six well-known algorithms used in the area

of evolutionary multi-objective optimization to solve M -objective optimization

problems. Thus, a set of solutions approximates the entire Pareto front of each

M -objective problem, while it implicitly approximates a uniform mixture design.

We evaluate our proposed methodology by generating mixture designs in two,

three, and up to eight dimensions, and we compare the results obtained concern-

ing those produced by different methods available in the specialized literature.

Our results indicate that the proposed strategy is a promising alternative to
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approximate uniform mixture designs. Unlike most of the existing approaches,

it obtains mixture designs for an arbitrary number of points. Moreover, the

generated design points are properly distributed in the experimental region.

Keywords: Uniform mixture design, evolutionary multi-objective

optimization.

1. Introduction

Design of experiments is a well-established methodology widely applied to

experimental processes in the industry, process design, and science in general [1,

2, 3, 4, 5, 6, 7]. This approach has been found to be a powerful method to

identify active and unimportant effects in an experimental process. However,5

many challenges arise from a practical standpoint, which have encouraged the

development of different designs to meet practical needs. Mixture designs are

a particular case of experimental designs subject to certain constraints. In a

mixture, the independent components are proportions of different ingredients

of a blend, and therefore, the sum of its components must be one. When10

the mixture design is only subject to the constraint that the components’ sum

must be one, it is called standard mixture design. Examples of these methods

are the Simplex-Lattice design [8] and the Simplex-Centroid design [9]. When

the mixture design is subject to additional constraints, such as a maximum

and/or minimum value for each component, it is referred to as Extreme-Vertices15

design (or constrained mixture design) [10].

The main goal of the uniform mixture design methods is to scatter the design

points in the experimental region as uniformly as possible. Some authors have

focused their studies on mixture designs from the viewpoint of classical optimal

design [8, 9, 11, 3, 12]. This type of approaches aims to find an optimal distri-20

bution of points through an (M − 1)-dimensional simplex. However, as pointed

out by some authors [13, 14, 15, 6], optimal design has several disadvantages:

1. An optimal design tends to distribute most of the design points on or near

the experimental area’s boundary, leaving the interior mostly devoid of
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design points;25

2. An optimal design is not a robust design to the assumed model; in most

cases, the experimenter does not know the form of the model beforehand;

3. The high dimensionality of the mixtures makes it difficult for the existing

methodologies to obtain an optimal design.

In order to address these drawbacks, researchers have developed diverse mix-30

ture designs from different nature [6, 16, 17, 18]. In this paper, we propose a

new methodology for uniform mixture designs based on multi-objective evo-

lutionary optimization. To this end, we must answer two questions: i) what

multi-objective optimization problem should we solve? and ii) what evolution-

ary multi-objective algorithm should we use? In this research work, we formulate35

three M -objective problems whose Pareto optimal fronts correspond to a mix-

ture design of M components, i.e., the Pareto front shapes describe a regular

(M −1)-dimensional simplex. Each M -objective optimization problem is solved

using a multi-objective evolutionary algorithm. This way, a set of solutions ap-

proximates the entire Pareto front of each M -objective problem while a uniform40

mixture design is implicitly reached. In our experimental study, we identify the

M -objective problem formulation for which the evolutionary algorithm searches

for the best approximation to the entire Pareto front, i.e., the best approxi-

mation of a uniform mixture design. To validate our proposed approach, we

generate uniform mixture designs in two, three, and up to eight dimensions,45

and we compare our results with respect to those produced by different uniform

design methods available in the specialized literature. As we will see later on,

our proposed approach is a promising alternative to approximate uniform mix-

ture designs because it can create mixture designs for an arbitrary number of

points distributed adequately in the (M − 1)-dimensional simplex.50

The rest of the paper is organized as follows. Section 2 presents a review

of different methods for mixture design. In Section 3, we introduce some basic

concepts that will help to understand the rest of the paper. Section 4 introduces

our proposed methodology. An experimental study of our proposed approach
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is presented in Section 5. Finally, our conclusion and some possible paths for55

future research are drawn in Section 6.

2. Related Work

Uniform mixture design methods play an essential role in diverse areas of

knowledge [1, 2, 3, 6]. According to their conceptual basis, we classify uniform

mixture design approaches as follows.60

Methods employing geometric concepts. Scheffé [8] proposed the simplex-lattice

design (SLD) technique in 1958 1. Let M be the dimension of the mixture

and H the number of subdivisions for each dimension. SLD generates N =

(M+H−1
H

) points uniformly distributed on a hyperplane ({M − 1} unity simplex-

lattice). This means that N increases quickly with respect to the number of65

dimensions. Years later, Scheffé [9] proposed another method called simplex-

centroid design (SCD) which generates 2M − 1 distinct uniform points using

as centroid point (1/M,1/M, . . . ,1/M). SLD and SCD are not good options

for some applications, e.g., in chemical experiments, a component cannot be

zero. Since both techniques generate several points at the simplex boundary, it70

is necessary to use another distribution type. To overcome this disadvantage,

Cornell [20] proposed axial design (AD), which generates points on the simplex’s

inner region. For this, Cornell defines an axis as a line segment that joins a vertex

of the simplex with its centroid. Then, AD generates q points on the q axes.

Fang and Yang [21] proposed to keep the pattern of SLD and SCD and contract75

the boundary points towards the centroid of the simplex. Many works have

proposed different adaptations to the methods proposed by Scheffé to obtain

different distributions, such as D-optimal distribution, A-optimal distribution,

and I-optimal distribution. In [3], Chan described some of them. For example,

1In the Evolutionary Multi-objective Optimization (EMO) field, it is common to use the
method proposed by Das & Deniss [19] to generate a set of convex weights. This method and
Scheffe’s method are the same. The main difference is that Das & Deniss gave a tree-based
algorithm to compute the weighting coefficients.
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Kiefer [22] studied D-optimal designs for regression problems using SCD.80

Another disadvantage of SLD and SCD is the number of points that they

generate. For example, in the area of evolutionary multi-objective algorithms

(EMOAs), algorithms based on decomposition require a set of well-distributed

convex weights (i.e., a uniform mixture design). EMOAs work with populations,

and regularly the number of weights is equal to the population size. Since using85

a large population size requires a high computational cost, there are proposals to

decrease the number of points that are generated by the methods of Scheffé. For

example, Deb et al. [23] proposed the two-layered SLD in many-objective opti-

mization problems. Given H1 and H2 (H1 >H2), which are two relatively small

numbers of subdivisions for the so-called outside and inside layers, two-layered90

SLD generates two subsets of uniform mixtures. The inside layer associated

with H2 is scaled in the interior of the hyperplane. On the other hand, Jiang

and Yang [16] introduced the k-layer reference direction. This method parti-

tions the unit simplex into k sub-simplexes. The number of sub-simplexes is

equal to the number of dimensions in a multi-objective optimization problem,95

i.e., k =M .

Methods employing the minimization of discrepancy functions. In the special-

ized literature, it is possible to find several discrepancy indicators (or low dis-

crepancy functions) that have been employed to generate uniform designs in

different domains. Example of such discrepancy indicators are the centered L2-100

discrepancy (CD) [24], the wrap-around L2-discrepancy (WD) [25], and Mix-

ture Discrepancy (MD) [26]. Such indicators are optimized, and consequently,

a uniform design is approximated. Regarding the uniform mixture design, Fang

and Wang [27] proposed the contract uniform design method, which contracts

the boundary points towards the centroid of the simplex. Prescott [28], com-105

plemented this idea, employing the above method on a region of the simplex.

In particular, a uniform design can be projected into the (M − 1)-dimensional

simplex for obtaining a mixture design [13]. In this regard, several uniform

design approaches can be found in the specialized literature. Based on the
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good lattice point [29] method (a method introduced to approximate multi-110

ple integrals), several methods to construct uniform designs have been pro-

posed [30, 31, 32, 13, 33]. The main disadvantage of optimizing discrepancy

functions is the computational cost to compute them, which increases as the

number of design points increases. In this regard, Ma and Fang [34] suggested

the cutting method to generate a larger uniform design via partitions of a region.115

An important issue in this approach is that the cutting method’s performance

does not depend on a specific measure of uniformity. Based on Lee’s discrep-

ancy [35], Ning et al. [15] proposed an algorithm that can be applied to any

experimental design. Zapotecas et al. [36] employed transcendental numbers

instead of prime numbers in a low-discrepancy sequence to obtain mixture de-120

signs. On the other hand, the effect of different low-discrepancy sequences in

the construction of mixture designs was studied in [6].

Methods employing evolutionary computation. In the last few years, uniform

mixture designs have been addressed by evolutionary computation. These ap-

proaches employ stochastic optimization algorithms, such as genetic algorithms125

or particle swarm optimization, to optimize a measure of uniformity and gen-

erate uniform designs. Although this type of algorithms does not guarantee

an optimal solution (i.e., design), the practicality of these approaches makes

it possible to obtain an arbitrary number of points with a reasonable approx-

imation to the optimal design. In this regard, several authors have proposed130

different strategies based on evolutionary computation to construct near-optimal

experimental designs. For example, Borkowski [37] uses D−, A−, G− and IV −

optimality criteria, Heredia-Langner et al. [38, 39] work with D− and Q− opti-

mality criteria, and Park et al. [40] use G− optimality criteria. All of them use a

genetic algorithm. However, the mixture designs, in their original formulation,135

have been much less studied. Goldfarb et al. [41] used a genetic algorithm to

generate mixture-process experimental designs involving control and noise vari-

ables. The goal is to minimize the maximum scaled prediction variance over

the design space, i.e., they work with the G− optimality criteria. Limmun et
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al. [42] used a genetic algorithm to generate D-optimal designs for mixture ex-140

periments. D-optimality minimizes the generalized variance of the parameter

estimates for a pre-specified model. In [43], a genetic algorithm to generate

Ds-optimal designs for mixture experiments in a simplex region was proposed.

Ds-optimality is an extension of D− optimality, which focuses on a subset of

model parameters. Wong et at. [44] introduced a particle swarm optimization145

technique to find optimal mixture designs. They consider A−, D− and I− opti-

mal designs. Meneghini et al. [17] proposed a method based on a steady-state

evolutionary algorithm to evolve a set of weight vectors (i.e., a set of mixtures)

towards the desired distribution. The aim is to maximize the shortest distance

between vectors. Rodŕıguez et al. [18] employed a parallel tabu search to obtain150

a uniform set of weight vectors minimizing the L2-discrepancy. Recently, Blank

et al. [45] introduced a metric for defining well-spaced set of points on a unit

simplex (a uniform mixture design) and propose a number of viable methods for

generating such a set. The above approaches use an indicator of dispersion to

approximate uniform mixture designs. However, a multi-objective approach to155

approximate mixture designs has not been studied, and it is the motivation and

the focus of the work reported herein. In the following section, we introduce

some basic concepts to understand the rest of the work.

3. Basic Concepts

3.1. Mixture Design160

Experiments with mixtures have been very useful in different engineering

and scientific areas. In experiments with mixtures, a response is assumed to

depend on the proportions of the mixture components, not on the total amount

of the mixture. Commonly, there are some additional constraints imposed on

the components.165

Formally, the constraints of the proportions (xi, i = 1,2 . . . ,M) in a mixture
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design with M components (or M dimensions) are stated as:

M

∑
i=1

xi = 1, xi ≥ 0, for i = 1,2, . . . ,M. (1)

Therefore, the corresponding experimental region of M components forms a

regular (M − 1)-dimensional simplex.

Sometimes, besides the constraints stated in Equation (1), there are some

other additional constraints, such as the single component constraints (SCCs):

0 ≤ ai ≤ xi ≤ bi ≤ 1 for i = 1, . . . ,M

and multiple component constraints (MCCs):

Lv ≤
M

∑
i=1

Cvixi ≤ Uv, v = 1, . . . , V

where V is the number of MCCs and Cvi denotes the v-th constraint for the

i-th component in the mixture..

It should be noted that the unconstrained mixture experiment can be seen170

as a special type of SCCs experiment, by setting ai’s to all zeros and bi’s to all

ones. And SCCs experiment can be seen as MCCs by setting Cvis to special

values. Here, we focus our investigation on generating uniform mixture designs

satisfying the constraints of Equation (1) [15].

3.2. Multi-Objective Optimization175

A multi-objective optimization problem (MOP) can be stated2 as follows:

minimize: F(x) = (f1(x), . . . , fM(x))T (2)

s.t. x ∈ Ω

2Without loss of generality; we assume continuous minimization problems.
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where Ω ⊂ Rn defines the decision variable space and F is defined as the vector

of the objective functions where fi ∶ Rn → R is the function to be optimized. In

this work, we consider the box-constrained case, i.e., Ω =∏n
i=1[aj , bj]. Therefore,

each vector x = (x1, . . . , xn) ∈ Ω is such that ai ≤ xi ≤ bi for all i ∈ {1, . . . , n}.180

In multi-objective optimization, it is desirable to obtain a set of trade-off

solutions representing the best possible compromises among the objectives (i.e.,

solutions such that no objective can be improved without worsening another).

To understand the concept of optimality referred to in this paper, the following

definitions are provided [46].185

Definition 1. Let x,y ∈ Ω. We say that x dominates y (denoted by x ≺ y) if

and only if fi(x) ≤ fi(y), for i = 1,2, . . . ,M , and F(x) ≠ F(y).

Definition 2. Let x⋆ ∈ Ω. We say that x⋆ is a Pareto optimal solution, if there

is no other solution y ∈ Ω such that y ≺ x⋆.

Definition 3. The Pareto set (PS) is defined by:

PS = {x ∈ Ω ∣ x is a Pareto optimal solution}

Definition 4. The Pareto front (PF) is defined by:

PF = {F(x) ∣ x ∈ PS}

In multi-objective optimization, it is desirable to obtain as many (but dif-190

ferent) elements of the Pareto optimal set as possible, while maintaining a dis-

tribution of solutions as uniform as possible along the Pareto front.

3.3. Evolutionary Multi-objective Algorithms

The development of optimization techniques is the result of the need to

solve a specific real-world problem. Because of their flexibility and ease of use,195

evolutionary multi-objective algorithms (EMOAs) have become an alternative

to solve an MOP in its most general case. Several EMOAs of different nature
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have been developed over the years (see the comprehensive reviews reported

in [47, 48, 49]). EMOAs are normally classified into three main groups:

Pareto-based Approaches. Early evolutionary algorithms to solve MOPs straight-200

forwardly integrate the Pareto dominance relation to rank the population and

assess closeness to the Pareto optimal front. A suitable approximation of the

Pareto front has to fulfill convergence and diversity simultaneously. Therefore,

to distribute the solutions along the entire trade-off curve, Pareto dominance

must be used in cooperation with a second criterion. Some methods that have205

been proposed to distribute solutions along the Pareto front include: fitness

sharing and niching [50], clustering [51], crowding distance [52], among many

others. In the early 2000s, Pareto-based MOEAs became one of the most com-

monly used strategies. However, their use has decreased because of the difficulty

of properly spreading solutions and losing their discriminant property in high-210

dimensional objective spaces.

Decomposition-based Approaches. In the last decade, several evolutionary ap-

proaches have employed scalarizing functions, giving rise to the so-called EMOAs

based on decomposition. Decomposition-based approaches rely on solving a

number of scalarizing functions formulated by the same number of weight vec-215

tors. This strategy to solve MOPs has been useful to deal with complicated

test problems (see, for instance, [53, 54, 55, 56]). Although the use of this

principle has become a viable alternative to deal with multi-objective problems,

its performance depends on the weight vectors which have to be appropriately

distributed “a priori.”220

Indicator-based Approaches. Indicator-based EMOAs (IBEAs) employ perfor-

mance indicators in their environmental selection procedures. There exist sev-

eral indicators to assess the performance of EMOAs (see the comprehensive

review of performance indicators presented in [57, 58, 59]), which, in different

ways, evaluate convergence or diversity, or both of them at the same time. In225

particular, a relatively good PF representation of an MOP can be achieved
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by adopting the hypervolume indicator [60] or by using performance indicators

based on reference sets such as R2 [61], IGD [62], or ∆p [63].

IBEAs based on reference sets depend on a proper definition of the reference

set, which in most cases, is challenging to state before the search. In con-230

trast, IBEAs based on the hypervolume only require a single reference vector to

compute the hypervolume indicator. However, these approaches are limited by

the high computational cost required for calculating the hypervolume indicator

values, which increases exponentially with the number of objectives. Nonethe-

less, the advantage of using IBEAs based on hypervolume is that they can deal235

with different Pareto front geometries, including convex, concave, mixed, dis-

connected, and degenerated shapes. In particular, hypervolume-based EMOAs

can obtain a uniform set of points in linear Pareto fronts [64], motivating its

use to generate uniform mixture designs.

4. Our Proposed Approach240

In this work, we formulated threeM -objective optimization problems (MOPs).

These MOPs have linear Pareto fronts, and their shapes describe a regular

(M − 1)-dimensional simplex. Each solution in the Pareto front is a mixture,

i.e., all components are nonnegative, and their sum is equal to one. Therefore,

to produce a uniform mixture design, we need to solve any of the formulated245

MOPs.

Our methodology to approximate uniform mixture designs is called “Mix-

tures via Evolutionary Multi-objective Optimization (MEMO3).”

To solve these MOPs, we use two EMOAs based on Pareto dominance, one

based on decomposition and two based on performance indicators. As we men-250

tion before, the EMOAs have two aims: i) To obtain as many solutions of the

3The source code of this proposal, using the versions of iSMS-EMOA, is available at
https://drive.google.com/file/d/1LD7g2jWtLqAGWXdH1MiL3vFumGmEFa53/view?usp=sharing.
In the case of NSGA-II, SPEA2, VaEA, and 1by1EA, we use the Evolutionary Multi-
objective Optimization platform (PlatEMO) available at https://github.com/BIMK/PlatEMO,
and we incorporate the three MOPs defined in this work which are available at
https://drive.google.com/file/d/1J1g3JvEpZZMzMAXR1Gh8dPmw7kOymVPj/view?usp=sharing
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Pareto optimal set as possible and ii) to get a distribution of solutions as uni-

form as possible along the Pareto front. For the three MOPs proposed here,

any decision space solution is indeed on the Pareto front. Therefore, we are

evaluating the second aim.255

It is well-known that EMOAs based on Pareto dominance have difficulties

when the number of objective functions increases because the number of non-

dominated solutions increases quickly. Additionally, they lose their discriminant

property to converge to the Pareto front. However, in this case, we are only

interested in evaluating the distribution technique of each EMOA.260

Regarding EMOAs based on decomposition, we know that they need a set

of well-distributed convex weights, which is the same to generate a uniform

mixture design. However, the chosen EMOA adaptatively adjusts the weight

vectors. Below, we list the EMOAs that were selected for our study:

1. NSGA-II [52] which is based on Pareto dominance and a concept of crowd-265

ing distance;

2. SPEA2 [65] which is based on Pareto dominance and a clustering technique

that preserves solutions in the extremes of the Pareto front;

3. VaEA [66], which is similar to decomposition algorithms, but in this case,

the weight vectors are adaptively adjusted with respect to the distribution270

of the current population.

4. 1by1EA [67], which selects solutions one by one: first, only one solution

with the best value on the convergence indicator is selected, and after

that, solutions close to the one selected in the first step are de-emphasized

according to the distribution indicator;275

5. iSMS-EMOA [68], which is based on the hypervolume indicator (IHv).

The main difference concerning other EMOAs based on IHv is that iSMS-

EMOA only computes three contributions to IHv per iteration. The orig-

inal SMS-EMOA needs to compute N contributions to IHv per iteration,

where N is the population size.280

6. Finally, we use a new version of iSMS-EMOA. The difference is in the

crossover and mutation operators. The original version uses SBX and
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PBM. The new version uses the Differential Evolution operators (called

in this paper iSMS-EMOA-DE).

The authors of VaEA, 1by1EA, and iSMS-EMOA mention that these EMOAs285

are designed to solve many-objective optimization problems, i.e., MOPs with

more than three objective functions. We chose two hypervolume-based EMOAs

because it has been shown that if the reference point is setting properly, the

optimal distribution of the hypervolume indicator is uniform [69, 70]. Another

interesting indicator is IGD+ because it is similar to the hypervolume indicator290

from the viewpoint of optimal distributions of solutions [71]. One advantage

of IGD+ is its low computational cost. However, in our work, we can not use

IGD+ because it needs a reference set and, in this case, is the set we are looking

for (the uniform mixture design).

4.1. Multi-objective optimization problems295

In this section, we present the multi-objective problems formulated to gen-

erate uniform mixture designs.

MOP1. The first MOP formulated in this paper consists in minimizing F(x) =

(f1(x), . . . , fM(x))T such that:

f1(x) =
M−1

∏
j=1

xj

fi=2∶M−1(x) = (1 − xM−i+1) ×
M−i
∏
j=1

xj (3)

fM(x) = 1 − x1

where x ∈ [0,1]M−1.300

The objective vector F(x) is a mixture for any decision variable x ∈ [0,1]M−1

(see the proof in Appendix A from the Supplementary Material). Furthermore,

any decision vector x is a Pareto optimal solution of MOP1 (see the proof in

Appendix D from the Supplementary Material).

Fig. 1 shows the Pareto fronts generated with 100, 210, and 300 random305

solutions for the MOP1 with three objective functions. It is worth noticing
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that by generating random solutions, i.e., xj = rand[0,1] for j = 1, . . . ,M − 1,

and evaluating them in MOP1, most of the objective vectors are biased towards

the top of the Pareto front. This bias causes that an EMOA requires more

iterations to obtain well-distributed points along the Pareto front. To deal310

with this bias and considering the formulation of the objective functions, we

generate the initial random population in the following way: xj ∈ [0.5,1.0] with

a probability of 0.7 and xj ∈ [0,0.5] with a probability of 0.3. Fig. 2 shows that

considering this change, it is possible to generate more solutions on the bottom

of the Pareto front.315

As can be seen, the dimensionality of the decision variable space is M − 1;

this reduces the search space to find scatter points along the Pareto front of

MOP1.

(a) (b) (c)

Figure 1: MOP1 with three objective functions. We map the Pareto fronts into the two-
dimensional space. In (a), (b) and (c), we use 100, 210 and 300 random solutions, respectively.

(a) (b) (c)

Figure 2: MOP1 with three objective functions. We map the Pareto fronts into the two-
dimensional space. In (a), (b) and (c), we use 100, 210 and 300 random solutions, respectively.
To generate random solutions, we use xj ∈ [0.5,1.0] with a probability of 0.7 and xj ∈ [0,0.5]
with a probability of 0.3.
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MOP2. The second MOP formulated in this paper consists in minimizing

F(x) = (f1(x), . . . , fM(x))T such that:320

f1(x) = x1

fi=2∶M−1(x) = xi − xi−1 (4)

fM(x) = 1 − xM−1

where x ∈ [0,1]M−1 such that x1 ≤ x2 ≤ ⋯ ≤ xM−1.

The objective vector F(x) is a mixture for any decision variable x ∈ [0,1]M−1

(see the proof in Appendix B from the Supplementary Material). Furthermore,

any decision vector x is a Pareto optimal solution of MOP2 (see the proof in

Appendix D from the Supplementary Material).325

Fig. 3 shows the Pareto fronts generated with 100, 210, and 300 random

solutions for this MOP with three objective functions. Using this formulation,

random points are not biased to some regions of the Pareto front. Analogous

to the previous problem, the dimensionality of the decision variable space is

M −1. However, this formulation considers that the components of the decision330

variables are sorted.

(a) (b) (c)

Figure 3: MOP2 with three objective functions. We map the Pareto fronts into the two-
dimensional space. In (a), (b) and (c), we use 100, 210 and 300 random solutions, respectively.

MOP3. The last MOP formulated in this paper consists in minimizing F(x) =

(f1(x), . . . , fM(x))T such that:

fi=1∶M(x) = ∣xi∣
∣∣x∣∣1

(5)
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where x ∈ [0,1]M such that x ≠ 0.

The objective vector F(x) is a mixture for any decision variable x ∈ [0,1]M335

(see the proof in Appendix C from the Supplementary Material). On the other

hand, any decision vector x is a Pareto optimal solution of MOP3 (see the proof

in Appendix D from the supplementary material).

Fig. 4 shows the Pareto fronts generated with 100, 210, and 300 random

solutions for MOP3 with three objective functions. It is worth noticing that by340

generating random solutions, i.e., xj = rand[0,1] for j = 1, . . . ,M , and evaluat-

ing them in MOP3, most of the objective vectors are biased towards the center

of the Pareto front. Since the solutions cover the entire center, we hypothesize

that the EMOAs can generate solutions in all the Pareto front extremes. Also,

note that the dimensionality of the decision variable space is M ; this increases345

the search space to find spread points along the Pareto front of MOP3.

(a) (b) (c)

Figure 4: MOP3 with three objective functions. We map the Pareto fronts into the two-
dimensional space. In (a), (b) and (c), we use 100, 210 and 300 random solutions, respectively.

5. Experimental Results

5.1. Performance assessment

The purpose of our proposed approach is to obtain a mixture design with de-

sign points as uniform as possible. In the above section, we saw that the Pareto350

front of the formulated MOPs is a set of nondominated points that describe a

mixture design, i.e., each point in the Pareto front is a mixture. Therefore, uni-

formity in the Pareto front implies uniformity in the mixture design. Thus, we

can use a performance indicator from the evolutionary optimization community
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to assess the distribution of points in a mixture design, such as inverted genera-355

tional distance (IGD) [72], ∆p-indicator [63], hypervolume indicator (IHv) [60],

Schott’s spacing (IS) [73] and Deb’s spread indicator [74].

The first three performance indicators do not guarantee a correct assessment

of the distribution [75, 76]. For example, the IGD and ∆p-indicator need a ref-

erence Pareto front that has to be previously defined. Therefore, if the reference360

Pareto front does not have well-distributed points, the measure of distribution

becomes wrong. Paradoxically, IGD and ∆p can not be used in this work as

they need a reference Pareto front, i.e., the set that defines the mixture design,

which is precisely the set that we are looking for. On the other hand, IHv bene-

fits some regions depending on the geometry of the approximated Pareto front.365

In a convex Pareto front, IHv benefits sets with more solutions on inner regions.

Conversely, in a concave Pareto front, IHv benefits sets with more solutions close

to the extreme portions of the Pareto curve. However, in linear Pareto fronts

(such as the Pareto fronts of the problems formulated in Section 4.1), this does

not happen. In [69, 70], the authors study the reference point we should use370

to obtain a fair comparison when employing the hypervolume indicator. Their

experiments show that in linear Pareto fronts, the optimal distribution regard-

ing hypervolume is uniform. IS and spread indicators only assess distribution,

and it is commonly used with another indicator that assesses convergence to

the Pareto front. In the proposed MOPs, all solutions are in the Pareto front.375

Therefore, we only need to measure the distribution. In this work, we assess the

mixture design distribution by using IHv and IS . We do not use Deb’s spacing

indicator because its definition contemplates “two consecutive points,” and it is

not clear in the case of more than two dimensions.

5.1.1. Hypervolume indicator380

It was proposed by Zitzler and Thiele [60]. IHv is defined as the size of the

space covered by each solution z in the PF approximation A. If L denotes the
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Lebesgue measure, IHv is defined as:

IHv(A,yref) = L(⋃
z∈A

{y ∣ z < y < yref}) (6)

where yref ∈ RM denotes a reference point that should be dominated by all

solutions in A. Bigger values for IHv are better.

Ishibuchi et al. [69, 70] studied how to specify a reference point for a fair

comparison. They proposed to set the reference point with r ≥ 1 + 1
(n−1) in

normalized linear Pareto fronts with two objective functions, where n is the385

number of solutions. They proposed setting the reference point with r = 1 + 1
H

in normalized linear Pareto fronts with three or more objective functions. In the

previous equation, H is the number of divisions in each dimension. With these

reference points, the maximum hypervolume corresponds to a uniform distribu-

tion that includes extreme of the Pareto front. For this work, we calculate the390

above equations. We consider n as the number of weights and H = H2 for the

two-layered SLD. See Table 1.

5.1.2. Spacing indicator

Schott proposed IS [73] and it is defined as follows:

IS(A) =

¿
ÁÁÀ 1

∣A∣ − 1

∣A∣
∑
i=1

(d − di)
2

where di = minj,j≠i∑k ∣f ik − f
j
k ∣ and d = 1

∣A∣ ∑
∣A∣
i=1 di, k = 1, . . . ,M (where M is the

number of objective functions), and i, j = 1,⋯∣A∣. When IS = 0 all the solutions395

in A are uniformly spread. It is important to note that IS does not measure

if there are points along the entire Pareto front. If all points are uniformly

distributed in a zone of the Pareto front, the value of this indicator will be zero.

5.2. Parameter settings

The chosen EMOAs need the following parameters: population size, number400

of generations, and genetic operators’ parameters. We state the number of
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Table 1: Configurations for the simplex-lattice design and the two-layered simplex-lattice
design. We consider the inside layer (H2) for six or more objective functions to calculate the
reference point.

Dimension Number of Configuration Number of Reference point
layers weights (value of each

component)

2 1 - 200 1 + 1
199

= 1.005
3 1 H = 19 210 1 + 1

19
= 1.052

4 1 H = 9 220 1 + 1
9
= 1.111

5 1 H = 6 210 1 + 1
6
= 1.166

6 2 H1 = 4, H2 = 3 182 1 + 1
3
= 1.333

7 2 H1 = 4, H2 = 2 238 1 + 1
2
= 1.5

8 2 H1 = 3, H2 = 2 156 1 + 1
2
= 1.5

points in the mixture design (population size in the EMOA) according to the

simplex-lattice design (SLD) and the two-layered SLD. It is worth mentioning

that our proposal can generate an arbitrary number of mixtures. However, for

a fair comparison between two mixture designs, the number of points in each405

one must be equal. As we mentioned in Section 2, the two-layered SLD uses

the SLD to generate an outside layer and an inside layer. See Figure 5. Table 1

shows the configurations used in this work for SLD and two-layered SLD.

H2 = 1

H1 = 2

Figure 5: Two-layered simplex-lattice design for three dimensions. The outside layer
is stated by H1 = 2 (generating six points in the uniform mixture design), while the inside
layer is setting by H2 = 1 (generating three points in the uniform mixture design).

SPEA2, VaEA, 1by1EA, and the original iSMS-EMOA use the genetic op-

erators of NSGA-II to create new individuals (SBX and PBM), and we use the410

values suggested in [52]. Only iSMS-EMOA-DE uses the genetic operators of

DE. The number of generations and the parameters for DE were set experimen-

tally. Concerning versions of iSMS-EMOA, we calculate the exact contribution

19



Table 2: Used parameters. M is the number of objective functions, w is the number of points
in the uniform mixture design (population size), Gmax is the number of generations, pc and
ηc are parameters required by the crossover operator of NSGA-II, pm and ηm are parameters
required by the mutation operator of NSGA-II, n is the number of decision variables, and F
and pc are parameters for the mutation and crossover operators of DE.

SBX and PBM DE
M w Gmax samples pc ηc pm ηm F pc

2 200 500 - 0.9 15 1/n 20 1.5 0.5
3 210 500 - 0.9 15 1/n 20 1.5 0.5
4 220 500 - 0.9 15 1/n 20 1.5 0.5
5 210 500 - 0.9 15 1/n 20 1.5 0.5
6 182 500 10000 0.9 15 1/n 20 1.5 0.5
7 238 500 10000 0.9 15 1/n 20 1.5 0.5
8 156 500 10000 0.9 15 1/n 20 1.5 0.5

to IHv for MOPs with up to five objective functions, and we approximate the

contribution for MOPs with six or more objective functions. For the hypervol-415

ume contribution approximation, we employ the technique proposed by Bring-

mann and Friedrich in [77], which needs a set of sampling solutions. Therefore,

we need to set the number of samples used for the hypervolume contribution

approximation. Table 2 summarizes all parameters used in this work. The ex-

periments were conducted on a personal computer with a 3.2GHZ CPU and420

32GB in RAM.

5.3. Performance comparison of different Evolutionary Multi-Objective Algo-

rithms

5.3.1. MOP1

Table 3 shows the results obtained by the adopted EMOAs in MOP1 re-425

garding IHv. We elaborated a statistical analysis using Wilcoxon’s rank-sum to

determine if an EMOA is statistically better than another one (the null hypoth-

esis “medians are equal” can be rejected at the 5% level, H = 1). Regarding

results, the best algorithms are iSMS-EMOA, iSMS-EMOA-DE, and SPEA2.

iSMS-EMOA occupies the sixth place in 6 dimensions; the second in 5 and 7 di-430

mensions; the first in 3, 4, and 8 dimensions; and in 2 dimensions, iSMS-EMOA

and iSMS-EMOA-DE have the same behavior. iSMS-EMOA-DE occupies the

fifth place in 7 dimensions; the fourth in 8 dimensions; the second in 3 and 4
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dimensions; and the first place 5, and 6 dimensions. Finally, SPEA2 occupies

the fifth place in 8 dimensions; the third in 2, 3, 4, and 5 dimensions; the sec-435

ond in 6 dimensions; and the first in 7 dimensions. VaEA is competitive in 6, 7

(third place), and 8 (second place) dimensions. And, 1by1EA is competitive in

8 dimensions (third place).

Table 4 shows the results obtained by the adopted EMOAs in MOP1 regard-

ing IS . Also, with this indicator, the best algorithms are SPEA2, iSMS-EMOA-440

DE, and iSMS-EMOA. In 2 and 4 dimensions, iSMS-EMOA and iSMS-EMOA-

DE have similar behavior (first place). While in 5 dimensions, SPEA2 and

iSMS-EMOA-DE have similar behavior (first place). SPEA2 is third place in 2,

3, and 4 dimensions; and first in 5, 6, 7, and 8 dimensions. iSMS-EMOA-DE is

second place in 3, 6, 7, and 8 dimensions; and first in 2, 4, and 5 dimensions.445

Finally, iSMS-EMOA is fourth place in 7 dimensions; third place in 5, 6, and

8 dimensions; and first in 2, 3, and 4 dimensions. VaEA is competitive in 7

dimensions (third place).

5.3.2. MOP2

Table 5 shows the results obtained by the adopted EMOAs in MOP2 re-450

garding IHv. We elaborated a statistical analysis using Wilcoxon’s rank-sum

to determine if an EMOA is statistically better than another one (the null

hypothesis “medians are equal” can be rejected at the 5% level, H = 1). Ac-

cording to the results, the best algorithms are iSMS-EMOA, iSMS-EMOA-DE,

and SPEA2. In 2 dimensions, iSMS-EMOA and iSMS-EMOA-DE have similar455

behavior. iSMS-EMOA occupies the fifth place in 6 dimensions; the second in

7 dimensions; and the first in 2, 3, 4, 5, and 8 dimensions. iSMS-EMOA-DE

occupies the sixth place in 7 and 8 dimensions; the third in 5 dimensions; the

second in 3 and 4 dimensions; and the first in 2 and 6 dimensions. Finally,

SPEA2 occupies the third place in 2, 3, 4, 6, and 8 dimensions; the second in460

5 dimensions; and the first in 7 dimensions. VaEA is competitive in 6 and 8

dimensions (second place). And, 1by1EA is competitive in 7 dimensions (third

place).
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Table 6 shows the results obtained by the adopted EMOAs in the MOP2

regarding IS . SPEA2, iSMS-EMOA-DE, and iSMS-EMOA are the best algo-465

rithms. iSMS-EMOA and iSMS-EMOA-DE have similar behavior in 2, 3, 4 and

5 dimensions. SPEA2 occupies the third place in 2 and 3 dimensions; and the

first in 4, 5, 6, 7, and 8 dimensions. iSMS-EMOA-DE occupies the second place

in 4, 5, 6, 7 and 8 dimensions; and the first in 2 and 3 dimensions. Finally,

iSMS-EMOA occupies the fourth place in 7 and 8 dimensions; the third in 6 di-470

mensions; the second in 4 and 5 dimensions; and the first in 2 and 3 dimensions.

VaEA is competitive in 7 dimensions (third place).

5.3.3. MOP3

Table 7 shows the results obtained by the adopted EMOAs in MOP3 re-

garding IHv. We elaborated a statistical analysis using Wilcoxon’s rank-sum to475

determine if an EMOA is statistically better than another one (the null hypoth-

esis “medians are equal” can be rejected at the 5% level, H = 1). Regarding

results, NSGA-II and VaEA have similar behavior in 7 dimensions, and iSMS-

EMOA and VaEA in 8 dimensions. The three best algorithms are iSMS-EMOA,

iSMS-EMOA-DE, and SPEA2. iSMS-EMOA occupies the fifth place in 6 di-480

mensions; the third in 7 dimensions; and the first place in 2, 3, 4, 5, and 8

dimensions. iSMS-EMOA-DE occupies the sixth place in 7 and 8 dimensions;

and the second in 2, 3, 4, 5, and 6 dimensions. Finally, SPEA2 occupies the

fifth place in 7 and 8 dimensions; the third in 2, 3, 4, and 5 dimensions; and

the first in 6 dimensions. VaEA is competitive in 6 (third place), 7 (first place),485

and 8 (first place) dimensions.

Table 8 shows the results obtained by the adopted EMOAs in MOP3 re-

garding IS . iSMS-EMOA and iSMS-EMOA-DE have similar behavior in 4 di-

mensions, and iSMS-EMOA-DE and SPEA2 in 5 dimensions, Again, SPEA2,

iSMS-EMOA-DE, and iSMS-EMOA are the three best algorithms. SPEA2 oc-490

cupies the third place in 2, 3, and 4; and the first in 5, 6, 7, and 8 dimensions.

iSMS-EMOA-DE occupies the second place in 2, 6, 7, and 8 dimensions; and

the first in 3, 4 and 5 dimensions. Finally, iSMS-EMOA occupies the fourth

24
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place in 7 dimensions; the third in 6, and 8 dimensions; the second in 3 and

5 dimensions; and the first in 2 and 4 dimensions. VaEA is competitive in 7495

dimensions (third place).

In conclusion, for the three proposed MOPs, the best EMOAs are SPEA2,

iSMS-EMOA-DE, and iSMS-EMOA. Therefore, we can say that the distribu-

tions techniques based on IHv or clustering are a good option to obtain a set of

Pareto points uniformly distributed in linear Pareto fronts. If we consider IHv,500

iSMS-EMOA and iSMS-EMOA-DE are better than SPEA2. If we consider IS ,

SPEA2 is better than the versions of iSMS-EMOA. Since IS does not measure

spread, we can consider that, in general, IHv is a fairer indicator. It is interest-

ing to observe that VaEA tends to be a good option when increasing the number

of objective functions. In the following comparisons, we only use iSMS-EMOA,505

iSMS-EMOA-DE, and SPEA2.

5.3.4. Difficulties in solving the formulated MOPs

This section aims to identify the MOP that is easiest to solve by iSMS-

EMOA, iSMS-EMOA-DE, and SPEA2. In our comparative study, we used IHv

and elaborated a statistical analysis using Wilcoxon’s rank-sum to determine510

if an MOP is statistically easier to solve than another one (the null hypothesis

“medians are equal” can be rejected at the 5% level, H = 1). This same analysis

was also used to determine if a problem has a similar difficulty when solved

by different EMOAs (the null hypothesis cannot be rejected at the 5% level,

H = 0). This statistical test was applied to compare the performance of the515

EMOA, solving two different MOPs. Table 9 shows the results obtained.

For SPEA2, the degree of difficulty (from low to high) is MOP3, MOP1,

and MOP2 because it obtained the best results for 2, 3, 4, 6, and 8 dimensions

when solving MOP3, it obtained the best result for 5 and 7 dimensions when

solving MOP1, and it obtained the best result for two dimensions when solving520

MOP2. Similarly, with iSMS-EMOA, it obtained the best result with MOP3

in 3, 4, 6, 7, and 8 dimensions, it obtained the best result with MOP1 in 3,

4, and 8 dimensions, and it obtained the best result with MOP2 in 2 and 5
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dimensions. Finally, iSMS-EMOA-DE obtained the best results with MOP1 in

all dimensions, with MOP3 in 4, 5, 6, 7, and 8 dimensions. When dealing with525

MOP2, it only obtained the best results for two dimensions. For this reason,

in the following sections, we use SPEA2 and iSMS-EMOA with MOP3 and

iSMS-EMOA-DE with MOP1.

5.4. Performance comparison of different uniform mixture design techniques

Now, we compare the results obtained by iSMS-EMOA, iSMS-EMOA-DE,530

and SPEA2 regarding four techniques for uniform mixture design:

1. RANDOM: We generate a set of uniform random points in the range [0,1],

and we evaluate them in the MOP1. We use MOP1 because in Section 4.1,

we saw that it generates solutions better distributed than those generated

by MOP3.535

2. Simplex-lattice design [8]: We use this technique for two, three, four, and

five dimensions. For more than five dimensions, this technique generates

a huge number of design points being a disadvantage from a practical

viewpoint in some real-life applications.

3. Two-layered SLD [23]: This technique addresses the disadvantage of SLD.540

Therefore, it is possible to generate a small number of mixtures. We use

this technique for six, seven, and eight dimensions.

4. Low-discrepancy-sequence-based mixture design [6]: This method is based

on the Sobol sequence, which is able to generate an arbitrary number of

design points in arbitrary dimensionality.545

The motivation to choose these methods is that we identify two main disad-

vantages in the current methods to generate uniform mixture designs:

1. Methods employing geometric concepts, like simplex-lattice design and

two-layered SLD, achieve a set of well-distributed mixtures. Even, they

can obtain the optimal distribution. However, they cannot generate an550

arbitrary number of points, and
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Table 9: Obtained results with the three proposed MOPs regarding IHv . M is the dimen-
sionality of the uniform mixture design (number of objective functions), and C is the pair of
MOPs considered for the statistical analysis. We show average values over 30 independent
runs. The values in parentheses correspond to the standard deviations. P (H) shows the
statistical analysis results applied to our experiments using Wilcoxon’s rank-sum. P is the
probability of observing that the null hypothesis “medians are equal” is true. H = 1 indicates
that the null hypothesis can be rejected at the 5% level. We used three different shades of blue
to highlight the results. The strongest tone corresponds to the best result, the intermediate
tone is used for the second-best result, and the light tone is used for the third-best result.
M MOP SPEA2 C P (H) iSMS-EMOA P (H) iSMS-EMOA-DE P (H)

2
1

0.507387
(0.000012) 1,2 0.190(0)

0.507495
(0.000006) 0.017(1)

0.507496
(0.000005) 0.229(0)

2
0.507391
(0.000011) 2,3 0.061(0)

0.507498
(0.000005) 0.001(1)

0.507497
(0.000003) 0.000(1)

3
0.507396
(0.000009) 1,3 0.003(1)

0.507492
(0.000007) 0.106(0)

0.507484
(0.000007) 0.000(1)

3
1

0.969081
(0.000208) 1,2 0.000(1)

0.970900
(0.000043) 0.061(0)

0.970856
(0.000034) 0.000(1)

2
0.968625
(0.000260) 2,3 0.000(1)

0.970881
(0.000031) 0.000(1)

0.970789
(0.000031) 0.000(1)

3
0.969313
(0.000133) 1,3 0.000(1)

0.970919
(0.000041) 0.214(0)

0.970828
(0.000027) 0.003(1)

4
1

1.447046
(0.000253) 1,2 0.000(1)

1.449710
(0.000026) 0.000(1)

1.449591
(0.000023) 0.000(1)

2
1.445380

(0.000489)) 2,3 0.000(1)
1.449629
(0.000026) 0.000(1)

1.449434
(0.000029 0.000(1)

3
1.447499
(0.000202) 1,3 0.000(1)

1.449714
(0.000026) 0.515(0)

1.449598
(0.000026) 0.383(0)

5
1

2.122464
(0.000281) 1,2 0.000(1)

2.124067
(0.003345) 0.000(1)

2.124331
(0.001088) 0.000(1)

2
2.118627
(0.010444) 2,3 0.000(1)

2.124549
(0.000039) 0.000(1)

2.117120
(0.012947) 0.000(1)

3
2.121960
(0.004677) 1,3 0.000(1)

2.124715
(0.000025) 0.702(0)

2.124560
(0.000254) 0.299(0)

6
1

5.592334
(0.006189) 1,2 0.000(1)

5.556215
(0.089000) 0.000(1)

5.594364
(0.002516) 0.000(1)

2
5.579036
(0.065711) 2,3 0.000(1)

5.564826
(0.078838) 0.000(1)

5.585507
(0.040869) 0.000(1)

3
5.594390
(0.000132) 1,3 0.000(1)

5.583881
(0.047038) 0.011(1)

5.592879
(0.008800) 0.865(0)

7
1

17.078234
(0.003480) 1,2 0.000(1)

17.076830
(0.000280) 0.000(1)

17.072856
(0.019952) 0.000(1)

2
17.067971
(0.040876) 2,3 0.000(1)

17.051342
(0.069815) 0.000(1)

16.883273
(0.515820) 0.000(1)

3
17.045241
(0.150904) 1,3 0.000(1)

17.055157
(0.118186) 0.002(1)

17.044591
(0.180409) 0.137(0)

8
1

25.570263
(0.225698) 1,2 0.000(1)

25.613044
(0.043696) 0.000(1)

25.585636
(0.141989) 0.004(1)

2
25.573655
(0.159507) 2,3 0.000(1)

25.618364
(0.000545) 0.000(1)

25.419374
(0.484984) 0.007(1)

3
25.606387
(0.092610) 1,3 0.001(1)

25.621229
(0.000487) 0.438(0)

25.428312
(0.560060) 0.853(0)
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2. Methods based on discrepancy functions can generate an arbitrary number

of points. However, they cannot achieve the optimal distribution.

Therefore, our proposal aims to obtain a mixture design with an arbitrary

number of points well-distributed. For this reason, it is important to compare555

our proposal against these two approaches. Our aims are:

i) The distribution obtained in the mixture designs should be competitive

regarding SLD and two-layered SLD, and

ii) The distribution obtained in the mixture designs should outperform the

distribution obtained by methods based on discrepancy functions.560

Regarding IHv, Table 10 shows that our proposal using iSMS-EMOA and

MOP3 outperformed the other approaches in four (of seven) cases (3, 4, 5, and

8 dimensions). For six dimensions, SPEA2 outperformed the other approaches.

Only, in 2 and 7 dimensions, SLD was able to overcome our proposal. Moreover,

if we consider the best run, iSMS-EMOA using MOP3 and iSMS-EMOA-DE565

using MOP1 outperformed the other techniques in six (of seven) cases.

5.5. Parallel-Coordinates graphs of the best distributions

In Fig. 6 and Fig. 7, we plot the best distributions of the uniform mix-

ture designs obtained by SLD, SPEA2, iSMS-EMOA, and iSMS-EMOA-DE.

Fig. 6(a) shows that in the two-dimensional case, these four techniques obtained570

well-distributed mixture designs. We corroborate this with their corresponding

Parallel-Coordinates graphs. In the three-dimensional case, see Fig. 6(b), we can

see that the distribution accomplished by the versions of iSMS-EMOA is simi-

lar to that obtained by SLD. This can show that maximizing the hypervolume

indicator in linear Pareto fronts (at least for two and three dimensions) implies575

obtaining a uniform distribution of Pareto points. The Parallel-Coordinates

graphs show that SPEA2, iSMS-EMOA, and iSMS-EMOA-DE cover a more

significant part of the design space for four dimensions or more. This is prob-

ably because the design space grows quickly, and thus, SLD leaves huge gaps

between solutions.580

32



Table 10: Results obtained by the six different techniques for generating uniform mixture
designs regarding IHv . M is the dimensionality of the uniform mixture design (number of
objective functions), and w is the number of points in the uniform mixture design (population
size). For the random technique and our proposals (iSMS-EMOA and iSMS-EMOA-DE), we
show average values over 30 independent runs. The values in parentheses correspond to the
standard deviations. Also, we show the worst and the best value found in the 30 independent
runs. SLD and SOBOL are deterministic techniques. Therefore, they found a unique uniform
mixture design.

M w RANDOM SLD
two-layer

SLD
SOBOL

SPEA2
MOP3

iSMS-EMOA
MOP3

iSMS-EMOA-DE
MOP1

2 200

0.505064
(0.000304)

worst
0.504484

best
0.505594

0.507512 - 0.507202

0.507396
(0.000010)

worst
0.507380

best
0.507417

0.507492
(0.000007)

worst
0.507480

best
0.507503

0.507496
(0.000005)

worst
0.507486

best
0.507506

3 210

0.948537
(0.003994)

worst
0.940189

best
0.957068

0.970347 - 0.968598

0.969313
(0.000136)

worst
0.968978

best
0.969550

0.970919
(0.000042)

worst
0.970848

best
0.971028

0.970856
(0.000034)

worst
0.970800

best
0.970948

4 220

1.404639
(0.004164)

worst
1.396886

best
1.412313

1.448103 - 1.447059

1.447499
(0.000205)

worst
1.447082

best
1.447841

1.449714
(0.000026)

worst
1.449662

best
1.449750

1.449591
(0.000023)

worst
1.449536

best
1.449630

5 210

2.057323
(0.005559)

worst
2.047057

best
2.067987

2.122047 - 2.120376

2.121960
(0.004757)

worst
2.096785

best
2.123132

2.124715
(0.000026)

worst
2.124647

best
2.124763

2.124353
(0.001120)

worst
2.118607

best
2.124649

6 182

5.444818
(0.014505)

worst
5.410405

best
5.483957

5.591748 - 5.591659

5.594390
(0.000134)

worst
5.593911

best
5.594561

5.583881
(0.047842)

worst
5.330578

best
5.593212

5.594364
(0.002559)

worst
5.585057

best
5.595389

7 238

16.789542
(0.032717)

worst
16.704197

best
16.842936

17.076283 - 17.076222

17.045241
(0.153484)

worst
16.258828

best
17.079795

17.055157
(0.120207)

worst
16.418705

best
17.077465

17.072856
(0.020293)

worst
16.995924

best
17.080050

8 156

25.061462
(0.047741)

worst
24.976547

best
25.190708

25.614576 - 25.620158

25.606387
(0.094194)

worst
25.107710

best
25.624353

25.621229
(0.000495)

worst
25.618980

best
25.621770

25.585636
(0.144416)

worst
24.832231

best
25.624534
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Figure 6: We show the distributions of uniform mixture designs obtained by SLD, SPEA2,
iSMS-EMOA, and iSMS-EMOA-DE for two dimensions in (a) and three dimensions in (b).
We also plot their corresponding Parallel-Coordinates graph.
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Figure 7: Distributions of the uniform mixture designs, for four, five, six, seven, and eight
dimensions, obtained by SLD, SPEA2, iSMS-EMOA, and iSMS-EMOA-DE. We use Parallel-
Coordinates graphs.
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We conclude that our proposal is a good option if we need to generate uni-

form mixture designs. Moreover, different from most of the existing mixture

design methods, our proposal allows generating an arbitrary number of mix-

tures.

6. Conclusions585

In this paper, we studied different methods to generate uniform mixture

designs from the most classical approaches, such as the simplex-lattice design

(SLD) and the simplex-centroid design (SCD), to the most recent approaches,

such as the two-layered SLD, k-layer reference direction, and an approach based

on low-discrepancy sequences. Perhaps, the most frequently used method for590

uniform mixture designs is the SLD. However, when the dimensionality of the

mixture increases, the number of design points quickly increases. In some ap-

plications, it is not desirable to have many design points because their use be-

comes impractical. Two-layered SLD, k-layer reference direction, and the low-

discrepancy-sequence-based methods address this problem. Two-layered SLD595

and k-layer reference direction generate a smaller number of design points than

SLD, but they cannot generate an arbitrary number of points. On the other

hand, the low-discrepancy-sequence-based method can generate an arbitrary

number of mixtures. However, the distribution obtained by this method does

not outperform SLD or two-layered SLD.600

In this paper, we have introduced a new methodology for generating uniform

mixture designs via multi-objective optimization. This methodology is called

“Mixtures via Evolutionary Multi-objective Optimization (MEMO).” For this

task, we formulated three M -objective optimization problems (MOPs) whose

Pareto fronts describe a regular (M − 1)-dimensional simplex. Such problems605

are solved by using six Evolutionary Multi-Objective Algorithms: NSGA-II,

SPEA2, VaEA, 1by1EA, iSMS-EMOA, and iSMS-EMOA-DE. This way, the

concerned multi-objective optimization problems are solved while a uniform de-

sign mixture is obtained. SPEA2, iSMS-EMOA, and iSMS-EMOA-DE obtained
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the best results. Particularly, the versions of iSMS-EMOA are an excellent op-610

tion.

Our results indicate that our proposed method is a promising alternative for

generating uniform mixture designs because it can create an arbitrary number

of points, which are adequately distributed in the (M − 1)-dimensional simplex

(it outperforms a low-discrepancy-sequence-based method based on the Sobol615

sequence).

As part of our future work, we would like to study in-depth the parameters

of SPEA2, iSMS-EMOA, and iSMS-EMOA-DE when solving the formulated

MOPs. Notably, we consider investigating the reference point’s impact on com-

puting the hypervolume in iSMS-EMOA and iSMS-EMOA-DE. Additionally,620

we want to solve the formulated MOPs with an indicator-based EMOA using

the s-energy quality indicator. This idea arises from the results reported in [78],

which mention that the hypervolume and s-energy indicators converge to uni-

formly distributed Pareto fronts. On the other hand, we focus on studying the

formulation of alternative multi-objective optimization problems for construct-625

ing mixture designs. The goal is that the new MOPs have two main features:

(i) its Pareto front must be a M − 1-dimensional simplex, and (ii) it should be

easy to solve for EMOAs.Particularly, we are interested in constrained mixtures

design by restricting the search space of EMOAs defining specific constraint

functions. Finally, we also aim to investigate the use of preferences in EMOAs630

to generate extreme-vertice mixtures. Nonetheless, the above ideas remain as

possible paths for future research.
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[7] Y. Buruk Sahin, E. Aktar Demirtaş, N. Burnak, Mixture design: A review660

of recent applications in the food industry mixture design: A review of

recent applications in the food industry mixture design: A review of re-

cent applications in the food industry., Pamukkale University Journal of

Engineering Sciences 22 (4).

38



[8] H. Scheffé, Experiments with Mixtures, Journal of the Royal Statistical665

Society. Series B (Statistical Methodology) 20 (1958) 344–360.
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