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Abstract

In this paper we explore the capabilities of different typégvolution strategies to solve global opti-
mization problems with constraints. The aim is to highlitie idea that the selection of the search engine
is more critical than the selection of the constraint-hamgdinechanism, which can be very simple indeed.
We show how using just three simple comparison criteria thasefeasibility, the simple evolution strategy
can be led to the feasible region of the search space and émglahal optimum solution (or a very good ap-
proximation of it). Different evolution strategies inciag a variation of x4+ 1) — ES and(u T A\)— ES
with or without correlated mutation were implemented. Sapproaches were tested using a well-known

test suite for constrained optimization. Furthermore st competitive version found (among those five)
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was compared against three state-of-the-art approaclies aas also compared against a GA using the
same constraint-handling approach. Finally, our evolustrategy was used to solve some engineering

design problems.

Keywords: Global optimization, evolutionary algorithms, consirighandling, engineering design.

1 Introduction

Evolution strategies (ES) have been widely used to solvéaloptimization problems (Greenwood &
Liu 1998, Schweitzer, Ebeling, Rosé & Weiss 1998, Arnol®20 Moreover, there is a theoretical back-
ground that supports ES convergence (Schwefel 1995, Ba@B, Beyer 2001). However, as other Evolu-
tionary Algorithms, like Evolutionary Programming (Fod€d99) and Genetic Algorithms (Goldberg 1989),
ES, in its original version, lacks an explicit mechanism &aldwith constrained search spaces. The recom-
bination and mutation operators cannot distinguish betwfeasible and infeasible solutions. Therefore,
several approaches have been suggested in the literataltewoEvolutionary Algorithms (EAs) to deal with
constrained problems (Coello Coello 2002).

The most common approach adopted to deal with constrairedsspaces is the use of penalty functions.
When using a penalty function, the amount of constraintatioh is used to punish or ‘penalize’ an infeasible
solution so that feasible solutions are favored by the sielegrocess. Despite the popularity of penalty
functions, they have several drawbacks from which the mamis that they require a careful fine tuning of
the penalty factors that accurately estimates the degneerwlization to be applied as to approach efficiently
the feasible region (Smith & Coit 1997, Coello Coello 2002).

Several approaches have been proposed to avoid this depsratethe values of the penalty factors. The
most known are: Death penalty (Back, Hoffmeister & Schw&891), static penalties (Homaifar, Lai & Qi
1994), dynamic penalties (Joines & Houck 1994), annealemtiies (Michalewicz & Attia 1994), adaptive
penalties (Rasheed 1998), co-evolutionary penaltiesli@Geello 200M), the segregated genetic algorithm
(Riche, Knopf-Lenoir & Haftka 1995) and fuzzy penalties (&u 2001). There are alternative approaches,
like special encodings, whose aim is to generate only feasidutions and use special operators to preserve
their feasibility during all the evolutionary process (Malewicz 1996, Schoenauer & Michalewicz 1996,
Koziel & Michalewicz 1999). Other alternative approachhe tuse of repair algorithms, whose goal is to

make feasible an infeasible solution (Michalewicz & Na#tly1995, Liepins & Vose 1990). The separation



of constraints and objectives is another approach to dehlaginstrained search spaces, the idea is to avoid
the combination of the value of the objective function anel¢bnstraints of a problem to assign fitness, like
when using a penalty function (Deb 2000, Coello Coello & MaziMontes 2002). Finally, there are hybrid
approaches whose aim is to combine different techniquesi(eathematical programming approaches) into
one single approach (Wah & Chen 2001, Jin & Reynolds 1999).

Two of the most recent techniques to handle constraints is #88nd in the literature, the Stochastic
Ranking (Runarsson & Yao 2000) and the Adaptive Segregati©anstraint Handling Evolutionary Algo-
rithm (ASCHEA) (Hamida & Schoenauer 2002) are both basedhdg& The quality and consistency of the
reported results of both approaches are very good and tees#is are indeed better than those provided by
the Homomorphous Maps (Koziel & Michalewicz 1999), whiclh&sed on a genetic algorithm.

This suggests that ES’s way of sampling the search spacd haghthe approach to deal with constrained
search spaces. We think that the emphasis must be on ch@rsadpquate search engine and the constraint
handling technique will not be necessarily complex or difi¢co calibrate. The question that arises here
is to know what features of an evolution strategy improveg#rformance the most. Thus, we decided to
compare five different types of ES (a variation ofia+ 1)-ES that we will call Mp + 1)-ES, a(p + \)-ES
and a(u, \)-ES both with correlated and noncorrelated mutation) witty@ simple comparison mechanism
based on feasibility to handle the constraints of the prabl€he aim is to show how the evolution strategy
is capable of sampling the search space in a better way theer evolutionary algorithms (like genetic
algorithms) and that it does not require a very complicatatstraint handling mechanism in order to reach
the feasible region of the search space.

We tested these five versions on a well-known benchmark fadsaginonlinear optimization. The most
competitive ES (out of these five) was compared against dasimpproach, which was based on a genetic
algorithm and it was also compared against three statbeskitt approaches. Finally, to show its applicability
to real-world problems, the approach was used to solve gmg@eering design problems.

This paper is organized as follows: In Section 2, we desdtieeproblem to be solved. Afterwards,
in Section 3 we briefly describe the main concepts of ES. Ini@ee, we provide an explanation of the
simple constraint handling approach adopted in this workerhat, in Section 5, we describe the experi-
mental design and we present the results obtained in thesgiments. Finally, in Section 6 we provide our

conclusions and some possible paths of future research.



2 Statement of the problem

We are interested in the general nonlinear programminglenelin which we want to:

Find & which optimizesf(Z) Q)
subject to:
gi(Z) <0, i=1,....m (2)
hi(@) =0, j=1,...,p 3)
wheref is the vector of solutiong = [x1, 2, ...,2,]T, where each;, i = 1,...,n is bounded by lower

and upper limitsL; < z; < U;; m is the number of inequality constraints apds the number of equality
constraints (in both cases, constraints could be lineaoonlimear). If we denote wittF to the feasible region
and withS to the whole search space, then it should be clearthat S. For an inequality constraint that
satisfiesy; (Z) = 0, then we will say that it ictive at . All equality constraints; (regardless of the value
of # used) are considered active at all pointsfofMost constraint-handling approaches used with EAs tend
to deal only with inequality constraints. However, in thaseses, equality constraints are transformed into

inequality constraints of the form:

[hi(Z) —e<0 (4)

wheree is the tolerance allowed (a very small value).

3 Evolution strategies

ES were proposed by Peter Bienert, Ingo Rechenberg and PiuisSchwefel, who used them to solve
hydrodynamical problems (Rechenberg 1965, Schwefel 1988k first ES version was th@ + 1)-ES
which uses just one individual that is mutated using a nowiisitibuted random number with mean zero,
standard deviation of 1 and an identical stepsize valuedohn éecision variable. The expression to generate

this mutation for each decision variahlef the problem is presented in equation 5

z; = x; 4+ o(t) - N;(0,1),V; € {1,...,n} (5)



wheren is the number of decision variables of the problem. The bastion between the parent and the off-
spring is chosen and the other one is eliminated. Rechedeerkgd a convergence rate theory and proposed a
rule for changing the stepsize value of mutations, whichaied the 1/5-success rule’ (Rechenberg 1973).
This dynamic rule is detailed in equation 6, whexeis the frequency of successful mutations (when the

offspring replaces its parent), measured over interval$)ofn trials and0.817 < ¢ < 1 (Rechenberg 1973).

o(t—mn)/c ifps>1/5
o(t)=4 o(t—n)-c ifp,<1/5 (6)
ot —n) if ps =1/5

The first multimembered ES was the + 1)-ES, which was designed by Rechenberg and is described in
detail in (Back et al. 1991). In this approaghparent solutions recombine to generate one offspring. This
solution is also mutated and, if it is better, it will replatbe worst parent solution.

The(u+ A)-ES and thé i, A)-ES were proposed by Schwefel (1981). In the first one, thebieslivid-
uals out of the union of thg original parents and thek offspring will survive for the next generation. On
the other hand, in theu, \)-ES the best will only be selected from the offspring.

The (u + A)-ES uses an implicit elitist mechanism and solutions cawmigeimore than one generation.
Meanwhile, in the(i, M)-ES solutions only survive one generation. Instead of th&-success rule’, each
individual includes a stepsize value for each decisionadd&. Moreover, for each combination of two step-
size @) values, a rotation angle is included. These angles are tasgerform a correlated mutation. This
mutation allows each individual to look for a search directi The stepsize values and the angles of each
individual are called strategy parameters and they areméated and mutated as well. @ + X\)-ES or
(11, \)-ES individual can be seen as follows(i)(Z, &, §), wherei is the number of individual in the pop-
ulation,Z € R™ is a vector ofn. decision variablesy is a vector ofn stepsize values antllis a vector of
n(n —1)/2 rotation angles wher@, € [—, 7] . For a detailed description of the representation of a &oiut

and its differences with a representation in a traditionalsée Figure 1.
[FIGURE 1 MUST BE LOCATED HERE]
Recombination can be sexual (two parents) or panmictic €rtftan two parents). It is worth reminding

that recombination can be applied to the decision variadii¢ise problem as well as to the strategy param-

eters. There are two main types of recombination: (1) Discead (2) Intermediate. Both can be either



sexual or panmictic. Also, Schwefel (1995) proposed to gaize intermediate recombination by allowing
arbitrary weight factors from the intervil, 1] to be used anew for each component of the chromosome. For

a complete description of the recombination operator weideothe following list:

Operation Type of Recombination

P1; or P2; discrete

P1; or PJ; panmictic discrete
offspring = ¢ P1; + ((P2; — P1;)/2)  intermediate

Pl + (PJ; — P1,)/2) panmictic intermediate

P1; + x((P2; — P1;)/2)  generalized intermediate

Pl; + x;:((PJ; — P1;)/2) panmictic generalized intermediate

where P1 and P2 are the parents for the sexual recombinatifw, means a different parent for each
gene in the chromosomey; is the weight factor created anew for each decision variaht used in the
generalized recombination.

The mutation operator works on the decision variables aswl @h the strategy parameters. The mutation

is calculated in the following way:

ol =o;-exp(t' - N(0,1) + 7 - N;(0,1)) 7
0; =0; +6-N;(0,1) 8)
7 =%+ N(0,C(,0)) 9)

whereT and 7’ are interpreted as ‘learning rates’ and are defined by SaivwBhck 1996) asr =
(v/2/n)~'andr’ = (v/2n)~' ands ~ 0.0873. N;(x, ) is a function that returns a real normal-distributed
random number with mean and standard deviatiojm The index: indicates that this random number is
generated anew for each decision variable (gene of the aisome).

C(o", ") is the covariance matrix represented by the set stepsizes and the(n — 1)/2 rotation angles.
The mutation on Equation 9 is implemented as follows: Touate thisN (0,C(c”,6")), which represents
the vector of stepsizes but now updated using correlatedtiont(we call this vectoa7’) we perform the
following: For each angl@; , we calculate its corresponding two stepsize values indtsesponding axes
o} ando’; and we calculate the followingt; = o/ - cos by, — o - sinfy, ando; = o7 - sin 6y, + o - cos O,
(Schwefel 1995). In this way, the’ values are now mutated in a correlated way and can be usedtatenu

the Z vector of decision variables.



Some authors use correlated mutation, but it implies araexdmputational effort to process the value of
each angle and also to rotate the individual. Moreover, sextiga memory space is needed to store all the
different angles per individual (the angles are formed teyabmbination of all the axis based on the number
of decision variables of the problem). If non-correlatedation is preferred, the computational cost and the
storage space for each individual get lower.

If a non-correlated mutation is used, the mutation expoessare:
ol =o0;-exp(t' - N(0,1) + 7 - N;(0,1)) (10)

2, =z + o) - N;(0,1) (11)

The general ES algorithm is detailed in Figure 2.

[FIGURE 2 MUST BE LOCATED HERE]

It is important to note that the selection process in an diaiwstrategy takes place after all offspring
have been generated. Some authors prefer to call it ‘detéstiti replacement’, because only the best solu-
tions will remain in the population. The worst ones have zanababilities of surviving. Furthermore, the
selection of parents to reproduce is performed randomlly vitiniform probability distribution (all solutions
have the same chance of being selected regardless of thesd)t In contrast, in other approaches like ge-
netic algorithms, the selection process based on fedgilsliperformed when the parents are selected for
reproduction.

In this work, we use a variation of thg: + 1)-ES, called by us as {{: + 1)-ES. Its pseudocode is pre-

sented in Figure 3.

[FIGURE 3 MUST BE LOCATED HERE].

The aim in our (1. + 1)-ES is to extend the use of a typidal+ 1)-ES by increasing the capabilities of
this current parent to generate better offspring. It workthie following way. Instead of using a population
of u solutions, just one solution (called parent) is consideidus only solution will generatg mutations
by using the traditional mutation operator (Gaussian Noigdter that, these mutations are combined into

one single solution, which we call ‘child’, by using panniietliscrete recombination. This child will be



evaluated and also compared against the parent and thedtestem them will survive as the parent for the
next generation.

The goal of the mutations is to explore more in-depth them@ighood of the parent when generating its
child. Furthermore, each mutation is not evaluated. This imaintain the feature of evaluating just one new
solution per generation (as in the origirfal+ 1)-ES). It is also worth reminding that only one sigma value
is used for all decision variables of the problem and for alutons generated. Therefore, we use the ‘1/5’
rule to dynamically update this only sigma value. To gereethé offspring from the: mutations we used
a panmictic-discrete like recombination in the followingyv For each variable of the child, we generate
a uniform-distributed integer random number to select onthe . mutations. The selected mutation will
give its corresponding value to the child. We allow a pareriig selected more than once in the process. In

Figure 4 there is a graphical explanation of the operator.

[FIGURE 4 MUST BE LOCATED HERE].

4 Constraint-handling approach

As it was pointed out in Section 1, we argue that the samplieghranism of evolution strategies is useful
to bias the evolutionary search through a constrained spd&ece, for our experiments, we will use neither
any complex constraint handling mechanism nor a penaltgtfon approach. In this way, just a simple
comparison mechanism of three criteria based on feagilaitil proposed by Deb (2000), is used to select

the best individuals from one generation:

e Between 2 feasible solutions, the one with the higher fitvakse is preferred.
o If one solution is feasible and the other one is infeasilble feasible one is preferred.

¢ If both solutions are infeasible, the one with the lowest safroonstraint violation is preferred. This

sum is calculated ast;" | max0, (%)) + >°7_, maz(0, |h;(Z)] — e).



5 Experiments and results

We divided our experiments in four phases. Each part hasegifgpaim. The first phase consists on testing
different version of evolution strategies (testing diffettypes of mutation and selection operators) on a set of
10 benchmark problems. We did not test the recombinatiorabpeat all, because it is considered secondary
(mutation is the main operator) in an ES. However, some comisrere presented about it. The aim of this
part was to know which ES provided the most competitive permce when solving a set of benchmark
problems.

The second part of the experiments includes the comparistireanost competitive approach from the
previous experiments with respect to three state-of-thef@proaches used to solve constrained problems
adopting evolutionary algorithms. The goal of this parbiserify how good is our approach compared with
a set of very competitive algorithms.

The third phase involved the comparison of our most conipetifS against an approach with the same
simple constraint handling mechanism but using a genegmrilhm as a search engine. The objective of this
experiment is to show the influence (positive in this case)sifig an ES as a search engine in place of a
genetic algorithm.

The final part of the experiments comprised the use of our B& toosolve real-world problems with
constraints (engineering design problems in this caserantpare the provided results against state-of-the-
art approaches adopted in engineering design. This finadrerpnt will give us some insight about the
applicability of our approach. In the first three parts of &xperiments we decided to use a set of benchmark
problems proposed in (Michalewicz & Schoenauer 1996). Tétailbd description of each test problem is
provided in an appendix at the end of this paper.

To get an estimate of how difficult is to generate feasiblaitsohs, ap measure (as suggested by

Michalewicz & Schoenauer (1996)) was computed using tHevahg expression:

p=IFl/IS] (12)

where|F| is the number of feasible solutions afff is the total number of solutions randomly generated. In
this work, S = 1,000,000 random solutions. This measure gives some insight abouttiebetween the

feasible region and the whole search space



[TABLE | MUST BE HERE].

The different values of for each of the functions chosen are shown in Table I, wheigethe number of
decision variables, LI is the number of linear inequalitidsthe number of nonlinear inequalities and NE is
the number of nonlinear equalities. It can be clearly seahithproblems 1, 3, 5, 6 and 9 it is very difficult
to generate feasible solutions and therefore the size détsble region seems to be very small with respect
to the whole search space.

As we are not using a penalty function approach, we will usetédims objective function and fitness
function interchangeably, because in our approach thetharsame.

The number of evaluations of the objective function will lemsidered as a computational cost measure
because it is commonly used in the specialized literaturewiutionary algorithms (Jin 2005) and also
because its importance is indeed a research topic nowaBays(sson 2004, Won & Ray 2004). One of its
advantages is that it is ‘hardware-independent’ (i.e. &gloot depend of the computer’s features where the
algorithm is tested), which facilitates the comparison agdifferent approaches, and it also stresses a point
that is critical when using EAs: the high number of evaluagiosually required by these types of heuristic

approaches in order to achieve competitive results.

5.1 Experimental phase 1
We implemented five different types of ES:

e The variation of gu + 1)-ES (M(u + 1)-ES)

(1 + A)-ES without correlated mutation.

(u + M)-ES with correlated mutation.

(1, A)-ES without correlated mutation.

(1, A)-ES with correlated mutation.

The number of fitness function evaluations was fixed to 353660@ll 5 different ES. We performed 30
independent runs for each problem and for each type of ESeBpproblems which have equality constraints,
we used equation 4 with a tolerance value ef 0.0001.

Forthe(u + 1)-ES, the initial values are:

10



e Number of generations 350000.

These values, and also all values used for the approachles nemaining experiments, were found empir-
ically, always looking for the most competitive performarand also considering that each approach must
perform the same number of evaluations of the objectivetfanc

Nevertheless, it is important to note that the apparent Wéde of the initialo and the value of = 0.99
are set in order to allow a slow decrease in the value of sigm#his way, the ES will be able to explore
more the search space and the probability of being trappled# optima is decreased.

The pseudocode of the algorithm used for the four remaini@gsEpresented in Figure 2. We used tra-
ditional panmictic discrete recombination for both, st parameters and decision variables. The learning
rates values were calculated as shown in Section 3. Thelinélues for the stepsize (alues) were 3.0 for
all the decision variables for all solutions.

The initial values for the remaining ES are:
e 4 =100.

e )\ = 300.

e Number of generations ¥166.

The statistical results obtained (best, mean and worstisnltound and also the corresponding standard

deviation) for the five ES are summarized in Table II.

[TABLE Il MUST BE LOCATED HERE].

The discussion of results, in this experiment and also irreh&ining tests, will be based on quality and
robustness of results. We measure the quality (accuraditiveé best value obtained by an approach in a set
of independentruns. This is the best solution found by epphcach (first row for each problem in Tables I,
V, VI, VI, IX and X. The robustness (precision) of each apach is measured by the mean and standard

deviation values presented in the second and fourth rowprmpéiem in Tables II, V, VI, VIII, IX and X.

11



With these two measures, based on statistical results, wekmaw which approach provides the best
approximation to the best known solution (or global optim@amd also how often an approach is able to find
solutions close to the optimum (or best known) solution.

From a pragmatic point of view, when using ES, as well as athielutionary algorithms, it is important
to know, based on a set of independent runs, their qualityufacy) and robustness (precision). Sometimes,
for an interested user, it is useful to have an approach whkiable to find a very good solution, at least once
in several runs, because the approach can be executedlsenesaand the quality is the high-priority. On the
other hand, the user should be interested in obtaining goatthgcessarily very good) solutions consistently
(robustness), because the evaluation of the objectivaiumis either very expensive or time consuming, or
maybe because several solutions are required.

Based on the previous comments, in this experiment, we swakd ES with the best quality as a high
priority and, as a second criterion, we look for a good robess.

Problem P10 was excluded from discussion because all 5 ESeddhe global optimum consistently in
this problem. P10 is a problem with a low dimensionality (8akles) whose feasible region is disjoint.

As a summary of Table Il, in Table Il we present the technithag provided the best approximation to

the global optimum and also the technique which providedrbst robust results

[TABLE Ill MUST BE LOCATED HERE].

In order to have more statistical support, we calculatecttirdidence intervals for the mean statistic for
each of the five ES tested.

To verify if the distributions provided by the samples pesttproblem were close to a normal, we per-
formed a one-sample Kolmogorov-Smirnov test for each sarfgel each function. In all cases the results
showed that the distributions were not close to a normal éifieer that, we performed a bootstrapping test
with 1000 re-samples. Briefly, the aim of bootstrapping is to createsd new samples by sampling with
replacement (allowing a data to be repeated in the same péspfrom the original sample. Each sample is
of the same size of the original sample. Then the desireidtitas calculated for each resample. The distri-
bution of these resample statistics is called a bootstrstglalition, which gives information about the shape,
center and spread of the sampling distribution of the statigVe used the Data-plot software. The obtained

bootstrapping distributions were close to a normal. Thersany of results with the confidence intervals for

12



the mean statistic, with5% confidence is presented in Table IV. Problem P10 was exclbdeduse all five

ES reached the global optimum in every single run.

[TABLE IV MUST BE LOCATED HERE].

5.1.1 Discussion of results

In order to allow a more reasonable discussion of resultgeviormed the following binary comparisons:

Overall results obtained by each technique.

‘+’ selection against ‘,’ selection.

Non-correlated against correlated mutation.

Some findings about recombination.

Overall results obtained by each technique.
Based on the results in column 3 on Table Il, the\(1 )-ES reached the global optimum in six problems (P1,
P3, P4, P5, P7, P9) and it provided very good approximatiotise global optimum in the remaining three
(P2, P6 and P8). Besides, theV 1)-ES provided the most robust values in three problems (Pane%7).
The results obtained by the non-correlatgdt )\)-ES in column 4 on Table Il show that this approach only
reached the global optimum in one problem (P5), but it predithe best approximations to the best solution
in three problems (P2 and P6 and P8). In addition, the norelsted(. + A\)-ES was more robust in two
problems (P2 and P6). The correlatgd+ \)-ES gave the following results (column 5 Table II: It reached
the global optimum in two problems (P7 and P9). Also, it pdad the most robust results in five problems
(P1, P4, P7, P8 and P9). The results of the non-corre(ated)-ES in column 6 from Table Il indicate that
the approach only reached the global optimum in one probReMm é&nd it failed to provide robust results in
any other problem. Finally, the correlatéd, \)-ES only reached the global optimum in one problem (P7)
and it also failed to provide robust results in any of the peats.

From these results (summarized in Table Il we can state ttietest approximations to the global
optimum were provided by the Y(+ 1)-ES followed by the non-correlatég + \)-ES. On the other hand,
the most robust results were provided by the correlgted \)-ES followed by the V{ + 1)-ES.

13



These results are supported by the confidence intervaleéanean statistic presented in Table IV, where
the best intervals were obtained for the correlatedt+ A\)-ES in five problems (P1, P4, P7, P8 and P9),
followed by the V{: + 1)-ES, with best intervals in three problems (P3, P5 and P7).

From this comparison, and based in our criterion that quaditour main goal and robustness is a sec-
ondary goal, we obtained that the most competitive appristie V( + 1)-ES (it provided the best approx-
imations to the global optimum and was the second more ra@pgsbach). However, it is interesting that in
test functions where the (Y. + 1)-ES could not find better results (P2, P6 and P8), the numbeecision
variables is higher than in problems where good results viarad by this approach. The exception is P1,
but the difference here is that P1 has only linear conssaifttose results may suggest that the W(1)-ES

has difficulties with high dimensionality problems coupleith nonlinear constraints.

‘+’ selection against ‘,’ selection.
The overall results suggest that there is a clear superiofithe ‘+' selection over the *; selection, because
none of the two ES with *; selection provided a good perfont@in any problem. From the results in
Table Il and the summary in Table Ill, we can observe that e correlated i, A)-ES and the correlated
(14, A)-ES only reached the best known solution in two problems (RI7R10), and it is worth remarking that
P10 was the easiest problem to solve by all five ES testedhé&umbre, the confidence intervals shown in
Table 1V show that none of the ‘;’ selection ES were able tovfte robust results in any given problem.

These results suggest that the implicit elitism that theselection has, is important to help the ES to
avoid losing the feasible solutions found. Despite the faat it is well known that the ‘;’ selection is less
sensitive to get trapped in local optima (Schwefel 1995KBEO96), in this experiment we can argue that

elitism plays an important role in constrained optimizatio

Non-correlated against correlated mutation
The results from Table Il (columns 6 and 7) show no evidenaaibén improvement on neither the quality
of approximation to the global optimum nor the robustneshefapproach (confidence intervals in Table IV
when using correlated mutation with ‘;’ selection. In fdor, some problems the results are poorer than those
obtained when using correlated mutation (P1, P2, P6, and P7)

For the case of '+’ selection (implicit elitism), there islayktly positive difference when using correlated

mutation in terms of consistency (most robust results irbjgms P1, P4, P7, P8 and P9 in Table Il and also

14



better confidence intervals for the mean statistic for threblems in Table IV. However, it is not the same
case when looking for quality results which are almost threesan all test problems.

We argue that these results suggest that the correlatedionuties improve the robustness of the evo-
lutionary search in constrained spaces. However, thetguadlresults does not seem to get better. This issue
is important (computationally speaking), because theamiextra computational cost and storage associated
with the implementation of this type of mutation.

There is also evidence indicating that the comparisonr@itexplained in Section 4 added to the *;
selection causes the search to be consistently trappedahdptimal solutions.

Recombination operator
The results obtained suggest that, for panmictic discegtembination, the version used in thé\4+ 1)-ES
provided more quality results than those obtained by themdxnation used in the multimembered ES. The
main difference between these two operators is that the(fisstd in the i + 1)-ES) controls the number
of parents which participate in the process by a user defimednpeters (¢’). On the other hand, in the
recombination used in the four multimembered ES, the nurabparents depends of the dimensionality of
the problem (h + 1’ parents are used , where"is the number of decision variables of the problem).

This finding deserves more experimentation (i.e., to isdla¢ recombination operator in order to analyze

carefully its behaviour) and it is suggested as a path farénvork.

5.1.2 Some remarks

From the comparison of the five types of ES we can concludedifanfing:

e The most competitive approach, based on quality of resslthe V({: + 1)-ES. It seems that the
use of a dynamic approach to adapt the stepsize of the muiatenough such as to provide quality
results. In consequence, a large number of strategy pagasrsstems to cause difficulties to converge

in constrained search spaces.

e The correlatedy + 1)-ES provided the most robust results. However, the cloggstoximations to

the best known solutions were not as good as those providdweby(: + 1)-ES.
e The elitism that the ‘+’ selection provides is more adequatsolve this set of constrained problems.

e The correlated mutation provides no significant improveta@m the performance of an ES in con-

strained search spaces.
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5.2 Experimental phase 2

In this phase, we compare the results of oupM( 1)-ES against three state-of-the art techniques based on
evolutionary algorithms: Stochastic Ranking (SR) (Rusamns& Yao 2000), the Adaptive Segregational Con-
straint Handling Evolutionary Algorithm (ASCHEA) (Hamidsa Schoenauer 2002) and the Self-Adaptive
Fitness Formulation (SAFF) (Farmani & Wright 2003).

The aim of Stochastic Ranking (Runarsson & Yao 2000) is tarxa the influence of the objective
function and the penalty function when assigning fitnessgolation. SR does not require the definition of
a penalty factor. Instead, the selection process is basedranking process and a user-defined parameter
called Py that sets the probability of using only the objective fuantio compare two solutions when sorting
them. The remaining comparisons will be performed using diné penalty function that consists, in this
case, of the sum of constraint violation.

ASCHEA (Hamida & Schoenauer 2002) is based on three compsin@n an adaptive penalty function,
(2) a constraint-driven recombination which: combinesrdeasible solution with a feasible one and applies
it when there is a low number of feasible solutions with respe a pre-defined rate and (3) a segregational
selection based on feasibility which allows to choose a ddfiatio of feasible solutions based on their fithess
to be part of the population for the next generation.

The Self-Adaptive Fitness Formulation (Farmani & Wrigh03) consists on applying a two-step adaptive
penalty function. The aim of the approach is to assign a ceithygefitness value to those slightly infeasible
solutions with a good value of the objective function. Thagley function is calculated based on the objective
function and the sum of constraint violation of the best 8ofuin the population, the worst of the infeasible
solutions and the solution with the worst value of the olyedinction.

SR and ASCHEA use an evolution strategy as a search enginentrast, SAFF uses a GA. The statisti-
cal results of SR are from a set of 30 independent runs, ASC3&A from a set of 31 independent runs and
SAFF’s are from a set of 20 independent runs. All results vi@ken from their corresponding publications.

The results of each approach compared with oyr ¥(1)-ES are summarized in Table V.

[TABLE V MUST BE LOCATED HERE].
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5.2.1 Discussion of results

Now, we discuss the results of our approach against eactedhtbe techniques used for comparison. As in
the previous experiment, we eliminate problem P10 fromutision because all approaches found the global
optimum consistently and the results from one of the apgreagvas not available.

SR againstV (u + 1)-ES
With respect to SR, th& (1. + 1)-ES obtained a ‘similar’ best result in seven problems (R&l,A, P5, P7,
and P9). It also provided a better mean result in problem Rbaaisimilar mean results in two problems
(P3, P7). In problem P5, the worst result found by our apgraadetter than that provided by SR. Except
for problems P3, P5 and P7, the standard deviations protig&R were smaller than those provided by our
ES. We can observe that th& . + 1)-ES is able to provide similar 'best’ results to those preddy SR,
but it lacks the consistency shown by SR.

ASCHEA againstV (i + 1)-ES
With respect to ASCHEA, ouV (u + 1)-ES provided ‘better’ best results in three problems (P2aRd
P5) and ‘similar’ best results in other four test functio”R4.( P3, P8 and P9). Besides, our approach found
‘better’ mean results in four problems (P2, P3, P4, P5) aimdilar’ mean results in two problems (P1 and
P7). There is no comparison of worst results and standaridiil@v values because they were not available
for ASCHEA. However, it is clear to see that our approach @nésd a very competitive performance (based
on the best and mean results found) compared with that prdigt ASCHEA.

SAFF againstV (i + 1)-ES
Compared with the SAFF, tHé(.+1)-ES provided a ‘better’ best result in four problems (P4,Pand P8)
and a ‘similar’ best result in other four test functions (P38, P7, P9). Moreover, our approach found ‘better’
mean result in five problems (P3, P4, P5, P6 and P8) and a&imikan result in problem P7. Finally, the
V(u + 1)-ES provided a ‘better’ worst result in four problems (P3, P8 and P6) and ‘similar’ worst result
in problem P7. From these results, we can see also a corpgigrformance by th& (1 + 1)-ES, and,

sometimes a better performance by our technique.

5.2.2 Remarks

Our approach can deal with moderately constrained prob(@#) highly constrained problems, problems
with low (P5, P7), moderated (P8) and high (P1, P2, P3, P6¢ngionality, with different types of combined

constraints (linear, nonlinear, equality and inequalégyl with very large (P2), very small (P1, P5 and P6)
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or even disjoint (P10) feasible regions. Also, the alganiils able to deal with large search spaces, based on
the intervals of the decision variables, (see Appendix Adietails) and with a very small feasible region (P5
and P6). Furthermore, the approach can find the global optiinuproblems where such optimum lies on
the boundaries of the feasible region (P1, P2, P4, P5, P6 @nd3ee the description of each test function
where problems with active constraints are indicated.

It is important to mention that the (W + 1)-ES presented a lack of consistency (based on the mean,
worst and standard deviation values) in some test functi@ves argue that this is due to the high selection
pressure of the comparison mechanism used to deal withredmist Infeasible solutions have no probability
of surviving when compared with a feasible one. In this wag, ean have a situation of an infeasible
solution close to the boundaries of the feasible region aaatéd near the global optimum, but this infeasible
solution will be discarded when it is compared against aifda®ne located far from the global optimum.
Furthermore, the Y + 1)-ES works only with one solution as starting point, which lcomake it sensitive
to the region where this point is generated. This problerhvéiladdressed in our future work.

Besides still being a very simple approach, it is worth regimg that theV (1 + 1)-ES does not add
any extra parameter due to the constraint handling medmaai®pted. In contrast, the SAFF (Farmani &
Wright 2003) requires a parameter for the second part ofdtefiy function which the authors mention that
it influences the performance of the approach. Stochastidamg requires the definition of a parameter called
Py, whose value has an important impact on the performanceeohfiproach (Runarsson & Yao 2000).
ASCHEA also requires the definition of several extra paramsetand in its latest version, it uses niching,
which is a process that also has at least one additional paeaifHamida & Schoenauer 2002).

The computational cost measured in terms of the number eisfitfunction evaluations (FFE) performed
by any approach is at least equal for theu\- 1)-ES with respect to the others to which it was compared.
This is an additional (and important) advantage, mainlyafwish to use this approach for solving real-world
problems. The Yu + 1)-ES performed50, 000 FFE, the Stochastic Ranking performed &350, 000 FFE,
the SAFF performed, 400, 000 FFE, and ASCHEA required, 500, 000 FFE.

5.3 Experimental phase 3

In this experiment we want to show the positive influence @igian ES when solving constrained problems.
Hence, we implemented a GA which uses exactly the same eamtdiandling technique of ol (1. + 1)-ES

(and discussed in Section 4).
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We chose a real-coded GA because of its encoding similsmitith the ES. We also selected simulated
binary crossover and parameter-based mutation becaugsanthéwo of the most competitive operators for
real-coded GAs when solving global optimization problemslf 2000). The selection process is by binary
tournament selection using the comparison mechanism lmasésghsibility (see Section 4). The parameters

were empirically chosen and are the following:

Population size: 200

Number of generations: 1750

Crossover rate. 0.8

Mutation rate. 0.6

Number of total evaluations of the objective function: 38 (the same used by th§u + 1)-ES).

We tuned the GA parameters as to obtain the best performarfee #Also, we took care of promoting a
fair comparison based on fixing the same number of fitnesdifumevaluations for both approaches (ES and
GA) and using the same constraint-handling mechanismexgppiithe selection process for each approach.
The aim is to analyze, under similar conditions, the caji#sl of each search engine to generate better
solutions.

We performed 30 independent runs and the statistical reatétsummarized and compared against those
provided by the/ (i + 1)-ES in Table VI.

Itis very clear to see the better results obtained byiffie + 1)-ES over the GA: ‘Better’ best, mean and
worst results in eight problems (P1, P2, P3, P4, P5, P6, P®8ndThe GA only reaches a similar perfor-
mance in two functions: P7 and P10 (which are the easiestie,dmased on the previous experiments). This
experiment confirms the idea that the ES way of sampling caingtd search spaces helps an EA to provide
better results than using other types of search engine (an@Aii case), when using the constraint-handling

mechanism explained in Section 4.

[TABLE VI MUST BE LOCATED HERE].
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5.4 Experimental phase 4

To show the performance of tHé(n + 1)-ES when solving real-world problems, we tested it on thiregi-e
neering design problems (Coello Coello 2@p0he details of the problems can be found in Appendix A at

the end of this paper. The main features of each problem aadletbin Table VII.

[TABLE VIl MUST BE LOCATED HERE].

We used the same set of parameters adopted in the previoaisragpts, except for the number of gener-
ations and the total number of evaluations of the fitnesstfoimcin this case we usexb000 generations and
25000 evaluations as well (at each generation,f{g + 1)-ES performs only one evaluation of the objective
function).

This reduction in the number of generations was decidedusecaf the fact that, after a trial-and-error
process, we realized that, for these types of engineerisggdeproblems, the number of evaluations re-
quired for our approach to provide competitive results isdothan the one used in previous experiments.
Furthermore, this number of evaluations makesitg + 1)-ES competitive against the approaches of the
state-of-the-art, as shown below.

The summary of the statistical resultsaif independent runs and a comparison against different state-
of-the art techniques are provided in Table VIII for the werlebeam problem, in Table 1X for the pressure
vessel problem and in Table X for the tension-compressioimggroblem. We used for comparison four
techniques taken from the literature. The Socio-Behaliodel (SB) (Ray & Liew 2003) and by Akhtar,
Tai & Ray (2002). SB is a particle swarm optimization apptoadiose constraint handling mechanism is
based on ranking the population using Pareto Dominancelf@Beello, Van Veldhuizen & Lamont 2002).
Deb’s (2000) approach uses a GA-based approach, a sinlgatis@ mechanism to the one used in this work
and a niching mechanism to help the approach to maintaimsiiyeThe EMO approach by Coello Coello &
Mezura-Montes (2002) uses Pareto dominance (Coello Cetdb 2002) in a tournament selection to guide
the search to the feasible region of the search space. finalused a penalty approach proposed by Coello
Coello (200®) whose main feature is that penalty factors are self-adiaygang an embedded GA inside the
main GA which optimizes the solutions of the problem. We preeghe details of the best solution found for

each engineering design problem in Tables XI and XII.
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[TABLE VIIl MUST BE LOCATED HERE].

[TABLE IX MUST BE LOCATED HERE].

[TABLE X MUST BE LOCATED HERE].

5.4.1 Discussion of results

As it can be seen in Table VIII, the(u + 1)-ES provided the most competitive results for the weldedrbea
design using the lowest number of evaluations of the objedtinction. For the results of the pressure vessel
design shown in Table IX, the best solution was provided eyl + 1)-ES. However, the ‘best’ mean
result was provided by the EMO approach and the ‘best’ wastlt was provided by the Socio-Behavioral
approach (whose number of evaluations was also the lowssglly, ourV (u + 1)-ES provided very com-
petitive results against the Socio-Behavioral approachtha self-adaptive penalty approach for the spring
design problem (see Table X). Furthermore, the number duatians required by our approach was the
lowest. As a final conclusion for this experiment we can obsarcompetitive performance &f(i + 1)-ES
against evolutionary-based state-of-the-art approattheslve engineering design problems. However, as
mentioned before, th& (. 4+ 1)-ES presented some premature convergence to local optsonadratwo of
these three real-world problems. In our discussion in $acii2.2, we argue that this undesired behaviour
may be caused by the combination of two factors: (1) The hajgcsion pressure of the constraint-handling
mechanism and (2) the fact that th€, + 1)-ES is a single-membered ES and its exploration capalilitie

for certain types of problems, may depend of the initial poihich is generated at random.

[TABLE XI MUST BE LOCATED HERE].

[TABLE XIl MUST BE LOCATED HERE].
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6 Conclusions and future work

We have presented an empirical study to analyze the ussiibfeusing evolution strategies to solve con-
strained optimization problems. As a first experiment, welemented and tested different types of ES in
order to compare two types of selection mechanisms andwatstypes of mutation operators. The second
part of our study consisted on comparing the most competi8 of the first experiment, tHé(x + 1)-ES,
against three state-of-the-art approaches. The compasismwed a competitive performance of our approach
despite a lack of robustness due to the inability of the aggndo keep slightly infeasible solutions located
in promising areas of the search space. However, it is werthinding that thé/ (1. + 1)-ES is very easy to
implement (see Figure 3 for details) and it does not add atra @arameter to the ES and the computational
cost required (measured by the number of evaluations oftifective function) was equal or lower than those
required by the approaches used for comparison. Furthestioe feasible region was reached in any single
run for all test problems. In order to emphasize the positifleence of using an ES as a search engine, we
compared ou¥ (i + 1)-ES against a GA whose constraint handling approach wasthe sised in our ES.
The results confirmed our idea. Finally, we testeditiig + 1)-ES on three engineering design problems and
we compared the results against state-of-the-art appesdnltthe area. The results were very competitive at
a very low computational cost (measured by the number ofieti@ins of the objective function). Our future

paths of research consists of:

e Adding a diversity mechanism to the selection process whltiws theV (. + 1)-ES to maintain
slightly infeasible solutions located in promising araastider to avoid convergence to local optimum

solutions.

e Performing a comparison among other evolutionary algorgl{differential evolution (Price 1999),
particle swarm optimization (Kennedy & Eberhart 2001)) mler to verify which one is the most

competitive when dealing with constrained search spaces.

¢ Analyzing in more detail the effect of the recombination i@ter used in the ES implemented in this

work.

e Solving problems in presence of a higher number of equalitystraints. In this paper we solved

problems with only one equality constraints (P3 and P9).
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Appendix A

The details of the thirteen test functions used in this woekthe following:

1. Problem 1:

Minimize: f(Z) =531, @ — 5.+, a2 — 3.°. x; subject to:

91(Z) = 2x1 + 222+ w10 + 211 — 10 <0
gg(f) =2x1 +2x3 + 210 + 12 — 10 <0
gg(f) =2x9 4+ 2x3 +x11 + 12 — 10 <0

g4(%) = —8x1 + 210 <0
95(7) = —8xa + w11 <0
g6(T) = =83+ 212 <0
97(T) = —2x4 — x5 + 710 < 0
98(T) = 2w — 27 + w11 <0
go(T) = —2x8 — g + 212 < 0
where the bounds afe< z; <1(i=1,...,9),0 < x; <100 ( = 10,11,12) and0 < z13 < 1.

The global optimum is at* = (1,1,1,1,1,1,1,1,1, 3,3,3,1) wheref(z*) = —15. Constraintg,

g2, 93, 94, g5 andgg are active.

2. Problem 2
Maximize: f(7) = &=t 00“4\(;2)‘511;[:;1 cos® (2:) subject to:
() = 0.75— ﬁxi <0
i=1
g2(%) = zn:xz —75n <0
=1
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wheren = 20 and0 < z; < 10 (i = 1,...,n). The global maximum is unknown; the best reported
solution is (Runarsson & Yao 2000¢)z*) = 0.803619. Constrainty; is close to being activey( =

—107%).

. Problem 3
Maximize: f(7) = (vn)" [11—, =i

subject to:

h(Z)=>" 22 —-1=0

i=1"1
wheren = 10and0 < z; <1 (i = 1,...,n). The global maximumis at = 1/y/n (i =1,...,n)
wheref(z*) = 1.

. Problem 4:

Minimize: f(Z) = 5.3578547x3 + 0.8356891z 125 + 37.293239x1 — 40792.141

subject to:

91(Z) = 85.334407 + 0.0056858z2x5 + 0.0006262x124 — 0.0022053x325 — 92 < 0
92(Z) = —85.334407 — 0.0056858x225 — 0.0006262x124 + 0.0022053x325 < 0
g3(%) = 80.51249 + 0.0071317x75 + 0.0029955z1 22 + 0.00218132% — 110 < 0
94(T) = —80.51249 — 0.0071317w225 — 0.0029955z1 72 — 0.002181323 + 90 < 0
95(Z) = 9.300961 + 0.0047026z325 + 0.0012547x123 + 0.0019085x324 — 25 < 0
96(Z) = —9.300961 — 0.0047026x325 — 0.00125472123 — 0.0019085z324 + 20 < 0

where: 78 < x; < 102, 33 < 29 < 45,27 < x; < 45 (i = 3,4,5). The optimum solution is
x* = (78,33,29.995256025682, 45, 36.775812905788) where f (z*) = —30665.539. Constraintgj;

Y gg are active.

. Problem 5
Minimize: f(Z) = (x1 — 10)3 + (22 — 20)3
subject to:

g1(%) = —(21 = 5)% — (22— 5)2 +100< 0
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g2(T) = (1 — 6)® + (22 — 5)2 — 82.81 <0

where13 < z; < 100 and0 < z5 < 100. The optimum solution is* = (14.095,0.84296)

wheref(z*) = —6961.81388. Both constraints are active.

. Problem 6
Minimize: f(Z) = 23 + 23 + 2172 — 1421 — 1622 + (23 — 10)2 +4(z4 — 5)% + (25 — 3)? + 2(w6 —

1)2 4+ 522 + 7(xs — 11)2 + 2(z9 — 10)2 + (w19 — 7)% + 45

subject to:

91(Z) = —105 4 421 + 5z9 — 3w7 + 925 <0

92(Z) = 10x; — 8xo — 17Tx7 + 225 < 0

93(Z) = —8x1 + 2wo + bxg — 2219 — 12 <0

94(%) = 3(z1 — 2)% + 4(wa — 3)% + 223 — Ty — 120 < 0

95(%) = 5% + 8x2 + (w3 — 6)% — 224 — 40 < 0

96(%) = 22 + 2(x9 — 2)% — 21129 + 1425 — 626 < 0

g7(%) = 0.5(z; — 8)% +2(wy —4)? + 322 — 26 — 30 <0

g8(T) = —3w1 + 629 + 12(w9 — 8)2 — Tw10 < 0

where —10 < z; < 10 (¢ = 1,...,10). The global optimum isz* = (2.171996,

2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927) where

f(x*) = 24.3062091. Constraints)y, g2, g3, 94, g5 andge are active.

. Problem 7

sin® (2721 sin(27a2)
2} (z1+z2)

Maximize: f(Z) =
subject to:
g(T) =22 —22+1<0

gg(f)=1—$1+($2—4)2§0

where0 < z; < 10and0 < x2 < 10. The optimum solution is locatedat = (1.2279713, 4.2453733)

wheref(z*) = 0.095825.
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8.

10.

11.

Problem 8

Minimize: f(Z) = (x1—10)*4+5(x2—12)2+ 25+ 3(z4— 11)*+ 1028+ T2d + 23 — w7 — 1026 — 827

subject to:

g1(T) = =127 + 222 + 323 + 23 + 422 + 525 <0
go(T) = —282 + Tx1 + 322 + 1022 + 24 — 25 <0
g3(%) = —196 + 23x1 + 23 + 622 — 827 <0

94(%) = 423 + 23 — 3z122 + 223 + b — 11la7 <0

where —10 < z; < 10 (i = 1,...,7). The global optimum isz* = (2.330499,
1.951372, —0.4775414,4.365726, —0.6244870, 1.038131, 1.594227) where

f(z*) = 680.6300573. Two constraints are activg{ andg,).

. Problem 9

Minimize: f(Z) = 2% + (z2 — 1)?
subject to:

h(Z) =22 —23=0

where: —1 < 3 < 1, =1 < z2 < 1. The optimum solution is* = (il/\/§,1/2) where

f(z*) = 0.75.

Problem 10

100— (21 —5)? —(22—5)2 —(z3—5)>

Maximize: f (%) = 100

subject to:

91(Z) = (x1 — p)? + (x2 — q)® + (23 — )% — 0.0625 < 0

where0 < x; < 10 (i = 1,2,3) andp,q,r = 1,2,...,9. The feasible region of the search space
consists ob? disjointed spheres. A poiritz;, 72, x3) is feasible if and only if there exigt ¢, » such

the above inequality holds. The global optimum is located*at (5, 5,5) wheref(z*) = 1.

Design of a Welded Beam

[FIGURE 5 MUST BE LOCATED HERE].
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A welded beam is designed for minimum cost subject to coimigran shear stress), bending stress
in the beam €), buckling load on the barR,), end deflection of the beand)( and side constraints
(Rao 1996). There are four design variables as shown in &i§@Rao 1996)h (1), ! (x2), t (z3) and

b (z4).

The problem can be stated as follows:

Minimize:
f(Z) = 1104712329 4 0.0481 12324 (14.0 + 22)

Subject to:

gl(f) = T(f) — Tmaz < 0

92(5) = U(f) — Omax < 0

g3() = x1—24<0

ga(T) = 0.104712% + 0.048112324(14.0 + 22) — 5.0 < 0

g5(f) = 0.125— T S 0

g7(¥) = P—-P(r)<0
where

7(Z) = \/(’7'/)2 + 27”7”’;—;E + ()2

x2 xr1 + 3 2
= 2 2
J =2 V2x125 12+< 5 )]}
6PL 4PL3
¥)= —=,0(X) = —5—
(@) z4zd’ (X) Exizy

2,..6
4.013E, /%324 i
P(7) = —— V30 (y I8 /2
L2 2LV 4G

P =60001b, L =14in, E =30 x 10° psi, G =12 x 10° psi
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12.

13.

Tmaz = 13,600 psi, 0maer = 30,000 psi, dmaz = 0.25in
where0.1 < z; <2.0,0.1 <25 <10.0,0.1 <23 <10.0y0.1 < x4 <2.0.

Design of a Pressure Vessel

[FIGURE 6 MUST BE LOCATED HERE].

A cylindrical vessel is capped at both ends by hemisphehieatls as shown in Figure 6. The objective
is to minimize the total cost, including the cost of the mateforming and welding. There are four
design variablesT’s (thickness of the shell)}, (thickness of the headR (inner radius) and. (length

of the cylindrical section of the vessel, not including thead). 7, andT}, are integer multiples of
0.0625 inch, which are the available thicknesses of roltedlglates, and? and L are continuous.

Using the same notation given by Kannan & Kramer (1994), thblpm can be stated as follows:

Minimize :
f(&) = 0.6224x 2374 + 1.7781 2923 + 3.16612724 + 19.84z7x3

Subjectto :

g1(Z) = —x1+0.0193z3 <0

g2(Z) = —9+0.0095423 < 0

— 2 4 3
93(%) = —mazre — gﬂ'ﬂ?g + 1,296,000 < 0
g1(%) = 34—-240<0

wherel <z7 <99,1 <5 <99,10 < 23 <200y 10 < 24 < 200.

Minimization of the Weight of a Tension/Compression String

[FIGURE 7 MUST BE LOCATED HERE].

This problem was described by Arora (1989) and Belegund8Z},%nd it consists of minimizing the
weight of a tension/compression spring (see Figure 7) stibjeconstraints on minimum deflection,
shear stress, surge frequency, limits on outside diamatéoa design variables. The design variables

are the mean coil diametér (x-), the wire diameted (x;) and the number of active coil§ (z3).
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Formally, the problem can be expressed as:

Minimize:
(N +2)Dd?
Subject to:
D3N
= — - <
91(7) 7r785a8 = °
4D? —dD 1
7)) = -1<0
92(%) 12566(D& —db) ' BI8E
. 140.45d
g3(%) = 1- DIN <0
D
a@ = 214 <o

1.5

where0.05 < 1 <2,0.25 <29 <1.3y2 < x5 <15.
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Table captions

Table I: Main features of the ten problems used in experis&io 3.

Table II: Statistical results obtained by the 5 types of Eg&egult inboldfacemeans a better (or best) solution

obtained. ‘-’ means no feasible solutions were found.

Table IlI: Most competitive techniques by problem (bestragpnation to the best known solution (or global

optimum) and more robust approach (based on statisticaltsgs

Table IV: 95%-confidence intervals obtained for the 5 types of ES. A resuboldface means a better
interval obtained. ‘-’ means no feasible solutions werenfin the original sample. ‘BKS’ means Best

Known Solution per problem.

Table V: Comparison of results of ounM + 1)-ES against state-of-the-art approaches. A resuibidface

means a better (or best) solution obtaindd4 means not available.

Table VI: Comparison of results of ounM+1)-ES against a GA with the same constraint handling technique

A result inboldfacemeans a better (or best) solution obtained.
Table VII: Main features of the 3 engineering design proldem

Table VIII: Comparison of results for the welded beam degigrblem. A result inboldface means that a

better solution was obtained.

Table IX: Comparison of results for the pressure vesselgiegioblem. A result irboldface means that a

better solution was obtained.

Table X: Comparison of results for the spring design problefresult in boldface means that a better

solution was obtained.

Table XI: Summary of best results found by each approach eoaapfor the first two engineering design

problems in experimental phase 4. All solutions are feasibl

Table XII: Summary of best results found by each approachpared for the last engineering design problem

in experimental phase 4. All solutions are feasible.
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Problem | n | Type of function P LI | NI | NE
1 13 guadratic 0.0003% | 9| O 0
2 20 nonlinear 99.9973% | 2 | O 0
3 10 nonlinear 0.0026% | 0 | O 1
4 5 guadratic 27.0079% | 4 | 2 0
5 2 nonlinear 0.0057% | 0 | 2 0
6 10 guadratic 0.0000% | 3| 5 0
7 2 nonlinear 0.8581% | 0 | 2 0
8 7 nonlinear 05199% | 0| 4 | O
9 2 guadratic 0.0973% | 0| O 1
10 3 quadratic 4.7697% | 0 | 93| O

36




Problem & Different ES tested
Best Known Sol. Stats V(p+ 1)-ES (1 + X)-ES (i + X)-ES Corr (p, N)-ES (pe, X)-ES Corr
best —15.000 —14.986 —14.999 —14.995 —14.931
P1 mean —14.840 —14.974 —14.998 —14.971 —14.915
—15.000 worst —12.999 —14.954 —14.973 —14.931 —14.889
St. Dev 4.1E-1 7.79E-3 4.62E-3 1.56E-2 9.78E4
best 0.793083 0.803607 0.803594 0.792393 0.797201
P2 mean 0.698932 0.800743 0.796618 0.779795 0.777913
0.803619 worst 0.576079 0.792375 0.785246 0.753796 0.748130
St. Dev 4.1E-1 4.64E-3 5.86E-3 1.20E-2 1.25E-2
best 1.000 0.474 0.472 0.465 0.445
P3 mean 1.000 0.238 0.202 0.165 0.108
1.000 worst 1.000 0.027 0.086 0.007 0.000
St. Dev 1.4E-5 1.14E-1 1.00E-1 1.34E-1 1.40E-1
best —30665.539 —30664.838 —30665.529 —30432.131 —30664.217
P4 mean —30665.442 —30651.001 —30665.520 —30309.273 —30662.855
—30665.539 worst —30663.496 —30619.619 —30665.508 —30204.131 —30661.170
St. Dev 3.9E-1 13.16E+0 5.17E-3 52.56E+0 7.72E-1
best —6961.814 —6961.814 —6961.761 —6916.590 —6802.235
P5 mean —6961.814 —6938.453 —6960.628 —6711.116 —6538.026
—6961.814 worst —6961.814 —6567.754 —6957.259 —6068.743 —6277.651
St. Dev 0 83.16E+0 1.15E+0 206.01E+0 127.24E+0
best 24.368 24.329 24.330 24.484 24.651
P6 mean 24.703 24.391 24.422 24.929 24.887
24.306 worst 25.517 24.478 24.563 25.485 25.238
St. Dev 2.4E-1 4.67E-2 6.52E-2 2.71E-1 1.42E-1
best 0.095825 0.095825 0.095825 0.095825 0.095825
P7 mean 0.095825 0.095823 0.095825 0.095825 0.095822
0.095825 worst 0.095825 0.095771 0.095825 0.095821 0.095811
St. Dev 0 1.0E-5 0 1.0E-6 4.0E-6
best 680.632 680.631 680.633 680.809 680.775
P8 mean 680.674 680.640 680.638 681.351 681.139
680.63 worst 680.915 680.666 680.645 682.871 681.498
St. Dev 5.2E-2 1.04E-2 2.7T0E-3 4.85E-1 1.43E-1
best 0.75 0.751 0.75 — 0.88
P9 mean 0.78 0.88 0.752 - 0.95
0.75 worst 0.88 0.99 0.81 — 0.99
St. Dev 3.73E-2 8.53E-2 1.13E-2 — 2.80E-2
best 1.000 1.000 1.000 1.000 1.000
P10 mean 1.000 1.000 1.000 1.000 1.000
1.000 worst 1.000 0.999 1.000 1.000 1.000
St. Dev 0 1.0E-6 0 0 0
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Problem H Best approximation

Most robust

P1 V(p + 1)-ES (i 4+ A)-ES Corr
P2 (i + X)-ES Non-corr | (u + A)-ES Non-corr
P3 V(p + 1)-ES V(u+ 1)-ES
P4 V(p + 1)-ES (e + X)-ES Corr
P5 V(p + 1)-ES V(u+ 1)-ES
P5 ( 4+ X)-ES Non-corr
P6 (e + X)-ES Non-corr | (u + X)-ES Non-corr
P7 V(p + 1)-ES V(u+ 1)-ES

(1 + X)-ES Corr (n + X)-ES Corr

(p, A)-ES Non-Corr
(p, X)-ES Corr

P8 (p + X)-ES Non-corr (n + X)-ES Corr
P9 V(p + 1)-ES (1 4+ A)-ES Corr

(1 + X)-ES Corr
P10 all approaches all approaches
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P. & Different ES tested
BKS V(p+ 1)-ES (b + \)-ES (1 + \)-ES Corr (1, \)-ES (i, A)-ES Corr
P1 [-14.984,-14.755] [-14.971, -14.965] [-14998,-14.996] [-14.982,-14.974] [-14.918,-14.910]
-15.000
P2 [0.645508,0.723947] [0.799717,0.801954] [0.794875,0.800625] [0.772763,0.780614] [0.770939,0.780263]
0.803619
P3 [1.000,1.000] [0.812,0.885] [0.174660,0.283622] [0.172,0.311] [0.061,0.173]
1.000
P4 [-30665.539,-30665.480] [-30652.140,-30640.620] [-30665.520,-30665.520] [-30318.030,30269.180] [-30663.340,-30662.830]
-30665.539
P5 [-6961.814,-6961.814] [-6948.833,-6842.289] [-6960.879,-6959.812] [6777.012,6669.917] [-6540.594,-6458.280]
-6961.814
P6 [24.641,24.904] [24.374,24.417] [24.405,24.466] [24.738,24.969] [24.824,24.921]
24.306
P7 [0.095825,0.095825] [0.095820,0.095825] [0.095825,0.095825] [0.095822,0.095825] [0.095820,0.095823]
0.095825
P8 [680.676,680.741] [680.650,680.696] [680.638,680.642] [681.141,681.453] [681.136,681.247]
680.63
P9 [0.76,0.79] [0.79,0.84] [0.75,0.76] - [0.93,0.96]
0.75
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Problem & State-of-the-art approaches compared
Best Known Sol. Stats SR ASCHEA SAFF V(pn+ 1)-ES
best —15.000 —15.000 —15.000 —15.000
P1 mean —15.000 —14.840 —15.000 —14.840
—15.000 worst —15.000 NA —15.000 —12.999
St. Dev 0 NA 0 4.1E-1
best 0.803515 0.785000 0.802970 0.793083
P2 mean 0.781975 0.590000 0.790100 0.698932
0.803619 worst 0.726288 NA 0.760430 0.576079
St. Dev 2.0E-2 NA 1.2E2 4.1E-1
best 1.000 1.000 1.000 1.000
P3 mean 1.000 0.99989 0.9999 1.000
1.000 worst 1.000 NA 0.9997 1.000
St. Dev 1.9E-4 NA 7.5E-5 1.4E-5
best —30665.539 —30665.500 —30665.500 —30665.539
P4 mean —30665.539 —30665.500 —30663.200 —30665.442
—30665.539 worst —30665.539 NA —30663.300 —30663.496
St. Dev 2.0E-5 NA 4.85E-1 3.9E-1
best —6961.814 —6961.810 —6961.800 —6961.814
P5 mean —6875.940 —6961.810 —6961.800 —6961.814
—6961.814 worst —6350.262 NA —6961.800 —6961.814
St. Dev 1.6E+2 NA 0 0
best 24.307 24.332 24.480 24.368
P6 mean 24.374 24.660 26.580 24.703
24.306 worst 24.642 NA 28.400 25.517
St. Dev 6.6E-2 NA 1.14E+0 2.4E-1
best 0.095825 0.095825 0.095825 0.095825
P7 mean 0.095825 0.095825 0.095825 0.095825
0.095825 worst 0.095825 NA 0.095825 0.095825
St. Dev 2.6E-17 NA 0 0
best 680.630 680.630 680.640 680.632
P8 mean 680.656 680.641 680.720 680.674
680.63 worst 680.763 NA 680.870 680.915
St. Dev 3.4E-2 NA 5.92E-2 5.2E-2
best 0.75 0.75 0.75 0.75
P9 mean 0.75 0.75 0.75 0.78
0.75 worst 0.75 NA 0.75 0.88
St. Dev 8.0E-5 NA 0 3.73E-2
best 1.000 NA 1.000 1.000
P10 mean 1.000 NA 1.000 1.000
1.000 worst 1.000 NA 1.000 1.000
St. Dev 0 NA 0 0
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Problem & GAVSES
Best Known Sol. Stats GA V(pn+ 1)-ES
best —5.727 —15.000
P1 mean —4.600 —14.840
—15.000 worst —4.090 —12.999
St. Dev 3.25E-1 4.1E-1
best 0.630084 0.793083
P2 mean 0.505746 0.698932
0.803619 worst 0.439669 0.576079
St. Dev 6.1E-2 4.1E-1
best 0.967 1.000
P3 mean 0.853 1.000
1.000 worst 0.711 1.000
St. Dev 6.6E-2 1.4E-5
best —30365.748 —30665.539
P4 mean —30004.441 —30665.442
—30665.539 worst —29721.688 —30663.496
St. Dev 2.01E+2 3.9E-1
best —6961.057 —6961.814
P5 mean —6953.089 —6961.814
—6961.814 worst —6939.063 —6961.814
St. Dev 6.1E+0 0
best 25.321 24.368
P6 mean 27.988 24.703
24.306 worst 35.559 25.517
St. Dev 2.3E+0 2.4E-1
best 0.095825 0.095825
P7 mean 0.095825 0.095825
0.095825 worst 0.095825 0.095825
St. Dev 0 0
best 680.853 680.632
P8 mean 681.199 680.674
680.63 worst 681.767 680.915
St. Dev 2.4E-1 5.2E-2
best 0.753 0.75
P9 mean 0.90 0.78
0.75 worst 0.99 0.88
St. Dev 6.2E-2 3.73E-2
best 1.000 1.000
P10 mean 1.000 1.000
1.000 worst 1.000 1.000
St. Dev 0 0
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Problem n | Type of function P LI | NI | LE | NE
Welded beam| 4 guadratic 39.6762% | 3 | 1 0 0
Pressure vessel 4 quadratic 2.6859% | 6 1 0 0

Spring 3 guadratic 0.7537% | 1| 3 0 0
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Problem & Engineering design approaches compared
Best Known Sol. Stats SB | Deb | V(p+1)-ES
best 2.385435 2.38119 1.737300
Welded beam mean 3.255137 | 2.39289 1.813290
worst 6.399679 2.64583 1.994651
St. Dev 9.59E-1 NA 7.05E-2
evaluations 33095 40080 25000
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Problem &

Engineering design approaches compared

Best Known Sol. Stats SB EMO approach V(p+1)-ES
best 6171.000000 6059.946341 6059.745605
Pressure vessel mean 6335.050000 6177.253268 6850.004948
worst 6453.650000 6469.322010 7332.879883
St. Dev NA 13.09E+1 4.26E+2
evaluations 12630 80000 25000
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Problem &

Engineering design approaches compared

Best Known Sol. Stats SB Coello V(p+1)-ES
best 0.012669 0.012705 0.012698
Spring mean 0.012923 0.012769 0.013461
worst 0.016717 0.012822 0.016485
St. Dev 5.92E-4 NA 9.66E-4
evaluations 25167 900000 25000
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Welded beam Pressure vessel
SB Deb | V(pu+1)-ES SB EMO V(pu+1)-ES
1 0.244438 NA 0.199742 0.8125 0.8125 0.8125
T2 6.237967 NA 3.612060 0.4375 0.4375 0.4375
x3 8.288576 NA 9.037500 41.9768 42.097398 42.098087
T4 0.244566 NA 0.206082 182.2845 176.654047 176.640518
f(z) 2.385435 2.38119 1.737300 6171.000 6059.946341 6059.745605
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Tension/Compression Spring

SB Coello V(u+ 1)-ES
o 0.368159 | 0.351661 0.355360
9 0.052160 | 0.051480 0.051643
z3 10.648442 | 11.632201 | 11.397926
f(z) || 0.012669 | 0.012705 0.012698
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Figure captions

Figure 1: Representation of individuals of a genetic aldponiand an evolution strategy.
Figure 2: ES general algorithm.

Figure 3: Algorithm of the V(1. + 1)-ES. Function best(x,y) selects the best solution betwesmdxy using

the comparison mechanism based on feasibility discuss8ddtion 4.

Figure 4: Recombination operator used to generate one fthitdthe . mutations in our Vu + 1)-ES.
Figure 5: The welded beam used for problem 11.

Figure 6: Center and end section of the pressure vessel asptoblem 12.

Figure 7: Tension/compression string used for problem 13.
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Figures on individual pages
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encoded decision variables
I |

\1\0\1\1\0\0\1\0\ Traditional GA

7.034 | 10.123 0.02 0.1 0.57

‘ ‘ Evolution Strateg

.. . |
decision variables

strategy parameters
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Begin
t=0
Createu random solutions for the initial population.
Evaluate all. individuals
Assign a fitness value to all individuals
For t=1 to MAX_GENERATIONSDoO
Produce\ offspring by recombination of thg parents
Mutate each child (with or without correlated mutation)
Evaluate all\ offspring
Assign a fitness value to allindividuals
If Selection =‘+'Then
Select the besi individuals from theu + A individuals
Else
Select the best individuals from the\ individuals
End If
End For
End
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Begin

t=0

Create a random solutior(t).

Evaluatez(t)

For t=1 to MAX_GENERATIONSDoO
Produceu solutions ofx(t) by mutation
Create one offspring’ from the . solutions using
panmictic-discrete like recombination
Evaluater’
x(t+ 1) = best(z(t), z')

Use the ‘1/5’ rule to adapt the sigma value

End For

End
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P1 | x11| x12| .. | xin

P2 | x21| x22| ... | x2n

Mutations

PU | xul| xu2| ... | xun

select one parent value at random for each value of th

R

Child | xu1| x12| ... | x2n
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