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Abstract

In this paper we explore the capabilities of different typesof evolution strategies to solve global opti-

mization problems with constraints. The aim is to highlightthe idea that the selection of the search engine

is more critical than the selection of the constraint-handling mechanism, which can be very simple indeed.

We show how using just three simple comparison criteria based on feasibility, the simple evolution strategy

can be led to the feasible region of the search space and find the global optimum solution (or a very good ap-

proximation of it). Different evolution strategies including a variation of a(µ+1)−ES and(µ +, λ)−ES

with or without correlated mutation were implemented. Suchapproaches were tested using a well-known

test suite for constrained optimization. Furthermore, themost competitive version found (among those five)
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5061 3800 ext. 6564 Fax: 011 52 55 5061 3757

1



was compared against three state-of-the-art approaches and it was also compared against a GA using the

same constraint-handling approach. Finally, our evolution strategy was used to solve some engineering

design problems.

Keywords: Global optimization, evolutionary algorithms, constraint handling, engineering design.

1 Introduction

Evolution strategies (ES) have been widely used to solve global optimization problems (Greenwood &

Liu 1998, Schweitzer, Ebeling, Rosé & Weiss 1998, Arnold 2002). Moreover, there is a theoretical back-

ground that supports ES convergence (Schwefel 1995, Bäck 1996, Beyer 2001). However, as other Evolu-

tionary Algorithms, like Evolutionary Programming (Fogel1999) and Genetic Algorithms (Goldberg 1989),

ES, in its original version, lacks an explicit mechanism to deal with constrained search spaces. The recom-

bination and mutation operators cannot distinguish between feasible and infeasible solutions. Therefore,

several approaches have been suggested in the literature toallow Evolutionary Algorithms (EAs) to deal with

constrained problems (Coello Coello 2002).

The most common approach adopted to deal with constrained search spaces is the use of penalty functions.

When using a penalty function, the amount of constraint violation is used to punish or ‘penalize’ an infeasible

solution so that feasible solutions are favored by the selection process. Despite the popularity of penalty

functions, they have several drawbacks from which the main one is that they require a careful fine tuning of

the penalty factors that accurately estimates the degree ofpenalization to be applied as to approach efficiently

the feasible region (Smith & Coit 1997, Coello Coello 2002).

Several approaches have been proposed to avoid this dependency on the values of the penalty factors. The

most known are: Death penalty (Bäck, Hoffmeister & Schwefel 1991), static penalties (Homaifar, Lai & Qi

1994), dynamic penalties (Joines & Houck 1994), annealing penalties (Michalewicz & Attia 1994), adaptive

penalties (Rasheed 1998), co-evolutionary penalties (Coello Coello 2000b), the segregated genetic algorithm

(Riche, Knopf-Lenoir & Haftka 1995) and fuzzy penalties (Wu& Yu 2001). There are alternative approaches,

like special encodings, whose aim is to generate only feasible solutions and use special operators to preserve

their feasibility during all the evolutionary process (Michalewicz 1996, Schoenauer & Michalewicz 1996,

Koziel & Michalewicz 1999). Other alternative approach is the use of repair algorithms, whose goal is to

make feasible an infeasible solution (Michalewicz & Nazhiyath 1995, Liepins & Vose 1990). The separation
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of constraints and objectives is another approach to deal with constrained search spaces, the idea is to avoid

the combination of the value of the objective function and the constraints of a problem to assign fitness, like

when using a penalty function (Deb 2000, Coello Coello & Mezura-Montes 2002). Finally, there are hybrid

approaches whose aim is to combine different techniques (even mathematical programming approaches) into

one single approach (Wah & Chen 2001, Jin & Reynolds 1999).

Two of the most recent techniques to handle constraints in EAs found in the literature, the Stochastic

Ranking (Runarsson & Yao 2000) and the Adaptive Segregational Constraint Handling Evolutionary Algo-

rithm (ASCHEA) (Hamida & Schoenauer 2002) are both based on an ES. The quality and consistency of the

reported results of both approaches are very good and these results are indeed better than those provided by

the Homomorphous Maps (Koziel & Michalewicz 1999), which isbased on a genetic algorithm.

This suggests that ES’s way of sampling the search space might help the approach to deal with constrained

search spaces. We think that the emphasis must be on choosingan adequate search engine and the constraint

handling technique will not be necessarily complex or difficult to calibrate. The question that arises here

is to know what features of an evolution strategy improves its performance the most. Thus, we decided to

compare five different types of ES (a variation of a(µ + 1)-ES that we will call V(µ + 1)-ES, a(µ + λ)-ES

and a(µ, λ)-ES both with correlated and noncorrelated mutation) with only a simple comparison mechanism

based on feasibility to handle the constraints of the problem. The aim is to show how the evolution strategy

is capable of sampling the search space in a better way than other evolutionary algorithms (like genetic

algorithms) and that it does not require a very complicated constraint handling mechanism in order to reach

the feasible region of the search space.

We tested these five versions on a well-known benchmark for global nonlinear optimization. The most

competitive ES (out of these five) was compared against a similar approach, which was based on a genetic

algorithm and it was also compared against three state-of-the-art approaches. Finally, to show its applicability

to real-world problems, the approach was used to solve threeengineering design problems.

This paper is organized as follows: In Section 2, we describethe problem to be solved. Afterwards,

in Section 3 we briefly describe the main concepts of ES. In Section 4, we provide an explanation of the

simple constraint handling approach adopted in this work. After that, in Section 5, we describe the experi-

mental design and we present the results obtained in these experiments. Finally, in Section 6 we provide our

conclusions and some possible paths of future research.
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2 Statement of the problem

We are interested in the general nonlinear programming problem in which we want to:

Find ~x which optimizesf(~x) (1)

subject to:

gi(~x) ≤ 0, i = 1, . . . , m (2)

hj(~x) = 0, j = 1, . . . , p (3)

where~x is the vector of solutions~x = [x1, x2, . . . , xn]T , where eachxi, i = 1, . . . , n is bounded by lower

and upper limitsLi ≤ xi ≤ Ui; m is the number of inequality constraints andp is the number of equality

constraints (in both cases, constraints could be linear or nonlinear). If we denote withF to the feasible region

and withS to the whole search space, then it should be clear thatF ⊆ S. For an inequality constraint that

satisfiesgi(~x) = 0, then we will say that it isactive at~x. All equality constraintshj (regardless of the value

of ~x used) are considered active at all points ofF . Most constraint-handling approaches used with EAs tend

to deal only with inequality constraints. However, in thosecases, equality constraints are transformed into

inequality constraints of the form:

|hj(~x)| − ǫ ≤ 0 (4)

whereǫ is the tolerance allowed (a very small value).

3 Evolution strategies

ES were proposed by Peter Bienert, Ingo Rechenberg and Hans-Paul Schwefel, who used them to solve

hydrodynamical problems (Rechenberg 1965, Schwefel 1968). The first ES version was the(1 + 1)-ES

which uses just one individual that is mutated using a normaldistributed random number with mean zero,

standard deviation of 1 and an identical stepsize value for each decision variable. The expression to generate

this mutation for each decision variablei of the problem is presented in equation 5

x
′

i = xi + σ(t) · Ni(0, 1), ∀i ∈ {1, . . . , n} (5)
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wheren is the number of decision variables of the problem. The best solution between the parent and the off-

spring is chosen and the other one is eliminated. Rechenbergderived a convergence rate theory and proposed a

rule for changing the stepsize value of mutations, which he called the ‘1/5-success rule’ (Rechenberg 1973).

This dynamic rule is detailed in equation 6, whereps is the frequency of successful mutations (when the

offspring replaces its parent), measured over intervals of10 · n trials and0.817 ≤ c ≤ 1 (Rechenberg 1973).

σ(t) =























σ(t − n)/c if ps > 1/5

σ(t − n) · c if ps < 1/5

σ(t − n) if ps = 1/5

(6)

The first multimembered ES was the(µ + 1)-ES, which was designed by Rechenberg and is described in

detail in (Bäck et al. 1991). In this approach,µ parent solutions recombine to generate one offspring. This

solution is also mutated and, if it is better, it will replacethe worst parent solution.

The(µ+λ)-ES and the(µ, λ)-ES were proposed by Schwefel (1981). In the first one, the best µ individ-

uals out of the union of theµ original parents and theirλ offspring will survive for the next generation. On

the other hand, in the(µ, λ)-ES the bestµ will only be selected from theλ offspring.

The(µ + λ)-ES uses an implicit elitist mechanism and solutions can survive more than one generation.

Meanwhile, in the(µ, λ)-ES solutions only survive one generation. Instead of the ‘1/5-success rule’, each

individual includes a stepsize value for each decision variable. Moreover, for each combination of two step-

size (σ) values, a rotation angle is included. These angles are usedto perform a correlated mutation. This

mutation allows each individual to look for a search direction. The stepsize values and the angles of each

individual are called strategy parameters and they are recombined and mutated as well. A(µ + λ)-ES or

(µ, λ)-ES individual can be seen as follows:a(i)(~x, ~σ, ~θ), wherei is the number of individual in the pop-

ulation,~x ∈ ℜn is a vector ofn decision variables,~σ is a vector ofn stepsize values and~θ is a vector of

n(n− 1)/2 rotation angles whereθi ∈ [−π, π] . For a detailed description of the representation of a solution

and its differences with a representation in a traditional GA see Figure 1.

[FIGURE 1 MUST BE LOCATED HERE]

Recombination can be sexual (two parents) or panmictic (more than two parents). It is worth reminding

that recombination can be applied to the decision variablesof the problem as well as to the strategy param-

eters. There are two main types of recombination: (1) Discrete and (2) Intermediate. Both can be either
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sexual or panmictic. Also, Schwefel (1995) proposed to generalize intermediate recombination by allowing

arbitrary weight factors from the interval[0, 1] to be used anew for each component of the chromosome. For

a complete description of the recombination operator we provide the following list:

offspringi =











































































Operation Type of Recombination

P1i or P2i discrete

P1i or PJi panmictic discrete

P1i + ((P2i − P1i)/2) intermediate

P1i + ((PJi − P1i)/2) panmictic intermediate

P1i + χ((P2i − P1i)/2) generalized intermediate

P1i + χi((PJi − P1i)/2) panmictic generalized intermediate

whereP1 andP2 are the parents for the sexual recombination,PJ means a different parent for each

gene in the chromosome.χi is the weight factor created anew for each decision variableand used in the

generalized recombination.

The mutation operator works on the decision variables and also on the strategy parameters. The mutation

is calculated in the following way:

σ′

i = σi · exp(τ ′ · N(0, 1) + τ · Ni(0, 1)) (7)

θ′j = θj + β · Nj(0, 1) (8)

~x′ = ~x + ~N(~0, C(~σ′, ~θ′)) (9)

whereτ andτ ′ are interpreted as ‘learning rates’ and are defined by Schwefel (Bäck 1996) as:τ =

(
√

2
√

n)−1 andτ ′ = (
√

2n)−1 andβ ≈ 0.0873. Ni(x, y) is a function that returns a real normal-distributed

random number with meanx and standard deviationy. The indexi indicates that this random number is

generated anew for each decision variable (gene of the chromosome).

C(~σ′, ~θ′) is the covariance matrix represented by the set ofn stepsizes and then(n−1)/2 rotation angles.

The mutation on Equation 9 is implemented as follows: To calculate this ~N(~0, C(~σ′, ~θ′)), which represents

the vector of stepsizes but now updated using correlated mutation (we call this vector~σ′′ ) we perform the

following: For each angleθ′k, we calculate its corresponding two stepsize values in its corresponding axes

σ′

i andσ′

j and we calculate the following:σ
′′

i = σ′

i · cos θk − σ′

j · sin θk andσ
′′

j = σ′

i · sin θk + σ′

j · cos θk

(Schwefel 1995). In this way, the~σ′′ values are now mutated in a correlated way and can be used to mutate

the~x vector of decision variables.
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Some authors use correlated mutation, but it implies an extra computational effort to process the value of

each angle and also to rotate the individual. Moreover, someextra memory space is needed to store all the

different angles per individual (the angles are formed by the combination of all the axis based on the number

of decision variables of the problem). If non-correlated mutation is preferred, the computational cost and the

storage space for each individual get lower.

If a non-correlated mutation is used, the mutation expressions are:

σ′

i = σi · exp(τ ′ · N(0, 1) + τ · Ni(0, 1)) (10)

x′

i = xi + σ′

i · Ni(0, 1) (11)

The general ES algorithm is detailed in Figure 2.

[FIGURE 2 MUST BE LOCATED HERE]

It is important to note that the selection process in an evolution strategy takes place after all offspring

have been generated. Some authors prefer to call it ‘deterministic replacement’, because only the best solu-

tions will remain in the population. The worst ones have zeroprobabilities of surviving. Furthermore, the

selection of parents to reproduce is performed randomly with a uniform probability distribution (all solutions

have the same chance of being selected regardless of their fitness). In contrast, in other approaches like ge-

netic algorithms, the selection process based on feasibility is performed when the parents are selected for

reproduction.

In this work, we use a variation of the(µ + 1)-ES, called by us as V(µ + 1)-ES. Its pseudocode is pre-

sented in Figure 3.

[FIGURE 3 MUST BE LOCATED HERE].

The aim in our V(µ + 1)-ES is to extend the use of a typical(1 + 1)-ES by increasing the capabilities of

this current parent to generate better offspring. It works in the following way. Instead of using a population

of µ solutions, just one solution (called parent) is considered. This only solution will generateµ mutations

by using the traditional mutation operator (Gaussian Noise). After that, these mutations are combined into

one single solution, which we call ‘child’, by using panmictic-discrete recombination. This child will be
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evaluated and also compared against the parent and the best between them will survive as the parent for the

next generation.

The goal of the mutations is to explore more in-depth the neighborhood of the parent when generating its

child. Furthermore, each mutation is not evaluated. This isto maintain the feature of evaluating just one new

solution per generation (as in the original(1 + 1)-ES). It is also worth reminding that only one sigma value

is used for all decision variables of the problem and for all solutions generated. Therefore, we use the ‘1/5’

rule to dynamically update this only sigma value. To generate the offspring from theµ mutations we used

a panmictic-discrete like recombination in the following way: For each variable of the child, we generate

a uniform-distributed integer random number to select one of the µ mutations. The selected mutation will

give its corresponding value to the child. We allow a parent to be selected more than once in the process. In

Figure 4 there is a graphical explanation of the operator.

[FIGURE 4 MUST BE LOCATED HERE].

4 Constraint-handling approach

As it was pointed out in Section 1, we argue that the sampling mechanism of evolution strategies is useful

to bias the evolutionary search through a constrained space. Hence, for our experiments, we will use neither

any complex constraint handling mechanism nor a penalty function approach. In this way, just a simple

comparison mechanism of three criteria based on feasibility and proposed by Deb (2000), is used to select

the best individuals from one generation:

• Between 2 feasible solutions, the one with the higher fitnessvalue is preferred.

• If one solution is feasible and the other one is infeasible, the feasible one is preferred.

• If both solutions are infeasible, the one with the lowest sumof constraint violation is preferred. This

sum is calculated as:
∑n

i=1 max(0, g(~x)) +
∑p

j=1 max(0, |hj(~x)| − ǫ).
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5 Experiments and results

We divided our experiments in four phases. Each part has an specific aim. The first phase consists on testing

different version of evolution strategies (testing different types of mutation and selection operators) on a set of

10 benchmark problems. We did not test the recombination operator at all, because it is considered secondary

(mutation is the main operator) in an ES. However, some comments are presented about it. The aim of this

part was to know which ES provided the most competitive performance when solving a set of benchmark

problems.

The second part of the experiments includes the comparison of the most competitive approach from the

previous experiments with respect to three state-of-the-art approaches used to solve constrained problems

adopting evolutionary algorithms. The goal of this part is to verify how good is our approach compared with

a set of very competitive algorithms.

The third phase involved the comparison of our most competitive ES against an approach with the same

simple constraint handling mechanism but using a genetic algorithm as a search engine. The objective of this

experiment is to show the influence (positive in this case) ofusing an ES as a search engine in place of a

genetic algorithm.

The final part of the experiments comprised the use of our ES now to solve real-world problems with

constraints (engineering design problems in this case) andcompare the provided results against state-of-the-

art approaches adopted in engineering design. This final experiment will give us some insight about the

applicability of our approach. In the first three parts of theexperiments we decided to use a set of benchmark

problems proposed in (Michalewicz & Schoenauer 1996). The detailed description of each test problem is

provided in an appendix at the end of this paper.

To get an estimate of how difficult is to generate feasible solutions, aρ measure (as suggested by

Michalewicz & Schoenauer (1996)) was computed using the following expression:

ρ = |F |/|S| (12)

where|F | is the number of feasible solutions and|S| is the total number of solutions randomly generated. In

this work,S = 1, 000, 000 random solutions. This measure gives some insight about theratio between the

feasible region and the whole search space

.
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[TABLE I MUST BE HERE].

The different values ofρ for each of the functions chosen are shown in Table I, wheren is the number of

decision variables, LI is the number of linear inequalities, NI the number of nonlinear inequalities and NE is

the number of nonlinear equalities. It can be clearly seen that in problems 1, 3, 5, 6 and 9 it is very difficult

to generate feasible solutions and therefore the size of thefeasible region seems to be very small with respect

to the whole search space.

As we are not using a penalty function approach, we will use the terms objective function and fitness

function interchangeably, because in our approach they arethe same.

The number of evaluations of the objective function will be considered as a computational cost measure

because it is commonly used in the specialized literature onevolutionary algorithms (Jin 2005) and also

because its importance is indeed a research topic nowadays (Runarsson 2004, Won & Ray 2004). One of its

advantages is that it is ‘hardware-independent’ (i.e. it does not depend of the computer’s features where the

algorithm is tested), which facilitates the comparison among different approaches, and it also stresses a point

that is critical when using EAs: the high number of evaluations usually required by these types of heuristic

approaches in order to achieve competitive results.

5.1 Experimental phase 1

We implemented five different types of ES:

• The variation of a(µ + 1)-ES (V(µ + 1)-ES)

• (µ + λ)-ES without correlated mutation.

• (µ + λ)-ES with correlated mutation.

• (µ, λ)-ES without correlated mutation.

• (µ, λ)-ES with correlated mutation.

The number of fitness function evaluations was fixed to 350000for all 5 different ES. We performed 30

independent runs for each problem and for each type of ES. Fortest problems which have equality constraints,

we used equation 4 with a tolerance value ofǫ = 0.0001.

For the(µ + 1)-ES, the initial values are:

10



• σ = 4.0.

• c = 0.99.

• µ = 5.

• Number of generations =350000.

These values, and also all values used for the approaches in the remaining experiments, were found empir-

ically, always looking for the most competitive performance and also considering that each approach must

perform the same number of evaluations of the objective function.

Nevertheless, it is important to note that the apparent highvalue of the initialσ and the value ofc = 0.99

are set in order to allow a slow decrease in the value of sigma.In this way, the ES will be able to explore

more the search space and the probability of being trapped inlocal optima is decreased.

The pseudocode of the algorithm used for the four remaining ES is presented in Figure 2. We used tra-

ditional panmictic discrete recombination for both, strategy parameters and decision variables. The learning

rates values were calculated as shown in Section 3. The initial values for the stepsize (σ values) were 3.0 for

all the decision variables for all solutions.

The initial values for the remaining ES are:

• µ = 100.

• λ = 300.

• Number of generations =1166.

The statistical results obtained (best, mean and worst solution found and also the corresponding standard

deviation) for the five ES are summarized in Table II.

[TABLE II MUST BE LOCATED HERE].

The discussion of results, in this experiment and also in theremaining tests, will be based on quality and

robustness of results. We measure the quality (accuracy) with the best value obtained by an approach in a set

of independent runs. This is the best solution found by each approach (first row for each problem in Tables II,

V, VI, VIII, IX and X. The robustness (precision) of each approach is measured by the mean and standard

deviation values presented in the second and fourth rows perproblem in Tables II, V, VI, VIII, IX and X.
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With these two measures, based on statistical results, we may know which approach provides the best

approximation to the best known solution (or global optimum) and also how often an approach is able to find

solutions close to the optimum (or best known) solution.

From a pragmatic point of view, when using ES, as well as otherevolutionary algorithms, it is important

to know, based on a set of independent runs, their quality (accuracy) and robustness (precision). Sometimes,

for an interested user, it is useful to have an approach whichis able to find a very good solution, at least once

in several runs, because the approach can be executed several times and the quality is the high-priority. On the

other hand, the user should be interested in obtaining good (not necessarily very good) solutions consistently

(robustness), because the evaluation of the objective function is either very expensive or time consuming, or

maybe because several solutions are required.

Based on the previous comments, in this experiment, we seek for the ES with the best quality as a high

priority and, as a second criterion, we look for a good robustness.

Problem P10 was excluded from discussion because all 5 ES reached the global optimum consistently in

this problem. P10 is a problem with a low dimensionality (3 variables) whose feasible region is disjoint.

As a summary of Table II, in Table III we present the techniquethat provided the best approximation to

the global optimum and also the technique which provided themost robust results

.

[TABLE III MUST BE LOCATED HERE].

In order to have more statistical support, we calculated theconfidence intervals for the mean statistic for

each of the five ES tested.

To verify if the distributions provided by the samples per test problem were close to a normal, we per-

formed a one-sample Kolmogorov-Smirnov test for each sample for each function. In all cases the results

showed that the distributions were not close to a normal one.After that, we performed a bootstrapping test

with 1000 re-samples. Briefly, the aim of bootstrapping is to create several new samples by sampling with

replacement (allowing a data to be repeated in the same resample) from the original sample. Each sample is

of the same size of the original sample. Then the desired statistic is calculated for each resample. The distri-

bution of these resample statistics is called a bootstrap distribution, which gives information about the shape,

center and spread of the sampling distribution of the statistic. We used the Data-plot software. The obtained

bootstrapping distributions were close to a normal. The summary of results with the confidence intervals for

12



the mean statistic, with95% confidence is presented in Table IV. Problem P10 was excludedbecause all five

ES reached the global optimum in every single run.

[TABLE IV MUST BE LOCATED HERE].

5.1.1 Discussion of results

In order to allow a more reasonable discussion of results, weperformed the following binary comparisons:

• Overall results obtained by each technique.

• ‘+’ selection against ‘,’ selection.

• Non-correlated against correlated mutation.

• Some findings about recombination.

Overall results obtained by each technique.

Based on the results in column 3 on Table II, the V(µ+1)-ES reached the global optimum in six problems (P1,

P3, P4, P5, P7, P9) and it provided very good approximations to the global optimum in the remaining three

(P2, P6 and P8). Besides, the V(µ+1)-ES provided the most robust values in three problems (P3, P5and P7).

The results obtained by the non-correlated(µ + λ)-ES in column 4 on Table II show that this approach only

reached the global optimum in one problem (P5), but it provided the best approximations to the best solution

in three problems (P2 and P6 and P8). In addition, the non-correlated(µ + λ)-ES was more robust in two

problems (P2 and P6). The correlated(µ + λ)-ES gave the following results (column 5 Table II: It reached

the global optimum in two problems (P7 and P9). Also, it provided the most robust results in five problems

(P1, P4, P7, P8 and P9). The results of the non-correlated(µ, λ)-ES in column 6 from Table II indicate that

the approach only reached the global optimum in one problem (P7) and it failed to provide robust results in

any other problem. Finally, the correlated(µ, λ)-ES only reached the global optimum in one problem (P7)

and it also failed to provide robust results in any of the problems.

From these results (summarized in Table III we can state thatthe best approximations to the global

optimum were provided by the V(µ + 1)-ES followed by the non-correlated(µ + λ)-ES. On the other hand,

the most robust results were provided by the correlated(µ + λ)-ES followed by the V(µ + 1)-ES.
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These results are supported by the confidence intervals for the mean statistic presented in Table IV, where

the best intervals were obtained for the correlated(µ + λ)-ES in five problems (P1, P4, P7, P8 and P9),

followed by the V(µ + 1)-ES, with best intervals in three problems (P3, P5 and P7).

From this comparison, and based in our criterion that quality is our main goal and robustness is a sec-

ondary goal, we obtained that the most competitive approachis the V(µ+1)-ES (it provided the best approx-

imations to the global optimum and was the second more robustapproach). However, it is interesting that in

test functions where the V(µ + 1)-ES could not find better results (P2, P6 and P8), the number ofdecision

variables is higher than in problems where good results werefound by this approach. The exception is P1,

but the difference here is that P1 has only linear constraints. Those results may suggest that the V(µ + 1)-ES

has difficulties with high dimensionality problems coupledwith nonlinear constraints.

‘+’ selection against ‘,’ selection.

The overall results suggest that there is a clear superiority of the ‘+’ selection over the ‘,’ selection, because

none of the two ES with ‘,’ selection provided a good performance in any problem. From the results in

Table II and the summary in Table III, we can observe that the non-correlated(µ, λ)-ES and the correlated

(µ, λ)-ES only reached the best known solution in two problems (P7 and P10), and it is worth remarking that

P10 was the easiest problem to solve by all five ES tested. Furthermore, the confidence intervals shown in

Table IV show that none of the ‘,’ selection ES were able to provide robust results in any given problem.

These results suggest that the implicit elitism that the ‘+’selection has, is important to help the ES to

avoid losing the feasible solutions found. Despite the factthat it is well known that the ‘,’ selection is less

sensitive to get trapped in local optima (Schwefel 1995, Bäck 1996), in this experiment we can argue that

elitism plays an important role in constrained optimization.

Non-correlated against correlated mutation

The results from Table II (columns 6 and 7) show no evidence about an improvement on neither the quality

of approximation to the global optimum nor the robustness ofthe approach (confidence intervals in Table IV

when using correlated mutation with ‘,’ selection. In fact,for some problems the results are poorer than those

obtained when using correlated mutation (P1, P2, P6, and P7).

For the case of ‘+’ selection (implicit elitism), there is a slightly positive difference when using correlated

mutation in terms of consistency (most robust results in problems P1, P4, P7, P8 and P9 in Table II and also
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better confidence intervals for the mean statistic for theseproblems in Table IV. However, it is not the same

case when looking for quality results which are almost the same in all test problems.

We argue that these results suggest that the correlated mutation does improve the robustness of the evo-

lutionary search in constrained spaces. However, the quality of results does not seem to get better. This issue

is important (computationally speaking), because there isan extra computational cost and storage associated

with the implementation of this type of mutation.

There is also evidence indicating that the comparison criteria explained in Section 4 added to the ‘,’

selection causes the search to be consistently trapped in local optimal solutions.

Recombination operator

The results obtained suggest that, for panmictic discrete recombination, the version used in the V(µ + 1)-ES

provided more quality results than those obtained by the recombination used in the multimembered ES. The

main difference between these two operators is that the first(used in the V(µ + 1)-ES) controls the number

of parents which participate in the process by a user defined parameters (‘µ’). On the other hand, in the

recombination used in the four multimembered ES, the numberof parents depends of the dimensionality of

the problem (‘n + 1’ parents are used , where ‘n’ is the number of decision variables of the problem).

This finding deserves more experimentation (i.e., to isolate the recombination operator in order to analyze

carefully its behaviour) and it is suggested as a path for future work.

5.1.2 Some remarks

From the comparison of the five types of ES we can conclude the following:

• The most competitive approach, based on quality of results is the V(µ + 1)-ES. It seems that the

use of a dynamic approach to adapt the stepsize of the mutation is enough such as to provide quality

results. In consequence, a large number of strategy parameters seems to cause difficulties to converge

in constrained search spaces.

• The correlated (µ + 1)-ES provided the most robust results. However, the closest approximations to

the best known solutions were not as good as those provided bythe V(µ + 1)-ES.

• The elitism that the ‘+’ selection provides is more adequateto solve this set of constrained problems.

• The correlated mutation provides no significant improvements on the performance of an ES in con-

strained search spaces.
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5.2 Experimental phase 2

In this phase, we compare the results of our V(µ + 1)-ES against three state-of-the art techniques based on

evolutionary algorithms: Stochastic Ranking (SR) (Runarsson & Yao 2000), the Adaptive Segregational Con-

straint Handling Evolutionary Algorithm (ASCHEA) (Hamida& Schoenauer 2002) and the Self-Adaptive

Fitness Formulation (SAFF) (Farmani & Wright 2003).

The aim of Stochastic Ranking (Runarsson & Yao 2000) is to balance the influence of the objective

function and the penalty function when assigning fitness to asolution. SR does not require the definition of

a penalty factor. Instead, the selection process is based ona ranking process and a user-defined parameter

calledPf that sets the probability of using only the objective function to compare two solutions when sorting

them. The remaining comparisons will be performed using only the penalty function that consists, in this

case, of the sum of constraint violation.

ASCHEA (Hamida & Schoenauer 2002) is based on three components: (1) an adaptive penalty function,

(2) a constraint-driven recombination which: combines an infeasible solution with a feasible one and applies

it when there is a low number of feasible solutions with respect to a pre-defined rate and (3) a segregational

selection based on feasibility which allows to choose a defined ratio of feasible solutions based on their fitness

to be part of the population for the next generation.

The Self-Adaptive Fitness Formulation (Farmani & Wright 2003) consists on applying a two-step adaptive

penalty function. The aim of the approach is to assign a competitive fitness value to those slightly infeasible

solutions with a good value of the objective function. The penalty function is calculated based on the objective

function and the sum of constraint violation of the best solution in the population, the worst of the infeasible

solutions and the solution with the worst value of the objective function.

SR and ASCHEA use an evolution strategy as a search engine. Incontrast, SAFF uses a GA. The statisti-

cal results of SR are from a set of 30 independent runs, ASCHEA’s are from a set of 31 independent runs and

SAFF’s are from a set of 20 independent runs. All results weretaken from their corresponding publications.

The results of each approach compared with our V(µ + 1)-ES are summarized in Table V.

[TABLE V MUST BE LOCATED HERE].
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5.2.1 Discussion of results

Now, we discuss the results of our approach against each of the three techniques used for comparison. As in

the previous experiment, we eliminate problem P10 from discussion because all approaches found the global

optimum consistently and the results from one of the approaches was not available.

SR againstV (µ + 1)-ES

With respect to SR, theV (µ + 1)-ES obtained a ‘similar’ best result in seven problems (P1, P3, P4, P5, P7,

and P9). It also provided a better mean result in problem P5 and a ‘similar’ mean results in two problems

(P3, P7). In problem P5, the worst result found by our approach is better than that provided by SR. Except

for problems P3, P5 and P7, the standard deviations providedby SR were smaller than those provided by our

ES. We can observe that theV (µ + 1)-ES is able to provide similar ’best’ results to those provided by SR,

but it lacks the consistency shown by SR.

ASCHEA againstV (µ + 1)-ES

With respect to ASCHEA, ourV (µ + 1)-ES provided ‘better’ best results in three problems (P2, P4and

P5) and ‘similar’ best results in other four test functions (P1, P3, P8 and P9). Besides, our approach found

‘better’ mean results in four problems (P2, P3, P4, P5) and ‘similar’ mean results in two problems (P1 and

P7). There is no comparison of worst results and standard deviation values because they were not available

for ASCHEA. However, it is clear to see that our approach presented a very competitive performance (based

on the best and mean results found) compared with that provided by ASCHEA.

SAFF againstV (µ + 1)-ES

Compared with the SAFF, theV (µ+1)-ES provided a ‘better’ best result in four problems (P4, P5,P6 and P8)

and a ‘similar’ best result in other four test functions (P1,P3, P7, P9). Moreover, our approach found ‘better’

mean result in five problems (P3, P4, P5, P6 and P8) and a ‘similar’ mean result in problem P7. Finally, the

V (µ + 1)-ES provided a ‘better’ worst result in four problems (P3, P4, P5 and P6) and ‘similar’ worst result

in problem P7. From these results, we can see also a competitive performance by theV (µ + 1)-ES, and,

sometimes a better performance by our technique.

5.2.2 Remarks

Our approach can deal with moderately constrained problems(P4), highly constrained problems, problems

with low (P5, P7), moderated (P8) and high (P1, P2, P3, P6) dimensionality, with different types of combined

constraints (linear, nonlinear, equality and inequality)and with very large (P2), very small (P1, P5 and P6)
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or even disjoint (P10) feasible regions. Also, the algorithm is able to deal with large search spaces, based on

the intervals of the decision variables, (see Appendix A fordetails) and with a very small feasible region (P5

and P6). Furthermore, the approach can find the global optimum in problems where such optimum lies on

the boundaries of the feasible region (P1, P2, P4, P5, P6 and P9). See the description of each test function

where problems with active constraints are indicated.

It is important to mention that the V(µ + 1)-ES presented a lack of consistency (based on the mean,

worst and standard deviation values) in some test functions. We argue that this is due to the high selection

pressure of the comparison mechanism used to deal with constraints. Infeasible solutions have no probability

of surviving when compared with a feasible one. In this way, we can have a situation of an infeasible

solution close to the boundaries of the feasible region and located near the global optimum, but this infeasible

solution will be discarded when it is compared against a feasible one located far from the global optimum.

Furthermore, the V(µ + 1)-ES works only with one solution as starting point, which could make it sensitive

to the region where this point is generated. This problem will be addressed in our future work.

Besides still being a very simple approach, it is worth reminding that theV (µ + 1)-ES does not add

any extra parameter due to the constraint handling mechanism adopted. In contrast, the SAFF (Farmani &

Wright 2003) requires a parameter for the second part of its penalty function which the authors mention that

it influences the performance of the approach. Stochastic ranking requires the definition of a parameter called

Pf , whose value has an important impact on the performance of the approach (Runarsson & Yao 2000).

ASCHEA also requires the definition of several extra parameters, and in its latest version, it uses niching,

which is a process that also has at least one additional parameter (Hamida & Schoenauer 2002).

The computational cost measured in terms of the number of fitness function evaluations (FFE) performed

by any approach is at least equal for the V(µ + 1)-ES with respect to the others to which it was compared.

This is an additional (and important) advantage, mainly if we wish to use this approach for solving real-world

problems. The V(µ + 1)-ES performed350, 000 FFE, the Stochastic Ranking performed also350, 000 FFE,

the SAFF performed1, 400, 000 FFE, and ASCHEA required1, 500, 000 FFE.

5.3 Experimental phase 3

In this experiment we want to show the positive influence of using an ES when solving constrained problems.

Hence, we implemented a GA which uses exactly the same constraint handling technique of ourV (µ+1)-ES

(and discussed in Section 4).
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We chose a real-coded GA because of its encoding similarities with the ES. We also selected simulated

binary crossover and parameter-based mutation because they are two of the most competitive operators for

real-coded GAs when solving global optimization problems (Deb 2000). The selection process is by binary

tournament selection using the comparison mechanism basedon feasibility (see Section 4). The parameters

were empirically chosen and are the following:

• Population size: 200

• Number of generations: 1750

• Crossover rate. 0.8

• Mutation rate. 0.6

• Number of total evaluations of the objective function: 350,000 (the same used by theV (µ + 1)-ES).

We tuned the GA parameters as to obtain the best performance so far. Also, we took care of promoting a

fair comparison based on fixing the same number of fitness function evaluations for both approaches (ES and

GA) and using the same constraint-handling mechanism applied in the selection process for each approach.

The aim is to analyze, under similar conditions, the capabilities of each search engine to generate better

solutions.

We performed 30 independent runs and the statistical results are summarized and compared against those

provided by theV (µ + 1)-ES in Table VI.

It is very clear to see the better results obtained by theV (µ + 1)-ES over the GA: ‘Better’ best, mean and

worst results in eight problems (P1, P2, P3, P4, P5, P6, P8 andP9). The GA only reaches a similar perfor-

mance in two functions: P7 and P10 (which are the easiest to solve, based on the previous experiments). This

experiment confirms the idea that the ES way of sampling constrained search spaces helps an EA to provide

better results than using other types of search engine (a GA in our case), when using the constraint-handling

mechanism explained in Section 4.

[TABLE VI MUST BE LOCATED HERE].
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5.4 Experimental phase 4

To show the performance of theV (µ + 1)-ES when solving real-world problems, we tested it on three engi-

neering design problems (Coello Coello 2000a).The details of the problems can be found in Appendix A at

the end of this paper. The main features of each problem are detailed in Table VII.

[TABLE VII MUST BE LOCATED HERE].

We used the same set of parameters adopted in the previous experiments, except for the number of gener-

ations and the total number of evaluations of the fitness function. In this case we used25000 generations and

25000 evaluations as well (at each generation, theV (µ+1)-ES performs only one evaluation of the objective

function).

This reduction in the number of generations was decided because of the fact that, after a trial-and-error

process, we realized that, for these types of engineering design problems, the number of evaluations re-

quired for our approach to provide competitive results is lower than the one used in previous experiments.

Furthermore, this number of evaluations makes theV (µ + 1)-ES competitive against the approaches of the

state-of-the-art, as shown below.

The summary of the statistical results of30 independent runs and a comparison against different state-

of-the art techniques are provided in Table VIII for the welded-beam problem, in Table IX for the pressure

vessel problem and in Table X for the tension-compression spring problem. We used for comparison four

techniques taken from the literature. The Socio-Behavioral model (SB) (Ray & Liew 2003) and by Akhtar,

Tai & Ray (2002). SB is a particle swarm optimization approach whose constraint handling mechanism is

based on ranking the population using Pareto Dominance (Coello Coello, Van Veldhuizen & Lamont 2002).

Deb’s (2000) approach uses a GA-based approach, a similar selection mechanism to the one used in this work

and a niching mechanism to help the approach to maintain diversity. The EMO approach by Coello Coello &

Mezura-Montes (2002) uses Pareto dominance (Coello Coelloet al. 2002) in a tournament selection to guide

the search to the feasible region of the search space. Finally, we used a penalty approach proposed by Coello

Coello (2000b) whose main feature is that penalty factors are self-adapted using an embedded GA inside the

main GA which optimizes the solutions of the problem. We present the details of the best solution found for

each engineering design problem in Tables XI and XII.
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[TABLE VIII MUST BE LOCATED HERE].

[TABLE IX MUST BE LOCATED HERE].

[TABLE X MUST BE LOCATED HERE].

5.4.1 Discussion of results

As it can be seen in Table VIII, theV (µ + 1)-ES provided the most competitive results for the welded beam

design using the lowest number of evaluations of the objective function. For the results of the pressure vessel

design shown in Table IX, the best solution was provided by the V (µ + 1)-ES. However, the ‘best’ mean

result was provided by the EMO approach and the ‘best’ worst result was provided by the Socio-Behavioral

approach (whose number of evaluations was also the lowest).Finally, ourV (µ + 1)-ES provided very com-

petitive results against the Socio-Behavioral approach and the self-adaptive penalty approach for the spring

design problem (see Table X). Furthermore, the number of evaluations required by our approach was the

lowest. As a final conclusion for this experiment we can observe a competitive performance ofV (µ + 1)-ES

against evolutionary-based state-of-the-art approachesto solve engineering design problems. However, as

mentioned before, theV (µ + 1)-ES presented some premature convergence to local optima also in two of

these three real-world problems. In our discussion in Section 5.2.2, we argue that this undesired behaviour

may be caused by the combination of two factors: (1) The high selection pressure of the constraint-handling

mechanism and (2) the fact that theV (µ + 1)-ES is a single-membered ES and its exploration capabilities,

for certain types of problems, may depend of the initial point which is generated at random.

[TABLE XI MUST BE LOCATED HERE].

[TABLE XII MUST BE LOCATED HERE].
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6 Conclusions and future work

We have presented an empirical study to analyze the usefulness of using evolution strategies to solve con-

strained optimization problems. As a first experiment, we implemented and tested different types of ES in

order to compare two types of selection mechanisms and also two types of mutation operators. The second

part of our study consisted on comparing the most competitive ES of the first experiment, theV (µ + 1)-ES,

against three state-of-the-art approaches. The comparison showed a competitive performance of our approach

despite a lack of robustness due to the inability of the approach to keep slightly infeasible solutions located

in promising areas of the search space. However, it is worth reminding that theV (µ + 1)-ES is very easy to

implement (see Figure 3 for details) and it does not add any extra parameter to the ES and the computational

cost required (measured by the number of evaluations of the objective function) was equal or lower than those

required by the approaches used for comparison. Furthermore, the feasible region was reached in any single

run for all test problems. In order to emphasize the positiveinfluence of using an ES as a search engine, we

compared ourV (µ + 1)-ES against a GA whose constraint handling approach was the same used in our ES.

The results confirmed our idea. Finally, we tested theV (µ+1)-ES on three engineering design problems and

we compared the results against state-of-the-art approaches in the area. The results were very competitive at

a very low computational cost (measured by the number of evaluations of the objective function). Our future

paths of research consists of:

• Adding a diversity mechanism to the selection process whichallows theV (µ + 1)-ES to maintain

slightly infeasible solutions located in promising areas in order to avoid convergence to local optimum

solutions.

• Performing a comparison among other evolutionary algorithms (differential evolution (Price 1999),

particle swarm optimization (Kennedy & Eberhart 2001)) in order to verify which one is the most

competitive when dealing with constrained search spaces.

• Analyzing in more detail the effect of the recombination operator used in the ES implemented in this

work.

• Solving problems in presence of a higher number of equality constraints. In this paper we solved

problems with only one equality constraints (P3 and P9).
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Appendix A

The details of the thirteen test functions used in this work are the following:

1. Problem 1:

Minimize: f(~x) = 5
∑4

i=1 xi − 5
∑4

i=1 x2
i −

∑13
i=5 xi subject to:

g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0

where the bounds are0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and0 ≤ x13 ≤ 1.

The global optimum is atx∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) wheref(x∗) = −15. Constraintsg1,

g2, g3, g4, g5 andg6 are active.

2. Problem 2:

Maximize:f(~x) =

∣

∣

∣

∣

P

n

i=1
cos4(xi)−2

Q

n

i=1
cos2(xi)√

P

n

i=1
ix2

i

∣

∣

∣

∣

subject to:

g1(~x) = 0.75 −
n
∏

i=1

xi ≤ 0

g2(~x) =

n
∑

i=1

xi − 7.5n ≤ 0
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wheren = 20 and0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is unknown; the best reported

solution is (Runarsson & Yao 2000)f(x∗) = 0.803619. Constraintg1 is close to being active (g1 =

−10−8).

3. Problem 3:

Maximize:f(~x) = (
√

n)
n∏n

i=1 xi

subject to:

h(~x) =
∑n

i=1 x2
i − 1 = 0

wheren = 10 and0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is atx∗

i = 1/
√

n (i = 1, . . . , n)

wheref(x∗) = 1.

4. Problem 4:

Minimize: f(~x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to:

g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(~x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(~x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(~x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The optimum solution is

x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) wheref(x∗) = −30665.539. Constraintsg1

y g6 are active.

5. Problem 5

Minimize: f(~x) = (x1 − 10)3 + (x2 − 20)3

subject to:

g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
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g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution isx∗ = (14.095, 0.84296)

wheref(x∗) = −6961.81388. Both constraints are active.

6. Problem 6

Minimize: f(~x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 −

1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to:

g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(~x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(~x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum isx∗ = (2.171996,

2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927)where

f(x∗) = 24.3062091. Constraintsg1, g2, g3, g4, g5 andg6 are active.

7. Problem 7

Maximize:f(~x) = sin3(2πx1) sin(2πx2)
x3

1
(x1+x2)

subject to:

g1(~x) = x2
1 − x2 + 1 ≤ 0

g2(~x) = 1 − x1 + (x2 − 4)2 ≤ 0

where0 ≤ x1 ≤ 10 and0 ≤ x2 ≤ 10. The optimum solution is located atx∗ = (1.2279713, 4.2453733)

wheref(x∗) = 0.095825.
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8. Problem 8

Minimize: f(~x) = (x1−10)2+5(x2−12)2+x4
3+3(x4−11)2+10x6

5+7x2
6+x4

7−4x6x7−10x6−8x7

subject to:

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(~x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum isx∗ = (2.330499,

1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227) where

f(x∗) = 680.6300573. Two constraints are active (g1 andg4).

9. Problem 9

Minimize: f(~x) = x2
1 + (x2 − 1)2

subject to:

h(~x) = x2 − x2
1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution isx∗ = (±1/
√

2, 1/2) where

f(x∗) = 0.75.

10. Problem 10

Maximize:f(~x) = 100−(x1−5)2−(x2−5)2−(x3−5)2

100

subject to:

g1(~x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where0 ≤ xi ≤ 10 (i = 1, 2, 3) andp, q, r = 1, 2, . . . , 9. The feasible region of the search space

consists of93 disjointed spheres. A point(x1, x2, x3) is feasible if and only if there existp, q, r such

the above inequality holds. The global optimum is located atx∗ = (5, 5, 5) wheref(x∗) = 1.

11. Design of a Welded Beam

[FIGURE 5 MUST BE LOCATED HERE].

26



A welded beam is designed for minimum cost subject to constraints on shear stress (τ ), bending stress

in the beam (σ), buckling load on the bar (Pc), end deflection of the beam (δ), and side constraints

(Rao 1996). There are four design variables as shown in Figure 5 (Rao 1996):h (x1), l (x2), t (x3) and

b (x4).

The problem can be stated as follows:

Minimize:

f(~x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

Subject to:

g1(~x) = τ(~x) − τmax ≤ 0

g2(~x) = σ(~x) − σmax ≤ 0

g3(~x) = x1 − x4 ≤ 0

g4(~x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0

g5(~x) = 0.125− x1 ≤ 0

g6(~x) = δ(~x) − δmax ≤ 0

g7(~x) = P − Pc(~x) ≤ 0

where

τ(~x) =

√

(τ ′)2 + 2τ ′τ ′′
x2

2R
+ (τ ′′)2

τ ′ =
P√

2x1x2

, τ ′′ =
MR

J
, M = P

(

L +
x2

2

)

R =

√

x2
2

4
+

(

x1 + x3

2

)2

J = 2

{

√
2x1x2

[

x2
2

12
+

(

x1 + x3

2

)2
]}

σ(~x) =
6PL

x4x2
3

, δ(X) =
4PL3

Ex3
3x4

Pc(~x) =
4.013E

√

x2

3
x6

4

36

L2

(

1 − x3

2L

√

E

4G

)

P = 6000 lb, L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi
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τmax = 13, 600 psi, σmax = 30, 000 psi, δmax = 0.25 in

where0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0, 0.1 ≤ x3 ≤ 10.0 y 0.1 ≤ x4 ≤ 2.0.

12. Design of a Pressure Vessel

[FIGURE 6 MUST BE LOCATED HERE].

A cylindrical vessel is capped at both ends by hemisphericalheads as shown in Figure 6. The objective

is to minimize the total cost, including the cost of the material, forming and welding. There are four

design variables:Ts (thickness of the shell),Th (thickness of the head),R (inner radius) andL (length

of the cylindrical section of the vessel, not including the head). Ts andTh are integer multiples of

0.0625 inch, which are the available thicknesses of rolled steel plates, andR andL are continuous.

Using the same notation given by Kannan & Kramer (1994), the problem can be stated as follows:

Minimize :

f(~x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

Subject to :

g1(~x) = −x1 + 0.0193x3 ≤ 0

g2(~x) = −x2 + 0.00954x3 ≤ 0

g3(~x) = −πx2
3x4 −

4

3
πx3

3 + 1, 296, 000 ≤ 0

g4(~x) = x4 − 240 ≤ 0

where1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200 y 10 ≤ x4 ≤ 200.

13. Minimization of the Weight of a Tension/Compression String

[FIGURE 7 MUST BE LOCATED HERE].

This problem was described by Arora (1989) and Belegundu (1982), and it consists of minimizing the

weight of a tension/compression spring (see Figure 7) subject to constraints on minimum deflection,

shear stress, surge frequency, limits on outside diameter and on design variables. The design variables

are the mean coil diameterD (x2), the wire diameterd (x1) and the number of active coilsN (x3).
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Formally, the problem can be expressed as:

Minimize:

(N + 2)Dd2

Subject to:

g1(~x) = 1 − D3N

71785d4
≤ 0

g2(~x) =
4D2 − dD

12566(Dd3 − d4)
+

1

5108d2
− 1 ≤ 0

g3(~x) = 1 − 140.45d

D2N
≤ 0

g4(~x) =
D + d

1.5
− 1 ≤ 0

where0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 y 2 ≤ x3 ≤ 15.
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Table captions

Table I: Main features of the ten problems used in experiments 1 to 3.

Table II: Statistical results obtained by the 5 types of ES. Aresult inboldfacemeans a better (or best) solution

obtained. ‘-’ means no feasible solutions were found.

Table III: Most competitive techniques by problem (best approximation to the best known solution (or global

optimum) and more robust approach (based on statistical results).

Table IV: 95%-confidence intervals obtained for the 5 types of ES. A resultin boldface means a better

interval obtained. ‘-’ means no feasible solutions were found in the original sample. ‘BKS’ means Best

Known Solution per problem.

Table V: Comparison of results of our V(µ + 1)-ES against state-of-the-art approaches. A result inboldface

means a better (or best) solution obtained.NA means not available.

Table VI: Comparison of results of our V(µ+1)-ES against a GA with the same constraint handling technique.

A result inboldfacemeans a better (or best) solution obtained.

Table VII: Main features of the 3 engineering design problems.

Table VIII: Comparison of results for the welded beam designproblem. A result inboldfacemeans that a

better solution was obtained.

Table IX: Comparison of results for the pressure vessel design problem. A result inboldfacemeans that a

better solution was obtained.

Table X: Comparison of results for the spring design problem. A result in boldface means that a better

solution was obtained.

Table XI: Summary of best results found by each approach compared for the first two engineering design

problems in experimental phase 4. All solutions are feasible.

Table XII: Summary of best results found by each approach compared for the last engineering design problem

in experimental phase 4. All solutions are feasible.
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Problem n Type of function ρ LI NI NE

1 13 quadratic 0.0003% 9 0 0

2 20 nonlinear 99.9973% 2 0 0

3 10 nonlinear 0.0026% 0 0 1

4 5 quadratic 27.0079% 4 2 0

5 2 nonlinear 0.0057% 0 2 0

6 10 quadratic 0.0000% 3 5 0

7 2 nonlinear 0.8581% 0 2 0

8 7 nonlinear 0.5199% 0 4 0

9 2 quadratic 0.0973% 0 0 1

10 3 quadratic 4.7697% 0 93 0
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Problem & Different ES tested

Best Known Sol. Stats V (µ + 1)-ES (µ + λ)-ES (µ + λ)-ES Corr (µ, λ)-ES (µ, λ)-ES Corr

best −15.000 −14.986 −14.999 −14.995 −14.931

P1 mean −14.840 −14.974 −14.998 −14.971 −14.915

−15.000 worst −12.999 −14.954 −14.973 −14.931 −14.889

St. Dev 4.1E-1 7.79E-3 4.62E-3 1.56E-2 9.78E-4

best 0.793083 0.803607 0.803594 0.792393 0.797201

P2 mean 0.698932 0.800743 0.796618 0.779795 0.777913

0.803619 worst 0.576079 0.792375 0.785246 0.753796 0.748130

St. Dev 4.1E-1 4.64E-3 5.86E-3 1.20E-2 1.25E-2

best 1.000 0.474 0.472 0.465 0.445

P3 mean 1.000 0.238 0.202 0.165 0.108

1.000 worst 1.000 0.027 0.086 0.007 0.000

St. Dev 1.4E-5 1.14E-1 1.00E-1 1.34E-1 1.40E-1

best −30665.539 −30664.838 −30665.529 −30432.131 −30664.217

P4 mean −30665.442 −30651.001 −30665.520 −30309.273 −30662.855

−30665.539 worst −30663.496 −30619.619 −30665.508 −30204.131 −30661.170

St. Dev 3.9E-1 13.16E+0 5.17E-3 52.56E+0 7.72E-1

best −6961.814 −6961.814 −6961.761 −6916.590 −6802.235

P5 mean −6961.814 −6938.453 −6960.628 −6711.116 −6538.026

−6961.814 worst −6961.814 −6567.754 −6957.259 −6068.743 −6277.651

St. Dev 0 83.16E+0 1.15E+0 206.01E+0 127.24E+0

best 24.368 24.329 24.330 24.484 24.651

P6 mean 24.703 24.391 24.422 24.929 24.887

24.306 worst 25.517 24.478 24.563 25.485 25.238

St. Dev 2.4E-1 4.67E-2 6.52E-2 2.71E-1 1.42E-1

best 0.095825 0.095825 0.095825 0.095825 0.095825

P7 mean 0.095825 0.095823 0.095825 0.095825 0.095822

0.095825 worst 0.095825 0.095771 0.095825 0.095821 0.095811

St. Dev 0 1.0E-5 0 1.0E-6 4.0E-6

best 680.632 680.631 680.633 680.809 680.775

P8 mean 680.674 680.640 680.638 681.351 681.139

680.63 worst 680.915 680.666 680.645 682.871 681.498

St. Dev 5.2E-2 1.04E-2 2.70E-3 4.85E-1 1.43E-1

best 0.75 0.751 0.75 − 0.88

P9 mean 0.78 0.88 0.752 − 0.95

0.75 worst 0.88 0.99 0.81 − 0.99

St. Dev 3.73E-2 8.53E-2 1.13E-2 − 2.80E-2

best 1.000 1.000 1.000 1.000 1.000

P10 mean 1.000 1.000 1.000 1.000 1.000

1.000 worst 1.000 0.999 1.000 1.000 1.000

St. Dev 0 1.0E-6 0 0 0
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Problem Best approximation Most robust

P1 V(µ + 1)-ES (µ + λ)-ES Corr

P2 (µ + λ)-ES Non-corr (µ + λ)-ES Non-corr

P3 V(µ + 1)-ES V(µ + 1)-ES

P4 V(µ + 1)-ES (µ + λ)-ES Corr

P5 V(µ + 1)-ES V(µ + 1)-ES

P5 (µ + λ)-ES Non-corr

P6 (µ + λ)-ES Non-corr (µ + λ)-ES Non-corr

P7 V(µ + 1)-ES V(µ + 1)-ES

(µ + λ)-ES Corr (µ + λ)-ES Corr

(µ, λ)-ES Non-Corr

(µ, λ)-ES Corr

P8 (µ + λ)-ES Non-corr (µ + λ)-ES Corr

P9 V(µ + 1)-ES (µ + λ)-ES Corr

(µ + λ)-ES Corr

P10 all approaches all approaches
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P. & Different ES tested

BKS V (µ + 1)-ES (µ + λ)-ES (µ + λ)-ES Corr (µ, λ)-ES (µ, λ)-ES Corr

P1 [-14.984,-14.755] [-14.971, -14.965] [-14998,-14.996] [-14.982,-14.974] [-14.918,-14.910]

-15.000

P2 [0.645508,0.723947] [0.799717,0.801954] [0.794875,0.800625] [0.772763,0.780614] [0.770939,0.780263]

0.803619

P3 [1.000,1.000] [0.812,0.885] [0.174660,0.283622] [0.172,0.311] [0.061,0.173]

1.000

P4 [-30665.539,-30665.480] [-30652.140,-30640.620] [-30665.520,-30665.520] [-30318.030,30269.180] [-30663.340,-30662.830]

-30665.539

P5 [-6961.814,-6961.814] [-6948.833,-6842.289] [-6960.879,-6959.812] [6777.012,6669.917] [-6540.594,-6458.280]

-6961.814

P6 [24.641,24.904] [24.374,24.417] [24.405,24.466] [24.738,24.969] [24.824,24.921]

24.306

P7 [0.095825,0.095825] [0.095820,0.095825] [0.095825,0.095825] [0.095822,0.095825] [0.095820,0.095823]

0.095825

P8 [680.676,680.741] [680.650,680.696] [680.638,680.642] [681.141,681.453] [681.136,681.247]

680.63

P9 [0.76,0.79] [0.79,0.84] [0.75,0.76] - [0.93,0.96]

0.75
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Problem & State-of-the-art approaches compared

Best Known Sol. Stats SR ASCHEA SAFF V (µ + 1)-ES

best −15.000 −15.000 −15.000 −15.000

P1 mean −15.000 −14.840 −15.000 −14.840

−15.000 worst −15.000 NA −15.000 −12.999

St. Dev 0 NA 0 4.1E-1

best 0.803515 0.785000 0.802970 0.793083

P2 mean 0.781975 0.590000 0.790100 0.698932

0.803619 worst 0.726288 NA 0.760430 0.576079

St. Dev 2.0E-2 NA 1.2E-2 4.1E-1

best 1.000 1.000 1.000 1.000

P3 mean 1.000 0.99989 0.9999 1.000

1.000 worst 1.000 NA 0.9997 1.000

St. Dev 1.9E-4 NA 7.5E-5 1.4E-5

best −30665.539 −30665.500 −30665.500 −30665.539

P4 mean −30665.539 −30665.500 −30663.200 −30665.442

−30665.539 worst −30665.539 NA −30663.300 −30663.496

St. Dev 2.0E-5 NA 4.85E-1 3.9E-1

best −6961.814 −6961.810 −6961.800 −6961.814

P5 mean −6875.940 −6961.810 −6961.800 −6961.814

−6961.814 worst −6350.262 NA −6961.800 −6961.814

St. Dev 1.6E+2 NA 0 0

best 24.307 24.332 24.480 24.368

P6 mean 24.374 24.660 26.580 24.703

24.306 worst 24.642 NA 28.400 25.517

St. Dev 6.6E-2 NA 1.14E+0 2.4E-1

best 0.095825 0.095825 0.095825 0.095825

P7 mean 0.095825 0.095825 0.095825 0.095825

0.095825 worst 0.095825 NA 0.095825 0.095825

St. Dev 2.6E-17 NA 0 0

best 680.630 680.630 680.640 680.632

P8 mean 680.656 680.641 680.720 680.674

680.63 worst 680.763 NA 680.870 680.915

St. Dev 3.4E-2 NA 5.92E-2 5.2E-2

best 0.75 0.75 0.75 0.75

P9 mean 0.75 0.75 0.75 0.78

0.75 worst 0.75 NA 0.75 0.88

St. Dev 8.0E-5 NA 0 3.73E-2

best 1.000 NA 1.000 1.000

P10 mean 1.000 NA 1.000 1.000

1.000 worst 1.000 NA 1.000 1.000

St. Dev 0 NA 0 0
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Problem & GA VS ES

Best Known Sol. Stats GA V (µ + 1)-ES

best −5.727 −15.000

P1 mean −4.600 −14.840

−15.000 worst −4.090 −12.999

St. Dev 3.25E-1 4.1E-1

best 0.630084 0.793083

P2 mean 0.505746 0.698932

0.803619 worst 0.439669 0.576079

St. Dev 6.1E-2 4.1E-1

best 0.967 1.000

P3 mean 0.853 1.000

1.000 worst 0.711 1.000

St. Dev 6.6E-2 1.4E-5

best −30365.748 −30665.539

P4 mean −30004.441 −30665.442

−30665.539 worst −29721.688 −30663.496

St. Dev 2.01E+2 3.9E-1

best −6961.057 −6961.814

P5 mean −6953.089 −6961.814

−6961.814 worst −6939.063 −6961.814

St. Dev 6.1E+0 0

best 25.321 24.368

P6 mean 27.988 24.703

24.306 worst 35.559 25.517

St. Dev 2.3E+0 2.4E-1

best 0.095825 0.095825

P7 mean 0.095825 0.095825

0.095825 worst 0.095825 0.095825

St. Dev 0 0

best 680.853 680.632

P8 mean 681.199 680.674

680.63 worst 681.767 680.915

St. Dev 2.4E-1 5.2E-2

best 0.753 0.75

P9 mean 0.90 0.78

0.75 worst 0.99 0.88

St. Dev 6.2E-2 3.73E-2

best 1.000 1.000

P10 mean 1.000 1.000

1.000 worst 1.000 1.000

St. Dev 0 0
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Problem n Type of function ρ LI NI LE NE

Welded beam 4 quadratic 39.6762% 3 1 0 0

Pressure vessel 4 quadratic 2.6859% 6 1 0 0

Spring 3 quadratic 0.7537% 1 3 0 0
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Problem & Engineering design approaches compared

Best Known Sol. Stats SB Deb V (µ + 1)-ES

best 2.385435 2.38119 1.737300

Welded beam mean 3.255137 2.39289 1.813290

worst 6.399679 2.64583 1.994651

St. Dev 9.59E-1 NA 7.05E-2

evaluations 33095 40080 25000
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Problem & Engineering design approaches compared

Best Known Sol. Stats SB EMO approach V (µ + 1)-ES

best 6171.000000 6059.946341 6059.745605

Pressure vessel mean 6335.050000 6177.253268 6850.004948

worst 6453.650000 6469.322010 7332.879883

St. Dev NA 13.09E+1 4.26E+2

evaluations 12630 80000 25000
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Problem & Engineering design approaches compared

Best Known Sol. Stats SB Coello V (µ + 1)-ES

best 0.012669 0.012705 0.012698

Spring mean 0.012923 0.012769 0.013461

worst 0.016717 0.012822 0.016485

St. Dev 5.92E-4 NA 9.66E-4

evaluations 25167 900000 25000
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Welded beam Pressure vessel

SB Deb V (µ + 1)-ES SB EMO V (µ + 1)-ES

x1 0.244438 NA 0.199742 0.8125 0.8125 0.8125

x2 6.237967 NA 3.612060 0.4375 0.4375 0.4375

x3 8.288576 NA 9.037500 41.9768 42.097398 42.098087

x4 0.244566 NA 0.206082 182.2845 176.654047 176.640518

f(x) 2.385435 2.38119 1.737300 6171.000 6059.946341 6059.745605
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Tension/Compression Spring

SB Coello V (µ + 1)-ES

x1 0.368159 0.351661 0.355360

x2 0.052160 0.051480 0.051643

x3 10.648442 11.632201 11.397926

f(x) 0.012669 0.012705 0.012698
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Figure captions

Figure 1: Representation of individuals of a genetic algorithm and an evolution strategy.

Figure 2: ES general algorithm.

Figure 3: Algorithm of the V(µ + 1)-ES. Function best(x,y) selects the best solution between xand y using

the comparison mechanism based on feasibility discussed inSection 4.

Figure 4: Recombination operator used to generate one childfrom theµ mutations in our V(µ + 1)-ES.

Figure 5: The welded beam used for problem 11.

Figure 6: Center and end section of the pressure vessel used for problem 12.

Figure 7: Tension/compression string used for problem 13.
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Figures on individual pages
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Begin

t=0

Createµ random solutions for the initial population.

Evaluate allµ individuals

Assign a fitness value to allµ individuals

For t=1 to MAX GENERATIONSDo

Produceλ offspring by recombination of theµ parents

Mutate each child (with or without correlated mutation)

Evaluate allλ offspring

Assign a fitness value to allλ individuals

If Selection = ‘+’Then

Select the bestµ individuals from theµ + λ individuals

Else

Select the bestµ individuals from theλ individuals

End If

End For

End
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Begin

t=0

Create a random solutionx(t).

Evaluatex(t)

For t=1 to MAX GENERATIONSDo

Produceµ solutions ofx(t) by mutation

Create one offspringx′ from theµ solutions using

panmictic-discrete like recombination

Evaluatex′

x(t + 1) = best(x(t), x′)

Use the ‘1/5’ rule to adapt the sigma value

End For

End
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...Pu

P1 x11 x12 ... x1n

x21 x22 x2n

xu1 xu2 xun

...Child x12xu1 x2n

Mutations

select one parent value at random for each value of the child.
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