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Abstract

Non-dominated sorting has attracted a lot of attention of the research commu-
nity due to its use in solving multi- and many-objective optimization problems.
In recent years, several approaches for non-dominated sorting have been pro-
posed. In this paper, we have developed a non-dominated sorting framework,
namely DCNSRC (Divide-and-Conquer based Non-dominated Sorting with Re-
duced Comparisons). Based on this framework, two approaches have been pro-
posed by varying the search technique. These approaches perform a lower num-
ber of dominance comparisons than various other approaches. The duplicate
solutions are also handled efficiently. These approaches save various compar-
isons while comparing the two solutions. The proposed approaches are vali-
dated using some theoretical analyses. The number of dominance comparisons
performed by the proposed framework are theoretically analyzed in three dif-
ferent scenarios, both in the worst and the best cases. Experimental results
on synthetic datasets and the benchmark problems show the superiority of the
proposed approach over state-of-the-art algorithms.

Keywords: Evolutionary algorithm, Non-dominating sorting, Time complexity

1. Introduction

Non-dominated sorting is one of the key steps in Pareto-based multi-objective
evolutionary algorithms (MOEAs). Non-dominated sorting sorts the solutions
into different non-dominated fronts based on their dominance relationships. In
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addition of being a key step in MOEAs, the application of the optimization
algorithm based on non-dominated sorting can be found in many other fields
such as reactive power planning [1], generation expansion planning [2, 3], fea-
ture selection for facial expression recognition [4], decision making in water
distribution networks [5], vehicle routing problems [6], etc. In MOEAs, the set
of solutions are often referred to as the population. Let P = {s1, s2, . . . , sN}
be a population of N solutions where each solution si, 1 ≤ i ≤ N is an n-

dimensional vector si =
(
s1i , s

2
i , . . . , s

n
i

)T
. The objective function of si is F (si) =

(f1(si), f2(si), . . . , fM (si))
T

where fm(si) is the objective value of solution si for
mth (1 ≤ m ≤M) objective. Let us assume that all the objectives are of mini-
mization type. In non-dominated sorting, the solutions are sorted based on the
dominance relationships among them, which is defined as follows. A solution si
is said to dominate another solution sj , denoted by si ≺ sj if the two following
conditions are satisfied:

1. fm(si) ≤ fm(sj), ∀m ∈ {1, 2, . . . ,M}
2. fm(si) < fm(sj), ∃m ∈ {1, 2, . . . ,M}
Two solutions si and sj are said to be non-dominated, if neither dominates

the other, i.e., neither si ⊀ sj nor sj ⊀ si. In non-dominated sorting, popula-
tion P of size N is divided into K(1 ≤ K ≤ N) fronts F = {F1, F2, . . . , FK}
arranged in decreasing order of their dominance. The division of these solutions
in different fronts is such that all the following conditions are satisfied:

1. ∪Kk=1Fk = P
2. ∀si, sj ∈ Fk: si ⊀ sj and sj ⊀ si, 1 ≤ k ≤ K
3. ∀s ∈ Fk, ∃s′ ∈ Fk−1: s′ ≺ s, 2 ≤ k ≤ K
There have been different approaches proposed in the past for non-dominated

sorting. Srinivas et al. [7] proposed the first approach for non-dominated sorting.
In this approach, a solution can be compared with other solutions a maximum
of N − 1 times. Thus, its worst case time complexity is O(MN3) with space
complexity of O(N). The worst case occurs when all the solutions are in dif-
ferent fronts. The best case time complexity of this approach is O(MN2) when
all the solutions are non-dominated with each other. The fast non-dominated
sorting [8] approach has improved the worst case time complexity to O(MN2),
but with an increase in the space complexity to O(N2). In this approach, a
solution is compared with other solutions only once. A recursive approach was
developed by Jensen et al. [9] with a time complexity of O(N logM−1N). For
two objectives, the time complexity of this approach is O(N logN). This ap-
proach is not suitable when two solutions share the same value for an objective.
This limitation of Jensen’s approach is removed by Fortin et al. [10]. The aver-
age case time complexity of Fortin’s approach is O(N logM−1N). However, the
worst case time complexity of Fortin’s approach is O(MN2). Tang et al. [11]
proposed a fast method for constructing the non-dominated set based on arena’s
principle. The best case time complexity of this approach is O(MN

√
N) [12].

An efficient approach based on a divide-and-conquer strategy was proposed
by Fang et al. [13]. This approach uses the dominance tree to reduce the number
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of comparisons. The worst case time complexity of this algorithm is O(MN2)
when all the solutions are non-dominated with respect to each other. The lower
bound time complexity of this algorithm is O(MN logN). This approach con-
siders one solution as dominated by another if both are identical. Two sorting
algorithms (climbing sort and deductive sort) were proposed by McClymont et
al. [14]. These algorithms use the dominance relation between the solutions to
reduce the number of dominance comparisons. These algorithms have a worst
case time complexity of O(MN2). The space complexity of deductive sort is
O(N), and its best case time complexity is O(MN

√
N). Zhang et al. [12]

proposed an efficient approach for non-dominated sorting, called efficient non-
dominated sort (ENS). Two variants of ENS – one using sequential search (ENS-
SS) and another using binary search (ENS-BS) were proposed. The worst case
time complexity is O(MN2) for these two variants. The best case time com-
plexity of ENS-SS is O(MN

√
N), whereas the best case time complexity of

ENS-BS is O(MN logN). Buzdalov et al. [15] proved that the time complexity
of non-dominated sorting is O(N logM−1N). Mishra et al. [16, 17] proposed an
approach based on a divide-and-conquer strategy. This algorithm has a best
case time complexity of O(MN logN) and a worst case time complexity of
O(MN2).

In some recently proposed approaches [18, 19, 20] when a solution is in-
serted in a front, it is not always compared with all the other solutions in
that front. Based on this idea, an approach known as Best Order Sort (BOS)
has been proposed, which is very efficient in terms of the number of domi-
nance comparisons that it performs [18]. However, BOS is not suitable for
duplicate solutions. Recently, BOS has been generalized to handle duplicate
solutions by removing the comparison set concept1. In this paper, we call this
modified BOS algorithm as BOS∗. A tree based efficient non-dominated sort-
ing approach known as T-ENS [19] is proposed with a worst case time com-
plexity of O(MN2). T-ENS has a better best case time complexity, which is
O(MN logN/logM). Recently, an efficient non-dominated sorting approach that
uses a non-dominated tree (ENS-NDT) [20] was developed with a worst case
time complexity of O(MN2). The best case time complexity of ENS-NDT is
the same as ENS-BS, i.e., O(MN logN). Zhou et al. [21] have developed a
dominance degree based approach for non-dominated sorting. The authors pro-
posed the dominance degree matrix for the solutions in the population and also
proposed an efficient approach to obtain this matrix. Based on the dominance
degree matrix, an efficient approach called dominance degree approach for non-
dominated sorting (DDA-NS) is proposed. In this approach, the comparisons
between the objective function values of the solutions are only performed in
the process of constructing the dominance degree matrix. Once the dominance
degree matrix is obtained, the additional comparisons are required to assign so-
lutions to different fronts. The additional comparisons are in the form of integer
value comparisons between the elements of the dominance degree matrix. So,

1https://github.com/Proteek/Best-Order-Sort/
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in this approach, two types of comparisons (objective value comparisons and
integer value comparisons) occur. The average number of objective value com-
parisons required is O(MN logN), and the number of integer value comparisons
required is O(N2). The number of integer additions is O(MN2). Few other ap-
proaches like [22, 23, 24, 25] have been recently proposed for non-dominated
sorting.

In some of the MOEAs, the population is decomposed into sub-populations
and then non-dominated sorting is performed in each sub-population as done
in [26]. The authors have used the fast non-dominated sorting approach pro-
posed by Deb et al. [8] in [26]. However, other efficient sorting approaches can
also be used to make non-dominated sorting more efficient.

There are some approaches [27, 28, 29, 30, 31, 32, 33] which have been pro-
posed for incremental non-dominated sorting. This incremental non-dominated
sorting is generally used in steady-state evolutionary algorithms [34, 35] where
a solution needs to be inserted into the existing set of non-dominated fronts
once a new solution is generated. Drozdik et al. [27] have developed an M-front
based approach with worst case time complexity of O(MN2) and best case time
complexity of O(MN). The average case time complexity of this approach is

O(M2N2− 1
M−1 ). An approach was proposed by Buzdalov et al. [28], which is

only suitable for two objectives. A dominance matrix based approach was de-
veloped by Mishra et al. [31], which restricts the multiple comparisons between
the same pairs of solutions in different generations of a steady-state evolutionary
algorithm. By generalizing their previous approach for two objectives, Yakupov
et al. [33] proposed an approach with time complexity O(N logM−2N). The
incorporation of a new solution in the population does not change the entire
non-domination level structure of the solutions. By exploiting this property, Li
et al. [30] proposed an efficient non-domination level update approach to in-
sert a new solution in the existing set of non-dominated fronts. The worst case
time complexity of this approach is O(MN2), however, the maximum number
of dominance comparisons is 1/4N2. The best case time complexity of this ap-
proach is O(M). This best case time complexity is a great improvement over the
best case time complexity of the non-dominated sorting approaches. Recently,
Mishra et al. [32] also proposed a generalized approach for the non-domination
level update problem with constant space complexity. A dominance binary tree
based approach was also discussed. The worst and the best case time com-
plexities of this approach are the same as the time complexity of the approach
proposed by Li et al. [30].

Even though there have been several approaches proposed for non-dominated
sorting, there is still a chance of improvement in terms of reducing the number of
dominance comparisons. In general, when two solutions are compared to obtain
their dominance relationships, all the objective values can be considered. Also,
very few existing approaches handle duplicate solutions efficiently. So, we also
focused on the non-dominated sorting problem to handle these issues in order
to make the approach more efficient.
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We have focused on developing a framework based on a divide-and-conquer
strategy. Divide-and-conquer based approaches are easy to parallelize, so our
approach also has this property. However, in this paper, we have not focused
on the parallelism. There have been some approaches proposed based on a
divide-and-conquer strategy such as [16, 17, 13]. However, in these approaches,
while comparing two solutions, all the objective values between the solutions are
compared. Also, before inserting a solution into a particular front, the solution
is compared with all the solutions of that front. Duplicate solutions are also
not handled efficiently in these approaches. In the current paper, a divide-
and-conquer based strategy is developed, which can handle the drawbacks of
the existing divide-and-conquer strategies. The key difference between other
divide-and-conquer based approaches like [16, 17, 13] and ours is that when
two solutions are compared to determine their dominance relationship, not all
the objective values are considered. So, two solutions are compared efficiently.
Apart from this difference from other divide-and-conquer based approaches,
our proposed approach is also capable of handling duplicate solutions in the
population efficiently. Also, before inserting a solution to a particular front, the
solution is not compared with all the solutions of that front. However, in many
approaches, a solution is compared with all the solutions of a front before being
inserted into that front.

In this paper, we develop a framework which we call DCNSRC (Divide-and-
Conquer based Non-dominated Sorting with Reduced Comparisons), which is
proposed to reduce the number of dominance comparisons. This framework
especially takes care of handling duplicate solutions efficiently. Also, in the
proposed framework, when two solutions are compared to determine their dom-
inance relationship, not all the objective values are considered. So, the solu-
tions are also compared efficiently. Two variants of the developed framework
are presented varying the search technique as in [12, 16]. We have theoretically
analyzed the number of dominance comparisons performed by the proposed
framework in different scenarios and observed that the number of dominance
comparisons is less as compared to various other approaches. When all the
solutions are non-dominated, then in the best case, the number of dominance
comparisons can be zero. This can happen when M ≥ N . In brief, the contri-
butions in this paper are as follows:

• A framework for non-dominated sorting has been developed based on a
divide-and-conquer strategy. We call this framework DCNSRC (Divide-
and-Conquer based Non-dominated Sorting with Reduced Comparisons).

• The developed framework handles duplicate solutions efficiently.

• The number of dominance comparisons between the solutions is reduced.

• When two solutions are compared to determine their dominance relation-
ship, not all the objective values are considered. So, the solutions are
compared efficiently.

• Two approaches have been proposed based on the developed framework
by varying the search technique as in [12].

• The number of dominance comparisons performed by DCNSRC in three
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different scenarios in the worst and the best cases are also theoretically
analyzed.

The rest of the paper is organized as follows. Section 2 discusses the proposed
non-dominated sorting framework. An important component in the proposed
framework is the merge procedure which is discussed in detail in Section 3. The
complexity analysis of the framework is performed in Section 4. The experi-
mental analysis is discussed in Section 5. Section 6 concludes the paper and
provides some possible paths for future research.

Algorithm 1 DCNS Framework

Input: P: Population of size N , M : Number of objectives
Output: Sorted solutions

/* - - - - - - - - - - First Phase Starts - - - - - - - - - - */

1: for each objective j ∈ {1, 2, . . . ,M} do
2: Qj ← Sort P based on the jth objective

/* - - - - - - - - - - First Phase Ends - - - - - - - - - - */

/* - - - - - - - - - - Second Phase Starts - - - - - - - - - - */

/* -- Process to Find Duplicate Solutions Starts -- */

3: sameAss←Φ, ∀s ∈ P // Previous solution of s in Q1 if it is same as s
4: N ′ ← 1 // Number of unique solutions in the population
5: for i← 2 to N do
6: if Q1(i) and Q1(i− 1) are the same in terms of objective values then
7: sameAsQ1(i) ← Q1(i− 1) // Q1(i− 1) is same as Q1(i)
8: else
9: N ′ ← N ′ + 1

/* -- Process to Find Duplicate Solutions Ends -- */

10: R = {R1,R2, . . . ,RN ′} // Create N ′ RC-matrices
11: Initialize RC-matrices(R,M) // Using Algorithm 2
12: F = {F1,F2, . . . ,FN ′} // Create N ′ set of fronts
13: Initialize Set of Fronts(F, Q1, Q2, . . . , QM ) // Using Algorithm 3

/* -- Assignment of Solutions to their Respective Fronts Starts -- */

14: for l← 1 to dlog2N
′e do // Consider each level

15: for i← 1 to
⌈
N ′

2l

⌉
do

16: x← 2l · i−
(
2l − 1

)
, y ← x+ 2l−1

17: if y ≤ N ′ then
18: Merge(F(x),F(y),R(x))

/* -- Assignment of Solutions to their Respective Fronts Ends -- */

19: return F(1) // F(1) contains all the sorted solutions

/* - - - - - - - - - - Second Phase Ends - - - - - - - - - - */
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2. Proposed Framework

A non-dominated sorting framework, namely DCNSRC (Divide-and-Conquer
based Non-dominated Sorting with Reduced Comparisons) is proposed. The
proposed framework consists of two-phases. The steps of the DCNSRC frame-
work are summarized in Algorithm 1. The framework uses various symbols
which are summarized in Table 1 along with their meaning.

2.1. First Phase: Pre-sorting

In the first phase, we sort the solutions based on each objective individually
(lines 1− 2) as in [36, 18]. There are several advantages of sorting the solutions
based on all the objectives. The first one is that the solution which comes later
in the sorted list based on an objective does not dominate its previous solutions.
Also, while ranking a solution, there is no need to compare the solution with
all the solutions of a particular front. The dominance comparison between two
solutions becomes efficient as there is no need to compare all the objective values
of the two solutions.

While sorting the solutions based on the first objective, if two solutions are
found to have the same value for that objective, then the second objective is
taken into consideration. If the objective values for the second objective are the
same for two solutions, then their sorting is done based on the third objective
and so on. If the values of all the objectives for two solutions are the same, then
any order of these two solutions can be followed.

We also need to sort the solutions based on the other objectives except for
the first one. Let us sort the solutions based on the mth(2 ≤ m ≤M) objective.
While sorting the solutions based on the mth objective, if two solutions are
found to have the same value for that objective, then the sorted orders of the
solutions based on the first objective are used to decide the ordering of these
solutions based on the mth objective.

The sorted order of the solutions based on the jth objective is denoted by
Qj , 1 ≤ j ≤M . Thus, after the first phase, we getM sorted listsQ1, Q2, . . . , QM ,
each of size N corresponding to each objective. Let the ith solution of Qj be
denoted by Qj(i) where 1 ≤ i ≤ N . If we consider any of these M sorted lists,
then the solution which comes later in the sorted list cannot dominate its pre-
vious solution [12]. Thus, these sorted lists can help in reducing the number of
dominance comparisons.

Example 1. Consider a population with eight solutions in 2-dimensional ob-
jective space, as shown in Figure 1(a). These eight solutions need to be sorted
based on both objectives. When the solutions are sorted based on the first ob-
jective (objective-1), then solutions s6 and s7 have the same value for the first
objective. To decide the ordering between these two solutions, the values of the
second objective are taken into consideration. As s7 has a smaller value than
s6 for the second objective, so s7 comes before s6 in the sorted list based on the
first objective. The sorted orders of the solutions based on the first objective,
denoted by Q1 are shown in Figure 1(b).

7



Table 1: Symbols used in the paper.

Symbol Meaning of the symbol
P Population of solutions
N Number of solutions in the population

M
Number of objectives associated with each solution in the
population

Qj Sorted order of the solutions based on the jth objective
Qj(i) ith solution of Qj

N ′
Number of unique solutions (in terms of objective values) in
the population

Sorted matrix
A matrix of size N ×M where the jth column represents the
sorted order of the solutions based on the jth objective, i.e.,
Qj

sameAss
A variable to keep track of the previous solution of s in Q1

if it is the same as s (in terms of objective values)
F Set of fronts

F = {F1,F2, . . . ,FN ′} Set of N ′ sets of fronts
F(i) Set of fronts in F which is at the ith position, i.e., Fi

RC-matrix (R)
Two-dimensional matrix which stores the solutions which
have been ranked based on a particular objective

R = {R1,R2, . . . ,RN ′} Set of N ′ RC-matrices
R(i) RC-matrix in R which is at the ith position, i.e., Ri
R(i)rj

The cell of an RC-matrix corresponding to the ith set of
fronts which is in the rth row and the jth column

firsts
The objective list in which solution s is first found while
traversing the sorted matrix

Poss

An array of size M associated with each solution s ∈ P which
stores the position of s corresponding to each objective list
in the sorted matrix

ObjLists

A list associated with each solution s ∈ P which stores the
objective list in the sorted matrix in which s has been tra-
versed

Obj-Poss

An array of size M associated with each solution s ∈ P which
stores the objective list and the position of s in which s has
been traversed in the sorted matrix in the form of a pair.
The objective list and the positions are stored in increasing
order of the position.

α
Index of the front in F from where the solutions of front
F ′ ∈ F ′ start comparison during the merging of the two sets
of fronts F and F ′

Ξ [1, 2, . . . ,K]
Array of size K used to store the index of the fronts in F
where each solution of front F ′ ∈ F ′ will be inserted during
the merging of the two sets of fronts F and F ′

rank Rank of a solution

hfi
A variable which stores the index of the front in F having the
highest dominance in which the solutions of front F ′ ∈ F ′
are inserted during the merging of the two sets of fronts F
and F ′

When the solutions are sorted based on the second objective (objective-2),
then solutions s3 and s4 have the same value for the second objective. To decide
the ordering between these two solutions, the sorted orders of the solutions based
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(a) Eight solutions

s1 s7
s2 s8
s3 s5
s4 s6
s5 s3
s7 s4
s6 s2
s8 s1
Q1 Q2

(b) Sorted list

Figure 1: Set of eight solutions along with the sorted solutions after sorting based on both
the objectives.

on the first objective are used. In the sorted order of the solutions based on
the first objective, s3 comes before s4, so s3 precedes s4 in the sorted list based
on the second objective. Similarly, when the solutions are sorted based on the
second objective, then solutions s5 and s6 have the same value for the second
objective. To decide the ordering between these two solutions, the sorted orders
of the solutions based on the first objective are used. In the sorted order of the
solutions based on the first objective, s5 comes before s6, so s5 precedes s6 in the
sorted list based on the second objective. In a similar way, when the solutions
are sorted based on the second objective, then solutions s7 and s8 have the same
value for the second objective. To resolve this issue, the sorted orders of the
solutions based on the first objective are considered. In the sorted order of the
solutions based on the first objective, s7 comes before s8, so s7 precedes s8 in
the sorted list based on the second objective. The sorted order of the solutions
based on the second objective, denoted by Q2 is shown in Figure 1(b). �

2.2. Second Phase

In the second phase, the solutions are assigned to their respective fronts.
This phase considers the sorted lists of solutions obtained from the first phase.
This phase consists of various steps which are as follows.

i. Find duplicate solutions (line 3− 9)

ii. Create and Initialize RC-matrices (line 10− 11)

iii. Initialize set of fronts and obtain desired information for the solutions (line
12− 13)

iv. Sort the solutions (line 14− 18)

Now we discuss all these steps to understand the second phase.

2.2.1. Find Duplicate Solutions

We have focused on handling duplicate solutions efficiently, so we keep track
of the duplicate solutions (in terms of objective values) in the population. For
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this purpose, a variable sameAss is associated with each solution s ∈ P to keep
track of its previous solution in Q1 if it is same as s in terms of objective values
(see line 3). This variable helps in determining the duplicate solutions. The
minimum number of unique solutions in the population can be 1, so we initialize
the number of unique solutions, denoted as N ′ with 1 (line 4). When the
solutions are sorted based on all the objectives, then duplicate solutions have the
same order in all the objective lists. So, before assigning rank to the solutions,
for each solution s ∈ Q1, we keep the information whether the current solution
is the same as its previous solution. If the current solution s is the same as its
previous solution, then the previous solution of s is stored in variable sameAss
associated with s; otherwise, the number of unique solutions is incremented. The
complete process of obtaining duplicate solutions and identifying the number of
unique solutions is shown in lines 3− 9 of Algorithm 1.

The proposed framework is based on a divide-and-conquer strategy and there
are N ′ unique solutions, so initially, we consider N ′ sets of fronts. A set of fronts
can have multiple sub-fronts where each sub-front can have several solutions.
All the fronts in any set of fronts are arranged in decreasing order of their
dominance. Initially, a set of fronts contain only one solution, i.e., each set of
fronts has a single front, and this single front has only one solution. Let the set
of these N ′ sets of fronts be denoted by F = {F1,F2, . . . ,FN ′} (see line 12 of
Algorithm 1). The set of fronts in F which is at the ith position is referred to
as F(i). To sort the solutions, the merge operation is performed between two
consecutive sets of fronts in a level by level manner. The number of levels L is
log2N

′. At the lth level, a total of N
′
/2l merge operations are performed. In

the merge operation, all the solutions from the second set of fronts are inserted
into their respective positions in the first set of fronts.

At the first level, the solutions from the set of fronts at index positions
2, 4, 6, . . . are inserted into the set of fronts at index positions 1, 3, 5, . . . respec-
tively. So, after the merge operation at the first level, the set of fronts at index
positions 2, 4, 6, . . . will never be considered because the solutions of these sets
of fronts are already inserted into another set of fronts in the merge operation.
Similarly, at the second level, the solutions from the set of fronts at index posi-
tions 3, 7, 11, . . . are inserted into the set of fronts at index positions 1, 5, 9, . . .,
respectively. So, after the merge operation at the second level, the set of fronts
at index positions 3, 7, 11, . . . will never be considered. In general, at the lth

level, the set of fronts at index positions 2l−1 + 1, 3 · 2l−1 + 1, 5 · 2l−1 + 1, . . . are
inserted into the set of fronts at index positions 1, 2l + 1, 2 · 2l + 1, . . ., respec-
tively. So, after the merge operation at the lth level, the set of fronts at index
positions 2l−1 + 1, 3 · 2l−1 + 1, 5 · 2l−1 + 1, . . . will never be considered.

Example 2. Consider a population of size eight in 2-dimensional space, which
is shown in Figure 1(a). So, N = 8 and M = 2. All the solutions are unique so
N ′ = 8. As there are eight unique solutions, so there will be eight sets of fronts.
Consider these eight sets of fronts {F1,F2, . . . ,F8}. As the number of sets of
fronts is eight, so the merge operations are performed at three (= log 8) levels. In
the first level, four merge operations are performed. The sets of fronts at index
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positions 1 and 2 are merged. Similarly, the set of fronts at index positions 3
and 4 are merged. The set of fronts at index positions 5 and 6 are merged and
also the set of fronts at index positions 7 and 8 are merged. During the merge
operations at the first level, all the solutions from the set of fronts at index
positions 2, 4, 6, 8 are inserted into the set of fronts at index positions 1, 3, 5, 7,
respectively. So, at the second level, the set of fronts at index positions 2, 4, 6, 8
are not considered. At the second level, two merge operations are performed. At
the second level, the sets of fronts at index positions 1 and 3 are merged, and the
set of fronts at index positions 5 and 7 are merged. During the merge operations
at the second level, all the solutions from the set of fronts at index positions 3, 7
are inserted into the set of fronts at index positions 1, 5, respectively. So at
the third level, the set of fronts at index positions 3, 7 are not considered. At
the third level, only one merge operation is performed. The sets of fronts at
index positions 1 and 5 are merged to get the final set of fronts. This complete
procedure is shown in Figure 2. �

F1 F2 F3 F4 F5 F6 F7 F8

1; 2 3; 4 5; 6 7; 8

1; 3 5; 7

1; 5

Merge at level-1

Merge at level-2

Merge at level-3

Insert all the solutions from Fj to Fi in their
respective positionsi; j

Figure 2: Merge operations between different sets of fronts

Algorithm 2 Initialize RC-matrices(R,M)

Input: R = {R1,R2, . . . ,RN ′}: Set of N ′ RC-matrices which need to be ini-
tialized, M : Number of objectives

Output: Set of N ′ RC-matrices after initialization
1: for l← 1 to dlog2N

′e do
2: r ← 2l−1, incr← 2l

3: for i← r + 1 to N ′ do
4: R(i)km ← ∅, ∀k = 1, 2, . . . , r, ∀m = 1, 2, . . . ,M
5: i← i+ incr

6: R(1)km ← ∅, ∀k = 1, 2, . . . , N ′, ∀m = 1, 2, . . . ,M

2.2.2. Create and Initialize RC-matrices

Besides handling duplicate solutions efficiently, we also focus on reducing
the number of dominance comparisons. For this purpose, we keep the set of
solutions which have been ranked based on a particular objective in the form
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of a matrix as in [18]. Let us call this matrix ‘RC-matrix ’. As our approach is
based on a divide-and-conquer strategy, so initially, a RC-matrix corresponding
to each set of fronts is created (see line 10 of Algorithm 1). Thus, there will
be a total of N ′ RC-matrices. The process to initialize these N ′ RC-matrices
is shown in Algorithm 2. Let the set of N ′ RC-matrices be denoted by R =
{R1,R2, . . . ,RN ′}. The RC-matrix in R which is at the ith position is referred
to as R(i). RC-matrix R(i) is the matrix corresponding to the set of fronts
F(i). The cell of an RC-matrix corresponding to the ith set of fronts which is
in the rth row and the jth column is denoted by R(i)rj . This cell stores the set

of solutions with rank r which have been ranked based on the jth objective in
the ith set of fronts. The number of columns in each of the N ′ RC-matrices is
fixed to M because a solution can be ranked based on any of the M objectives.
However, the number of rows varies between 1 to N ′ depending on the position
of the RC-matrix in R.

The maximum number of fronts in a set of fronts occurs when all the solutions
in that set of fronts are in different fronts, i.e., if there are k solutions then
there will be k fronts. The merge operation is performed in a level by level
manner. Initially, each set of fronts has a single front which contains a single
solution. After the merge operation at the first level, the set of fronts at index
positions 2, 4, 6, . . . will never be considered. The number of fronts in the set
of fronts at these index positions is 1. Thus, the number of rows in the RC-
matrices corresponding to these index positions is 1. After the merge operation
at the second level, the set of fronts at index positions 3, 7, 11, . . . will never be
considered. The maximum number of fronts in the set of fronts at these index
positions is 2. Thus, the number of rows in the RC-matrices corresponding to
these index positions is 2. In general, after the merge operation at the lth level,
the set of fronts at index positions 2l−1+1, 3·2l−1+1, 5·2l−1+1, . . . will never be
considered. The maximum number of fronts in the set of fronts at these index
positions is 2l−1. Thus, the number of rows in the RC-matrices corresponding to
these index positions is 2l−1. At the first index position, the maximum number
of fronts in the set of fronts can be N ′. So, the number of rows in the RC-matrix
at the first index position is N ′. The space required for storing N ′ matrices of

different sizes is as follows. M
(
N ′ +

∑L
l=1

N ′

2l
· 2l−1

)
= O(MN logN).

Example 3. Consider a population of size eight in 2-dimensional space, which
is shown in Figure 1(a). So, N = 8 and M = 2. All the solutions are unique
so N ′ = 8. These eight solutions are considered as a set of fronts. Thus, there
will be eight RC-matrices of different sizes corresponding to each set of fronts.

Initially, each set of fronts has a single front which contains a single solution.
After the merge operation at the first level, the set of fronts at index positions
2, 4, 6, 8 will never be considered. The number of fronts in the set of fronts
at these index positions is 1. Thus, the number of rows in the RC-matrices
corresponding to these index positions is 1. After the merge operation at the
second level, the set of fronts at index positions 3, 7 will never be considered.
The maximum number of fronts in the set of fronts at these index positions is
2. Thus, the number of rows in the RC-matrices corresponding to these index
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F(1) F(2) F(3) F(4) F(5) F(6) F(7) F(8)

R(1) R(2) R(3) R(4) R(5) R(6) R(7) R(8)

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1
2 1× 2 2 1× 2 2 1× 2 2 1× 2
3 2× 2 3 2× 4
4 4
5 4× 2
6
7
8

8× 2

Figure 3: Set of eight RC-matrices of different sizes corresponding to eight sets of fronts.
RC-matrix R(i) corresponds to set of fronts F(i). Each cell in these matrices represents an
empty set R(i)rj which denotes the set of solutions with rank r which have been ranked based

on the jth objective in the ith set of fronts (1 ≤ i ≤ 8, 1 ≤ r ≤ 8, 1 ≤ j ≤ 2).

positions is 2. After the merge operation at the third level, the set of fronts at
index position 5 will never be considered. The maximum number of fronts in
the set of fronts at this index position is 4. Thus, the number of rows in the
RC-matrix corresponding to this index position is 4. At the first index position,
the maximum number of fronts in the set of fronts can be 8. So, the number of
rows in the RC-matrix at the first index position is 8. These eight RC-matrices
are shown in Figure 3. �

2.2.3. Initialize Sets of Fronts and Obtain Desired Information for the Solutions

As our approach is based on a divide-and-conquer strategy, so initially we
create N ′ sets of fronts (see line 12 of Algorithm 1). The process to initialize
these N ′ sets of fronts is shown in Algorithm 3. Along with initializing the sets of
fronts, information associated with each solution is also obtained in Algorithm 3.

The combinations of M sorted lists based on each objective Q1, Q2, . . . , QM
can be thought of as a matrix of size N ×M where the mth column represents
Qm. We call this matrix ‘sorted matrix ’. For sorting purposes, the solutions are
considered in the sorted matrix in a row-wise manner, starting from the first
row to the last. Each row is traversed from left to right. As soon as a solution is
traversed for the first time in the sorted matrix, it is considered as a set of fronts
(line 12 − 14). In this set of fronts, there is only a single front which contains
only one solution. Therefore, after traversing all the solutions at least once, we
get N ′ sets of fronts corresponding to each of the N ′ unique solutions. While
traversing the sorted matrix, we obtain some information for each solution s as
detailed next.

• firsts: A variable associated with each solution s ∈ P which denotes the
objective list in which s is first found while traversing the sorted matrix.

• Poss: An array of size M associated with each solution s ∈ P which
stores the position of s corresponding to each column (objective list) in
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Algorithm 3 Initialize Set of Fronts(F, Q1, Q2, . . . , QM )

Input: F = {F1,F2, . . . ,FN ′}: Set of N ′ sets of fronts which need to be ini-
tialized, Q1, Q2, . . . , QM : Sorted list of solutions based on each objective

Output: Set of N ′ set of fronts after initialization
1: count← 0
2: χ [1, 2, . . . , N ′]← ∅
3: for i← 1 to N do
4: for j ← 1 to M do
5: s← Qj(i) // Take the ith solution from Qj
6: Poss(j)←M(i− 1) + j
7: ObjLists ← ObjLists ∪ {j}
8: Obj-Poss ← Obj-Poss ∪ {j,Poss(j)}
9: if s is traversed for the first time in sorted matrix then

10: firsts ← j // Objective list where s occurs the first time
11: if sameAss = Φ then // Previous solution of s in Q1 is different
12: F ← {s} // Consider solution as a front
13: F ← {F} // Consider front as a set of fronts
14: F← F ∪ {F}
15: count← count + 1
16: R(count)1j ← {s}
17: χ(s)← count

18: else
19: R(χ(sol))1j ← {s}
20: if count = N ′ then // All the solutions have been traversed once
21: Break
22: for k ← i+ 1 to N do
23: for j ← 1 to M do
24: s← Qj(k) // Take the kth solution from Qj
25: Poss(j)←M(k − 1) + j
26: Obj-Poss ← Obj-Poss ∪ {j,Poss(j)}

the sorted matrix. In the sorted matrix, each solution occurs exactly once
in each column. So, the position of a solution in the sorted matrix, which
is in the ith row and the jth column is obtained as M(i − 1) + j where
1 ≤ i ≤ N and 1 ≤ j ≤ M . Poss(j) stores the position of s in the jth

column.

• ObjLists: A list associated with each solution s ∈ P which stores the
column (objective list) in the sorted matrix in which s has been traversed.

• Obj-Poss: An array of size M associated with each solution s ∈ P which
stores the objective list and the position of s in which s has been traversed
in the sorted matrix in the form of a pair. The objective list and the
positions are stored in increasing order of the position.

i. Obj-Poss(i).obj: The objective list where s is traversed for the ith
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time in the sorted matrix.

ii. Obj-Poss(i).pos: The value of position for s when it is traversed for
the ith time in the sorted matrix.

s1 s7
s2 s8
s3 s5
s4 s6
s5 s3
s7 s4
s6 s2
s8 s1

8× 2

(a) Sorted Matrix derived from Q1

and Q2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

8× 2

(b) Position of each of the solu-
tions in sorted matrix

firsts 1 2 1 2 1 2 1 2

Poss

1 11 3 15 5 9 7 13
16 2 14 4 10 6 12 8

ObjLists 1 2 1 2 1 2 1 2

Obj-Poss

(1, 1) (2, 2) (1, 3) (2, 4) (1, 5) (2, 6) (1, 7) (2, 8)
(2, 16) (1, 11) (2, 14) (1, 15) (2, 10) (1, 9) (2, 12) (1, 13)

Solutions s1 s7 s2 s8 s3 s5 s4 s6
Q1(1) Q2(1) Q1(2) Q2(2) Q1(3) Q2(3) Q1(4) Q2(4)

(c) The order of solutions after traversing the sorted matrix in Figure 4(a) in a row-
wise manner along with firsts, Poss and ObjLists for each solution s.

Figure 4: Obtaining the order of solutions for non-dominated sorting along with firsts, Poss
and ObjLists for each solution s.

Example 4. Consider a population with eight solutions, as shown in Fig-
ure 1(a). These solutions are sorted based on each objective. The sorted lists of
solutions based on both objectives are reported in Figure 1(b). Figure 4(a) shows
the sorted solutions in the form of a matrix. The position of each cell in this
sorted matrix is shown in Figure 4(b). Initially, solution s1 is traversed in the
sorted matrix (column-1) and then, solution s7 is traversed (column-2). After
this, the solutions in the second row are traversed and so on. When the solutions
in the fourth row are traversed, then, as soon as the solution s6 is traversed in
column 2, we stop the traversal process as all the solutions have been traversed
at least once. In this traversal, firsts, Poss, ObjLists and Obj-Poss are obtained.
Again, we traverse the solutions in the remaining rows of the sorted matrix to
obtain Poss and Obj-Poss.
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Solutions s1, s2, s3 and s4 have been first traversed in the first column of
the sorted matrix so that their corresponding firsts value is 1. Similarly, s5, s6,
s7 and s8 have been first traversed in the second column of the sorted matrix so
their corresponding firsts value is 2.

The position of s1 corresponding to the first column is 1 and the one corre-
sponding to the second column is 16. So Poss1 = {1, 16}. The position of s7
corresponding to the first column is 11 and the one corresponding to the second
column is 2. So, Poss7 = {11, 2}. Similarly, Poss corresponding to the rest of
the solutions can be obtained.

Solutions s1, s2, s3 and s4 have been first traversed in the first column of
the sorted matrix so their corresponding ObjLists contains 1. Similarly, s5, s6,
s7 and s8 have been first traversed in the second column of the sorted matrix
so their corresponding ObjLists contains 2. After traversing all the solutions at
least once in the 4th row, no further objective value is added to ObjLists of the
solution s.

Solution s1 is first traversed in the first column of the sorted matrix and its
corresponding position is 1. Solution s1 is again traversed in the second column
and then its corresponding position is 16. Thus, Obj-Poss1 = {{1, 1} , {2, 16}}.
Solution s7 is first traversed in the second column of the sorted matrix and its
corresponding position is 2. Solution s7 is again traversed in the first column
and then its corresponding position is 11. Thus, Obj-Poss7 = {{2, 2} , {1, 11}}.
Similarly, Obj-Poss corresponding to the rest of the solutions can be obtained.

The order in which the solutions are obtained from the traversal of the sorted
matrix (in Figure 4(a)) is shown in Figure 4(c). This figure also shows the values
of firsts, Poss, ObjLists and Obj-Poss for each solution, s. �

2.2.4. Sort the Solutions

After initializing the set of fronts and RC-matrices, solutions are assigned to
their respective fronts using merge operations between different sets of fronts at
logN ′ levels. At each point in time during the merge operations, the solutions
in the set of fronts are arranged in decreasing order of their dominance. So, we
have used the concepts of local and global ranks which are described as follows:

Definition 1 (Local Rank). The rank of a solution in the set of fronts is
considered as its local rank if the set of fronts does not contain all the solutions
in the population which take part in non-dominated sorting. Thus, the local rank
of a solution is the actual rank considering only those solutions which are in the
set of fronts.

Definition 2 (Global Rank). The rank of a solution in the set of fronts is
considered as its global rank if the set of fronts contains all the solutions which
take part in non-dominated sorting.

Initially, each set of fronts has a single solution, so the local rank of each
solution s is 1 and the solution is inserted in R(i)1m (line 16 of Algorithm 3)
corresponding to the m(= firsts)

th objective for the ith set of fronts. The actual
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Sort the solutions based on each of

the objectives

Find the duplicate solutions

Create and Initialize N
0

RC-matrices

Create and Initialize N
0 set of

fronts

Obtain the desired information for

each of the solutions

Assign solutions to their respective

fronts

A population of N solutions

with M objectives

Sorted solutions in different

non-dominated fronts

Figure 5: Flowchart of the proposed DCNSRC framework

sorting is performed considering N ′ sets of fronts. The merge operation is
performed in a level by level manner and the set of fronts at the first index
position contains all the solutions at the end of all the merge operations. So,
as we proceed to the last level, the local rank of the solutions in the first set of
fronts converges to the global rank. The flowchart of the proposed framework
is provided in Figure 5.

Example 5. Consider the population shown in Figure 1(a). The sorted matrix
obtained from this population is shown in Figure 4(a). The order in which
the solutions are obtained from the traversal of the sorted matrix is shown in
Figure 4(c). As the number of unique solutions is eight, so initially, these
eight solutions are considered as a set of fronts. These eight sets of fronts
are shown in Figure 6 along with their corresponding RC-matrices. As the
number of solutions is eight, so the merge operations will be performed at three
different levels. The working flow of the proposed framework considering these
eight solutions is shown in Figure 6. Along with the updated set of fronts, the
updated RC-matrix is also shown in this figure. �

The main procedure in this framework is the merge procedure. In the next
section we discuss it in a detailed manner.
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– – Order of solutions obtained after traversing the sorted matrix – –

s1 s7 s2 s8 s3 s5 s4 s6

– – – – – – Consider each solution as a set of fronts – – – – – –

F(1) F(2) F(3) F(4) F(5) F(6) F(7) F(8)

s1 s7 s2 s8 s3 s5 s4 s6

R(1)11=s1 R(2)12=s7 R(3)11=s2 R(4)12=s8 R(5)11=s3 R(6)12=s5 R(7)11=s4 R(8)12=s6

s1, s7 s2 s8 s3 s5 s4 s6

R(1)11=s1 R(1)12=s7 R(3)11=s2 R(4)12=s8 R(5)11=s3 R(6)12=s5 R(7)11=s4 R(8)12=s6

s1, s7 s2, s8 s3 s5 s4 s6

R(1)11=s1 R(1)12=s7 R(3)11=s2 R(3)12=s8 R(5)11=s3 R(6)12=s5 R(7)11=s4 R(8)12=s6

s1, s7 s2, s8 s3, s5 s4 s6

R(1)11=s1 R(1)12=s7 R(3)11=s2 R(3)12=s8 R(5)11=s3 R(5)12=s5 R(7)11=s4 R(8)12=s6

s1, s7 s2, s8 s3, s5 s4, s6

R(1)11=s1 R(1)12=s7 R(3)11=s2 R(3)12=s8 R(5)11=s3 R(5)12=s5 R(7)11=s4 R(7)12=s6

– – – – – – – – – – – – – – – Level-1 – – – – – – – – – – – – – – –

s1, s7, s2 s3, s5 s4, s6

s8 R(5)11=s3 R(5)12=s5 R(7)11=s4 R(7)12=s6

R(1)11=s1, s2 R(1)12=s7

R(1)22=s8

s1, s7, s2 s3, s5

s8 s4, s6

R(1)11=s1, s2 R(1)12=s7 R(5)11=s3 R(5)12=s5

R(1)22=s8 R(5)21=s4 R(5)22=s6

– – – – – – – – – – – – – – – Level-2 – – – – – – – – – – – – – – –

s1, s7, s2, s3, s5

s8, s4, s6

R(1)11=s1, s2, s3 R(1)12=s7, s5

R(1)21=s4 R(1)22=s8, s6

– – – – – – – – – – – – – – – Level-3 – – – – – – – – – – – – – – –

Figure 6: Working flow of the proposed framework. This working flow considers the same

solutions as shown in Figure 1(a). indicates the merge operation between immediate left and
right set of fronts. si, . . . , sj represents that these solutions are non-dominated.
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3. Merge Procedure

In this section we discuss the merge procedure in detail. This procedure
merges two sets of fronts, i.e., inserts all the solutions of the second set of fronts
into the first set of fronts at their respective positions. The normal operation
of merge sort cannot be directly applied here because of the dominance rela-
tionship. The dominance relationship does not follow the transitivity property
(when two solutions are non-dominated with a particular solution, then it does
not imply that both solutions are also non-dominated). So, the merge procedure
is different than the usual merge operation in merge sort.

Let us have two sets of fronts F = {F1, F2, . . . , FP } and F ′ =
{
F ′1, F

′
2, . . . , F

′
Q

}
which need to be merged at a particular level in the DCNSRC framework. Let
the cardinality of front Fp(1 ≤ p ≤ P ), i.e., |Fp| = np and the cardinality of
front F ′q(1 ≤ q ≤ Q), i.e., |F ′q| = nq. The merge procedure merges these two
sets of fronts F and F ′ using Algorithm 4. In the merge procedure, all the so-
lutions of F ′ are inserted into their respective positions in F . During the merge
procedure, the RC-matrix corresponding to the set of fronts F is also consid-
ered so that after inserting all the solutions from F ′ into F , the RC-matrix
corresponding to F is also updated. In the merge procedure, the solutions of
each front from F ′ are inserted in F sequentially starting from F ′1 to F ′Q. The
solutions of a front F ′ ∈ F ′ are inserted in F using the Insert() procedure
which is summarized in Algorithm 5.

Algorithm 4 Merge(F ,F ′,R)

Input:
• F = {F1, F2, . . . , FP }: First set of fronts
• F ′ =

{
F ′1, F

′
2, . . . , F

′
Q

}
: Second set of fronts whose solutions will be in-

serted into F
• R: RC-matrix corresponding to F

Output: Updated F after insertion of all the solutions from F ′ into F
1: α← 0
2: for each front F ′ ∈ F ′ do
3: α← Insert(F , F ′,R, α+ 1) // Insert all the solutions of F ′ in F
4: if α = |F| then
5: Break
6: for each remaining front F ′ ∈ F ′ do // Add the remaining fronts of F ′ to
F without comparison

7: F ← F ∪ {F ′} // Add F ′ to F
8: α←α+ 1 // Local rank of the solutions of F ′ in F
9: for each solution s′ ∈ F ′ do // Update RC-matrix R

10: ∀m ∈ ObjLists′ : Rαm ← Rαm ∪ {s′}

Our aim is to reduce the unnecessary dominance comparisons between the
solutions. For this purpose, we have considered the dominance relationships
which are discussed in [16]. These relationships are very useful when the number
of fronts is large in number. In the merge procedure, when the solutions of
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front F ′1 are inserted in F , the solutions of F ′1 determine their positions in F by
comparing with solutions of each of the fronts in F starting from the first front
F1. However, when the solutions of the next front (i.e., F ′2) are inserted in F ,
then these solutions do not start comparing with the solutions of the first front
in F because of the dominance relationship [16]. Let us assume that the index
of the front in F from where the solutions of front F ′ ∈ F ′ start comparison be
denoted by α. Thus, the solutions of front F ′ start comparison with front Fα
in F .

After inserting all the solutions of a front F ′ in F , Algorithm 5 returns the
index of the front with the highest dominance in F , where the solutions of front
F ′ have been inserted. This index is stored in variable α in Algorithm 4. In
the merge procedure, when the next front of F ′ is inserted into F , then the
solutions of this front start dominance comparison with front Fα+1 because of
the dominance relationship. Whenever a front F ′ is inserted into F , the value
of α is updated. Thus, in the merge procedure, the solutions of a front are
not compared with the solutions of each of the fronts in F , thereby making the
merge procedure efficient.

After insertion of a front F ′ in F , if the value of α is equal to the cardinality
of F (line 4 in Algorithm 4), then all the remaining fronts of F ′ are directly
added to F without performing any dominance comparison with the solutions of
F because of the dominance relationship (lines 6−10 of Algorithm 4). When the
solutions of the fronts are directly added to F , then RC-matrix corresponding
to F , i.e., R is also updated in lines 9−10 of Algorithm 4. For each added front
F ′, the index of the front in F where the solutions of F ′ are added, is obtained.
This index is basically the local rank of the solutions of front F ′ in F . This
index is obtained by incrementing the value of α by 1. Each solution s′ ∈ F ′ is
added to Rαm for each objective m where the solution has been traversed in the
sorted matrix, i.e., m ∈ ObjLists′ .

Illustration of the Insert() procedure. This procedure inserts the solutions
of a particular front F ′ ∈ F in F . Once all the solutions of front F ′ have
been inserted, this procedure returns the index of the front with the highest
dominance in F , where the solutions of front F ′ have been inserted. Let the
index of fronts in F where the solutions of F ′ are inserted be ι1, ι2, . . . , ιnq

(when more than one solution is inserted into a single front, then the index of
the front for these solutions will be same). If any solution creates a new front,
then the index of this newly created front will be treated as P + 1 where P
is the number of fronts in F before insertion of front F ′. The index of the
front having highest dominance in which the solutions of front F ′ are inserted
is ξ = min (ι1, ι2, . . . , ιnq

).
To keep track of this front index, a variable hfi (highest dominance front

index) is considered. The insertion of a front F ′ in F can add one extra front.
Thus, the value of hfi is initialized to P + 1 (line 2) which is the maximum
possible value of hfi.

An array Ξ of size |F ′| is considered to store the index of the front in F where
the solutions of front F ′ will be inserted. This array is required to update the
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Algorithm 5 Insert(F , F ′,R, α)

Input:
• F = {F1, F2, . . . , FP }: Set of fronts where all the solutions of a front need

to be inserted
• F ′: A front whose solutions need to be inserted into F
• R: RC-matrix corresponding to F
• α: Index of the front in F from where the solutions of F ′ start comparison

Output: Updated F after insertion of all the from F ′ into F
1: P ← |F| // Number of fronts in F
2: hfi← P + 1
3: Ξ[1, 2, . . . , |F ′|] ← ∅ // Array of size |F ′| used to store the index of the

fronts in F where each solution of front F ′ will be inserted
4: for each solution s′ ∈ F ′ do
5: hfi← Insert-SS(F , s′,R, α, hfi,Ξ) // Insert solution s′ in F
6: for each solution s′ ∈ F ′ do // Update R
7: rank← Ξ(s′)
8: ∀m ∈ ObjLists′ : Rrank

m ← Rrank
m ∪ {s′}

9: return hfi

RC-matrix corresponding to F after inserting all the solutions of front F ′. All
the solutions of F ′ are inserted one by one to their respective position in F (line
4 − 5 of Algorithm 5). Once all the solutions of front F ′ have been inserted
into F , then R corresponding to F will be updated. For this purpose, the rank
of each inserted solution s′ ∈ F ′ in F is obtained from Ξ. Let the rank of the
inserted solution be ‘rank’. After obtaining the rank of the inserted solution,
the solution is added to R(x)rankm for each objective m where the solution s′ has
been traversed in the sorted matrix, i.e., m ∈ ObjLists′ .

We can also avoid using array Ξ and update R as a solution is being inserted
into F . However, this will increase the number of dominance comparisons when
multiple solutions from F ′ which have been first found on the same objective
list (i.e., have the same value of firsts′) are inserted into the same front in F .

The insertion of a solution s′ ∈ F ′ in F can be performed either by a
sequential search based technique or by a binary search based technique as
in [12, 16]. The pseudo-code for sequential search based insertion is given in
Algorithm 6 and the pseudo-code for binary search based insertion is given in
Algorithm 8.

3.1. Sequential Search Based Insertion

This procedure inserts a solution s′ ∈ F ′ into F using a sequential search
based technique. In this technique, a solution s′ is compared with the solutions
of each of the fronts in F starting from Fα to FP in a sequential manner. The
solutions are compared efficiently using the DominationCheck() procedure
which is described in Algorithm 7. Let m = firsts′ . Here, solution s′ is not
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Algorithm 6 Insert-SS(F , s′,R, α, hfi,Ξ [ ])

Input:
• F = {F1, F2, . . . , FP }: Set of fronts where a solution needs to be inserted
• s′: A solution which needs to be inserted into F
• R: RC-matrix corresponding to F
• α: Index of the front in F from where solution s′ start comparison
• hfi: Index of the highest dominance front in F where the previous solut-

ions of a front F ′(s′ ∈ F ′) have been inserted
• Ξ [ ]: An array which stores the index of the front in F where s′ will be

inserted
Output: Updated F after insertion of a solution s′ into F

1: isInserted← False // s′ is not yet inserted
2: m← firsts // Objective list where s′ occurs first
3: for p← α to P do
4: isDominated← False
5: for each solution s ∈ Rpm do
6: if Poss(m) < Poss′(m) and

DominationCheck(s′, s,Poss′(m)) = True then
7: isDominated← True
8: Break // Check for next front in F
9: if isDominated = False then // s′ is non-dominated with all the

solutions of Fp
10: Fp ← Fp ∪ {s′} // Insert s′ in Fp
11: isInserted← True // s′ is inserted
12: Ξ(s′)← p // Store the index of the front in F where s′ has been

inserted
13: if p < hfi then
14: hfi← p // Update hfi

15: return hfi // Insertion of s′ is completed

16: if isInserted = False then // s′ is not yet inserted
17: FP+1 ← FP+1 ∪ {s′} // Insert s′ in FP+1

18: Ξ(s′)← P + 1 // Store the index of the front in F where s′ has been
inserted

19: return hfi // Insertion of s′ is completed

compared with all the solutions in a front Fp(α ≤ p ≤ P ); instead, it is only
compared with those solutions in Fp whose local ranks are assigned correspond-
ing to the mth objective. This means that s′ is compared with only Rpm. A
solution s ∈ Rpm whose position for the mth objective is greater than that of
s′, cannot dominate s′, i.e., if Poss(m) > Poss′(m) then s cannot dominate s′.
This is because s′ appears first in the sorted list Qm, hence cannot be domi-
nated by the solution which appears later in that sorted list. Hence, the actual
comparison of s′ occurs only with those solutions in Rpm whose positions for the
mth objective are less than the position of s′ for the mth objective.
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When s′ is compared with the solutions of Rpm and s′ is found to be non-
dominated with respect to all the solutions, then s′ is inserted into front Fp
and hfi is updated accordingly. If s′ is dominated by any of the solutions of
Rpm, then s′ is compared with the solutions of the next front, i.e., Fp+1. If s′ is
dominated by all the fronts, then s′ is inserted into FP+1. Here, a solution is
not compared with all the solutions of a front, thereby, reducing the number of
dominance comparisons.

Illustration of the DominationCheck() procedure. This procedure com-
pares two solutions s ∈ F and s′ ∈ F ′ in an efficient manner without considering
all the objective values. This procedure is different from the normal procedure
to compare two solutions as in this procedure all the objective values of the
solutions are not compared. The procedure to obtain the dominance relation
between two solutions s and s′ is summarized in Algorithm 7. This procedure
also considers the position of s′ in the sorted matrix corresponding to the mth

objective, denoted as pos. In this procedure, s′ is not compared with s with
respect to all the objectives; instead, only those objectives whose correspond-
ing position is greater than pos are compared. In this dominance comparison
procedure, when two solutions are compared, not all the objective values are
compared. Thus, the dominance comparison between two solutions is efficient.

Algorithm 7 DominationCheck(s′, s, pos)

Input: Two solutions s and s′, pos: Position of s′ in the sorted matrix corre-
sponding to the mth objective

Output: False: If s′ is non-dominated with s
True: If s′ is dominated by s

1: for j ←M down to 1 do
2: if Obj-Poss(j).pos > pos then
3: m← Obj-Poss(j).obj
4: if fm(s′) < fm(s) then
5: return False // s′ is non-dominated with s

6: else
7: return True // s′ is dominated by s

3.2. Binary Search Based Insertion

This procedure inserts a solution s′ ∈ F ′ into F using a binary search based
technique. Unlike the sequential search based technique, where a solution s′ can
be compared with the solutions of all the fronts, in this technique, solution s′ is
only compared with the solutions of dlog(P −α+ 2)e fronts. For this purpose, a
tree structure is followed. Here, the tree is not explicitly created, and instead,
the sorted fronts are visualized as the tree.

Two variables min and max are used to follow the tree structure for binary
search. Initially, min is set to α and max is set to P . At first, s′ is compared with
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Algorithm 8 Insert-BS(F , s′,R, α, hfi,Ξ [ ])

Input: Same as Algorithm 6
Output: Same as Algorithm 6

1: min← α, max← P , mid←
⌊
min+max

2

⌋
2: m← firsts′ // Objective list where s′ occurs first
3: while True do // Position of s′ is not identified
4: isDominated← False
5: for each solution s ∈ Rmid

m do
6: if Poss(m) < Poss′(m) and

DominationCheck(s′, s,Poss′(m)) = True then
7: isDominated← True
8: Break // Check for other front in F
9: if isDominated = False then

10: if mid = min then // Leaf is explored
11: Fmid ← Fmid ∪ {s′} // Insert s′ in Fmid

12: Ξ(s′)← mid // Store the index of the front in F where s′ has
been inserted

13: if mid < hfi then
14: hfi← mid // Update hfi

15: return hfi // Insertion of s′ is completed
16: else
17: max← mid− 1, mid←

⌊
min+max

2

⌋
// Explore left sub-tree

18: else
19: if min = P then // Rightmost leaf is explored
20: FP+1 ← FP+1 ∪ {s′} Insert s′ in FP+1

21: Ξ(s′)← P + 1 // Store the index of the front in F where s′ has
been inserted

22: return hfi // Insertion of s′ is completed
23: else if mid = max then
24: Fmax+1 ← Fmax+1 ∪ {s′} // Insert s′ in Fmax

25: Ξ(s′)← max + 1 // Store the index of the front in F where s′ has
been inserted

26: if max + 1 < hfi then
27: hfi← max + 1 // Update hfi

28: return hfi // Insertion of s′ is completed
29: else
30: min← mid + 1, mid←

⌊
min+max

2

⌋
// Explore right sub-tree

Fmid where mid =
⌊
min+max

2

⌋
. Let m = firsts′ . Here, solution s′ is only com-

pared with those solutions in Fmid whose local ranks are assigned corresponding
to the mth objective, i.e., s′ is compared with Rmid

m . The actual comparison of
s′ occurs only with those solutions in Rmid

m whose positions for the mth objective
are less than the position of s′ for the mth objective. If s′ is non-dominated
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with respect to all the solutions of Fmid with which it is compared, then there
are two possibilities:

• If a leaf of the tree is reached (mid = min), then s′ is inserted in Fmid and
hfi is updated accordingly. After this, the insertion process is completed.

• Otherwise, the root of the left sub-tree is checked.

If s′ is dominated by any solution of Fmid with which it is compared, then there
are three possibilities:

• If the rightmost node of the tree is reached (i.e., min = P ), then s′ is
dominated by the solutions of all the front and s′ is inserted in FP+1.
After this, the process of insertion completes.

• If s′ is dominated by the solution of the leaf node, (i.e., mid = max),
then s′ is inserted in Fmax+1 and hfi is updated. After this, the process of
insertion completes.

• Otherwise, the root of the right sub-tree is checked.

Like sequential search based insertion, here also a solution is not compared with
all the solutions, thereby reducing the number of dominance comparisons.

Based on the sequential and binary search based insertion, there are two
approaches based on the DCNSRC framework

(i) DCNSRC-SS (DCNSRC approach with sequential search)

(ii) DCNSRC-BS (DCNSRC approach with binary search)

Example 6. Consider two sets of fronts F = {F1 = {s1, s7, s2} , F2 = {s8}}
and F ′ = {F ′1 = {s3, s5} , F ′2 = {s4, s6}} which are merged at the last level in
Figure 6. In Figure 6, the set of fronts at index positions 1 and 5 are merged at
the last level. Thus, we have merged F(1) and F(5).

Figure 7 shows the working of the merge procedure to merge two sets of fronts
F and F ′ using a sequential search based strategy to insert a solution from F ′ in
F . Here, the Insert() procedure is called twice because there are two fronts in
F ′. In the first Insert() procedure, the Insert-SS() procedure is called twice
because the first front in F ′ has two solutions. Similarly, in the second Insert()
procedure, the Insert-SS() procedure is also called twice as there are also two
solutions in the second front of F ′. The RC-matrices corresponding to both sets
of fronts are also shown in Figure 7.

When the first solution of F ′1, i.e., s3 is inserted in F , then s3 is not compared
with respect to all the solutions of F1. It is compared with those solutions of F1

which have obtained their local ranks based on the first objective because sf3 = 1,
i.e., s3 is compared with R(1)11. Solution s3 is non-dominated with respect to
both solutions {s1, s2} of R(1)11, so s3 is added to F1. The updated set of fronts
is shown in Figure 7(b). When the second solution of F ′1, i.e., s5 is inserted
in F , then s5 is compared with those solutions of F1 which have obtained their
local ranks based on the second objective because sf5 = 2, i.e., s5 is compared
with R(1)12. Solution s5 is non-dominated with respect to the solution of R(1)12,
so s5 is added to F1. The updated set of fronts is shown in Figure 7(c). Now
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s1 s7 s2 s3 s5

s8 s4 s6

Set of fronts F = F(1) Set of fronts F ′ = F(5)

R(1)11=s1, s2 R(1)12=s7 R(5)11=s3 R(5)12=s5

R(1)22=s8 R(5)21=s4 R(5)22=s6

RC-matrix R = R(1) RC-matrix R′ = R(5)

(a) Two sets of fronts along with their RC-matrices

s1 s7 s2 s3 s3 s5

s8 s4 s6

Set of fronts F = F(1) Set of fronts F ′ = F(5)

R(1)11=s1, s2 R(1)12=s7 R(5)11=s3 R(5)12=s5

R(1)22=s8 R(5)21=s4 R(5)22=s6

RC-matrix R = R(1) RC-matrix R′ = R(5)

(b) Insertion of s3 into F

s1 s7 s2 s3 s5 s3 s5

s8 s4 s6

Set of fronts F = F(1) Set of fronts F ′ = F(5)

R(1)11=s1, s2, s3 R(1)12=s7, s5 R(5)11=s3 R(5)12=s5

R(1)22=s8 R(5)21=s4 R(5)22=s6

RC-matrix R = R(1) RC-matrix R′ = R(5)

(c) Insertion of s5 into F

s1 s7 s2 s3 s5 s3 s5

s8 s4 s4 s6

Set of fronts F = F(1) Set of fronts F ′ = F(5)

R(1)11=s1, s2, s3 R(1)12=s7, s5 R(5)11=s3 R(5)12=s5

R(1)22=s8 R(5)21=s4 R(5)22=s6

RC-matrix R = R(1) RC-matrix R′ = R(5)

(d) Insertion of s4 into F

s1 s7 s2 s3 s5 s3 s5

s8 s4 s6 s4 s6

Set of fronts F = F(1) Set of fronts F ′ = F(5)

R(1)11=s1, s2, s3 R(1)12=s7, s5 R(5)11=s3 R(5)12=s5

R(1)21=s4 R(1)22=s8, s6 R(5)21=s4 R(5)22=s6

RC-matrix R = R(1) RC-matrix R′ = R(5)

(e) Insertion of s6 into F

Figure 7: Working of the Merge() procedure to merge two sets of fronts F and F ′. The
solutions of each front in F ′ are inserted one by one in F . The solutions which are added to
F and to the RC-matrix are shown in BOLDFACE in F and R respectively.
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both solutions of F ′1 have been inserted in F , so the RC-matrix corresponding to
F will be updated. The updated RC-matrix corresponding to F after insertion
of both solutions of F ′1 is shown in Figure 7(c).

Both solutions of F ′1 have been inserted in F1, so the Insert() procedure
returns 1 as the value of hfi. Thus, the solutions of the next front of F , i.e., the
solutions of F ′2 will start comparing with the solutions of the second front in F ,
i.e., with the solutions of F2.

When the first solution of F ′2, i.e., s4 is inserted in F , then s4 is not compared
with all the solutions of F2. It is compared with those solutions of F2 which have
obtained their local ranks based on the first objective because sf4 = 1, i.e., s4 is
compared with R(1)21. As there is no solution in R(1)21, so s4 is added to F ′2.
The updated set of fronts is shown in Figure 7(d). When the second solution
of F ′2, i.e., s6 is inserted in F , then s6 is compared with those solutions of
F2 which have obtained their local ranks based on the second objective because
sf6 = 2, i.e., s6 is compared with R(1)22. Solution s6 is non-dominated with
respect to the solution s8 of R(1)22, so s6 is added to F2. The updated set of
fronts is shown in Figure 7(e). Now both solutions of F ′2 have been inserted
in F , so the RC-matrix corresponding to F will be updated. The updated RC-
matrix corresponding to F after insertion of both solutions of F ′2 is shown in
Figure 7(e). �

4. Complexity Analysis

In this section, the complexity analysis of the proposed framework is per-
formed. When the solutions are sorted based on each objective individually,
then heap sort is used which requires O(1) extra space. The sorted solutions
based on each objective need to be stored in a separate list. Thus, the overall
space complexity of the first phase is O(MN). The initialization of N matrices
of different sizes takes O(MN logN) space (from Section 2.2.2).

For each solution s ∈ P, a variable sameAss is considered and there are N
solutions, so the space required for storing sameAss is O(N). For each solution
s, the position of s corresponding to each objective is stored in Poss which
requires O(M) space. There are N solutions so the space required to store this
information for all the solutions is O(MN). For each solution s, the objective
list in which s is found is stored in ObjLists. A solution s can be found in
a maximum of M objective lists, so the space required to store ObjLists for
each solution is O(M). Thus, the space required to store this information for
all the solutions is O(MN). For each solution s, a variable firsts is stored
which requires O(N) space. For each solution s, we consider obj-Poss which
requires O(M) space. Thus, the space required to store this information for
all the solutions is O(MN). In the Insert() procedure, an array of size |F ′|
is considered which requires a maximum O(N) space. Thus, the overall space
complexity of the proposed framework is O(MN logN).

The overall time complexity of the proposed framework is T = T1 + T2 + T3
where T1 is the time complexity of sorting the solutions based on each objective,
checking the duplicate solutions and obtaining the order of solutions for the
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actual sorting. T2 is the time complexity of performing the objective value
comparisons in the merge operation to insert the solutions of F ′ in F and T3 is
the time complexity to update RC-matrices.

The time complexity of sorting the solutions based on all the M objectives
is O(MN logN) + (M − 1)O(N logN) = O(MN logN) [18]. The number of
dominance comparisons required to check for duplicate solutions is N −1 as the
ith solution is compared with the (i− 1)th solution in the sorted list Q1 where
2 ≤ i ≤ N . When duplicate solutions are checked, then in the worst case all
the objective values between the solutions can be considered. Thus, the worst
case time complexity of checking for duplicate solutions is O(MN). The sorted
matrix is traversed to obtain the order of the solutions for the actual sorting and
finding different values corresponding to each solution (for a solution s; firsts,
Poss, ObjLists and Obj-Poss are obtained). The time complexity of obtaining
these values is O(MN). Thus, T1 = O(MN logN) + O(MN) + O(MN) =
O(MN logN).

The merge operations are performed in a level by level manner. Let the
merge operation be performed between two sets of fronts F and F ′. Let us
consider Al be the number of merge operations at each level and Bl be the time
complexity when a solution of F ′ is inserted in F . Cl is the number of solutions
in F ′ which take part in the objective value comparison (some of the solutions
from F ′ are added directly to F without dominance comparisons). In general,
the time complexity of the merge operation is given by Eq. (1). The value of
Al is N/2l at the lth level. However, Bl and Cl vary depending on the nature of
the solutions.

T2 =
∑L

l=1
Al ·Bl · Cl L = Number of levels (1)

Now, we discuss the time complexity of the DCNSRC framework in different
scenarios.

4.1. Solutions are in a Single Front

In this scenario, the time complexity of DCNSRC-SS and DCNSRC-BS is the
same because of the existence of a single front. Here, we discuss the time com-
plexity in two different cases. In the first case, the worst case time complexity
occurs and in the second case, the best case time complexity occurs.

In the worst case, the first to the (M − 2)th objective values of each of the
solutions are the same and the last two objective values are such that they
are able to declare all the solutions as non-dominated. However, the best case
occurs when the traversal of the sorted matrix should be such that before the
second occurrence of a solution, all the solutions must be traversed at least once.

In the worst case, the order of the solutions in the initial M − 1 objective
lists are the same, and in the last list, it is just reversed. Thus, a solution is first
traversed in the first column or in the last column of the sorted matrix. Hence,
a solution is ranked when it is explored either in the first column (objective list
Q1) or in the last column (objective list QM ) of the sorted matrix. Thus, two
solutions are ranked in each row of the sorted matrix. In the best case, before
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the second occurrence of a solution, all the solutions are traversed at least once,
so M solutions are ranked in each row of the sorted matrix.

Here, F and F ′ both have a single front as all the solutions are non-
dominated with respect to each other. Before the merge operation at the lth

level, the number of solutions in F and F ′ is 2l−1. At the lth level, for a so-
lution s′ ∈ F ′ to be inserted in a front in F , it needs to be compared with
2l−(log 2+1) = 2l−2 solutions in F in the worst case and 2l−(logM+1) solutions in
the best case, which are ranked based on the mth objective where m = firsts′ .
The time complexity to compare two solutions is O(M). Thus, the value of Bl
is M · 2l−2 for the worst case and Bl = M · 2l−(logM+1) for the best case. All
the solutions from F ′ are compared with the solutions in F so Cl = 2l−1. Thus,
the time complexity of the merge operations in the worst and the best case is
obtained by Eqs. (2) and (3), respectively. Thus, the number of dominance com-
parisons in the worst case is 1/4N(N−2) and in the best case is 1/2MN(N−M).
In the best case, the number of dominance comparisons decreases with an in-
crease in the number of objectives and it will be zero when M ≥ N .

T2worst
=

L∑
l=1

(
N

2l

)
·M · 2l−2 · 2l−1 =

1

4
MN(N − 2) (2)

T2best
=

L∑
l=logM+1

(
N

2l

)
·M · 2l−(logM+1) · 2l−1 =

1

2
N(N −M) (3)

In the worst case, all the solutions are explored for rank assignment in the
initial N/2 rows. The solution which is explored for ranking in the first column,
has been explored in the first to the M − 1 columns and the solution which is
explored for ranking in the last column, has been explored only in the last col-
umn. So, for a solution s which is ranked based on the first objective, ObjLists
contains the first to the M − 1 objective and the solution s which is ranked
based on the last objective, ObjLists only contains the last objective. So, the
time complexity of updating RC-matrices is obtained using Eq. (4). In the
best case, a solution is explored based on only one objective and then matrix
traversal stops. For a solution s which is ranked based on the mth objective,
ObjLists contains only the mth objective. So, the time complexity of updating
RC-matrices in the best case is obtained using Eq. (5).

T3worst =
N

2
· 1 +

logN∑
l=2

(
N

2l

)
·
[
(M − 1)

2l−1

2
+

2l−1

2

]
(4)

=
N

2
+

1

4
MN(logN − 1) = O(MN logN)

T3best
=

logN∑
l=1

(
N

2l

)
· 2l−1 =

1

2
N logN = O(N logN) (5)

Thus, the overall time complexity in the worst case is O(MN logN) +
O(MN2) + O(MN logN) = O(MN2). When M ≥ N , then the time com-
plexity in the best case is O(MN logN) +O(N logN) = O(MN logN).
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4.2. Solutions are in Different Fronts

In this scenario, DCNSRC-SS and DCNSRC-BS perform differently because
the number of fronts is more than one. As all the solutions are in different fronts,
so each front in F and F ′ has a single solution. Before the merge operation at
the lth level, the number of fronts (and hence the number of solutions) in both
sets of fronts is 2l−1.

In this scenario, the order of the solutions in all Qj after pre-sorting is the
same, i.e., each column in a particular row of the sorted matrix has the same
solution. So, when a solution s′ ∈ F ′ is compared with the solution s ∈ F
during the merge operation, then this comparison takes constant time. This is
because, before the occurrence of s′ in the sorted matrix, solution s has occurred
in all the columns, so in the DominationCheck() procedure, the position of
s′ corresponding to the first objective is always greater than the position of s
for all the objectives.

At the lth level, for a solution from F ′ to be inserted in F , it needs to
be dominated by the solutions of all the fronts in F . Thus, Bl = 2l−1 for
DCNSRC-SS and Bl = dlog

(
2l−1 + 1

)
e for DCNSRC-BS. Only the solution of

the first front in F ′ is compared with the solutions of F , and the solutions of
the remaining fronts of F ′ are added directly to F because of the dominance
relationship. So, Cl = 1 for both DCNSRC-SS and DCNSRC-BS. Hence, the
time complexity of the merge operation of DCNSRC-SS and DCNSRC-BS is
given by Eqs. (6) and (7), respectively. The number of dominance comparisons
performed by the merge operation in this scenario is 0 as two solutions are
compared in constant time.

T2SS =

L∑
l=1

(
N

2l

)
· 2l−1 · 1 =

1

2
N logN (6)

T2BS =

L∑
l=1

(
N

2l

)
· dlog

(
2l−1 + 1

)
e · 1 = 2N − logN − 2 (7)

In this scenario, the order of the solutions in all Qj after pre-sorting is the
same. So, each of the solutions is ranked when it is explored in the first column
of a particular row. While traversing the sorted matrix, a solution is traversed
in each of the columns. So, for a solution s which is ranked based on the
first objective, ObjLists contains all the objectives. So the time complexity of
updating RC-matrices is obtained using Eq. (8).

T3 =

L∑
l=1

(
N

2l

)
·M · 2l−1 =

1

2
MN logN = O(MN logN) (8)

The working details of the DCNSRC framework in the aforementioned two
scenarios are discussed in Appendix B. The number of dominance comparisons
performed by various existing non-dominated sorting approaches in three differ-

30



Table 2: Number of dominance comparisons performed by various non-dominated sorting
approaches in different scenarios.

Approach

Number of Dominance Comparisons

N solutions N solutions in Equal division of N

in single front N fronts solutions in
√
N fronts

FNDS [8] N(N−1)
2

N(N−1)
2

N(N−1)
2

Deductive [14] N(N−1)
2

N(N−1)
2

1
2 (N−1)(

√
N+1)

ENS-SS [12] N(N−1)
2

N(N−1)
2 N(

√
N−1)

ENS-BS [12] N(N−1)
2 N logN−(N−1) N(

√
N−1)
2 +N log

√
N−
√
N(
√
N−1)

BOS∗ [18]

N(N−1)
2

†

N(N−1)
2

N(
√
N−1)†

N(N−M)
2M

‡ N(
√
N−1)
2 + N(

√
N−M)
2M

‡

T-ENS [19]

N(N−1)
2

†

N(N−1)
2

N(
√
N−1)†

N logM N‡ N(
√
N−1)
2 +N logM

√
N
‡

ENS-NDT [20] N−1 + N(N−1)
2

†
N logN

N−1 + N(
√
N−1)
2 + (N+

√
N−1) logN
2

−2N+3
√
N−1†

BBOS [23]

N(N−1)
2

†

N logN
N log

√
N + N(

√
N−1)
2

†

N(N−M)
2M

‡
N log

√
N + N(

√
N−M)
2M

‡

DCNSRC-SS
N−1+N(N−2)

4

†

N−1
N−1+N(

√
N−2)
4

†

N−1+N(N−M)
2M

‡
N−1+N(

√
N−M)
2M

‡

DCNSRC-BS
N−1+N(N−2)

4

†

N−1
N−1+N(

√
N−2)
4

†

N−1+N(N−M)
2M

‡
N−1+N(

√
N−M)
2M

‡

†Maximum number of dominance comparisons.

‡Minimum number of dominance comparisons.

ent scenarios are given in Table 22. This table clearly reveals the effectiveness
of the proposed approaches in terms of the number of dominance comparisons
performed.

4.3. Role of the Merge Procedure on the Efficiency

The merge procedure is the procedure where the solutions are actually com-
pared to determine their dominance nature. The time complexity of the pro-

2The calculation of the number of dominance comparisons performed in the third scenario
is described in Appendix A.
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posed framework without considering the merge procedure is O(MN logN).
The time complexity of the merge procedure varies depending on the nature
of the solutions. So, to make the whole framework efficient, we need to make
the merge procedure efficient. To make the merge procedure efficient, we have
considered some dominance relationships as discussed in [16, 17]. Note that
non-consideration of these dominance relationships does not affect the correct-
ness of the merge procedure. However, the number of dominance comparisons
in the merge procedure may increase and thus the overall time complexity may
increase.

Consider a scenario where all the solutions are in different fronts, i.e., N so-
lutions are in N different fronts. In this particular scenario without considering
the dominance relationships, the solutions are compared O(N2) times (consid-
ering DCNSRC-SS) with each other to find their dominance nature. However,
when the dominance relationships as mentioned in [16, 17] are considered, then
the solutions are considered only O(N logN) times (considering DCNSRC-SS)
with each other to find their dominance nature.

5. Experimental Evaluation

We have compared the performance of DCNSRC-SS and DCNSRC-BS with
respect to the fast non-dominated sorting approach (FNDS) [8], deductive sort
(DS) [14], ENS-SS [12], ENS-BS [12], BOS [18] and DDA-NS [21]. In the DDA-
NS approach, two types of comparisons (objective value comparisons and integer
value comparisons) occur. However, for the other approaches (FNDS, DS, ENS-
SS, ENS-BS and BOS), objective value comparisons are required so, we have
computed the objective value comparisons for these approaches. So, in this
section, we have shown only the runtime for the DDA-NS [21] not the objec-
tive value comparisons as DDA-NS requires objective value comparisons, integer
comparisons and integer additions. We are considering the updated version of
BOS which can handle duplicate solutions, too. The algorithms were imple-
mented in Java under Windows 7 running in a PC with a 3.30 GHz Intel core
i5 processor and 4 GB of RAM.

Fixed Front Dataset. A population of size 10000 is considered where the
number of objectives is varied in the range: 5, 10, 15 and 20 [18]. The number
of fronts varies from 2 to 20 with an increment of 1 as in [18]. The number of
comparisons and execution-times (in milliseconds) for this setup, required by
different non-dominated sorting approaches, are shown in Figure 8. The num-
ber of comparisons required by DCNSRC-SS and DCNSRC-BS is the same for
the fixed front dataset because the solutions of different fronts are compared
in constant time. From this figure it is clear that the number of comparisons
performed by DCNSRC-SS and DCNSRC-BS are much lower than those per-
formed by the other approaches. As the number of fronts increases, the number
of comparisons performed by different approaches, except for FNDS, decreases.
The running times are also lower as compared to those of the other approaches.
However, the running times are not much lower as compared to the number
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Figure 8: Performance of the non-dominated sorting approaches for the fixed front dataset in
terms of the number of comparisons and execution time.
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Figure 9: Performance of the non-dominated sorting approaches for the cloud dataset in terms
of the number of comparisons and execution time.
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of comparisons. This is because in DCNSRC-SS and DCNSRC-BS, solutions
which are ranked are also inserted into R; this process contributes to increasing
the execution time. As discussed in [21], the DDA-NS approach uses matrices
and vectors heavily. Thus, the DDA-NS approach is especially suitable to be
implemented in MATLAB, which is widely believed to be very fast for matrix
operations. If the experiments are implemented on different programming plat-
forms, the results of the comparative experiments will be different. We have
implemented all the algorithms in Java, so the results of our comparative ex-
periments are different than those reported in [21].

Cloud Dataset. In this dataset, the solutions are randomly generated where
the objective values vary between 0 and 1. Thus, the number of non-dominated
fronts and the number of solutions in different non-dominated fronts are random.
This dataset is considered as it mimics the initial stages of MOEAs. The popu-
lation size varies from 500 to 10000 with an increment of 500 where the numbers
of objectives are 5, 10, 15 and 20 [18]. Thus, a total of 20 different populations
are considered. The population size and the number of objectives are the same
as in [18]. The number of comparisons of different non-dominated sorting al-
gorithms for this setup is shown in Figures 9(a) – 9(d) and the execution time
(in milliseconds) is shown in Figures 9(e) – 9(h). The number of comparisons
performed by DCNSRC-SS and DCNSRC-BS is significantly lower as compared
to that of the other approaches. The running times are also less as compared
to the other approaches. However, the running times are not much lower as
compared to the number of comparisons. This is because, in DCNSRC-SS and
DCNSRC-BS, solutions which are ranked are also inserted into RC-matrices;
this process contributes to increase the execution time.

Embedding in NSGA-II. Different non-dominated sorting approaches are
incorporated in NSGA-II and then applied for solving test problems DTLZ1,
DTLZ2, DTLZ3 and DTLZ4 with the number of objectives: 5, 10, 15 and 20 to
assess the performance of the sorting approaches. The other parameters of the
algorithm are as follows: population size = 800, number of generations = 200,
crossover probability = 0.9, mutation probability = 1/n where n is the number
of decision variables, crossover distribution index [37] ηc = 20 and mutation
distribution index ηm = 20. Table 3 shows the number of comparisons and
execution times (in milliseconds) of different non-dominated sorting approaches
for this setup. This table clearly states that the number of comparisons and
execution times required by the proposed approaches are less than those required
by the other five approaches.

6. Conclusions and Future Work

In this paper, a framework for non-dominated sorting, namely DCNSRC,
has been proposed. Based on this framework, two approaches have been pro-
posed. The main advantage of the proposed framework is that with an increase
in the number of objectives, there is a decrease in the number of dominance
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comparisons. Duplicate solutions are also handled efficiently in this approach.
This framework also does not consider all the objective values while compar-
ing two solutions. The worst case time complexity of the proposed approaches
is O(MN2) with 1

4N(N − 2) number of dominance comparisons when all the
solutions are in the same front and the objective values of the solutions have
specific values. The best case time complexity when all the solutions are in a
single front is O(MN logN). The best case time complexity of the proposed
approach is O(MN logN) when all the solutions are in different fronts. Gener-
ally, when all the solutions are non-dominated, then the number of dominance
comparisons required by various approaches reaches its maximum. However, in
our approach, in this scenario, the number of dominance comparisons can be
zero also when M ≥ N .

As part of our future work, we would like to implement our approach in a
parallel environment as it is based on a divide-and-conquer strategy. We would
also like to obtain the maximum theoretical speedup of the parallel version of
the proposed approach. The development of a more efficient approach which
can further reduce the number of comparisons can be a potential area for future
work. Obtaining the lower bound time complexity in the worst case of non-
dominated sorting can be an important future work.
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Appendix A. Solutions are Equally Divided in
√
N Fronts

Here, N solutions are equally divided into
√
N fronts such that each solution

in the kth front is dominated by all the solutions in the (k − 1)th front. In
this scenario, DCNSRC-SS and DCNSRC-BS perform differently because the
number of fronts is more than one. Here, we discuss the number of dominance
comparisons performed in two different cases. In the first case, the number of
dominance comparisons is the maximum, and in the second case, the number
of dominance comparison is the minimum.

When the sorted matrix is traversed in a row-wise manner, then before the
occurrence of a solution in the kth front, all the solutions of the (k − 1)th front
have been traversed in all the columns. This is because each solution in a front
dominates all the solutions in its succeeding front. So, when two solutions of
different fronts are compared, then this comparison takes constant time. This
is because, in the DominationCheck() procedure, the position of a solution
of the kth front corresponding to any of the objectives is always greater than
the position of all the solutions in the (k − 1)th front for all the objectives.

Let us assume that a solution s be first explored in the mth column (mth

objective list) of the sorted matrix. This solution is assigned a rank k in two
steps: step (a) and step (b) which are discussed as follows.

(a) In case of DCNSRC-SS, s is dominated by one of the solutions in each
of the previous k − 1 fronts which have been ranked based on the mth

objective. In case of DCNSRC-BS, it is dominated by one of the solutions
in only dlog ke previous fronts which have been ranked based on the mth

objective. s is compared with only one solution in its previous fronts and s
is also dominated by that particular solution. This is because each solution
in a front is dominated by all the solutions in its preceding fronts. This
step does not contribute to the number of dominance comparison because
two solutions of different fronts are checked in constant time.

(b) s is non-dominated with respect to all the previous solutions in the kth

front which have been ranked based on the mth objective for DCNSRC-SS
and DCNSRC-BS.

Without loss of generality, let us assume N = 22a and M = 2b where a, b are
positive integers and a, b ≥ 1.

Appendix A.1. Maximum Number of Dominance Comparisons

The maximum number of dominance comparisons occurs when the 1st to the
(M −2)th objective values of all the solutions in a particular front are the same.
The last two objective values of all the solutions in a particular front should
be such that they are able to declare all the solutions in a particular front as
non-dominated.

In this case, the order of the solutions in the initial M − 1 objective lists for
each of the fronts is the same, and in the last list, it is just the opposite. This
means that the initial M − 1 columns of a particular row of the sorted matrix
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have the same solution and the last column has a different solution. Thus, a
solution is ranked when it is explored either in the first column or in the last
column of the sorted matrix. When a solution is explored in the 2nd to the
(M − 1)th column, then it will not be ranked because the same solution has
already been ranked when it was explored in the first column. Thus, from each
row, only two solutions are ranked (if not already ranked) – one from the first
column and another from the last column.

The initial
√
N rows of the sorted matrix have the solutions of the first front.

So, all the solutions of the first front are explored for rank assignment in the

initial
√
N/2 rows. The (

√
N + 1)th to the (2

√
N
th

) rows of the sorted matrix
have the solutions of the second front. So, all the solutions of the second front
are explored for rank assignment in the initial

√
N/2 rows after

√
N rows where

the solutions of the first front are present. In the same manner, all the solutions
of the third front are explored for rank assignment in the initial

√
N/2 rows after

2
√
N rows where the solutions of the first and second fronts are present. At

last, all the solutions of the
√
N
th

front are explored for rank assignment in the
initial

√
N/2 rows after (

√
N − 1)

√
N rows where the solutions of the first to

the (
√
N − 1)th fronts are present. In general, the solutions of the kth front are

explored for rank assignment in the initial
√
N/2 rows after the (k− 1)

√
N rows

where the solutions of the first to the (k − 1)th front are present. Thus, the
number of dominance comparisons performed by DCNSRC-SS and DCNSRC-
BS is given by Eq. (A.1). Here, the N − 1 factor comes from checking for
duplicate solutions.

No. of dominance comparisons = N − 1 +
√
N

[∑√
N/2

i=1
(i− 1) + (i− 1)

]
= N − 1 +

1

4
N(
√
N − 2) (A.1)

Appendix A.2. Minimum Number of Dominance Comparisons

The minimum number of dominance comparisons occurs if the traversal of
the solutions in the sorted matrix follows a specific pattern. The traversal should
be such that before the second occurrence of a solution in a front, all the solu-
tions of that particular front must be traversed at least once. So, in each row of
the sorted matrix, M solutions are ranked and there are

√
N solutions in each

front. So, the solutions of the first front are ranked in the initial
√
N/M rows.

The solutions of the second front are ranked in the initial
√
N/M rows after

√
N

rows. The solutions of the third front are ranked in the initial
√
N/M rows after

2
√
N rows. At the end, the solutions of the last front are ranked in the initial√

N/M rows after (
√
N − 1)

√
N rows. In general, the solutions of the kth front

are ranked in the initial
√
N/M rows after (k−1)

√
N rows. Thus, the number of

dominance comparisons performed by DCNSRC-SS and DCNSRC-BS is given
by Eq. (A.2). From this equation, it is clear that as the number of objectives
increases, the value of

√
N/M decreases and the number of dominance compar-

isons decreases. When M ≥
√
N , then the number of dominance comparisons

42



is fixed to N − 1 which is required for checking the duplicate solutions.

No. of dominance comparisons = N − 1 +
√
N

[∑√
N/M

k=1
M(k − 1)

]
= N − 1 +

1

2M
N(
√
N −M) (A.2)

Appendix B. Examples

In this section, some of the examples showing the behavior of the proposed
approach in two different scenarios are discussed.

Appendix B.1. All Solutions are Non-Dominated

Examples of the worst and best case situations when all the solutions are in
a single front are discussed.

Appendix B.1.1. Worst Case

Figure B.10 shows the worst case situation for eight solutions when the
number of objectives is 4. Working flow of the proposed framework for the
solutions given in Figure B.10, is shown in Figure B.14.

Sol
Objective

O1 O2 O3 O4

s1 1 1 1 8
s2 1 1 2 7
s3 1 1 3 6
s4 1 1 4 5
s5 1 1 5 4
s6 1 1 6 3
s7 1 1 7 2
s8 1 1 8 1

(a) Objective values

Q1 Q2 Q3 Q4

s1 s1 s1 s8
s2 s2 s2 s7
s3 s3 s3 s6
s4 s4 s4 s5
s5 s5 s5 s4
s6 s6 s6 s3
s7 s7 s7 s2
s8 s8 s8 s1

(b) Sorted list

Figure B.10: Eight solutions in 4-dimensional
space which are in a single front (Worst case).

Sol
Objective

O1 O2 O3 O4

s1 1 8 X X
s2 8 1 X X
s3 3 6 1 X
s4 4 5 X 1
s5 2 7 X X
s6 7 2 X X
s7 5 4 2 X
s8 6 3 X 2

(a) Objective values

Q1 Q2 Q3 Q4

s1 s2 s3 s4
s5 s6 s7 s8
s3 s8 − −
s4 s7 − −
s7 s4 − −
s8 s3 − −
s6 s5 − −
s2 s1 − −

(b) Sorted list

Figure B.11: Eight solutions in 4-dimensional
space which are in a single front (Best case).

Appendix B.1.2. Best Case

Figure B.11 shows the best case situation for eight solutions when the num-
ber of objectives is 4. It is possible to decide that the two solutions are non-
dominated or not with the help of two objectives if they are contradictory. So,
X in Figure B.11 represents any integer value greater than 2, i.e., X > 2. In
this figure, the first two objectives are sufficient to declare that all the eight so-
lutions are non-dominated. The value of X is chosen such that when the sorted
list based on each objective is traversed in a row-wise manner, then before the
second occurrence of a solution, all the solutions are traversed at least once.

For showing the working flow of the proposed framework in this situation, we
considerX = 3. Eight solutions and the sorted order of the solutions based on all
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Sol
Objective

O1 O2 O3 O4

s1 1 8 3 3
s2 8 1 3 3
s3 3 6 1 3
s4 4 5 3 1
s5 2 7 3 3
s6 7 2 3 3
s7 5 4 2 3
s8 6 3 3 2

(a) Objective values

Q1 Q2 Q3 Q4

s1 s2 s3 s4
s5 s6 s7 s8
s3 s8 s1 s1
s4 s7 s5 s5
s7 s4 s4 s3
s8 s3 s8 s7
s6 s5 s6 s6
s2 s1 s2 s2

(b) Sorted list

Figure B.12: Eight solutions in 4-dimensional
space which are in a single front (Best case).

Sol
Objective

O1 O2 O3 O4

s1 1 1 1 1
s2 2 2 2 2
s3 3 3 3 3
s4 4 4 4 4
s5 5 5 5 5
s6 6 6 6 6
s7 7 7 7 7
s8 8 8 8 8

(a) Objective values

Q1 Q2 Q3 Q4

s1 s1 s1 s1
s2 s2 s2 s2
s3 s3 s3 s3
s4 s4 s4 s4
s5 s5 s5 s5
s6 s6 s6 s6
s7 s7 s7 s7
s8 s8 s8 s8

(b) Sorted list

Figure B.13: Eight solutions in 4-dimensional
space which are in eight different fronts.

the four objectives are shown in Figure B.12. The working flow of the proposed
framework for the solutions given in Figure B.12, is shown in Figure B.15.

Appendix B.2. Solutions are in Different Fronts

Figure B.13 shows the scenario when eight solutions are divided into 8 dif-
ferent fronts.
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1 2 3 4 1 2 3 4 firsts

1 29 9 13 5 25 17 21

Poss
30 2 22 18 26 6 14 10

11 31 3 19 15 27 7 23

12 32 20 4 16 28 24 8

1 2 3 4 1 2 3 4 ObjLists

(1, 1) (2, 2) (3, 3) (4, 4) (1, 5) (2, 6) (3, 7) (4, 8)

Obj-Poss
(3, 11) (1, 29) (1, 9) (1, 13) (3, 15) (1, 25) (2, 14) (2, 10)

(4, 12) (3, 31) (4, 20) (2, 18) (4, 16) (3, 27) (1, 17) (1, 21)

(2, 30) (4, 32) (2, 22) (3, 19) (2, 26) (4, 28) (4, 24) (3, 23)

s1 s2 s3 s4 s5 s6 s7 s8

R(1)11=s1 R(2)12=s2 R(3)13=s3 R(4)14=s4 R(5)11=s5 R(6)12=s6 R(7)13=s7 R(8)14=s8

s1, s2 s3 s4 s5 s6 s7 s8

R(1)11=s1 R(1)12=s2 R(3)13=s3 R(4)14=s4 R(5)11=s5 R(6)12=s6 R(7)13=s7 R(8)14=s8

s1, s2 s3, s4 s5 s6 s7 s8

R(1)11=s1 R(1)12=s2 R(3)13=s3 R(3)14=s4 R(5)11=s5 R(6)12=s6 R(7)13=s7 R(8)14=s8

s1, s2 s3, s4 s5, s6 s7 s8

R(1)11=s1 R(1)12=s2 R(3)13=s3 R(3)14=s4 R(5)11=s5 R(5)12=s6 R(7)13=s7 R(8)14=s8

s1, s2 s3, s4 s5, s6 s7, s8

R(1)11=s1 R(1)12=s2 R(3)13=s3 R(3)14=s4 R(5)11=s5 R(5)12=s6 R(7)13=s7 R(7)14=s8

– – – – – – – – – – – – – – – – Level-1 – – – – – – – – – – – – – – – –

s1, s2, s3, s4 s5, s6 s7, s8

R(1)11=s1 R(1)12=s2 R(1)13=s3 R(1)14=s4 R(5)11=s5 R(5)12=s6 R(7)13=s7 R(7)14=s8

s1, s2, s3, s4 s5, s6, s7, s8

R(1)11=s1 R(1)12=s2 R(1)13=s3 R(1)14=s4 R(5)11=s5 R(5)12=s6 R(7)13=s7 R(7)14=s8

– – – – – – – – – – – – – – – – Level-2 – – – – – – – – – – – – – – – –

s1, s2, s3, s4, s5, s6, s7, s8

R(1)11=s1, s5 R(1)12=s2, s6 R(1)13=s3, s7 R(1)14=s4, s8

– – – – – – – – – – – – – – – – Level-3 – – – – – – – – – – – – – – – –

Figure B.15: Working flow of the proposed framework when all the solutions are in a single

front in the best case scenario. indicates the merge operation between the immediate left
and the right set of fronts. si, . . . , sj represents that these solutions are non-dominated with
each other.
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