
Soft Computing manuscript No.
(will be inserted by the editor)

Evolutionary-Based Tailoring of Synthetic Instances for the
Knapsack Problem

Luis Fernando Plata-González · Ivan Amaya · José Carlos Ortiz-Bayliss ·
Santiago Enrique Conant-Pablos · Hugo Terashima-Maŕın · Carlos A.

Coello Coello

Received: date / Accepted: date

Abstract The assessment of strengths and weaknesses

of a solver is often limited by the diversity of the cases

where it is tested upon. As such, it is paramount to have

a versatile tool which finds the problem instances where

such a solver excels/fails. In this manuscript, we pro-

pose to use an evolutionary algorithm for creating this

tool. To validate our approach, we conducted several

tests on four heuristics for the knapsack problem. Al-

though, the process can be extended to other domains

with relatively few changes. The tests cover different

sets of instances, both favoring the performance of one

heuristic while hindering that of the remaining ones,

and vice versa. To further test our evolutionary-based

model, we also apply it on a recent approach that com-

bines the strengths of different heuristics to improve its

performance (usually referred to as a hyper-heuristic).

We show that it is possible to tailor instances in which

even this more complex model excels/fails. Through-

out our approach, a researcher can test a solver under

different kinds of scenarios, delving deeper into the con-

This research was supported in part by Consejo Nacional
de Ciencia y Tecnoloǵıa (CONACyT) Basic Science Project
[grant number 241461] and ITESM Research Group with
Strategic Focus in intelligent Systems. The last author grate-
fully acknowledges support from CONACyT project no.
221551.

L. F. Plata-González · I. Amaya (Corresponding Author) · J.
C. Ortiz-Bayliss · S. E. Conant-Pablos · H. Terashima-Maŕın
Tecnologico de Monterrey, School of Engineering and Sci-
ences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., Mex-
ico, 64849
Tel.: +52 01 81 8358 2000
E-mail: iamaya2@tec.mx

C. A. Coello Coello
CINVESTAV-IPN (Evolutionary Computation Group), Ave.
Instituto Politcnico Nacional 2508, Mexico City, Mexico,
07360

ditions that make it perform well/poorly. Therefore, we

recommend using the proposed approach as a means to

grasp better insights about strengths and weaknesses of

different solvers.

Keywords Evolutionary computation · Knapsack

problem · Instance generation

1 Introduction

The knapsack problem (KP) is a fundamental and ex-

tensively studied problem in combinatorial optimiza-

tion, not only for its theoretical interest but also be-

cause of its many practical applications. This problem

is classified as NP-hard, and several exact and approx-

imate algorithms have been developed to solve it (Gao

et al, 2014; Furini et al, 2017; Mavrotas et al, 2015).

KP has multiple variants, as described in the works

of Martello and Toth (1990) and Kellerer et al (2004).

Knapsack problems are important, among other

things, because they can be used to model certain kinds

of real-world problems (Zitzler and Thiele, 1999; Sama-

vati et al, 2017), including budgeting, cargo loading and

cutting stock (Martello and Toth, 1990). A recent ex-

ample of the many applications of this problem is de-

scribed in the work of Simon et al (2017), where a group

of people must decide which items to carry and how to

distribute them. The authors modeled their problem as

multi-dimensional (d-KP) and multiple knapsack prob-

lems. Li et al (2016) illustrate another feasible scenario,

List of abbreviations: Mixed Integer Programming Li-
brary (MIPLIB), Default heuristic (Def), Max Profit heuristic
(MaP), Max Profit per Weight heuristic (MPW), Minimum
Weight heuristic (MiW), Latin Hyper-cube Sampling (LHS)
and Hyper-heuristic (HH).



2 Luis Fernando Plata-González et al.

using a multiple knapsack model to solve the optimiza-

tion problem of a sensor network. A third example, in

yet another field, rests in the work of Szkaliczki et al

(2014), where solutions related to the KP were intro-

duced to study a problem related to streaming of lay-

ered video contents over peer-to-peer networks.

Finding new strategies for solving the knapsack

problem, as well as other problems, requires a set of

suitable instances where these methods can be tested.

For example, Marinakis and Marinaki (2014) used two

different benchmarks to test the performance of a meta-

heuristic on the open vehicle routing problem: a tradi-

tional one, proposed by Christofides et al (1979); and

a more recent one, proposed by Li et al (2007). Simi-

larly, Ariyasingha and Fernando (2015) tested different

versions of the Multi-Objective Ant Colony Optimiza-

tion (MOACO) algorithm on instances of the traveling

salesman problem presented by Reinelt (1991).

Although the past years have witnessed a remark-

able improvement in the quality of the solving methods,

benchmark instances have remained almost unaltered.

Having access to challenging instances may help re-

searchers to identify critical areas where improvements

to solvers can take place. In this regard, real-world sce-

narios are an ideal but scarce source of test problems.

Nonetheless, another feasible source rests in the usage

of synthetic instances.

Some of the instances that have been used as

benchmarks in the knapsack problem include the work

of Martello and Toth (1990). Here, the authors intro-

duced a set of 0/1 KP instances with different num-

bers of items, and a high correlation between weights

and profits of the items. Another important benchmark

source is the OR-Library, which was created by Beasley

(1990) for distributing test data for Operations Re-

search (OR) problems, including the multiple knapsack

problem. Azad et al (2014) recently used this library

for assessing the performance of a metaheuristic in 0/1

multidimensional knapsack problems. Yet another ex-

ample of benchmarks is presented in the work by Zitzler

and Thiele (1999), where the authors generated data

for the multi-objective KP, by using random integers

for weights and profits. This dataset has been widely

used in other works on evolutionary multi-objective op-

timization (Zitzler et al, 2001; Lust and Teghem, 2012;

Knowles and Corne, 2000).

In (Martello et al, 2000), the generated instances

were divided into different classes. Some of those in-

stances contained specific ratios of different kinds of

items, while others had items created by generating

random numbers within specific ranges. For one specific

class –“all-fill”, as the authors named it– they used a

recursive process to create instances starting from the

solution and going all the way back to the items. Simi-

larly, Pisinger (2005) produced several sets of instances,

considered hard, by using a random generator that ma-

nipulates the correlation between profit and weight of

the items. Another example corresponds to the Mixed

Integer Programming Library (MIPLIB) (Koch et al,

2011), originally proposed in 1992. The current ver-

sion dates back to 2010 and contains several types of

domains, including KP. More recently, Petursson and

Runarsson (2016) implemented an instance generator

for a multidimensional KP. Although the authors in-

cluded parameters such as the tightness ratio for con-

trolling the properties of the generated instances, they

still relied on a uniform distribution for the generation

of the weights and profits of the items.

As mentioned before, synthetic instance generation

for various types of KP instances has been explored

in the past. However, in most of the approaches avail-

able in the literature, parameters such as the profit and

the weight of items are based on randomly distributed

values. Moreover, empirical evidence suggests that it

may not be enough to generate instances with arbitrary

properties, but to generate them in such a way that they

can be used to obtain valuable information from the be-

havior of specific solvers. This cannot be done with the

aforementioned techniques, since instance generation is

independent from any solving strategy.

We consider that the discussed approach deals

with the problem in a reactive way, by creating prob-

lems and then assessing if solvers were able to per-

form well/poorly. Thus, in this manuscript we pro-

pose a more proactive approach. Our idea considers an

evolutionary-based model that finds instances in which

the solvers exhibits a desired behavior. This approach

may allow for future research about the strengths and

weaknesses of said solvers.

This need for reliable test instances that exploit spe-

cific weaknesses of the solving methods is not new and

has received an increasing attention in recent years. A

recurring idea in different domains is to use an ‘intel-

ligent’ generator based on evolutionary computation,

creating models that facilitate the analysis of each

method. This model has led to interesting results. A

clear example found in the literature relates to con-

straint satisfaction problems (CSPs), where van Hemert

(2003, 2006) showed how to use an evolutionary algo-

rithm to detect hard to solve instances. His evolution-

ary algorithm maintained a population of binary CSPs.

Their structure changed over time, and the genetic op-

erators altered conflicting pairs between two values of

two variables. The set of variables and their domains

were kept unchanged. Smith-Miles et al (2010); Smith-

Miles and van Hemert (2011) proposed an evolution-



Evolutionary-Based Tailoring of Synthetic Instances for the Knapsack Problem 3

ary algorithm for producing distinct classes of travel-

ing salesman problem (TSP) instances that are inten-

tionally easy or hard for certain algorithms. In their

analysis, a comprehensive set of features was used to

characterize the instances. After analyzing the perfor-

mance of those algorithms over the set of newly created

instances, the authors proposed a high-level algorithm

for predicting the search effort, as well as the algorithm

likely to perform best over a set of unseen instances,

which exhibited high accuracy.

Even so, and to the best of our knowledge, the use

of evolutionary computation to generate instances tai-

lored for specific solvers of the KP remains unexplored.

Based on this, we asked whether it was possible to use

a genetic algorithm for producing synthetic 0/1 KP in-

stances where one or more solvers outperform the oth-

ers. By doing so, we can fill the knowledge gap regarding

the generation of tailored KP instances, while providing

a tool for creating test beds with increased/decreased

difficulty for a particular kind of solver. Therefore, we

developed an evolutionary model powered by a genetic

algorithm. We used such a model within the KP, striv-

ing to generate sets of instances tailored to four different

heuristics, as well as to a high-level solver that combines

the four of them.

Research carried out in this work yields an im-

portant contribution: a reliable technique for generat-

ing KP instances that exploit specific weaknesses or

strengths of particular solvers. We thoroughly explore

the behavior of this approach by analyzing the perfor-

mance of four traditional heuristics on a large number

of 0/1 KP instances. To further this exploration, we im-

plement the recently proposed high-level solver known

as a hyper-heuristic, which combines other solvers for

tackling each problem, and we test our generation tech-

nique on it. By doing so, we aim to generate both,

(1) instances where the hyper-heuristic excels and sin-

gle heuristics fail and (2) instances where the hyper-

heuristic fails but single heuristics excel. This genera-

tion is performed to determine if the proposed approach

can adapt to a more complex solution method.

The remainder of this paper is organized as follows.

Section 2 describes the fundamental ideas that support

this work. The evolutionary-based generator of KP in-

stances is detailed in Section 3. Section 4 is reserved for

presenting the methodology followed in this work. In

Section 5, we present our experiments and main results,

along with their discussion. Finally, the conclusions and

overview of future work is presented in Section 6.

2 Fundamentals

The KP is formally defined as a set of n items, where

each of these items has a profit pj and a weight wj , and

a container with a capacity C (Kellerer et al, 2004).

Solving a KP requires selecting a subset of items in

such a way that their combined profit is maximized

while their total weight remains under the container

capacity, C. The KP can also be represented as a linear

integer programming formulation, using equations (1)–

(3).

maximize

n∑
j=1

pjxj (1)

subject to

n∑
j=1

wjxj ≤ C (2)

xj ∈ {0, 1} j = 1, . . . , n (3)

There are many interesting variants of the KP but,

for the sake of brevity, we omit a detailed discussion of

them. The interested reader should refer to (Martello

and Toth, 1990) and (Kellerer et al, 2004) for more

in-depth information. Even so, the methods exposed

herein are also applicable to those variants, with none

or a few changes.

2.1 Instances Considered for this Work

Throughout this work, we used instances that fall un-

der two categories: traditional ones, which were taken

from the literature for comparison purposes; and tai-
lored ones, which were generated following the model

proposed in this manuscript. Such categories can be

briefly described as:

Traditional instances: Refer to those widely available

in literature and that can be used as a ref-

erence point for comparing our model. In this

work, we selected some of the instances discussed

by Pisinger (2005)1. The author generated such in-

stances through a random model based on the cor-

relation of the weights and profits of items within

an instance.

Tailored instances. Relate to those generated in this

work, following the proposed model. We generated

several sets of instances with specific behaviors 2 (for

details, please refer to Section 4). In this way, we can

1 These instances can be downloaded from http://www.

diku.dk/~pisinger/
2 These instances, including their optimum, are available

upon request.

http://www.diku.dk/~pisinger/
http://www.diku.dk/~pisinger/


4 Luis Fernando Plata-González et al.

isolate a given solver, providing insights for a better

understanding of the conditions where it performs

appropriately. It is worth remarking that the gener-

ated instances were created in such a way that they

could be solved through dynamic programming, so

that their global optimum can be known.

2.2 Instance Characterization

We require a set of features that allow us to characterize

and understand the nature of a given instance. Thus,

in this work we considered seven features, calculated

over the set of unpacked items in the instance: w̄ (mean

weight value, divided by the maximum weight), w̃ (me-

dian weight value, divided by the maximum weight),

σw (standard deviation of the weights, divided by the

maximum weight), p̄ (mean profit value, divided by the

maximum profit), p̃ (median profit value, divided by the

maximum profit), σp (standard deviation of the profits,

divided by the maximum profit) and r (weight-profit

correlation, divided by two and shifted upwards by 0.5).

It is worth noting that all these features were selected

for this work based on empirical findings.

The values that these features can take lie in the

[0, 1] range. For example, consider a subset of remain-

ing items whose weights are (2, 2, 3, 4) and whose prof-

its are (10, 5, 6, 15), respectively. Thus, each of the

aforementioned features (in order) will take the values

of (0.69, 0.63, 0.24, 0.60, 0.53, 0.30, 0.69). Moreover, fea-

tures are dynamic, i.e., they change as the instance is

solved.

2.3 Available Solvers

In this work, we focused on two kinds of solvers: low-

level heuristics, which are fast and simple but do not

offer any way of adapting to problems; and high-level

ones, known as hyper-heuristics, which strive to learn

the behavior of a problem so they can predict how to

best solve it. In the first case, we included four ap-

proaches that operate over the set of unpacked items

in the KP instance: Default (Def), which selects the

first available item; Max Profit (MaP), which selects

the item with the largest profit; Max Profit per Weight

(MPW), which selects the item with the largest profit

over weight ratio; and Min Weight (MiW), which selects

the item with the minimum weight.

As mentioned above, low-level heuristics do not

adapt to a problem. Instead, they offer a straightfor-

ward, deterministic, and computationally inexpensive

algorithm. Due to this behavior, they can perform well

in some scenarios but poorly in others. For this reason,

we decided that the second kind of solver was needed in

order to test the instances generated with our model.

A recent approach for problem solving is the use

of selection hyper-heuristics (Burke et al, 2013): algo-

rithms for selecting algorithms. The idea behind these

high-level solvers is that a problem can be character-

ized by a set of domain-specific features, so that each

instance of the problem can be placed as a point within

the hyper-space. Furthermore, hyper-heuristics benefit

when the following happens: first, each instance can be

solved best with one specific low-level heuristic (or with

some combination of them), creating zones of action for

each solver; second, such behavior can be mapped back

to the features. Thus, a selection module can learn the

pattern of a specific domain, creating a set of rules for

dividing the hyper-space into zones where a given al-

gorithm must be applied. There are different variants

and kinds of hyper-heuristics, but a detailed descrip-

tion of them is beyond the scope of this manuscript.

We will only mention that the type of hyper-heuristic

we considered for this work begins solving a problem

with a specific heuristic (e.g., Def), and may switch to

another one later on (e.g., MiW). For more details, the

interested reader is welcomed to consult (Burke et al,

2013), (Drake et al, 2014) and (Drake et al, 2016).

Throughout this work, we used hyper-heuristics

that could select among these four single heuristics

(Def, MaP, MPW, and MiW). We followed the hyper-

heuristic model previously described in (Ortiz-Bayliss

et al, 2016), where a messy genetic algorithm finds a

set of rules that determine when to use one particular

heuristic, based on a set of features that characterize

the current problem state. The idea in this model is to

minimize the error associated to the set of rules. Thus,

at each iteration, the genetic algorithm evaluates a can-

didate solution (a set of rules) over a training subset of

instances, and determines the corresponding error level.

Using this information, the algorithm improves the pop-

ulation and moves on to the next iteration. At the end,

the algorithm reports a set of rules which perform well

over the training set, and that can be used for solving

new instances. Details regarding the inner workings of

the genetic algorithm are presented below.

2.4 Genetic Algorithms

Genetic algorithms (GAs) are an optimization tool in-

spired in how evolution occurs in nature (Goldberg,

1989; Holland, 1975). One element of particular inter-

est in the nature of GAs is their competitive behav-

ior, since members within the population are always

struggling to determine who is worthy of progressing to

the next phase of evolution. The generic version of a



Evolutionary-Based Tailoring of Synthetic Instances for the Knapsack Problem 5

steady state genetic algorithm works as follows. The al-

gorithm produces a randomly initialized population of

individuals (potential solutions or configurations) and

runs for a given number of iterations. In our case, in-

dividuals in the population are represented as binary

strings. The initial population is evaluated according

to a fitness function. At each iteration, two individu-

als are randomly selected from the population and the

one with the best fitness is selected as the first parent.

This procedure is repeated to select a second parent.

Both parents are then used for creating two offspring

by using genetic operators (crossover and mutation).

The offspring are appended to the population and the

two individuals with the worst fitness are removed from

the population. This process is repeated until a termi-

nation criterion is met. When the process is over, the

GA returns the individual with the best fitness value.

3 The Evolutionary-Based Instance Generator

The generator proposed in this investigation relies on

a GA that evolves the structure of potential KP in-

stances, guided by a fitness function. The GA modifies

the weight and profit of all items until it finds a config-

uration where the solvers exhibit the desired behavior.

To produce an instance, four arguments are re-

quired: the capacity of the knapsack, W ; the number

of items, n; the maximum weight per item, w; and the

maximum profit per item, p. The process starts with a

population of randomly initialized binary strings. From

this point on we will refer to these binary strings as

chromosomes.

Each chromosome encodes a KP instance of n items.

Each item in the encoded instance is represented by

lw + lp bits, where lw = dlog2(w) − 1e and lp =

dlog2(p)−1e. Therefore, the length of the chromosome,

l, is given by n× (lw + lp). Figure 1 depicts an example

of a chromosome generated with n = 5, w = 4, and

p = 8, which encodes a KP instance of five items, with

weights and profits of (3, 1, 2, 1, 4) and (8, 6, 4, 5, 2), re-

spectively.

The chromosomes will change as the result of the

evolutionary process. In this study, the number of

items, as well as the capacity of the knapsack, are not

encoded within the chromosome and then, they remain

unaltered throughout the evolutionary process. How-

ever, the weight and profit of each item change as an

attempt to reach a KP instance with the desired com-

plexity. To do so, two new offspring are created at each

iteration, using the genetic operators described below,

and the two worst chromosomes are removed from the

population.

3.1 Genetic Operators

For this investigation, we have considered three genetic

operators: selection, crossover and mutation. The se-

lection process involves a tournament selection of size

TS. For each iteration, the algorithm randomly selects

TS chromosomes and keeps the one with the highest

fitness. The process is repeated to select a second par-

ent. With a probability CR, the crossover operator is

applied to the parents to produce two offspring. To per-

form crossover, one point (cx) is randomly selected. The

offspring will be formed according to the following strat-

egy: the first offspring will contain the first cx bits of

the first parent and the last l − cx bits of the second

one. Conversely, the second offspring will contain the

first cx bits of the second parent and the last l− cx bits

of the first one. After crossover has occurred, mutation

may be applied. With a probability MR, the mutation

operator is applied to each of the offspring. When mu-

tation takes place, one randomly selected position of

the chromosome is flipped.

3.2 The Fitness Function

Throughout this work, we consider the generation of

two kinds of instances: easy-to-solve and hard-to-solve.

The generation, thus, focuses on favoring (or hinder-

ing) the performance of a given solver (in this case,

one of the low-level heuristics from Section 2.3), rela-

tive to the remaining ones. Nonetheless, our decision

does not limit the scope of the proposal, since the kind

of instances generated mainly depends on the functions
described herein. Therefore, different behaviors can be

implemented so that instances with a different nature

can be generated.

In the first case (easy-to-solve instances), the idea is

that the selected solver outperforms the others with a

gap as big as possible. Therefore, eq. (4) shows a feasi-

ble fitness function (FF ), where Fitone represents the

profit of the selected solver on the KP instance, and

Fitothers represents the fitness of the remaining solvers

on the same instance. This implies that, at each iter-

ation, all the solvers must run to calculate the quality

of the current solution. Nonetheless, since each solver

corresponds to a straightforward heuristic, this process

is not computationally expensive. In the second case

(hard-to-solve instances), the idea is that the selected

solver performs badly compared against the other avail-

able solvers. So, the comparison must be inverted by

striving to widen the gap between the selected solver

and the worst one among the remaining ones. The cur-

rent optimization problem requires a maximization of



6 Luis Fernando Plata-González et al.

Fig. 1 A chromosome that encodes a KP instance of five items with weights and profits of (3, 1, 2, 1, 4) and (8, 6, 4, 5, 2),
respectively.

the aforementioned differences. For this reason, equa-

tions (4) and (5) include a minus sign to make them

suitable for optimizing through minimization of the fit-

ness function (FF ). Nonetheless, bear in mind that the

optimization problem can be directly solved as a max-

imization problem.

FF = − (Fitone −max (Fitothers)) (4)

FF = − (min (Fitothers)− Fitone) (5)

4 Methodology

We divided our research into a three-stage work, as

shown in Figure 2. A description of each stage is pro-

vided below. It is important to remark that, since each

instance may have a different optimum, we opted for an-

alyzing the quality of the solution relative to the best

known solution (in this work, the optimum solution was

obtained via dynamic programming). Therefore, results

for the next section will range from zero to one, depend-

ing on how close they were from the known optimum.

4.1 Preliminary Tests

Throughout this stage, we focused on testing out the

feasibility of our approach. Thus, experiments were

designed to cover a wide range of behaviors, but at

the same time keeping in mind that tests could not

be exhaustive. Therefore, we generated instances for

all heuristics with an arbitrary problem configuration

(knapsack capacity of 50 and 20 items, where each

item could have maximum profit and weight of 100 and

10 units, respectively), and with fixed parameters for

the generator (mutation rate of 0.1, crossover rate of

1.0, population size of 10, and tournament size of 2).

We ran 60 repetitions for each configuration and de-

manded instances that were easy (and hard) to solve

with each heuristic. This yielded a total of 480 different

instances (60 runs, 8 configurations), which were then

solved with each heuristic to verify that each heuris-

tic performed appropriately over their corresponding

sets. Afterwards, we used Principal Component Analy-

sis (PCA) over all the data (considering all seven fea-

tures), creating a two-dimensional plot of the sets and

trying to determine trends. Furthermore, we included

the data from four reference sets, extracted from the

literature (Pisinger, 2005) and which are considered to

be hard-to-solve, and mapped them into the reduced

feature space to verify their location relative to the one

of recently generated instances.

4.2 Initial Testing

As a second stage, we decided to improve upon the pa-

rameters of the genetic algorithm. Therefore, we used

different configurations and mapped the performance

of our generation model for each of them, seeking to

select a proper set of parameters for each problem sce-

nario. Since our model is stochastic in nature, it must

be repeated several times to determine an average per-

formance. However, the idea is that this procedure can

also be used for future research (so that parameters of

the generation model can be tuned) and, therefore, its

computational cost should not be too high. Hence, we

decided to run the instance generator 30 times for each

configuration. To calculate the average performance of

the generator, many more instances must be generated.

In fact, the number of runs of the genetic algorithm for

this stage considerably increased.

We used latin hyper-cube sampling (LHS) to gener-

ate the set of parameter configurations. Assuming that

four parameters of the genetic algorithm are to be se-

lected (crossover rate, mutation rate, population size,

and tournament size), that feasible ranges for each one

are known, and that the number of points for each in-

terval can be established, then the total number of pa-

rameter settings can be determined. For this work, we

considered the parameter configurations given by Ta-

ble 1, which result in a total of 3200 combinations. LHS

was used to generate 160 parameter configurations (5%



Evolutionary-Based Tailoring of Synthetic Instances for the Knapsack Problem 7

Fig. 2 Three-stage methodology followed throughout this work.

of the total number of available combinations), yielding

a total of 38400 runs of the instance generator. These

configurations are not shown due to space restrictions.

Table 1 Ranges and number of points considered for each
parameter of the evolutionary strategy. The total number of
combinations is 3200.

Parameter Range Number of Points

Population Size (PS) [10, 150] 8
Crossover Rate (CR) (0, 1.00] 10
Mutation Rate (MR) (0, 0.02] 10

Tournament Size (TS) [2, 5] 4

With the aim of delving deeper within the adaptive

capabilities of the proposed model, for this stage we

requested instances with the following problem char-

acteristics: knapsack capacity of 25 and 40 items, with

maximum profit of 100 and maximum weight of 20 each.

We used, once again, PCA to reduce the number of di-

mensions from seven to two. Nonetheless, we carried out

a new analysis since the configuration of the problem

was altered.

4.3 Advanced Tests

The final stage of testing focused on exploring the scal-

ability of the proposed instance generator. Thus, we

selected the best configuration yielded by the previous

stage, and used it to generate 200 instances per heuris-

tic. Again, all eight scenarios were considered (four

heuristics, with easy and hard instances for each one),

so a total of 1600 instances were created. In this case,

the problem configuration of the previous stage was pre-

served, as we strove to determine feature regions where

each heuristic performs poorly and/or appropriately.

Aside from analyzing feature distribution across all

instances (using PCA), in this stage we also analyzed

the performance of a modern high-level solver. For this

work, we decided to use a hyper-heuristic model able to

select among all base heuristics (see Section 2.3). In the-

ory, during the learning phase the solver must be able to

identify which heuristic performs best for each scenario,

so that a similar scenario in the test phase is solved ap-

propriately. Moreover, we created 200 easy-to-solve and

200 hard-to-solve instances for the hyper-heuristic. This

was done to analyze the location of instances that the

hyper-heuristic can properly solve, by combining tools

that are unsuited for the task. But, it was also done to

analyze instances where a combination of appropriate

tools leads to an unsatisfactory result.

As a last test, we selected two hard-to-solve problem

configurations available in the literature (for 20 and 50

items), and generated easy and hard instances for each

solver. Then, we plotted the main information of the

generated instances against that of the ones used as a

reference, and analyzed the performance of each solver
over all sets (the ones generated and the ones selected

as reference).

5 Results and Discussion

Following is a description of the results that we con-

sider to be more relevant. Seeking to ease the readabil-

ity of the manuscript, and to facilitate the link between

methodology and results, we opted to create one section

for each stage of the methodology.

5.1 Preliminary Tests

As mentioned in Section 4, the first step we took was

to verify that the proposed strategy was, indeed, able

to generate instances tailored to a given solver. To that

end, we show the performance of each heuristic over ev-

ery set of freshly generated instances (Figure 3). There



8 Luis Fernando Plata-González et al.

is one subplot for each targeted heuristic (highlighted

bars), and each one contains two groups of bars: one

focused on evolving easy-to-solve instances and one fo-

cused on evolving hard-to-solve instances. It is interest-

ing to see that our model performs appropriately, be-

ing able to generate instances with a performance gap

across solvers and either favoring or hindering them,

according to what the user desires, all while using the

same problem parameters.

It is also astonishing to note that, in some cases,

the generated instances can be extremely difficult for a

given heuristic. For example, for the Default heuristic,

case (a), the average performance was lowered below

the 0.05 mark, but the remaining ones had a much bet-

ter performance (above 0.95). Nonetheless, some solvers

are way more robust, making it easy to find instances

where they outperform the competition, but hard to

find ones where they perform poorly. An example of

this idea is exhibited by the Max Profit per Weight

heuristic, case (c), where its average performance for

easy-to-solve instances was more than 0.50 higher than

the second best heuristic, but whose average perfor-

mance for hard-to-solve instances was only about 0.08

lower than the second worst heuristic.

In order to verify whether the instances we gener-

ate are different from those available in the literature,

we selected four sets with different number of elements

which are considered to be hard-to-solve, and plotted

the performance of each heuristic over them. We can ob-

serve that the instances we generated allow for a better

differentiation in the performance of the solvers (Fig-

ure 4). Thus, we have evidence suggesting that the pro-

posed approach could be a fruitful path to pursue.

Since there are gaps in the performance of heuris-

tics, this must imply that each heuristic performs best

in some regions of the feature space, and worst in oth-

ers. To verify this idea, we plotted the easy-to-solve

and hard-to-solve instances generated throughout this

stage for each heuristic (Figure 5). This leads to four

images, where each one contains two clearly separated

regions (one for each kind of problem). Figure 6 shows

the centroids of each cluster from Figure 5 (and their

distances to the origin), plus the centroid of a set of

randomly generated instances and of the reference sets,

for comparison purposes. It is worth remarking that

these plots correspond to data yielded by PCA, which

reduced information from the original seven dimensions

(one for each feature) to two, considering all generated

instances (one set per heuristic, plus the random set).

As can be seen from the figures, easy (star) and

hard (cross) sets are apart from each other (for a

given heuristic). This behavior holds even for the MPW

heuristic (blue markers), whose performance gap was

the smallest one (see Figure 4). Another interesting el-

ement is the fact that easy-to-solve instances (for each

heuristic) are harder to differentiate than hard-to-solve

ones (see Figure 6), even though in all cases the desired

behavior was achieved. The behavior of the reference

sets is also amusing, as they were all located in virtu-

ally the same spot in the reduced feature space. This

corroborates the fact that all heuristics performed sim-

ilarly over them (see Figure 4).

5.2 Initial Testing

As defined in the methodology, for this batch of tests

we changed the problem configuration, striving to test

our proposed approach on larger instances. Also, we ran

tests with several configurations, though feature plots

are omitted for the sake of brevity. Figure 7 shows a

summary of the resulting profits, averaged across all

repetitions for the best and worst configurations. In

all cases, our proposed approach achieved its objective

(positive deltas in the plot). Even so, there is an inter-

esting behavior in the data, and it is the fact that it was

quite easy/hard to generate instances for some of the

scenarios. Furthermore, whenever it is straightforward

to generate easy-to-solve instances for a given heuris-

tic, it becomes difficult to find them for the opposite

case (hard-to-solve instances for the same heuristic). It

is precisely under these conditions that properly select-

ing the solver parameters becomes crucial. As an ex-

ample, consider the instances generated for the MPW

heuristic. Easy-to-solve instances can be found with-

out too much hassle, and the difference between the

averaged performance of MPW and the best one of

the remaining solvers escalates to about 0.8 and 0.5;

in the best and worst scenarios, respectively. However,

evolving hard-to-solve instances become troublesome,

lowering the difference to around 0.2 in the best case

scenario. Furthermore, selecting a bad configuration for

the solver makes it almost impossible to evolve an in-

stance where MPW performs worst.

Motivated by these results, we ran a set of tests

to verify whether the performance was dependent on

the problem parameters. We used the following problem

configuration: knapsack capacity of 100 and 100 items,

with maximum profit of 100 and maximum weight of

100 each. Data show interesting behaviors (Figure 8).

The first thing to note is that, again, it is extremely

straightforward to find easy/hard instances for some

heuristics and that scenarios have opposite behaviors.

For example, consider the generation process of hard-

to-solve instances for the Def heuristic: even with the

worst configuration, the genetic algorithm is capable

of producing instances whose normalized average profit



Evolutionary-Based Tailoring of Synthetic Instances for the Knapsack Problem 9

(a) Default (b) Max Profit

(c) Max Profit per Weight (d) Min Weight

Fig. 3 Normalized average profit for heuristics operating over easy and hard instances, generated through the evolutionary
approach and for each heuristic (preliminary test stage). Highlighted bars represent the heuristic instances they were tailored
for.

Fig. 4 Normalized average profit for all heuristics over their corresponding easy and hard instances, and over each reference
set (preliminary test stage). Def: Default, MaP: Max Profit, MPW: Max Profit per Weight, MiW: Min Weight. Highlighted
bars represent the heuristic instances they were tailored for.

differed by more than 0.99 from the closest heuristic.

Nonetheless, the opposite scenario (generating easy-

to-solve instances for Def) was not as effortless, and

achieving the desired behavior depended on properly

selecting a parameter configuration for the solver (neg-

ative values in Figure 8 indicate that behavior was not

as desired). Moreover, if the problem parameters are

not adequate (as in this example) it becomes impossi-

ble for the algorithm to perform appropriately in some

scenarios, even at its best configuration (e.g., for MPW,

where in all cases a negative delta was achieved).

Table 2 shows the best and worst configurations

that were found at this stage (and used to generate

the data from Figure 8). The biggest change in pa-

rameters was for MPW, where population size (PS)

and mutation rate (MR), for hard-to-solve instances,

are a sixth and a third of their counterpart, respec-

tively. However, there were also some global patterns.

In all cases there was a tendency for selecting more in-

dividuals for each tournament, and mutation rate (MR)

was significantly lower for easy-to-solve instances than

for their counterpart (except for MPW, where the be-



10 Luis Fernando Plata-González et al.

(a) Default (b) Max Profit

(c) Max Profit per Weight (d) Min Weight

Fig. 5 Easy (light-colored stars) and hard (dark-colored crosses) instances generated through the evolutionary approach for
each heuristic, during the preliminary test stage.

Fig. 6 Centroids of generated easy (E) and hard (H) in-
stances for all heuristics during the preliminary testing stage,
and their distance to the origin. Stars indicate easy sets and
crosses represent hard ones. Random and reference (Pi) in-
stances are included for comparison purposes. Def: Default,
MaP: Max Profit, MPW: Max Profit per Weight, MiW: Min
Weight.

havior was the opposite). The crossover rate (CR), for

easy-to-solve instances, was similar for Def, MaP and

MPW (around 0.73), and quite different than that of

MiW (0.238). However, in hard-to-solve instances MaP

becomes the outcast (with a value of 0.23), while the

remaining heuristics exhibited a similar rate (around

0.67). It certainly is interesting to see that CR focuses

around these points.

At this point, we deem important to take a moment

for glancing at why this might happen. Increasing the

number of items, Ni, exponentially increases the num-

ber of combinations, Ncomb, that must be explored by

the evolutionary approach, as shown in eq. (6), where

NW and NP are the number of feasible weights and

profits for each item, respectively. Conversely, the num-

ber of items that can be included within the knapsack

is limited by the remaining parameters of the problem,

which can revert the effect of increasing the number

of items to some extent. These bounds are shown in

eqs. (7) and (8), where Nimin and Nimax are the min-

imum and maximum number of feasible items, respec-

tively; CKP is the capacity of the knapsack, while Wmin

and Wmax are the minimum and maximum weight of

the items. Even so, items that do not fit still need to

take a value. Moreover, it could be the case that a given

heuristic could take some items while the other ones

could take another subset. We think that having more

options to choose from (more items) makes it easier for

all heuristics to easily find a relatively good solution.

Thus, for harder scenarios (such as MPW) it is neces-

sary to constrain the problem more, so that valid in-

stances can be found. This makes it evident that there

is a relation between the parameters of the problem (the

number of items, the knapsack capacity and the max-



Evolutionary-Based Tailoring of Synthetic Instances for the Knapsack Problem 11

(a) Easy-to-solve instances (b) Hard-to-solve instances

Fig. 7 Best and worst deltas of normalized average profit for easy and hard instances for all heuristics, and while using an
appropriate problem configuration. Def: Default, MaP: Max Profit, MPW: Max Profit per Weight, MiW: Min Weight.

(a) Easy-to-solve instances (b) Hard-to-solve instances

Fig. 8 Best and worst deltas of normalized average profit for easy and hard instances for all heuristics, and while using
an inappropriate problem configuration. Def: Default, MaP: Max Profit, MPW: Max Profit per Weight, MiW: Min Weight.
Negative values indicate that behavior was not as desired.

Table 2 Best and worst configurations for each heuristic, considering easy (E) and hard (H) to solve instances. Def: Default,
MaP: Max Profit, MPW: Max Profit per Weight, MiW: Min Weight. PS: Population size, CR: Crossover rate, MR: Mutation
rate, TS: Tournament size.

Best Worst
Type PS CR MR TS PS CR MR TS

Def (E) 36 0.772 0.065 5 41 0.317 0.001 3
MaP (E) 139 0.720 0.047 3 123 0.368 0.109 3

MPW (E) 157 0.709 0.153 4 64 0.851 0.095 4
MiW (E) 47 0.238 0.032 4 49 0.837 0.020 4
Def (H) 30 0.650 0.173 5 41 0.317 0.001 3

MaP (H) 95 0.230 0.169 4 48 0.350 0.020 2
MPW (H) 25 0.636 0.051 3 38 0.051 0.156 2
MiW (H) 99 0.709 0.153 4 62 0.126 0.143 2

imum weight, and perhaps, profit). However, this rela-

tion was not further studied in this manuscript since the

focus was to develop an approach to generate instances

with a specific goal in mind (favoring or hindering a

given heuristic). Nonetheless, it would certainly be in-

teresting to investigate further into this phenomenon,

and using a tool such as the one presented here could

prove fruitful for running tests with specific behaviors.

Ncomb = (NW ·NP )
Ni (6)

Nimin =
CKP

Wmax
(7)

Nimax =
CKP

Wmin
(8)



12 Luis Fernando Plata-González et al.

5.3 Advanced Testing

Since the parameters of the problem (knapsack capac-

ity, number of items, maximum profit, and maximum

weight) changed for the second part of this manuscript,

for the third stage of this research it was necessary to

perform a new PCA on the features that characterize

the instances. Thus, a set of 1800 problem instances

(the 1600 generated for this section, plus new 200 ran-

dom instances) were analyzed and mapped, yielding

Figure 9. Once again, hard-to-solve instances (dark-

colored crosses) were easier to differentiate than their

counterpart (light-colored stars), whilst randomly gen-

erated instances (magenta square) were located near

the origin of the transformed space. Nonetheless, each

subset rendered the desired behavior in all cases (Fig-

ure 10). Once again, the difference between the perfor-

mance of MPW and the other heuristics (when consid-

ering hard-to-solve instances for MPW) was not as big

as in other scenarios.

Fig. 9 Centroids of generated easy (E) and hard (H) in-
stances for all heuristics during the advanced testing stage,
and their distance to the origin. Stars indicate easy sets and
crosses represent hard ones. Random instances are included
for comparison purposes. Def: Default, MaP: Max Profit,
MPW: Max Profit per Weight, MiW: Min Weight.

An interesting behavior that surfaces once more is

the trade-off between easy-to-solve and hard-to-solve

instances, since whenever it is easy to achieve big gaps

in one of them, it becomes difficult to achieve them for

the other one. But, perhaps more interesting is the be-

havior of MPW. This heuristic was the only one for

which it was easier to create easy-to-solve instances,

thus leading to wider gaps of performance (when com-

pared against the remaining solvers). We consider that

this can be due to the fact that this is the only heuristic

that combines two metrics (profit and weight), whilst

the other ones only consider one at a time (order, profit,

or weight), or maybe because MPW is a more general

purpose heuristic that works well under a broader set

of scenarios. We deem necessary a deeper analysis of

these ideas, which was not done here since it deviated

from the focus of the manuscript.

It is also alluring to analyze that, because hard in-

stances for one solver can be rather easy for another

one, it is common that they share some portions of the

feature range. Moreover, and due to the way in which

PCA works, it is also possible that the easy and hard-

to-solve regions for a particular heuristic overlap, at

least in some parts (Figure 11). Nonetheless, one of the

main ideas that can be extracted from these maps is

that our proposed approach generates instances whose

features are located in a zone where the selected solver

performs as desired. A second one is that each solver

exhibits a different behavior when migrating from easy

to hard instances. In the case of Def and MaP the move-

ment goes from left to right, upwards and downwards,

respectively. In the case of MPW and MiW the move-

ment goes from right to left, downwards and upwards

respectively. We think that a deeper study of this phe-

nomenon could help in designing new features for the

KP.

5.3.1 Behavior of a High-level Solver

As Figure 2 suggested, the idea in this final stage of

testing is to analyze the behavior of a high-level solver

operating over the 1600 instances we generated. Thus,

we trained three different hyper-heuristics over half of

the instances and compared their performance against

that of the basic heuristics, for the remaining instances.

We observed that, by using a hyper-heuristic approach,

the performance gap existing between the best heuristic

and an ideal selector could be reduced by more than

20% in all three cases.

We wanted to go a bit further in our testing, so we

used our approach to generate easy and hard instances

for the high-level solver. It is worth remarking that, for

these tests, we used the best already trained solver and

focused on generating instances for it instead of train-

ing a new solver at each iteration, which could lead to

some kind of race condition between both evolutionary

approaches. Nonetheless, a careful analysis of such sce-

nario seems indeed interesting, and it could be studied

in a future work.

Using our evolutionary approach, we developed in-

stances where the best single heuristic was, on average,

15% below the theoretical solution while the high-level

solver was virtually perfect. This information is avail-

able on Figure 12(a). In fact, such a hyper-heuristic was

able to find the theoretical optimum for 196 instances

(i.e. 98% of the instances). On the other hand, an ideal

heuristic selector (i.e. an Oracle that is able to perfectly

predict the best heuristic for each instance) was unable



Evolutionary-Based Tailoring of Synthetic Instances for the Knapsack Problem 13

(a) Default (b) Max Profit

(c) Max Profit per Weight (d) Min Weight

Fig. 10 Normalized average profit for heuristics operating over easy and hard instances, generated through the evolutionary
approach and for each heuristic (advanced testing stage). Highlighted bars represent the heuristic instances they were tailored
for.

(a) Default (b) Max Profit

(c) Max Profit per Weight (d) Min Weight

Fig. 11 Easy (light-colored stars) and hard (dark-colored crosses) instances generated through the evolutionary approach for
each heuristic, during the advanced testing stage.



14 Luis Fernando Plata-González et al.

to perfectly solve even a single instance. This means

that no single heuristic is good at solving any of those

instances, while combining them leads to finding a per-

fect solution most of the time. In fact, the average nor-

malized profit for the Oracle sat at 0.8473, whilst that

of the hyper-heuristic sat at 0.9994, meaning that the

latter yielded about 15% more of the theoretical profit

than the former. We also evolved, at will, sets where

the opposite happened, having a heuristic with virtu-

ally perfect performance (i.e. MPW, which was able to

find an average profit of 98.8% of the theoretical one.),

but where the high-level solver fell 50% short, on aver-

age, of the best possible profits.

We also noted an interesting behavior of instances,

since the migration from easy-to-solve instances to

hard-to-solve ones implied a movement from right to

left in the reduced feature space (as with MPW and

MiW). However, as seen in Figure 12(b), there was al-

most no movement in the vertical direction. Instead,

hard-to-solve instances distributed themselves over a

more elongated region, as if trying to circle around easy-

to-solve instances. We analyzed the distribution of fea-

tures for each subset of instances, and we found that

only the first three, which were related to the profit,

varied. This indicates that by changing the profit of

items within instances, it can become easier (or harder)

for the high-level solver to behave properly.

As a final test, we analyzed whether our proposed

approach was able to improve upon some of the in-

stances proposed in (Pisinger, 2005). Therefore, we se-

lected two problem configurations and demanded 100

easy-to-solve and 100 hard-to-solve instances for each

solver. Again, our model evolves appropriately and de-

livers sets of instances where each solver excels and

where each solver loses. Figure 13 summarizes this per-

formance, and also shows the performance of each solver

for the original set of instances. It is necessary to clarify

that a definition of ‘difficulty’ is subjective and depends

on the desired effect. As such, we are measuring the

difficulty as the inability of a solver for finding the op-

timum solution. But, it could also be measured as the

average time it takes to solve an instance with a given

solver. Another interesting element in Figure 13 is the

fact that both problem configurations yielded similar

performance across all heuristics. This, in fact, maps

back to the features we have considered in this work,

as each set of instances clusters in a similar region for

both problem configurations (see Figure 14).

Moreover, the fact that the performance of the origi-

nal set of instances sits between easy-to-solve and hard-

to-solve instances is due to an overlap in the feature

space, where the original set has instances located in

both, easy and hard regions of each solver (see Fig-

ure 15). Nonetheless, there is a clearer separation be-

tween both subsets of instances as the performance

gap between them increases (e.g., for Default and Max

Profit). It is worth mentioning that, due to space re-

strictions, only instances for the problem configuration

with 50 items are plotted.

5.4 An example about how to transfer these ideas to

other domains

Striving to clarify the way in which the ideas presented

in this work can be extended to other domains, we of-

fer this bonus section. As we mentioned in section 3.2,

equations (4) and (5) are only a couple examples of

the behavior that can be generated with the instances.

Thus, if we change those equations by equations (9)

and (10), we can generate instances where solvers per-

form diversely (thus making selection a critical pro-

cess), and instances where all solvers perform equally

(rendering selection useless). We have explored this idea

for Bin Packing Problems and achieved interesting re-

sults (Figure 16). Nonetheless, it is important to remark

that equations (4) and (5) can also be used in this new

domain. The only change that needs to be implemented

is to replace Fitone and Fitothers by the fitness yielded

by the solvers from the Bin Packing Problem domain.

However, we do not want to extend too much here, so

we invite the reader to consult Amaya et al (2018).

FF = −

√√√√√NH∑
i=1

(Fiti − Fitavg)2

NH − 1
(9)

FF = (FitBest − FitWorst)
2 (10)

6 Conclusion and Future Work

Throughout this work we focused on using an evolution-

ary approach as the cornerstone for creating a tool that

may help in better understanding solvers from a partic-

ular problem domain. In particular, our proposed tool

can generate easy-to-solve and hard-to-solve instances

for a given heuristic. This decision, though, does not

limit the generality of our approach, since other objec-

tive functions can be used for evolving instances with

diverse behaviors (see Section 3.2). In the first case,

i.e. easy-to-solve instances, our tool provided instances

where the desired solver virtually reached the theoret-

ical optimum. In fact, the worst case scenario was for



Evolutionary-Based Tailoring of Synthetic Instances for the Knapsack Problem 15

(a) Performance of each solver (b) Distribution of instances

Fig. 12 Left: Normalized average profit for all solvers operating over easy-to-solve and hard-to-solve instances tailored to
the hyper-heuristic model. Right: Easy (light-colored stars) and Hard (dark-colored crosses) instances generated through the
evolutionary approach for an already trained high-level solver. Def: Default, MaP: Max Profit, MPW: Max Profit per Weight,
MiW: Min Weight, HH: Hyper-heuristic. Highlighted bars represent the solver instances they were tailored for.

(a) Configuration with 20 items (b) Configuration with 50 items

Fig. 13 Normalized average profit for all heuristics over their corresponding easy and hard instances, and over the reference
sets with 20 and 50 items. Def: Default, MaP: Max Profit, MPW: Max Profit per Weight, MiW: Min Weight.

(a) Set with 20 items (b) Set with 50 items

Fig. 14 Centroids of generated easy (E) and hard (H) instances for all heuristics, departing from two problem configurations
(available in the literature) with different numbers of items (cyan squares), and their distance to the origin. Stars indicate easy
sets and crosses represent hard ones. Def: Default, MaP: Max Profit, MPW: Max Profit per Weight, MiW: Min Weight.

the Min Weight (MiW) heuristic, which yielded an aver-

age profit of 98.9% of the theoretical profit (calculated

through dynamic programming). In the second case, i.e.

hard-to-solve instances, our tool exhibited a more var-

ied performance. The best case scenario was for the De-

fault (Def) heuristic, which was only able to achieve a

5.7% of the maximum theoretical profit. The worst case

scenario, however, was for the Max Profit per Weight

heuristic, where we could only hinder performance in

little more than 5% of the maximum theoretical profit.



16 Luis Fernando Plata-González et al.

(a) Default (b) Max Profit

(c) Max Profit per Weight (d) Min Weight

Fig. 15 Easy (light-colored stars) and Hard (dark-colored crosses) instances generated through the evolutionary approach for
each heuristic, departing from a problem configuration available in the literature (cyan squares) and considering 50 items.

(a) High Variation (b) Low Variation

Fig. 16 An example of the results that can be achieved in the Bin Packing Problem domain. Data shown represent the
average waste achieved by all solvers when operating over instances generated with high variation (a) and with low variation
(b), Amaya et al (2018).

Features are not required by our proposed approach,

even though they could be used in case the solver re-

quires them (e.g., in the case of hyper-heuristics). Even

so, we did use seven different features for analyzing the

behavior of each set of generated instances. We found

interesting patterns. For example, in the case of the De-

fault (Def) and Max Profit (MaP) heuristics, increasing

the difficulty of instances implied a shift from the left

side of the feature space to the right one, as well as

upwards and downwards displacements (respectively).

However, for the two remaining heuristics, the migra-

tion implied a shift in the opposite direction (i.e., from

right to left), as well as a steeper vertical displacement

(downwards for Max Profit per Weight and upwards for

Min Weight). What seems more interesting about these

patterns is that they remained even after changing the

problem configuration to two previously reported ones.

We deem as relevant an in-depth study of this phe-

nomenon (see Section 5.3), e.g., by using the approach



Evolutionary-Based Tailoring of Synthetic Instances for the Knapsack Problem 17

we proposed in this work to generate instances with

different levels of difficulty for each heuristic.

After testing our generation model with problem

configurations readily available in the literature, we no-

ticed that it was able to improve upon the already

published data. For the two examples we selected, we

evolved instances where each solver became virtually

perfect (they found the theoretical optimum in all

tested cases). We also evolved instances where most

solvers were unable to yield a profit higher than 30% of

the theoretical value (the only exception being for the

Max Profit per Weight heuristic, where performance

was hindered in about 15%). These data are certainly

interesting, since this implies that our generation model

can be coupled with previously published ideas to fur-

ther improve the instances.

We also noticed that certain problem configurations

undermined the evolution of instances with the desired

behavior (even after selecting a suitable solver configu-

ration). For example, we observed that capacity of the

knapsack was an important factor for achieving hard

instances for the Max Profit per Weight (MPW) heuris-

tic, since it modified the relationship between the num-

ber of items to be evolved and the maximum number of

items that could be packed, hence affecting the shape of

the objective function. Thus, carrying out an in-depth

study of parameter dependence is paramount for bet-

ter understanding the knapsack problem. Furthermore,

having a tool such as the one presented in this work

could make the task an easier and more structured pro-

cess, so we recommend using this approach for such an

endeavor. As an illustrative case of what could be done

in a future work, the reader may consider modifying

the objective function to force instances with specific

parameter ratios, or allowing for the evolutionary algo-

rithm to directly optimize the capacity, or even allowing

for some kind of co-evolutionary scheme. Another im-

portant avenue for future work, besides expanding the

generator to other domains, resides in furthering the

study of scalability for the presented generator, by cre-

ating considerably larger instances (with thousands of

items). Likewise, the generator can be extended to in-

clude different versions of the knapsack problem, e.g.,

by considering multiple knapsacks and/or multiple ob-

jectives.

In light of the recent literature, thinking about high-

level solvers most of the time implies dealing with fea-

tures of a specific problem domain. Therefore, the tool

presented herein could also be used to improve the per-

formance of high-level solvers and advance that field, by

generating instances with specific behaviors and with

given feature values. This will facilitate an analysis of

the efficiency with which features can map instances to

specific solvers, and will undoubtedly lead to a better

understanding of the elements that make a given heuris-

tic perform well or poorly. For example, we evolved in-

stances where a high-level solver was able to perfectly

solve 98% of the instances, even though the base heuris-

tics that composed it were unable to perfectly solve any

instance at all. Thus, it is evident that there is a benefit

from dynamically combining different solvers for tack-

ling each instance. Moreover, the tool presented here

can be extrapolated to other domains, so their benefits

could be ripped across different optimization problems.

Our approach exhibits some points in favor, but

it also has some drawbacks. Regarding the former, we

have shown that our model successfully tailors instances

that enhance or lessen performance of a given solver.

But, it does not stop there. Our approach can evolve

instances for more complex solvers. As an example,

we targeted hyper-heuristics, which combine different

solvers into a single one. Additionally, since we use an

evolutionary approach for tailoring instances, users can

provide different objective functions, customizing in-

stances with different behaviors. Another benefit of us-

ing our approach is that different genetic operators can

be used to expand its benefits. Also, our approach can

be easily expanded to other problem domains. Regard-

ing drawbacks, they mainly arise from not including the

knapsack capacity nor the number of items into the en-

coding of the chromosome. They also cover the fact that

the user cannot decide the degree of difficulty that an

instance exhibits (though this could be solved by chang-

ing the objective function). Nonetheless, we made these

decisions because they simplified the approach. We also

considered that, by tailoring instances this way, it may

be easier to arrive at conclusions about the influence

that profit and weight hold over each solver. Future

works should focus on improving these drawbacks so

that we can provide a more robust tool.

Compliance with Ethical Standards

Funding: This study was funded by Consejo Nacional

de Ciencia y Tecnoloǵıa (CONACyT) Basic Science

Project (grant numbers 241461 and 287479) and by

ITESM Research Group with Strategic Focus in intel-

ligent Systems. C.A. Coello Coello gratefully acknowl-

edges support from CONACyT grant no. 2016-01-1920

(Investigacion en Fronteras de la Ciencia 2016).

Conflict of Interest: Luis Fernando Plata-González

declares that he has no conflict of interest. Ivan Amaya

declares that he has no conflict of interest. José Carlos

Ortiz-Bayliss declares that he has no conflict of interest.

Santiago Enrique Conant-Pablos declares that he has

no conflict of interest. Hugo Terashima-Maŕın declares



18 Luis Fernando Plata-González et al.

that he has no conflict of interest. Carlos A. Coello

Coello declares that he has no conflict of interest.

Ethical approval: This article does not contain any

studies with human participants or animals performed

by any of the authors.

References

Amaya I, Ortiz-Bayliss JC, Conant-Pablos SE,

Terashima-Maŕın H, Coello Coello CA (2018)

Tailoring Instances of the 1D Bin Packing Prob-

lem for Assessing Strengths and Weaknesses of

Its Solvers. In: Auger A, Fonseca CM, Lourenço

N, Machado P, Paquete L, Whitley D (eds)

Parallel Problem Solving from Nature PPSN

XV, Lecture Notes in Computer Science, vol

11101, Springer International Publishing, Cham,

pp 373–384, DOI 10.1007/978-3-319-99259-4 30,

URL http://link.springer.com/10.1007/

978-3-319-99253-2http://link.springer.com/

10.1007/978-3-319-99259-4{_}30

Ariyasingha IDID, Fernando TGI (2015) Performance

analysis of the multi-objective ant colony optimiza-

tion algorithms for the traveling salesman prob-

lem. Swarm and Evolutionary Computation 23:11–

26, DOI 10.1016/j.swevo.2015.02.003, URL http://

dx.doi.org/10.1016/j.swevo.2015.02.003

Azad MAK, Rocha AMAC, Fernandes EMGP (2014)

Improved binary artificial fish swarm algorithm for

the 0-1 multidimensional knapsack problems. Swarm

and Evolutionary Computation 14:66–75, DOI 10.

1016/j.swevo.2013.09.002

Beasley J (1990) OR-library: Distributing test problems

by electronic mail. The Journal of the Operational

Research Society 41(11):1069–1072

Burke EK, Hyde M, Kendall G, Ochoa G (2013) Hyper-

heuristics : A survey of the state of the art. Journal of

the Operational Research Society 64(12):1695–1724

Christofides N, Mingozzi A, Toth P (1979) The vehi-

cle routing problem. In: Combinatorial Optimization,

Wiley, pp 315–338

Drake JH, Hyde M, Ibrahim K, Ozcan E (2014)

A genetic programming hyper-heuristic for the

multidimensional knapsack problem. Kybernetes

43(9/10):1500–1511, DOI 10.1108/K-09-2013-0201

Drake JH, Özcan E, Burke EK (2016) A case study

of controlling crossover in a selection hyper-heuristic

framework using the multidimensional knapsack

problem john. Evolutionary Computation 24(1):113–

141

Furini F, Ljubić I, Sinnl M (2017) An effective dynamic

programming algorithm for the minimum-cost maxi-

mal knapsack packing problem. European Journal of

Operational Research 262(2):438–448

Gao J, He G, Liang R, Feng Z (2014) A quantum-

inspired artificial immune system for the multiobjec-

tive 0-1 knapsack problem. Applied Mathematics and

Computation 230:120–137

Goldberg DE (1989) Genetic Algorithms in Search, Op-

timization and Machine Learning. Addison Wesley

van Hemert JI (2003) Evolving binary constraint satis-

faction problem instances that are difficult to solve.

In: Proceedings of the 2003 IEEE Congress on Evo-

lutionary Computation (CEC’03), IEEE Press, pp

1267–1273

van Hemert JI (2006) Evolving combinatorial prob-

lem instances that are difficult to solve. Evolutionary

Computation 14(4):433–462

Holland JR (1975) Adaptation in Natural and Artificial

Systems. The University of Michigan Press

Kellerer H, Pferschy U, Pisinger D (2004) Knapsack

problems, vol 1. Springer, New York;Berlin;

Knowles JD, Corne DW (2000) Approximating the non-

dominated front using the pareto archived evolution

strategy. Evolutionary Computation 8(2):149–172

Koch T, Achterberg T, Andersen E, Bastert O,

Berthold T, Bixby RE, Danna E, Gamrath

G, Gleixner AM, Heinz S, Lodi A, Mittel-

mann H, Ralphs T, Salvagnin D, Steffy DE,

Wolter K (2011) MIPLIB 2010. Mathematical

Programming Computation 3(2):103–163, DOI 10.

1007/s12532-011-0025-9, URL http://mpc.zib.de/

index.php/MPC/article/view/56/28

Li F, Golden B, Wasil E (2007) The open vehicle rout-

ing problem: Algorithms, large-scale test problems,

and computational results. Computers and Opera-

tions Research 34(10):2918–2930, DOI 10.1016/j.cor.

2005.11.018

Li H, Yao T, Ren M, Rong J, Liu C, Jia L (2016) Phys-

ical topology optimization of infrastructure health

monitoring sensor network for high-speed rail. Mea-

surement 79:83–93

Lust T, Teghem J (2012) The multiobjective multidi-

mensional knapsack problem: A survey and a new

approach. International Transactions in Operational

Research 19(4):495–520

Marinakis Y, Marinaki M (2014) A bumble bees mat-

ing optimization algorithm for the open vehicle

routing problem. Swarm and Evolutionary Compu-

tation 15:80–94, DOI 10.1016/j.swevo.2013.12.003,

URL http://dx.doi.org/10.1016/j.swevo.2013.

12.003

Martello S, Toth P (1990) Knapsack problems: algo-

rithms and computer implementations. John Wiley

& Sons

http://link.springer.com/10.1007/978-3-319-99253-2 http://link.springer.com/10.1007/978-3-319-99259-4{_}30
http://link.springer.com/10.1007/978-3-319-99253-2 http://link.springer.com/10.1007/978-3-319-99259-4{_}30
http://link.springer.com/10.1007/978-3-319-99253-2 http://link.springer.com/10.1007/978-3-319-99259-4{_}30
http://dx.doi.org/10.1016/j.swevo.2015.02.003
http://dx.doi.org/10.1016/j.swevo.2015.02.003
http://mpc.zib.de/index.php/MPC/article/view/56/28
http://mpc.zib.de/index.php/MPC/article/view/56/28
http://dx.doi.org/10.1016/j.swevo.2013.12.003
http://dx.doi.org/10.1016/j.swevo.2013.12.003


Evolutionary-Based Tailoring of Synthetic Instances for the Knapsack Problem 19

Martello S, Pisinger D, Vigo D (2000) The three-

dimensional bin packing problem. Operations Re-

search 48(2):256–267

Mavrotas G, Florios K, Figueira JR (2015) An im-

proved version of a core based algorithm for the

multi-objective multi-dimensional knapsack problem:

A computational study and comparison with meta-

heuristics. Applied Mathematics and Computation

270:25–43

Ortiz-Bayliss JC, Terashima-Maŕın H, Conant-Pablos

SE (2016) Combine and conquer: an evolution-

ary hyper-heuristic approach for solving constraint

satisfaction problems. Artificial Intelligence Review

46(3):327–349

Petursson KB, Runarsson TP (2016) An evolution-

ary approach to the discovery of hybrid branching

rules for mixed integer solvers. Proceedings - 2015

IEEE Symposium Series on Computational Intelli-

gence, SSCI 2015 pp 1436–1443

Pisinger D (2005) Where are the hard knapsack prob-

lems? Computers & Operations Research 32(9):2271–

2284

Reinelt G (1991) TSPLIBA Traveling Salesman

Problem Library. ORSA Journal on Comput-

ing 3(4):376–384, DOI 10.1287/ijoc.3.4.376, URL

http://pubsonline.informs.org/doi/abs/10.

1287/ijoc.3.4.376

Samavati M, Essam D, Nehring M, Sarker R (2017)

A methodology for the large-scale multi-period

precedence-constrained knapsack problem: an appli-

cation in the mining industry. International Journal

of Production Economics 193:12–20

Simon J, Apte A, Regnier E (2017) An application

of the multiple knapsack problem: The self-sufficient

marine. European Journal of Operational Research

256(3):868–876

Smith-Miles K, van Hemert J (2011) Discovering the

suitability of optimisation algorithms by learning

from evolved instances. Annals of Mathematics and

Artificial Intelligence 61(2):87–104

Smith-Miles K, van Hemert J, Lim X (2010) Under-

standing tsp difficulty by learning from evolved in-

stances. In: Blum C, Battiti R (eds) Learning and

Intelligent Optimization, Lecture Notes in Computer

Science, vol 6073, Springer Berlin Heidelberg, pp

266–280

Szkaliczki T, Eberhard M, Hellwagner H, Szobonya L

(2014) Piece selection algorithms for layered video

streaming in P2P networks. Discrete Applied Math-

ematics 167:269–279

Zitzler E, Thiele L (1999) Multiobjective evolution-

ary algorithms: a comparative case study and the

strength pareto approach. IEEE Transactions on

Evolutionary Computation 3(4):257–271

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Im-

proving the Strength Pareto Evolutionary Algorithm.

Evolutionary Methods for Design Optimization and

Control with Applications to Industrial Problems pp

95–100

http://pubsonline.informs.org/doi/abs/10.1287/ijoc.3.4.376
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.3.4.376

	Introduction
	Fundamentals
	The Evolutionary-Based Instance Generator
	Methodology
	Results and Discussion
	Conclusion and Future Work

